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We study the one-dimensional quarter-filled extended Hubbard model with an alternating transfer integral. In
the strong-dimerization limit the charge part is described by the quantum Ising model which shows the
two-dimensional Ising criticality at the self-dual point, and it is naturally connected to the double-frequency
sine–Gordon theory in the weak dimerization. Treating low-lying excitations in finite-size systems, we numeri-
cally determine a phase boundary between two types of 4kF density-wave states and clarify the ground-state
phase diagram. Further, we refer to its relevances to the charge-ordered phase observed in the charge-transfer
organic salts.
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The organic materials described by the chemical formula
sTMTSFd2X (X=PF6, ClO4, etc.) and sTMTTFd2X (X
=PF6,AsF6, etc.) form a class of the quasi one-dimensional
(1D) conductors; a large number of investigations on these
materials have been accumulated in the literature.1 While the
various types of electronic phases, e.g., spin/charge-density-
wave(SDW/CDW), the spin-Peierls and the superconducting
states, have been observed in the low-temperature region,
newly discovered charge-ordered(CO) phase insTMTTFd2X
exhibiting an anomaly in the low-frequency dielectric
constant2 and the charge disproportionation in the NMR
studies3 has received intensive current interest. Although the
stabilizations of these phases at finite temperature resort to
interchain couplings, it is believed that the intrachain inter-
action effects play a leading role to describe them.

For the study of the CO phase, the 1D quarter-filled ex-
tended Hubbard model(EHM) with an alternating transfer
integral has been employed:4–10 H=H1+H2 with

H1 = o
j ,s

− tf1 − ds− 1d jgscj ,s
† cj+1,s + H.c.d, s1d

H2 = o
j

sUnj ,↑nj ,↓ + Vnjnj+1d, s2d

wherecj ,s annihilates ans-spin electron(s=↑ or ↓) on thej th
site and satisfies the periodic boundary conditioncL+1,s=c1,s
(j [ f1,Lg; L is an even number). The number operators are
defined asnj ,s=cj ,s

† cj ,s and nj =nj ,↑+nj ,↓. The parametersU
andV taking positive values stand for the onsite and nearest-
neighbor Coulomb repulsion. The dimerization parameterd
shows the alternation in the transfer integral of the molecular
chains(we sett=1 in the following). For the theoretical de-
scriptions of the 1D electrons, the Tomonaga–Luttinger liq-
uid (TLL ) picture has been widely adopted.11 Since TLL
consists of the massless charge and spin parts both controlled
by the Gaussian fixed point[the conformal field theory
(CFT) with the central chargec=1], it is important to under-
stand its instabilities. In particular, the CO transition may be
related to the crossover of the criticality embedded in the

renormalization group(RG) flow,8 which is one of the typi-
cal instability of thec=1 CFT.

In this paper, we present the numerical calculation results
of the ground-state phase diagrams ofH. Our method being
deeply connected to the instability will be explained briefly.
Further, in the strong-dimerization limitsd=1d, we show that
the charge part can be described by the so-called quantum
Ising chain, which is complementary to the bosonization ar-
gument and gives us an exact limiting condition of the phase
boundary line. Since the region with sufficiently large Cou-
lomb repulsions is relevant to the CO transition, an occur-
rence of the phase separation or the transition to the super-
conducting phases is outside of our research scope.

Let us start with the description of the low-energy physics
in the weak-coupling region, where the bosonization method
provides a reliable approach, i.e., linearizing the dispersion
at Fermi points ±kF=±pn/2a (electron densityn=N/L= 1

2)
and applying the method, we can obtain an effective Hamil-
tonian. For the present case, according to the recent research
results,1,7,12 we can use the following expression:H→H
=Hr+Hs with

Hr =E dx
vr

2p
FKrs]xurd2 +

1

Kr

s]xfrd2G
+E dx

2

s2pad2s− gr sinÎ8fr + g1/4 cos 2Î8frd, s3d

where the operatorur is the dual field offr satisfying the
commutation relationffrsxd ,]yursyd /pg= idsx−yd and pa-
rametersKr andvr are the Gaussian coupling and the veloc-
ity of the charge excitation, respectively.13 A benefit to use
the bosonized expression is now clear, i.e., since the spin-
charge separation occurs inH andHs is the SU(2) critical
Gaussian model in the present case,7,8 we can concentrate on
the charge partHr which takes a form of the so-called
double-frequency sine–Gordon(DSG) model. In uniform
case sd=0d, the 8kF-Umklapp scattering withg1/4~U2sU
−4Vd (Refs. 12 and 14–16) brings about the Berezinskii–
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Kosterlitz–Thouless(BKT) transition, and then the charge
part becomes massive for large values of the Coulomb inter-
actions. For the BKT transition point, values in the strong
coupling limit are known asV* sU→`d=2 and U* sV
→`d=4.17,18Further, the estimations for the intermediate re-
gion are available.12,16,19In the case of nonzero dimerization
sdÞ0d, the scaling dimension of the “half-filled Umklapp
scattering” term with gr~Udf1−AsU−2Vdg (A is a
constant)7,15 on the Gaussian fixed point is smallsx4B

=2Krd enough to bring about the second-order phase transi-
tion for VøV* sUd, which is accompanied by the divergent
correlation length of the form j~d−1/s2−2Krd.1,20 For
V.V* sUd, since the charge gap may survive in a weak-
dimerization region, the transition pointdrsU ,Vd takes non-
zero values depending onU and V, and, more importantly,
the universality of the transition is changed. Recently,
Tsuchiizu and Orignac,8 on the basis of the DSG theory,21

argued that the charge part ondrsU ,Vd fV.V* sUdg is renor-
malized to the 2D-Ising fixed point withc= 1

2 (i.e., the fixed
point with lower symmetry), which is in accord with
Zamolodchikov’sc-theorem22 (see also Refs. 23 and 24).
Then, the critical line corresponds to the phase boundary and
satisfies a conditiondrsU ,V→V* sUdd↘0 in the weak-
dimerization region. To characterize the phases, we shall use
the CDW and the bond-order-wave(BOW) order parameters
with the 4kF wave vector:12

O4C ~ cosÎ8fr, O4B ~ sinÎ8fr. s4d

Here, note that the expectation value of the 4kF-BOW order
parameter is finite,kO4BlÞ0 andkO4Cl=0 in the upper re-
gion of the boundary, but both of these are finite in the lower
region sdÞ0d. While this “mixed” state is basically the
4kF-CDW phase, we shall use the double quotation marks
“4kF-CDW” to express this situation.24

On the other hand, another condition of the boundary can
be found in the strong-dimerization limitsd=1d. To derive an
effective Hamiltonian, it is convenient to work with the or-
bital operators defined bydm,±,s;sc2m−1,s±c2m,sd /Î2, where
dm,l,s annihilates ans-spin electron in thel-orbital sl = ± d on
themth unit cellsm[ f1,L /2gd. In this limit, H1 consists of a
sum of the intracell electron hopping, which is diagonalized
by using the operators asH1=om,l,s−2ldm,l,s

† dm,l,s. For suffi-
ciently largeU and V, since the one-electron statesul ,slm
=dm,l,s

† u0l have a principal role to describe themth unit cell in
the quarter-filled ground state, and the Hamiltonian does not
change the electron number in each cell, we shall introduce
the pseudospin operators,

Tm ; o
l,l8,s

1

2
dm,l,s

† ftgl,l8dm,l8,s, s5d

acting on the orbital space as, for instance,Tm
3 u± ,slm

=±1
2u± ,slm [t=st 1,t 2,t 3d; t i is the Pauli matrix]. Using

these,H1=om−4Tm
3 . For H2, since the intracell Coulomb in-

teractions are absent and the intercell Coulomb repulsion
only remains in the restricted Hilbert space spanned by
the direct product of one-particle statesh^mul ,slmj, a
straightforward calculation brings about the expression

H2=oms−VTm
1 Tm+1

1 +constd. Now, since the Hamiltonian acts
only on the orbital space, its eigenstate takes a form of the
direct product of vectors in the spin and the orbital spaces as
uFl= uspinl ^ uorbitall. Thus, assuming a certain spin configu-
ration belonging to the 2L/2-dimensional space for spins and
restricting ourselves to the orbital(or charge) part, we see
that the HamiltonianH with d=1 is reduced to the quantum
Ising chain25

Hr,d=1 = o
m

s− GTm
3 − JTm

1 Tm+1
1 d s6d

sG=4, J=Vd. Note that this possibility was mentioned quali-
tatively in Ref. 10. Then, the ground state of Eq.(6) is
known to show the 2D-Ising criticality at its self-dual point
G=J/2 sV=8d, which separates orderedskTm

1 lÞ0d and dis-
orderedskTm

1 l=0d phases. The ordered state is realized via
the breaking of the Z2 symmetryst 1→−t 1d, and it is doubly
degenerated, e.g.,

u ± t 1l = p
m

1
Î2

sdm,+
† ± dm,−

† du0l = p
m

c2m−1
† sc2m

† du0l s7d

(we dropped the spin index). This expresses the 4kF-CDW
state with the perfect microscopic polarization,
k±t 1uTm

1 u±t 1l=k±t 1u 1
2sn2m−1−n2mdu±t 1l=±1

2. On one hand,
a disordered state is supported by the external field in
t 3-direction, and an ideal one is given by

u + t 3l = p
m

dm,+
† u0l = p

m

1
Î2

sc2m−1
† + c2m

† du0l, s8d

which expresses the 4kF-BOW state as expected. Here it is
worthy of noticing that these states can be distinguished by
the expectation value of the twist operator26

zr ;KexpS4pi

L
o

j

jnjDL . s9d

This quantity takes valueszr=1 for Eq. (7) and zr

=−fcoss2p /LdgL/2 for Eq. (8), so the sign ofzr characterizes
these two density-wave states(see below). Consequently, in
the strong-dimerization limit, the orbital degrees of freedom
show the 2D-Ising type transition between the “4kF-CDW”
and the 4kF-BOW phases atV=8, whereU is irrelevant.
Since this pseudospin representation is naturally connected
to the bosonization picture in the weak couplings,8 the phase
boundary belongs to the 2D-Ising universality and satisfies
the limiting condition drsU ,V→8d↗1, which provides a
solid guide to investigations in the strong-dimerization re-
gion.

Here, note that the qualitative estimation of the phase
boundary might be possible in the weak- and strong-
dimerization region.7 To evaluate the entire phase diagram
precisely, however, a numerical treatment of the 1D electron
model is required. For this issue, recently the present authors
have numerically treated the same instability observed in the
quantum-spin chain and interacting electron systems.27

Therefore, we shall employ the same approach to the present
system(see also Ref. 28). Since there are two critical fixed
points connected by the RG flow, a relationship between

BRIEF REPORTS PHYSICAL REVIEW B70, 073105(2004)

073105-2



lower-energy excitations on these fixed points—the
ultraviolet-infrared (UV-IR) operator correspondence—has
essential significance in the investigations.8,24 To see this, let
us rescale phase fields and the Gaussian coupling as 2fr

→f, ur /2→u, and 4Kr→K.1, which makes it possible to
directly adopt our previous research.27 With respect tof, the
nonlinear potential density is given as −gr sinÎ2f
+g1/4 cosÎ8f, and the order parameters asO4C~cosÎ2f
sx4C=K /2d and O4B~sinÎ2f sx4B=K /2d. Along the RG
flow these operators on the Gaussian fixed point(UV) are
transmuted to those on the 2D-Ising fixed point(IR) as

O4C → m, O4B → I + e, s10d

wherem is the disorder field(Z2 odd), and e is the energy
density operator(Z2 even) with scaling dimensionsxm= 1

8
and xe=1, respectively. Since the dimerizationd couples
with O4B in the Hamiltonian(3), a deviation from the tran-
sition pointd−drsU ,Vd plays a role of the “thermal scaling
variable” and brings aboutj~ fd−drsU ,Vdg−n with 1/n=2
−xe=1. On one hand, the operatorm corresponding toO4C
provides a most divergent fluctuation.

Now, we shall explain our numerical procedure to deter-
mine the transition point. We shall focus our attention on the
level DE in finite-size systems which corresponds to the op-
eratorO4C (taking the ground-state energy as zero). Accord-
ing to the finite-size-scaling argument based on CFT,DE
.2px4C/L on the UV fixed point;29 we can numerically ob-
tain the level by using discrete symmetries of the lattice
Hamiltonian in the diagonalization calculations. Various ex-
citations observed in TLL are characterized by a set of quan-
tum numbers for symmetry operations. With respect toO4C,
it can be found in the subspace of the total spinST

z =0 and the
space inversionP=−1 (the boundary condition is the same as
that for the ground state).16 Suppose thatDEsU ,V,d ,Ld is a
level corresponding toO4C in the L-site system. Then, we
numerically solve the phenomenological renormalization-
group (PRG) equation sL+2dDEsU ,V,d ,L+2d
=LDEsU ,V,d ,Ld with respect tod for given values ofU and
V, where the gap behaves asDE~1/L [i.e., anL-dependent
transition pointdrsU ,V,L+1d (see Fig. 1)].27 After evaluat-
ing drsU ,V,L+1d, we extrapolate them to the limitL→`
using the formula drsU ,V,Ld=drsU ,Vd+aL−3,30 where
drsU ,Vd anda are determined by the least-square-fitting con-
dition.

From the data ofL=12–20, we obtain the phase boundary
drsU ,Vd as shown in Fig. 1. We can check that, for all values
of U used here, the phase boundary lines converge to the
point sV,dd=s8,1d with the 2D-Ising criticality. On the other
hand, while the finite-size corrections to the boundary may
be large in weak-dimerization region, the boundaries also
show convergences to the BKT-transition pointssV* sUd ,0d.
Next we demonstrate thed dependence ofzrsLd in Fig. 2.
With the increase ofd, zrsLd decreases and becomes negative
[we denote the zero point ofzrsLd asd r8sU ,V,Ld]; this cor-
responds to the change of the center of mass as demonstrated
in the above.26 However, unlike, for instance, the Gaussian
transition,zrs`d can take a finite value on the Ising transition
point, sod r8sU ,V,Ld may not give an estimation of the tran-

sition point. In fact, the inset of Fig. 2 exhibits that
d r8sU ,V,Ld may be extrapolated to a value different from the
PRG result. On the other hand, Fig. 2 also shows that there is
a point d.0.12 at whichzrsLd is almost independent ofL.
This crossing point is expected to be a good estimator for the
Ising transition point because this is quite close to the PRG
result even for smallL. However, this issue remains as a
future problem.

Lastly, we shall refer to some implications of our study to
the real materials. Besides the quantum-chemistry

FIG. 1. The ground-state phase diagram of the quarter-filled
EHM with an alternating transfer integral. The correspondence be-
tween marks and system sizes is given in the figure. The double
circles show the limiting values, i.e.,sV* sUd ,0d at which criticality
changes from the Gaussian to the 2D-Ising type, and(8, 1) the
self-dual point.

FIG. 2. The d dependence ofzrsLd at U=16 andV=4. The
vertical dotted line indicates the transition point(i.e., the PRG re-
sult) drs16,4d.0.12. Inset plotsL dependences ofd r8sU ,V,Ld
(crosses) and the PRG datadrsU ,V,Ld (circles) with the fitting line.
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calculations,31 the numerical estimations of the model pa-
rameters have been performed based upon the experimental
data.4,9 For example, the realistic values of the dimerization
parameter and the onsite Coulomb repulsion of
sTMTTFd2PF6 have been estimated ast2/ t1.0.7, U / t1
.7.0 st1,2=1±dd, but the value ofV is still controversial(an
uncertainty exists also in the value oft2/ t1

2,32). Our numeri-
cal estimation of the transition point using these values is
Vc/ t1.4.0, while generally the mean-field-type calculations
tend to predict somewhat smaller values due to an overesti-
mation of V effects.5,10 On the other hand, several values
have been reported for this material, e.g.,V/ t1.2.8 (1.4) in
Ref. 4(Ref. 9), which is much smaller than the critical value,
and thus predicts a uniform charge distribution(this conclu-
sion may not be changed even in smaller dimerization cases).
However, sTMTTFd2PF6 has the CO phase in the region
above the lower-temperature spin-Peierls phase, and further
it was theoretically suggested that a huge anomaly in the
dielectric constant may reflect a nature of systems in the
critical region.8 This discrepancy may be attributed to many

other interaction effects not included in the Hamiltonian.
However, we think that since experimental findings seem to
support the spin-charge separation with respect to the CO
transition,2,3 the 1D electron models are to provide a primary
description of real materials.

To summarize, we investigated the ground-state phase
diagram of the 1D quarter-filled extended Hubbard model
with alternating transfer integral. Especially, the criticality on
the phase boundary and the implication to the CO transition
observed in the charge-transfer organic salts were mainly
argued.
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