Spin-resolved second-order correlation energy of the two-dimensional uniform electron gas

Michael Seidl

Institute of Theoretical Physics, University of Regensburg, D-93040 Regensburg, Germany (Received 9 December 2003; revised manuscript received 19 May 2004; published 13 August 2004)

For the two-dimensional (2D) electron gas, the leading term in the high-density limit of the correlation energy is evaluated here numerically for all values of the spin polarization. The result is spin-resolved into ↑↑, ↑↓, and ↓↓ contributions and parametrized analytically. Interaction-strength interpolation yields a local spindensity functional (LSD) for the correlation energy in 2D at finite densities.

DOI: 10.1103/PhysRevB.70.073101 PACS number(s): 71.10.-w, 73.20.-r

In recent years, two-dimensional (2D) electron systems have become the subject of extensive research.¹ The 2D version of density functional theory (DFT) has proven particularly successful in studying quantum dots. 2^{-4} The local spindensity approximation (LSD) of DFT requires the correlation energy of the spin-polarized uniform electron gas. This quantity in 2D is known accurately for a wide range of densities and spin polarizations from fixed-node diffusion Monte Carlo simulations.⁵ Its high-density limit is known exactly in terms of six-dimensional momentum-space integrals.⁶ Resolved into contributions due to $\uparrow \uparrow$, $\uparrow \downarrow$, and $\downarrow \downarrow$ excitation electron pairs, these integrals are evaluated here numerically. The analytical parametrization of the results, Eqs. (16) and (17) below, is a crucial ingredient for the construction of the spin-resolved correlation energy at finite densities, performed recently for the 3D electron gas.7 It is also required for studying the magnetic response of the spin-polarized 2D electron gas.^{8,9} Generally, it provides a fundamental test for numerical parametrizations of the correlation energy.⁵

In the 2D uniform electron gas, the electrons are moving on a plane at uniform density $\rho = [\pi (r_s a_B)^2]^{-1}$, where a_B $=0.529$ Å is the Bohr radius and r_s is the dimensionless density parameter (Seitz radius). We consider lowest-energy states with a given spin polarization

$$
\zeta \equiv \frac{\rho_{\uparrow} - \rho_{\downarrow}}{\rho},\tag{1}
$$

where ρ_{\uparrow} and $\rho_{\downarrow} \equiv \rho - \rho_{\uparrow}$, respectively, are the (uniform) densities of spin-up and spin-down electrons. Including a neutralizing positive background, the total energy per electron is a unique function of the dimensionless parameters r_s and ζ ,

$$
e_{tot}(r_s, \zeta) = t_s(r_s, \zeta) + e_x(r_s, \zeta) + e_c(r_s, \zeta).
$$
 (2)

The noninteracting kinetic and exchange energies,

$$
t_s(r_s, \zeta) = \frac{1 + \zeta^2}{2} \frac{1}{r_s^2},
$$

$$
e_x(r_s, \zeta) = -\frac{4\sqrt{2}}{3\pi} \frac{(1 + \zeta)^{3/2} + (1 - \zeta)^{3/2}}{2} \frac{1}{r_s}
$$
 (3)

(all energies are given in units of 1 Ha $\equiv e^2 / a_B = 27.21$ eV in the following), may be understood as the zeroth- and the first-order terms of a perturbation expansion for the quantity $r_s^2 e_{tot}(r_s, \zeta)$ with respect to the electron-electron interaction

(where r_s turns out to be the expansion parameter).

The remaining *correlation energy* in Eq. (2) appears to have the perturbation (high-density) expansion^{10,11}

$$
e_c(r_s, \zeta) = \sum_{n=0}^{\infty} \left[a_n(\zeta) \ln(r_s) + b_n(\zeta) \right] r_s^n \quad (r_s \ll 1). \tag{4}
$$

For the 2D electron gas (but not for the 3D one), the first coefficient vanishes, $a_0(\zeta) \equiv 0$. Consequently, the "secondorder" term $(n=0)$ is $e_c^{(2)}(\zeta) \equiv b_0(\zeta)$, representing the highdensity $(r_s \rightarrow 0)$ limit of $e_c(r_s, \zeta)$. It can be split into an exchange (" $2b$ ") and a ring-diagram (" $2r$ ") term,⁶

$$
e_c^{(2)}(\zeta) = e_c^{(2b)} + e_c^{(2r)}(\zeta). \tag{5}
$$

The exchange term has only equal-spins contributions, $e_c^{(2b)} = e_{c\uparrow\uparrow}^{(2b)}(\zeta) + e_{c\downarrow\downarrow}^{(2b)}(\zeta)$, given by the $\delta_{\sigma_1\sigma_2}$ term of Eq. (14) in Ref. 6 (we choose the k_x axis in the direction of **q**),

$$
e_{c,\sigma\sigma}^{(2b)}(\zeta) = \frac{1}{8\pi^2} \int_0^\infty \frac{dq}{q} \int_{A[\kappa_{\sigma}(\zeta),q]} d^2k_1 \int_{A[\kappa_{\sigma}(\zeta),q]} d^2k_2
$$

$$
\times \frac{1}{|q\mathbf{e}_x + \mathbf{k}_1 + \mathbf{k}_2|} \frac{1}{q + k_{1x} + k_{2x}}.
$$
(6)

Here, q, **k**₁, and **k**₂ are dimensionless, $\sigma \in \{\uparrow, \downarrow\}$, and the domain of the 2D integrals is

$$
A[\kappa, q] \equiv \{ \mathbf{k} \in \mathbb{R}^2 | |\mathbf{k}| < \kappa, |\mathbf{k} + q \mathbf{e}_x| > \kappa \},
$$
\n
$$
\kappa_{\sigma}(\zeta) \equiv [1 + \text{sgn}(\sigma) \zeta]^{1/2}.\tag{7}
$$

 $\lceil \kappa_{\sigma}(\zeta) \rceil$ is the Fermi wave vector for spin- σ electrons in units of its value at $\zeta = 0$. Scaling the integration variables by some constant κ , $q = \kappa Q$ and $\mathbf{k} = \kappa \mathbf{K}$, we have generally

$$
\int_0^\infty \frac{dq}{q} \int_{A[\kappa, q]} d^2k f(q, \mathbf{k}) = \kappa^2 \int_0^\infty \frac{dQ}{Q} \int_{A[1, Q]} d^2K f(\kappa Q, \kappa \mathbf{k}).
$$
\n(8)

Applying this rule to the integrals in Eq. (6) , we find⁶

$$
e_{c,\sigma\sigma}^{(2b)}(\zeta) = [1 + \text{sgn}(\sigma)\zeta]J^{(2b)}.
$$
 (9)

Consequently,⁶ the full second-order exchange term $e_c^{(2b)}$ $=e^{(2b)}_{c\uparrow\downarrow}(\zeta)+e^{(2b)}_{c\downarrow\downarrow}(\zeta) \equiv 2J^{(2b)}$ is ζ -independent. A Monte Carlo integration yields

$$
J^{(2b)} = e_{c\uparrow\uparrow}^{(2b)}(0) = (57.15 \pm 0.05) \text{mHa} \quad (1 \text{ mHa} = 10^{-3} \text{ Ha}).
$$
\n(10)

The ring-diagram term $e_c^{(2r)}(\zeta)$ is the remaining part of expression (14) in Ref. 6, with the contributions

$$
e_{c,\sigma_1\sigma_2}^{(2r)}(\zeta) = -\frac{1}{8\pi^2} \int_0^\infty \frac{dq}{q^2} \int_{A[\kappa_{\sigma_1}(\zeta),q]} d^2k_1
$$

$$
\times \int_{A[\kappa_{\sigma_2}(\zeta),q]} d^2k_2 \frac{1}{q+k_{1x}+k_{2x}}.
$$
(11)

The equal-spins terms $(\sigma_1=\sigma_2)$ can be treated in the same way as the integral (6),

$$
e_{c,\sigma\sigma}^{(2r)}(\zeta) = -[1 + \text{sgn}(\sigma)\zeta]J^{(2r)}, \quad J^{(2r)} = (76.69 \pm 0.03)\text{mHa}.
$$
\n(12)

The only nontrivial ζ -dependence is in the opposite-spins term $e_{c\uparrow\downarrow}^{(2r)}(\zeta) \equiv e_{c\downarrow\uparrow}^{(2r)}(\zeta),$

$$
e_{c\uparrow\downarrow}^{(2r)}(\zeta) = e_{c\uparrow\downarrow}^{(2r)}(0)[1 - f(\zeta)].
$$
\n(13)

By definition, $f(0)=0$, and, since $e_{c\uparrow\downarrow}^{(2r)}(1)=0$, $f(1)=1$. Moreover, $e_{c\uparrow\downarrow}^{(2r)}(0) = -J^{(2r)}$. When the results of a Monte Carlo evaluation of $f(\zeta)$ at different values of ζ are compared with the functions $f_{\alpha}(\zeta) \equiv [(1+\zeta)^{\alpha} + (1-\zeta)^{\alpha} - 2]/(2^{\alpha} - 2)$, particularly good agreement (specially for $\zeta \rightarrow 0$ and $\zeta \rightarrow 1$) is found in the limit $\alpha \rightarrow 1$ [Fig. 1(a)],

$$
f(\zeta) = f_1(\zeta) + \delta f(\zeta),
$$

$$
f_1(\zeta) = \frac{(1+\zeta)\ln(1+\zeta) + (1-\zeta)\ln(1-\zeta)}{2\ln 2}.
$$
 (14)

The choice of the functions $f_{\alpha}(\zeta)$ is motivated by the observation that they also describe the ζ -dependence of $t_s(r_s,\zeta)$ and $e_x(r_s, \zeta)$ in Eq. (3),

$$
g(r_s, \zeta) = g(r_s, 0) + [g(r_s, 1) - g(r_s, 0)]f_{\alpha}(\zeta),
$$

where $\alpha = 2$ for $g = t_s$ and $\alpha = \frac{3}{2}$ for $g = e_x$. [In the case of Eq. (13), note that $g(r_s, 1) = 0$.] The small deviation $\delta f(\zeta)$ in Eq. (14) is accurately fitted by a polynomial [Fig. 1(b)]

$$
\delta f(\zeta) \approx 0.0636 \zeta^2 - 0.1024 \zeta^4 + 0.0389 \zeta^6. \tag{15}
$$

The small minimum of $\delta f(\zeta)$ indicated by the numerical data [dots in Fig. 1(b)] at $\zeta \approx 0.98$ is probably real, since a similar peculiarity is observed in the case of the 3D electron gas (see the inset in Fig. 1 of Ref. 12).

In summary, the second-order correlation energy $e_c^{(2)}(\zeta)$ $=e_c^{(2b)}+e_c^{(2r)}(\zeta)$ is

$$
e_c^{(2)}(\zeta) \equiv e_{c\uparrow\uparrow}^{(2)}(\zeta) + 2e_{c\uparrow\downarrow}^{(2)}(\zeta) + e_{c\downarrow\downarrow}^{(2)}(\zeta)
$$

= [153.38f(\zeta) - 192.46]mHa, (16)

where $f(\zeta)$ is given by Eqs. (14) and (15). The spin resolution is fixed by

$$
e_{c\uparrow\uparrow}^{(2)}(\zeta) \equiv e_{c\downarrow\downarrow}^{(2)}(-\zeta) = -(1+\zeta) \times 19.54 \text{ mHa.}
$$
 (17)

FIG. 1. (a) Numerical results (dots) for the function $f(\zeta)$ of Eq. (13) obtained by Monte Carlo integrations of expression (11) (with $\sigma_1 \sigma_2 = \uparrow \downarrow$) at selected values of ζ . The analytical function $f_1(\zeta)$ of Eq. (14) is plotted as a dashed curve. The solid curve represents the accurate fit $f_1(\zeta) + \delta f(\zeta)$, using Eq. (15) for $\delta f(\zeta)$. (b) The fit (15) (solid curve) compared to the true deviation (dots) of the Monte Carlo integration results from $f_1(\zeta)$.

 $e_c^{(2)}(\zeta) \equiv e_c(0,\zeta)$ is the *high-density* limit $r_s \to 0$ of the full correlation energy $e_c(r_s, \zeta)$. To illustrate the relevance of this limit for finite densities $(r_s > 0)$, the present result can be used in the interaction-strength interpolation (ISI) of Ref. 13. This approach does not require the higher-order $(n \geq 1)$ terms of the expansion (4) (which is expected to have only a finite radius of convergence). Instead, information beyond the second order is taken from the opposite low-density (stronginteraction or Wigner-crystal) limit of the exchangecorrelation energy $e_{xc} \equiv e_x + e_c$ (per electron),

$$
e_{xc}(r_s, \zeta) \to \frac{a_{\infty}}{r_s} + \frac{b_{\infty}}{r_s^{3/2}} \quad (r_s \to \infty). \tag{18}
$$

The coefficients¹⁴ $a_{\infty} \approx -1.1061$ and $b_{\infty} \approx \frac{1}{2}$ are independent of ζ , since any spatial overlap between two electrons is strongly suppressed in this limit, no matter whether their spins are parallel or not.¹⁵ The resulting ISI expression for the exchange-correlation energy at finite densities reads¹³

$$
e_{xc}^{ISI}(r_s, \zeta) = \frac{a_{\infty}}{r_s} + \frac{2X}{Y} \bigg[(1+Y)^{1/2} - 1 - Z \ln \bigg(\frac{(1+Y)^{1/2} + Z}{1+Z} \bigg) \bigg].
$$
\n(19)

Using $b_{\infty} = \frac{1}{2}$ and writing $e_x(r_s, \zeta) = c_x(\zeta)/r_s$, we have explicitly¹³

FIG. 2. The correlation energy of Ref. 5 (dotted curves) versus the present ISI results (solid curves); energies are in hartree units.

$$
X(r_s, \zeta) = \frac{-e_c^{(2)}(\zeta)}{[c_x(\zeta) - a_{\infty}]^2} \frac{1}{r_s},
$$

\n
$$
Y(r_s, \zeta) = \frac{4e_c^{(2)}(\zeta)^2}{[c_x(\zeta) - a_{\infty}]^4} r_s,
$$

\n
$$
Z(\zeta) = \frac{-e_c^{(2)}(\zeta)}{[c_x(\zeta) - a_{\infty}]^3} - 1.
$$
 (20)

In Fig. 2(a), the ISI prediction $e_c^{ISI}(r_s, \zeta) = e_{xc}^{ISI} - e_x$ for the correlation energy of the unpolarized uniform electron gas (ζ) $=0$) is compared with the accurate parametrization of the fixed-node diffusion Monte Carlo results in Ref. 5. e_c^{ISI} differs slightly from the latter by up to 4%. This mild deviation might be cured by including in the ISI a simple model for the next-order coefficient of expansion (4). ¹⁶ In the high-density limit $(r_s \rightarrow 0)$, however, where the present result is virtually exact, the parametrization in Ref. 5 has for $0.7 < \zeta < 0.95$ a small positive deviation,⁵ shown in Fig. 2(b).

Reference 5 predicts a sudden transition into a fully polarized ground state for r_s $>$ 25.56. In the present model, the total energy per electron, $e_{tot}^{ISI}(r_s, \zeta) = t_s + e_{xc}^{ISI}$, becomes lower for $\zeta = 1$ than for $\zeta = 0$ at $r_s \approx 6.3$. More precisely, Fig. 3(a) shows the difference $e_{tot}^{ISI}(r_s, \zeta) - e_{tot}^{ISI}(r_s, 0)$ versus ζ at different values of r_s . Due to this figure, nearly full polarization $\zeta \approx 0.95$ would be energetically favorable already at $r_s = 6.0$. A corresponding divergence in the spin susceptibility $\chi(r_s)$

FIG. 3. (a) The difference in ISI total energy per electron between the state with polarization ζ and the unpolarized state $(\zeta$ $=0$) for (from top to bottom) $r_s = 5.0, 5.5, 6.0, 6.5, 7.0$. (b) The spin susceptibility $\chi(r_s) \equiv [\partial^2 e_{tot}^{ISI}(r_s, \zeta)/\partial \zeta^2]^{-2}|_{\zeta=0}$ in units of its noninteracting value $\chi_0(r_s) \equiv \left[\frac{\partial^2 t_s(r_s, \zeta)}{\partial \zeta^2}\right]^{-1}\big|_{\zeta=0} = r_s^2$.

occurs at $r_s \approx 7.8$ [Fig. 3(b)]. These results demonstrate that the present model (19) qualitatively predicts the correct magnetic transition, but at a density which is too high. Better accuracy might be achieved if higher-order terms of the high-density expansion (4) are included. As pointed out in Ref. 5, however, this transition is very subtle [note the small energy scale in Fig. 3(a)] and approximate predictions for its density tend to be too high. 17

Conclusions: The high-density limit, given by Eq. (16), of the correlation energy $e_c(r_s, \zeta)$ in the 2D uniform electron gas provides a strong test for the results of Monte Carlo computations.5 Moreover, Eq. (16) is a basic ingredient for constructing 2D density functionals. For example, extrapolation to the low-density limit yields a simple estimate (19) for $e_c(r_s, \zeta)$. Even the subtle transition to a ferromagnetic ground state is predicted qualitatively correctly. For arbitrary *nonuniform* 2D electron systems (such as quantum dots) with local densities $\rho_{\uparrow}(\mathbf{r})$ and $\rho_{\downarrow}(\mathbf{r})$ of spin-up and spin-down electrons, respectively, Eq. (19) provides an explicit local spin-density approximation (LSD),

$$
E_{xc}^{LSD}[\rho_{\uparrow}, \rho_{\downarrow}] = \int d^2r \rho(\mathbf{r}) e_{xc}^{ISI}(r_s(\mathbf{r}), \zeta(\mathbf{r})), \tag{21}
$$

for treatment by the Kohn–Sham equations of DFT. In Eq. (21), $r_s(\mathbf{r}) = a_B^{-1}[\pi \rho(\mathbf{r})]^{-1/2}$, $\rho(\mathbf{r}) = \rho_{\uparrow}(\mathbf{r}) + \rho_{\downarrow}(\mathbf{r})$, and $\zeta(\mathbf{r})$ $=[\rho_{\uparrow}(\mathbf{r})-\rho_{\downarrow}(\mathbf{r})]/\rho(\mathbf{r}).$

- ¹E. Abrahams, S. V. Kravchenko, and M. P. Sarachik, Rev. Mod. Phys. **73**, 251 (2001).
- 2S. M. Reimann and M. Manninen, Rev. Mod. Phys. **74**, 1283 (2002).
- 3H. Jiang, H. U. Baranger, and W. Yang, Phys. Rev. B **68**, 165337 (2003).
- 4H. Saarikoski, E. Räsänen, S. Siljamäki, A. Harju, M. J. Puska, and R. M. Nieminen, Phys. Rev. B **67**, 205327 (2003).
- 5C. Attaccalite, S. Moroni, P. Gori-Giorgi, and G. B. Bachelet, Phys. Rev. Lett. **88**, 256601 (2002).
- 6A. K. Rajagopal and J. C. Kimball, Phys. Rev. B **15**, 2819 (1977).
- 7P. Gori-Giorgi and J. P. Perdew, Phys. Rev. B **69**, 041103(R)

(2004).

- ⁸ J. Moreno and D. C. Marinescu, Phys. Rev. B **68**, 195210 (2003).
- 9M. Polini and M. P. Tosi, Phys. Rev. B **63**, 045118 (2001).
- 10W. Macke, Z. Naturforsch. A **5A**, 192 (1950).
- 11W. J. Carr and A. A. Maradudin, Phys. Rev. **133**, A371 (1964).
- 12G. G. Hoffman, Phys. Rev. B **45**, 8730 (1992).
- 13M. Seidl, J. P. Perdew, and S. Kurth, Phys. Rev. Lett. **84**, 5070 (2000).
- 14L. Bonsall and A. A. Maradudin, Phys. Rev. B **15**, 1959 (1977).
- 15M. Seidl, J. P. Perdew, and S. Kurth, Phys. Rev. A **62**, 012502 (2000).
- 16M. Seidl and J. P. Perdew (unpublished).
- 17S. Yarlagadda and G. F. Giuliani, Phys. Rev. B **40**, 5432 (1989).