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For the two-dimensional(2D) electron gas, the leading term in the high-density limit of the correlation
energy is evaluated here numerically for all values of the spin polarization. The result is spin-resolved into↑↑,
↑↓, and↓↓ contributions and parametrized analytically. Interaction-strength interpolation yields a local spin-
density functional(LSD) for the correlation energy in 2D at finite densities.
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In recent years, two-dimensional(2D) electron systems
have become the subject of extensive research.1 The 2D ver-
sion of density functional theory(DFT) has proven particu-
larly successful in studying quantum dots.2–4 The local spin-
density approximation(LSD) of DFT requires the correlation
energy of the spin-polarized uniform electron gas. This quan-
tity in 2D is known accurately for a wide range of densities
and spin polarizations from fixed-node diffusion Monte
Carlo simulations.5 Its high-density limit is known exactly in
terms of six-dimensional momentum-space integrals.6 Re-
solved into contributions due to↑↑, ↑↓, and ↓↓ excitation
electron pairs, these integrals are evaluated here numerically.
The analytical parametrization of the results, Eqs.(16) and
(17) below, is a crucial ingredient for the construction of the
spin-resolved correlation energy at finite densities, per-
formed recently for the 3D electron gas.7 It is also required
for studying the magnetic response of the spin-polarized 2D
electron gas.8,9 Generally, it provides a fundamental test for
numerical parametrizations of the correlation energy.5

In the 2D uniform electron gas, the electrons are moving
on a plane at uniform densityr=fpsrsaBd2g−1, where aB

=0.529 Å is the Bohr radius andrs is the dimensionless den-
sity parameter(Seitz radius). We consider lowest-energy
states with a given spin polarization

z ;
r↑ − r↓

r
, s1d

wherer↑ andr↓;r−r↑, respectively, are the(uniform) den-
sities of spin-up and spin-down electrons. Including a neu-
tralizing positive background, the total energy per electron is
a unique function of the dimensionless parametersrs andz,

etotsrs,zd = tssrs,zd + exsrs,zd + ecsrs,zd. s2d

The noninteracting kinetic and exchange energies,

tssrs,zd =
1 + z2

2

1

rs
2 ,

exsrs,zd = −
4Î2

3p

s1 + zd3/2 + s1 − zd3/2

2

1

rs
s3d

(all energies are given in units of 1 Ha;e2/aB=27.21 eV in
the following), may be understood as the zeroth- and the
first-order terms of a perturbation expansion for the quantity
rs

2etotsrs,zd with respect to the electron-electron interaction

(wherers turns out to be the expansion parameter).
The remainingcorrelation energyin Eq. (2) appears to

have the perturbation(high-density) expansion10,11

ecsrs,zd = o
n=0

`

fanszdlnsrsd + bnszdgrs
n srs ! 1d. s4d

For the 2D electron gas(but not for the 3D one), the first
coefficient vanishes,a0szd;0. Consequently, the “second-
order” term sn=0d is ec

s2dszd;b0szd, representing the high-
densitysrs→0d limit of ecsrs,zd. It can be split into an ex-
change(“2b” ) and a ring-diagram(“2r” ) term,6

ec
s2dszd = ec

s2bd + ec
s2rdszd. s5d

The exchange term has only equal-spins contributions,
ec

s2bd=ec↑↑
s2bdszd+ec↓↓

s2bdszd, given by theds1s2
term of Eq.(14) in

Ref. 6 (we choose thekx axis in the direction ofq),

ec,ss
s2bd szd =

1

8p2E
0

` dq

q
E

Afksszd,qg

d2k1 E
Afksszd,qg

d2k2

3
1

uqex + k1 + k2u
1

q + k1x + k2x
. s6d

Here, q, k1, and k2 are dimensionless,s[ h↑ , ↓ j, and the
domain of the 2D integrals is

Afk,qg ; hk [ R2uuk u , k,uk + qexu . kj,

ksszd ; f1 + sgnssdzg1/2. s7d

[ksszd is the Fermi wave vector for spin-s electrons in units
of its value atz=0.] Scaling the integration variables by
some constantk, q=kQ andk =kK , we have generally

E
0

` dq

q
E

Afk,qg

d2kfsq,kd = k2E
0

` dQ

Q
E

Af1,Qg

d2KfskQ,kK d.

s8d

Applying this rule to the integrals in Eq.(6), we find6

ec,ss
s2bd szd = f1 + sgnssdzgJs2bd. s9d

Consequently,6 the full second-order exchange termec
s2bd

=ec↑↑
s2bdszd+ec↓↓

s2bdszd;2Js2bd is z-independent. A Monte Carlo
integration yields
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Js2bd ; ec↑↑
s2bds0d = s57.15 ± 0.05dmHa s1 mHa = 10−3 Had.

s10d

The ring-diagram termec
s2rdszd is the remaining part of

expression(14) in Ref. 6, with the contributions

ec,s1s2

s2rd szd = −
1

8p2E
0

` dq

q2 E
Afks1

szd,qg

d2k1

3 E
Afks2

szd,qg

d2k2
1

q + k1x + k2x
. s11d

The equal-spins termsss1=s2d can be treated in the same
way as the integral(6),

ec,ss
s2rd szd = − f1 + sgnssdzgJs2rd, Js2rd = s76.69 ± 0.03dmHa.

s12d

The only nontrivial z-dependence is in the opposite-spins
term ec↑↓

s2rdszd;ec↓↑
s2rdszd,

ec↑↓
s2rdszd = ec↑↓

s2rds0df1 − fszdg. s13d

By definition, fs0d=0, and, sinceec↑↓
s2rds1d=0, fs1d=1. More-

over, ec↑↓
s2rds0d=−Js2rd. When the results of a Monte Carlo

evaluation offszd at different values ofz are compared with
the functionsfaszd;fs1+zda+s1−zda−2g / s2a−2d, particu-
larly good agreement(specially forz→0 andz→1) is found
in the limit a→1 [Fig. 1(a)],

fszd = f1szd + dfszd,

f1szd ;
s1 + zdlns1 + zd + s1 − zdlns1 − zd

2 ln 2
. s14d

The choice of the functionsfaszd is motivated by the obser-
vation that they also describe thez-dependence oftssrs,zd
andexsrs,zd in Eq. (3),

gsrs,zd = gsrs,0d + fgsrs,1d − gsrs,0dgfaszd,

wherea=2 for g= ts anda= 3
2 for g=ex. [In the case of Eq.

(13), note thatgsrs,1d=0.] The small deviationdfszd in Eq.
(14) is accurately fitted by a polynomial[Fig. 1(b)]

dfszd < 0.0636z2 − 0.1024z4 + 0.0389z6. s15d

The small minimum ofdfszd indicated by the numerical data
[dots in Fig. 1(b)] at z<0.98 is probably real, since a similar
peculiarity is observed in the case of the 3D electron gas(see
the inset in Fig. 1 of Ref. 12).

In summary, the second-order correlation energyec
s2dszd

=ec
s2bd+ec

s2rdszd is

ec
s2dszd ; ec↑↑

s2d szd + 2ec↑↓
s2d szd + ec↓↓

s2d szd

= f153.38fszd − 192.46gmHa, s16d

where fszd is given by Eqs.(14) and (15). The spin resolu-
tion is fixed by

ec↑↑
s2d szd ; ec↓↓

s2d s− zd = − s1 + zd 3 19.54 mHa. s17d

ec
s2dszd;ecs0,zd is thehigh-densitylimit rs→0 of the full

correlation energyecsrs,zd. To illustrate the relevance of this
limit for finite densitiessrs.0d, the present result can be
used in the interaction-strength interpolation(ISI) of Ref. 13.
This approach does not require the higher-ordersnù1d terms
of the expansion(4) (which is expected to have only a finite
radius of convergence). Instead, information beyond the sec-
ond order is taken from the opposite low-density(strong-
interaction or Wigner-crystal) limit of the exchange-
correlation energyexc;ex+ec (per electron),

excsrs,zd → a`

rs
+

b`

rs
3/2 srs → `d. s18d

The coefficients14 a`<−1.1061 andb`< 1
2 are independent

of z, since any spatial overlap between two electrons is
strongly suppressed in this limit, no matter whether their
spins are parallel or not.15 The resulting ISI expression for
the exchange-correlation energy at finite densities reads13

exc
ISIsrs,zd =

a`

rs
+

2X

Y
Fs1 + Yd1/2 − 1 −Z lnS s1 + Yd1/2 + Z

1 + Z
DG .

s19d

Using b`= 1
2 and writing exsrs,zd=cxszd / rs, we have

explicitly13

FIG. 1. (a) Numerical results(dots) for the functionfszd of Eq.
(13) obtained by Monte Carlo integrations of expression(11) (with
s1s2= ↑↓) at selected values ofz. The analytical functionf1szd of
Eq. (14) is plotted as a dashed curve. The solid curve represents the
accurate fitf1szd+dfszd, using Eq.(15) for dfszd. (b) The fit (15)
(solid curve) compared to the true deviation(dots) of the Monte
Carlo integration results fromf1szd.
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Xsrs,zd =
− ec

s2dszd
fcxszd − a`g2

1

rs
,

Ysrs,zd =
4ec

s2dszd2

fcxszd − a`g4rs,

Zszd =
− ec

s2dszd
fcxszd − a`g3 − 1. s20d

In Fig. 2(a), the ISI predictionec
ISIsrs,zd=exc

ISI−ex for the cor-
relation energy of the unpolarized uniform electron gassz
=0d is compared with the accurate parametrization of the
fixed-node diffusion Monte Carlo results in Ref. 5.ec

ISI dif-
fers slightly from the latter by up to 4%. This mild deviation
might be cured by including in the ISI a simple model for the
next-order coefficient of expansion(4).16 In the high-density
limit srs→0d, however, where the present result is virtually
exact, the parametrization in Ref. 5 has for 0.7,z,0.95 a
small positive deviation,5 shown in Fig. 2(b).

Reference 5 predicts a sudden transition into a fully po-
larized ground state forrs.25.56. In the present model, the
total energy per electron,etot

ISIsrs,zd= ts+exc
ISI, becomes lower

for z=1 than forz=0 at rs<6.3. More precisely, Fig. 3(a)
shows the differenceetot

ISIsrs,zd−etot
ISIsrs,0d versusz at differ-

ent values ofrs. Due to this figure, nearly full polarization
z<0.95 would be energetically favorable already atrs=6.0.
A corresponding divergence in the spin susceptibilityxsrsd

occurs atrs<7.8 [Fig. 3(b)]. These results demonstrate that
the present model(19) qualitatively predicts the correct mag-
netic transition, but at a density which is too high. Better
accuracy might be achieved if higher-order terms of the
high-density expansion(4) are included. As pointed out in
Ref. 5, however, this transition is very subtle[note the small
energy scale in Fig. 3(a)] and approximate predictions for its
density tend to be too high.17

Conclusions:The high-density limit, given by Eq.(16), of
the correlation energyecsrs,zd in the 2D uniform electron
gas provides a strong test for the results of Monte Carlo
computations.5 Moreover, Eq.(16) is a basic ingredient for
constructing 2D density functionals. For example, extrapola-
tion to the low-density limit yields a simple estimate(19) for
ecsrs,zd. Even the subtle transition to a ferromagnetic ground
state is predicted qualitatively correctly. For arbitrarynon-
uniform 2D electron systems(such as quantum dots) with
local densitiesr↑sr d and r↓sr d of spin-up and spin-down
electrons, respectively, Eq.(19) provides an explicit local
spin-density approximation(LSD),

Exc
LSDfr↑,r↓g =E d2rrsr dexc

ISIsrssr d,zsr dd, s21d

for treatment by the Kohn–Sham equations of DFT. In Eq.
(21), rssr d=aB

−1fprsr dg−1/2, rsr d=r↑sr d+r↓sr d, and zsr d
=fr↑sr d−r↓sr dg /rsr d.

FIG. 2. The correlation energy of Ref. 5(dotted curves) versus
the present ISI results(solid curves); energies are in hartree units.

FIG. 3. (a) The difference in ISI total energy per electron be-
tween the state with polarizationz and the unpolarized statesz
=0d for (from top to bottom) rs=5.0,5.5,6.0,6.5,7.0.(b) The spin
susceptibilityxsrsd;f]2etot

ISIsrs,zd /]z2g−2uz=0 in units of its noninter-
acting valuex0srsd;f]2tssrs,zd /]z2g−1uz=0=rs

2.
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