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Spin-resolved second-order correlation energy of the two-dimensional uniform electron gas
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For the two-dimensional2D) electron gas, the leading term in the high-density limit of the correlation
energy is evaluated here numerically for all values of the spin polarization. The result is spin-resolvigd into
11, and || contributions and parametrized analytically. Interaction-strength interpolation yields a local spin-
density functional(LSD) for the correlation energy in 2D at finite densities.
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In recent years, two-dimension&D) electron systems (whererg turns out to be the expansion paramgter
have become the subject of extensive resehiide 2D ver- The remainingcorrelation energyin Eq. (2) appears to
sion of density functional theor§DFT) has proven particu- have the perturbatiothigh-density expansiot
larly successful in studying quantum dété.The local spin- o
density approximatiofLSD) of DFT requires the correlation _ n <
energy of the spin-polarized uniform electron gas. This quan- €llsd) = go [2:(In(rd +br(DIrs (<D (4)
tity in 2D is known accurately for a wide range of densities
and spin polarizations from fixed-node diffusion Monte For the 2D electron gagbut not for the 3D ong the first
Carlo simulation$.Its high-density limit is known exactly in ~coefficient vanishesay(£)=0. Consequently, the “second-
terms of six-dimensional momentum-space intedgtaRe-  order” term(n=0) is e(cz)(g)zbo(g), representing the high-
solved into contributions due tdf, 7], and || excitation density(rs—0) limit of ey(rg,¢). It can be split into an ex-
electron pairs, these integrals are evaluated here numericallghange(“2b”) and a ring-diagrang“2r”) term®
The analytical parametrization of the results, EG$) and @) — (2b) 4 (20)
(17) below, is a crucial ingredient for the construction of the €& (=6 +ec (0. (5)
spin-resolved correlation energy at finite densities, per- The exchange term has only equal-spins contributions,
formed recently for the 3D electron gagt is also required e(f"):efﬁ?(o+e§?(§), given by thes, . term of Eq.(14) in
for studying the magnetic response of the spin-polarized 20z ¢. 6 (we choose thé, axis in the dlirzection ofy),
electron ga$:® Generally, it provides a fundamental test for

numerical parametrizations of the correlation enérgy. @) 1 - dq 2 2
In the 2D uniform electron gas, the electrons are moving €eoold) = 872 o ¢ d, dk,
on a plane at uniform densitp=[n(rsag)?]™, where ag Ak, (0al  Aky(0).d]
=0.529 A is the Bohr radius ang is the dimensionless den- 1 1 (
6)

sity parameter(Seitz radius We consider lowest-energy X .
states with a given spin polarization e+ Ko+ kol 6+ Ky + ko
Here, g, k1, andk, are dimensionlessy {1, |}, and the

{= ET_—L, (1)  domain of the 2D integrals is

p

wherep; andp, = p-p;, respectively, are theuniform) den-
sities of spin-up and spin-down electrons. Including a neu- _ 1/2
tralizing positive background, the total energy per electron is Ko(8) =[1+sgria){]=. @)
a unique function of the dimensionless parametgmnd ¢, [«,({) is the Fermi wave vector for spim-electrons in units
o) =t(rad) +edrad) +erd). 2 of its value at{=0.] Scaling the integration variables by
Colls ) =1lls0) + &1 0) + &lrs d) @ some constank, q=«Q andk=«K, we have generally

Alk,q] = {k € R|k| < &, |k + e > «},

The noninteracting kinetic and exchange energies, = “ dQ
1421 f Eq f dkf(q,k) = KZJ o f K F(kQ, kK.
ts(r51 g) - 2 0 A[K,q] 0 A[l,Q]

2
(8

S

42(1+9*+(1-p*1
37 2 rs

(3) Applying this rule to the integrals in E@6), we finc®

e () =11 + (2b)
(all energies are given in units of 1 Hee?/ag=27.21 eV in coolé) =[1+ sgo)() )
the following), may be understood as the zeroth- and theConsequentl§, the full second-order exchange tereff”
first-order terms of a perturbation expansion for the quantity:e(;?)(g)+e(02ﬁ)(§)EZJ(Zb) is Z-independent. A Monte Carlo
rietot(rs,g) with respect to the electron-electron interactionintegration yields

edrs¢) =-
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J®) = ¢2(0) = (57.15+ 0.03mHa (1 mHa=10° Ha).
(10)
The ring-diagram terrre(2r () is the remaining part of

expression14) in Ref. 6, Wlth the contributions

dq
o) ="5 3 J J oy
Ak, (£).0)
1
X 2 ) 11
Zq + klx + k2x ( )
Ak, (£),0)

The equal-spins term&r;=05) can be treated in the same
way as the integralb),
(Zr)

el (0 =—[1+sgrio)J3?), J?)=(76.69+0.03mHa.

(12)

The only nontrivial {-dependence is in the opposite-spins

termel> () =el(0),
() =

(2r)
€t

O[1-f(Q]. (13)

crl

€1l

By definition, f(0)=0, and, sinces (C?rf(l) 0, f(1)=1. More-
over, e(zTr)(O)— -J@) When the results of a Monte Carlo
evaluation off(¢) at different values of are compared with
the functionsf () =[(1+)*+(1-0)“-2]/(2*-2), particu-
larly good agreemerispecially for{— 0 and{— 1) is found
in the limit «— 1 [Fig. 1(a)],

f(0) =11(0) + ot(0),

(L+)In(1+)+(1-9In(1-7)
2In2 '

f1() = (14)
The choice of the function,({) is motivated by the obser-
vation that they also describe thedependence of((rg, )
ande(rs,¢) in Eq. (3),

g(r31 é’) = g(rSI O) + [g(r51 1) - g(r81 0)]fa(§)y
wherea=2 for g=tg and a:g for g=e,. [In the case of Eq.

(13), note thatg(rs,1)=0.] The small deviationsf(¢{) in Eq.
(14) is accurately fitted by a polynomidFig. 1(b)]

5f(0) =~ 0.06362 - 0.1024* + 0.0389°. (15)

The small minimum o#f(¢) indicated by the numerical data
[dots in Fig. 1b)] at {=0.98 is probably real, since a similar
peculiarity is observed in the case of the 3D electron(gas
the inset in Fig. 1 of Ref. 12

In summary the second-order correlation enerdﬁ(g’)
_e(2b +e 2r)(§) is

e?(0) =e2.(0) + 22 () +e2)(0)

=[153.38(¢) - 192.46mHa, (16)
wheref({) is given by Egs(14) and(15). The spin resolu-
tion is fixed by

e () = e@)(- 9 =—(1+) X 19.54 mHa.

€crt (17)
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FIG. 1. (@) Numerical resultgdoty for the functionf(¢) of Eq.
(13) obtained by Monte Carlo integrations of expressibh) (with
o10,=11]) at selected values @f The analytical functiorf,({) of
Eq. (14) is plotted as a dashed curve. The solid curve represents the
accurate fitf1() + 8f(£), using Eq.(15) for 5f({). (b) The fit (15)
(solid curve compared to the true deviatiaioty of the Monte
Carlo integration results frory ().

1

e?()=e,(0,¢) is thehigh-densitylimit r,— 0 of the full

correlation energge.(rs, ). To illustrate the relevance of this
limit for finite densities(rg>0), the present result can be
used in the interaction-strength interpolati®é8l) of Ref. 13.
This approach does not require the higher-okder 1) terms
of the expansiori4) (which is expected to have only a finite
radius of convergengelnstead, information beyond the sec-
ond order is taken from the opposite low-dengsfrong-
interaction or Wigner-crystal limit of the exchange-
correlation energe,.=et+e. (per electron

e
312
rS

el d) — % FoE (ry— ). (18)

S

The coefficient¥ a, ~-1.1061 anch,,~ 3 are independent
of ¢, since any spatial overlap between two electrons is
strongly suppressed in this limit, no matter whether their
spins are parallel or nd®. The resulting 1SI expression for
the exchange-correlation energy at finite densities féads

2X (1+Y)Y2+7
ea(red) = —S+7{(1+Y)1’2—1—Zln<T .
(19
Using b,=5 and writing e(rs,{)=c({)/rs, we have
explicitly3
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FIG. 2. The correlation energy of Ref.(Botted curvepversus

the present ISI resultsolid curves; energies are in hartree units.

-2 1

X0 = [cd0) - a1

465:2)(g)2
Y(re,$) = mrs,

-
[Cx(g) - aw]s

In Fig. 2@), the ISI predictiorel>(rs, ) =els — e, for the cor-
relation energy of the unpolarized uniform electron gés

2(0)= 1. (20)

=0) is compared with the accurate parametrization of th

fixed-node diffusion Monte Carlo results in Ref. &' dif-

fers slightly from the latter by up to 4%. This mild deviation
might be cured by including in the I1SI a simple model for the

next-order coefficient of expansi@#).'® In the high-density

limit (r¢— 0), however, where the present result is virtually

exact, the parametrization in Ref. 5 has for€.4<0.95 a
small positive deviatiod,shown in Fig. 2b).

Reference 5 predicts a sudden transition into a fully po-
larized ground state far,>25.56. In the present model, the
becomes lower

total energy per electrorgoi(rs, ) =ts+el>,

for (=1 than for{=0 atrg=6.3. More precisely, Fig. @)

shows the differencel>i(r, ) —eli(rs,0) versus{ at differ-
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FIG. 3. (a) The difference in ISI total energy per electron be-
tween the state with polarizatiot and the unpolarized statg
=0) for (from top to bottom rs=5.0,5.5,6.0,6.5,7.Qb) The spin
susceptibilityx(rg) = [Pelsi(rs, )/ 9¢%]7?| = in units of its noninter-
acting valuexy(re) =[ty(rs, {)/ 921 Y ;zo=r2.

occurs atr=~ 7.8 [Fig. 3b)]. These results demonstrate that
the present modglL9) qualitatively predicts the correct mag-
netic transition, but at a density which is too high. Better
accuracy might be achieved if higher-order terms of the
high-density expansio) are included. As pointed out in
Ref. 5, however, this transition is very subftete the small
energy scale in Fig.(3)] and approximate predictions for its
density tend to be too higH.

ConclusionsThe high-density limit, given by Eq16), of
the correlation energg.(rg,) in the 2D uniform electron
Jas provides a strong test for the results of Monte Carlo
computations$. Moreover, Eq.(16) is a basic ingredient for
constructing 2D density functionals. For example, extrapola-
tion to the low-density limit yields a simple estimatk9) for
e.(rs, ). Even the subtle transition to a ferromagnetic ground
state is predicted qualitatively correctly. For arbitrarmgn-
uniform 2D electron systemgsuch as quantum dotsvith
local densitiesp,(r) and p (r) of spin-up and spin-down
electrons, respectively, Eq19) provides an explicit local
spin-density approximatio(LSD),

Exstprp = f d?rp(r)ery(r), ¢(r), (21

ent values ofr,. Due to this figure, nearly full polarization for treatment by the Kohn—Sham equations of DFT. In Eq.

{=~0.95 would be energetically favorable already &t6.0.
A corresponding divergence in the spin susceptibijtys)

2, ryr)=ag[mp(r)T Y2 p(r)=p,(r)+p,(r), and £(r)
=[p(r)=p,(r)]/p(r).
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