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A phenomenological approach to the analysis of the conductivities of incoherent layered crystals is pre-
sented. It is based on the fundamental relationship between the resistive anisotropysab/sc and the ratio of the
phase coherence lengths in the respective directions. We explore the model-independent consequences of a
general assumption that the out-of-plane phase coherence length of single electrons is a short fixed distance of
the order of interlayer spacing. Several topics are discussed: application of the scaling theory, magnetoresis-
tivity, the effects of substitutions, and the intermediate regime of conduction when both coherence lengths
change with temperature, but at a different rate.
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I. INTRODUCTION

The normal state conductivity of highly anisotropic lay-
ered crystals such as underdoped high-Tc cuprates exhibits a
number of unusual features widely discussed in the literature.
Metallic in-planessad and nonmetallic out-of-planesscd dc
conductivities coexist in a broad range of temperature and
doping.1 A prominent feature of underdoped layered cuprates
is strongly temperature dependent anisotropysa/sc, which
in many cases shows no tendency to saturation even at low
temperatures. Optical conductivityscsvd is approximately
frequency independent over a wide range of frequencies.
These and other findings have led to the conclusion that the
out-of-plane transport in these crystals is incoherent.2–7

The microscopic models based on the assumption of in-
coherence of thec-axis transport such as that in Ref. 8 and
others1,2 corroborate this conjecture, because the properties
of sc obtained within these models reproduce some of the
features of the real systems. Presently, however, the micro-
scopic models are still too restrictive and idealized to provide
a comprehensive description of the phenomenon of incoher-
ent conduction and to be a versatile framework for the analy-
sis of the experimental data.

It would be highly useful to have a phenomenology of
incoherent transport that would rely minimally on the micro-
scopic models and was based mainly on the exploration of
the consequences of a general assumption that the out-of-
plane phase coherence length of the charge carriers is a short
fixed distance of the order of interatomic distances. An ap-
proach presented here is based in large part on the relation-
ship between resistive anisotropysa/sc and phase coherence
lengths of the charge carriers.

The scope of the paper can be summarized as follows. In
Secs. II and III we have derived the relationship between the
anisotropy and phase coherence lengths and compare the re-
sults with the solvable microscopic models. In Sec. IV the
scaling theory is applied in order to develop a more compre-
hensive description of conductivities than that offered by ex-
isting microscopic models.

When the out-of-plane phase coherence length,w,c is
fixed, the resistive anisotropy isT dependent and reflects

the T dependence of the in-plane coherence length,w,a,
namely, h;ssa/scd1/2~,w,a. Thus, the analysis of the de-
pendence of conductivity on the anisotropy,s vs h, as
opposed to conventional—conductivity vs temperature—
approach, gives an opportunity to gain an insight into the
dependence of the conductivities on the coherence length. An
extention of the one-parameter scaling hypothesis9,10 on the
conductance of the phase-coherent volume leads to an ex-
perimentally verifiable prediction that there may exist a uni-
fying description of conductivity of incoherent crystals at
different doping levels of the forms / s̄= fsh / h̄d, wherefsyd
is a universal function for a given class of crystals, ands̄ and
h̄ are doping-dependent normalization constants. The scaling
theory allows us to obtain the functional form of this depen-
dence for insulating and metallic branches of the trajectories.
For the metallic branchsab, ln ,w and for the insulating
branchrab, ln ,w. At low temperatures this translates into
the logarithmic temperature dependence of resistivity ob-
served earlier.11,12The logarithmic dependence of conductiv-
ity is also shown to be present in Y1−xPrxBa2Cu3Ox crystals.

In Sec. V we discuss magnetoresistivity. An important
result is that in the temperature range where one can observe
the magnetoresistance caused by quantum interference,13 the
relationship between anisotropy of incoherent crystals and
the in-plane coherence lengthsab/sc~,w,ab

2 can be verified
experimentally. Since the crossover field of magnetoresis-
tance Bw also depends on the phase coherence lengthBw

~1/,w,ab
2 , a combination of seemingly unrelated quantities—

Bwsab/sc—should remain constant, even though each of the
factors,Bw and anisotropy, strongly change with temperature.

Section VI is devoted to the effects of elemental substitu-
tions and disorder in incoherent crystals. The treatment ad-
dresses sometimes puzzling effect of substitutions for Cu and
radiation damage on resistivities. In Sec. VII we discuss the
“semicoherent crystals” in which both coherence lengths are
changing with temperature, but at different rates, so that the
anisotropy is stillT dependent, but differently than in fully
incoherent crystals where,w,c=const. Section VIII offers
some suggestions on the type of future experiments that can
shed light on the nature of confinement in cuprates.
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II. THE RELATIONSHIP BETWEEN ANISOTROPY AND
PHASE COHERENCE LENGTH

The Kubo-Greenwood formula relates the diagonal com-
ponents of the conductivity tensor to the matrix elements of
the respective components of the position operator14

sxxsvd =
e2p

V
o

a
o
bÞa

uxabu2sfb − fadvdsea − eb − "vd. s1d

Here hx,y,zj are the principal axes of the crystal,V is the
volume of the system,v is the frequency, and the static
conductivitysxx=limv→0sxxsvd. xab are the matrix elements
of thex component of the position operator between states of
energyea ,eb, whose probabilities of occupation in thermal
equilibrium are given byfa , fb. Two other diagonal compo-
nents of the conductivity tensorsyy andszz are determined,
respectively, by the matrix elementsyab andzab.

The directional dependence of the conductivities is deter-
mined entirely by the matrix elements of the position opera-
tor. Therefore, it is obvious that one can always find the
length scaleshlx,ly,lzj such that

o
ab

ukaux/lxublu2 = o
ab

ukauy/lyublu2 = o
ab

ukauz/lzublu2.

The summation here is over the states relevant to conductiv-
ity (1). Thus, the anisotropy is determined by the ratio of
these length scales:

sxx

syy
=

lx
2

ly
2,

sxx

szz
=

lx
2

lz
2 . s2d

What is the physical nature of these characteristic lengths?
If we look at the ways Eq.(1) can be reduced to the standard
result of kinetic theory,14,15the matrix elements in Eq.(1) are
obtained by integrating over the phase-coherent volume
(which is, roughly speaking, a rectangular block with the
sides equal to the phase coherence lengths in the respective
directions). Therefore, at least in the case of a Fermi-liquid-
type system, the length scales determining anisotropy in Eq.
(2) are the phase coherence lengths.

A deeper insight into the meaning of the length scales in
Eq. (2) can be gained from Thouless’ concept of conductance
of a microscopic block. The conductance of a block whose
edges are along the principal axes of the conductivity tensor
is given by9,10,15,16

gi =
e2

"

dN

dE
kDEli , s3d

wherei =hx,y,zj, dN/dE is the total number of states inside
the block per unit energy andkDEli is the mean fluctuation in
energy levels caused by replacing periodic by antiperiodic
boundary conditions normal to the direction of the current.

The sensitivity of the energy spectrum to the boundary
conditions depends on how well the wave function retains its
phase coherence along the path between the boundaries. We
can choose the sides of the block such that, on average, the
random phase acquired due to an inelastic interaction along
the way between the two opposite boundaries is the same, of
the order ofp, for all three pairs of the block boundaries.

Then, the effect of theimposedphase difference between the
boundaries on the energy spectrum of such a block is isotro-
pic; namely,kDElx=kDEly=kDElz. According to Eq.(3) the
conductance of such a block is isotropic. This choice of the
sides of the block corresponds to the definition of the phase
coherence length,w,i: the distance over which electrons lose
phase coherence.13 Thus, the conductancegw,i of the phase-
coherent volume of an anisotropic medium is isotropic:

gw,x = gw,y = gw,z ; gw. s4d

The conductances of neighboring phase-coherent volumes
add up according to Ohm’s law.13 Therefore, a macroscopic
block hLx,Ly,Lzj obtained by fitting togetherN3 phase-
coherent volumessLx/,w,x=Ly/,w,y=Lz/,w,z=N@1d also has
an isotropic conductanceG<Ngw, which can be expressed
in terms of the components of the conductivity tensor.

G =
sxxLyLz

Lx
=

syyLxLz

Ly
=

szzLyLx

Lz
. s5d

This leads to the following relationship between conductivi-
ties:

sxx

syy
=

,w,x
2

,w,y
2 ;

sxx

szz
=

,w,x
2

,w,z
2 . s6d

The Thouless definition of conductance[Eq. (3)] is a very
general approach to dissipation, because it relates conduc-
tance only to the statistical properties of the energy spectrum.
Therefore, theconjectureexpressed by Eqs.(4) and(6) may
have a general applicability, regardless of the type of con-
duction.

Comparison with Fermi liquid

A characteristic property of conventional Fermi liquids is
that the phase coherence of the wave function extends over
many unit cells in all directions. The coherence lengths in
different directions change with temperature at the same rate,
determined by the inelastic relaxation time which is equal, or
scales with, the decoherence timetw. As the result, the an-
isotropy of Fermi liquids is temperature independent.

Specifically, in a Fermi liquid with ballistic transport
,w,i ~vF,itw, so that Eq.(6) reduces to

sii

s j j
=

vF,i
2

vF,j
2 . s7d

HerevF,i is an average component of the Fermi velocity and
tw is assumed to be independent of the velocity. Equation(7)
coincides with the well known result for Fermi liquids which
follows from the solution of the kinetic equation under the
same assumption, that the decoherence time is independent
of the velocity. In the case of the parabolic dependence of the
energy upon momentum, Eq.(7) reduces to the ratio of the
effective masses

sii

s j j
=

mj

mi
. s8d

Thus, Eq.(6) is consistent with the Fermi liquid result for
anisotropy. At first glance this statement appears counter in-

GEORGE A. LEVIN PHYSICAL REVIEW B70, 064515(2004)

064515-2



tuitive since the conductivity of the Fermi liquid is propor-
tional to the first power of inelastic relaxation time and, con-
sequently, the first power of,w. But a closer look at the
expression for anisotropic conductivity17 immediately clari-
fies this misapprehension:sii ~e2kvF,i

2 ltw can be written as
sii ~e2,w,i

2 /tw. Now all directional dependence of the con-
ductivity is incorporated into,w,i

2 . The relaxation time in
the denominator cancels out in the anisotropy, which leads to
Eq. (6).

The comparison with Fermi liquids also allows us to
clarify the definition of coherence lengths in Eq.(6). It
should be understood that,w,i

2 in Eq. (6) is the mean square
average of the respective coherence length.

In the case of diffusive motions,w,i
2 ~Ditwd Eq. (6) re-

duces to the Einstein relationsi /s j =Di /Dj. The reverse pro-
cedure of obtaining Eq.(6) from the Einstein relation is not
as straightforward and requires a microscopic model of con-
duction. See an example in Ref. 18.

III. INCOHERENT CRYSTALS

Relationship(6) provides an effective tool for developing
a phenomenological description of electric transport in inco-
herent layered crystals. The nature of interlayer decoherence
does not concern us here. It may be the result of the intra-
layer processes[when the rate of transitions between layers
v' is small in comparison with the decoherence time
sv'tw,1d] or interlayer transition itself(if a random phase
of the order ofp is acquired during the transition from one
plane to another). In either case, the essential point is that the
phase-coherent volume of such a crystal contains only one
layer (bilayer in the case of cuprates such as YBa2Cu3Ox).
Correspondingly, the out-of-plane phase coherence length,
hereafter denoted as,0, is theT-independent distance of the
order of interatomic(interlayer) spacing. Obviously, the co-
herence length cannot be arbitrarily small: it cannot be
smaller than the size of the atomic orbitals. The immediate
consequence of Eq.(6) is that in incoherent crystals

sab

sc
=

,w
2

,0
2 . s9d

Here, for simplicity, we consider isotropic planessxx=syy
;sab and,w,x=,w,y;,w.

Since ,w monotonically increases with decreasing tem-
perature, so does the anisotropy. Thus, a fundamental feature
of incoherent crystals is the anisotropy which reflects theT
dependence of the in-plane phase coherence length. A con-
sequence of Eq.(9) is that the out-of-plane normal state con-
ductivity of incoherent crystals is completely determined by
the in-plane conductivity and phase coherence length

sc =
sab,0

2

,w
2 . s10d

An important theoretical result that confirms Eqs.(9) and
(10) is the work of Graf, Rainer, and Sauls.8 They modeled a
layered metal as a stack of two-dimensional(2D) conducting
planes coupled via incoherent interplane scattering of charge
carriers. The planes were treated as a 2D Fermi liquid. In the

limit when the decoherence timetw is the same for in-plane
and out-of-plane conductivities, the anisotropy obtained in8

is given by

sab

sc
=

vF
2tw

2

4d2 , s11d

whered is the interplane distance andvF is the Fermi veloc-
ity of the circular Fermi surface. If we define,w

2 in Eq. (9) as
the mean square average over the Fermi circle:

,w
2 = vF

2tw
2E

−p/2

p/2 df

2p
cos2f =

vF
2tw

2

4
,

Eq. (11) reduces to Eq.(9) with ,0=d. If we take the planes
to be conventional two-dimensional Fermi liquids with
sab=qvFtin,qvFtw=q8,w, Eqs. (10) and (11) give sc
=q8,0

2/,w, or scsab=const=q8,0
2.

The comparison of Eq.(9) with Eq. (11) seems to indicate
that when we apply Eq.(9) to the analysis of the experimen-
tal data in YBa2Cu3Ox, for example, we have to take,0 equal
to the total distance between the bilayerss12 Åd. However,
the real crystals are not necessarily can be adequately de-
scribed by a model of stacked metal planes. The analysis of
magnetoresistivity given in Sec. VI indicates that,0 in
YBa2Cu3Ox may be equal to the half of the distance between
neighboring CuO2 bilayers s6 Åd. The decoherence, appar-
ently, is taking place over the distance between a CuO2 bi-
layer and the neighboring CuO chain layer. The exact value
of ,0 will become clear only when we understand the mecha-
nism of decoherence in cuprates. More details on this matter
are given in Sec. VII. Hereafter I will take,0 equal to the
half distance between the neighboring CuO2 bilayers. How-
ever, most of the results presented below do not depend on
the exact value of,0.

Below we consider experimental data that corroborate the
validity of Eqs.(9) and (10). It concerns two types of inco-
herent crystals: insulating and optimally doped cuprates.

A. Hopping conduction in insulating layered crystals

The first example which allows us to test the validity of
the conjecture(6) and its consequences(9) and (10) is the
anisotropic hopping conduction. The coherence length of lo-
calized carriers is equal to the hopping distance. If the hop-
ping distances in different directions are temperature inde-
pendent, as is the case in the nearest-neighbor hopping
regime, or if they change with temperature at the same rate,
which corresponds to anisotropic 3D variable range hopping,
the anisotropy remainsT independent even though it may be
very large. Exponentially strongT dependence of the con-
ductivities cancels out. It should be noted that the result
equivalent to Eq.(6) was obtained earlier for the critical
network model of the hopping transport.19 It was shown that
the anisotropy is given by the square of the ratio of the cor-
relation lengths of the critical network.

In incoherent layered insulating crystals such as
PrBa2Cu3O7−d the localized states are two dimensional, i.e.,
comprised of the orbitals that all belong to one bilayer.18 In
the variable range hopping(VRH) regime, the in-plane hop-
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ping distance increases with decreasing temperature, while in
the out-of-plane direction the carriers advance in fixed steps
equal to the distance between the neighboring bilayers. Thus,
the resistive anisotropy of such crystals increases at low tem-
peratures when VRH sets in. To determine theT dependence
of the anisotropy, let us consider the conventional picture of
VRH where the average in-plane hopping distance can be
found by maximizing the hopping probability

PsRd ~ expH− 2
R

l
−

A

NsR2 − R0
2dTJ . s12d

Herel is the localization length,N=const is the 2D density
of states, andA a numerical coefficient. The only modifica-
tion of the traditional treatment of VRH is the denominator
R2−R0

2 instead ofR2. This takes into account that two local-
ized states with close energies cannot be found closer to each
other than a certain distanceR0 of the order of the localiza-
tion lengthl. Indeed, if the two states with close energies
strongly overlap, the phonon interaction that causes hopping
will also hybridize them and push apart the energies of the
new states. Equation(12) assures that in the limit of high
temperatures the hopping distance does not decrease below
the valueR0 which corresponds to the nearest-neighbor hop-
ping. In the limitT→0, Eq.(12) crosses over into a conven-
tional Mott form. Strictly speaking, Eq.(12) is valid only for
R@R0,2l which corresponds to the VRH regime. In this
limit the average hopping distance,h, which in the hopping
regime is equal to the in-plane coherence length, is deter-
mined by the maximum of hopping probability(12):

,h < R̄+
2R0

2

3R̄
, R̄= S lA

NT
D1/3

.

Then, according to Eq.(9),

sab

sc
=

,h
2

,0
2 <

4R0
2

3,0
2 + S lA

,0
3NT

D2/3

. s13d

This T dependence of the anisotropysa+bT−2/3d was ob-
served in insulating PrBa2Cu3O7−d and strongly underdoped
superconducting Y1−xPrxBa2Cu3O7−d.

18 In PrBa2Cu3O7−d,
a<123 and b<171 K2/3. It is instructive to show that
Eq. (13) not only determines correctly the temperature de-
pendence of the anisotropy, but is quantitatively correct as
well. The exponential temperature dependence of conductiv-
ity is determined by the maximum of the probability(12)
ss, Pmaxd at R< R̄:

s , expH−
3R̄

l
J = expH− STM

T
D1/3J, TM =

27A

l2N ,

s14d

whereTM is the Mott parameter. The anisotropy(13) can be
presented as

sab

sc
= a + STa

T
D2/3

, Ta =
lA

,0
3N . s15d

Thus,

TM =
27,0

3

l3 Ta. s16d

In Ref. 18 we reported thatTM <300 K and Ta=b3/2

<2236 K. This givesl=3,0sTa/TMd1/3<6,0. The constant
term a determines the cutoff lengthR0=,0s3a/4d1/2<9.6,0

=1.6l. This value of the cutoffR0 is within the expected
rangel,R0,2l. For ,0<6 Å, we getl<36 Å.

B. Resistivity of optimally doped high-Tc cuprates

As I already mentioned above, the assumptions that the
in-plane conductivity of incoherent layered crystal is the
Fermi liquid typesab<e2ntin /m and the coherence length is
proportional to the inelastic relaxation timetin lead to con-
clusion that the productscsab must be temperature indepen-
dent. Even though there is a great deal of evidence that op-
timally doped cuprates are incoherent, the temperature
dependence of in- and out-of plane conductivities do not
follow this rule. Since the anisotropy of such crystals directly
determines the in-plane phase coherence length, Eq.(9), one
can obtain the dependence conductivity vs coherence length
sabs,wd, simply by plotting the conductivity data against an-
isotropy. In Ref. 20 the in-plane conductivity of nearly opti-
mally doped YBa2Cu3O6.93 crystal was analyzed in this way
over the temperature range 90,Tø300 K. The critical tem-
perature of that sample was slightly below 90 K. The in-
plane conductivity can be very accurately described as

sab = qs,w − jd, ,w . j. s17d

Here,w;,0src/rabd1/2 andj<21 Å. This linear dependence
dsab/d,w=const indicates ballistic motion of the quasiparti-
cles. Indeed, the quasiclassical conductivitysab~t (t is the
relaxation time of the distribution function). For ballistic mo-
tion d,w /dtw=vF (tw is the decoherence time) and if t~tw,
thendsab/d,w~dsab/dtw=const. According to Eq.(10), the
correspondingsc is then given by

sc = q,0
2S 1

,w

−
j

,w
2D . s18d

Note that dsc/d,w.0 for ,w,2j, and dsc/d,w,0 for
,w.2j. Since the phase coherence length monotonically in-
creases with decreasing temperature,sc is metallic at high
temperatures,w,2jd, reaches a maximum at a temperature
T where ,wsTd=2j, and becomes nonmetallic, decreases,
with further decreasingT. The in-plane conductivitysab re-
mains metallic as long as Eq.(17) holds.

Equations(17) and(18) can be rewritten as the following
relationship between resistivities:

srcrabd1/2 = r̄ + S j

,0
Drab, r̄ =

1

q,0
. s19d

A fit of the data with Eq.(19) givesr̄<0.23 mV cm.20 Thus,
the temperature dependence ofrc is determined by that
of rab:
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rc = S j

,0
D2

rab + 2S j

,0
Dr̄ +

r̄2

rab
. s20d

Note that Eq.(20) predicts a minimum inrc and an upturn at
low temperatures. There is a characteristic value ofrab
= r̄,0/j, so that whenrab falls below it,rc becomes nonme-
tallic. Sincerab is metallic, and decreases with decreasing
temperature,rc is metallic at high temperatures and nonme-
tallic at low temperatures. Specifically, whenrab=aT, which
is characteristic of the optimally and nearly optimally doped
cuprates,

rc = bc + acT +
gc

T
. s21d

The transition from metallic to nonmetallicT dependence of
rc with decreasing temperature is a characteristic feature of
optimally doped and underdoped cuprates. In the crystals
with maximumTc the onset of superconductivity sometimes
can mask the upturn inrc so that it may look metallic at all
temperatures aboveTc.

21 This is because, according to Eq.
(18), rc becomes nonmetallic when,w.2j and it may not
yet reach this value at temperatures aboveTc.

Using linear extrapolation ofrab=b+aT with Eq. (20)
one can predict where the low-temperature upturn inrc, nor-
mally hidden by the onset of the superconductivity, begins.
Experimentally, this minimum inrc can be revealed by the
suppression of superconductivity by magnetic field similar to
Refs. 12,22–25. A possible alternative to magnetic field ap-
plication are the measurements of the normal state part of
tunneling I -V curves in mesa junctions, see for example,
Refs. 26 and 27, provided that the problem of Joule heating
can be adequately addressed.28 More detailed discussion of
the application of intrinsic tunneling method to experimental
exploration of the interlayer coherence of single electrons is
given below in Sec. VII.

In other types of crystals we may find the situation oppo-
site to that in optimally doped YBa2Cu3O7−y. In most experi-
mental observations of the normal-state resistivity the tem-
perature range do not extend much above the room
temperature and, in thisrange,rc may demonstrate the
nonmetallic T dependence. This is typical of the
Bi2Sr2CaCu2O8+x crystals. Optimally doped and even
slightly overdoped crystals withTc in the range 80–90 K
have nonmetallicrc at all temperatures below room tempera-
ture. In contrast, the in-plane resistivity is metallic and in-
creases with increasing temperature. According to Eq.(20)
this situation corresponds torab,r̄,0/j. However, this limit
can be reached at sufficiently high temperature and beyond
that rc will demonstrate metallicT dependence. The pro-
nounced minimum in the T dependence of rc in
Bi2Sr2CaCu2O8+x crystals have been reported in Ref. 29 at
T<750 K. Thus, the apparently different temperature
dependence ofrc in optimally doped crystals such as
Bi2Sr2CaCu2O8+x and YBa2Cu3O7−y may, in fact, be the
same, described approximately by Eq.(20), except that the
minimum ofrc is either hidden by the onset of superconduc-
tivity or lies above the temperature range within which the
resistivity is measured.

A nontrivial question raised by this analysis is the nature
of the cutoffj in the ballistic regime, Eq.(17). If we assume
quasiclassical in-plane transport, namely,sab~tw, the em-
pirical Eq. (17) gives,w=q−1sab+j=vFtw+j. Therefore, the
cutoff j indicates that the in-plane phase coherence length
does not scale to zero with decreasingsab andtw. I empha-
size that this is the high-temperature cutoff, important only
when the decoherence time is relatively short. On the other
hand, if j=0 then sab=q,w, sc=q,0

2/,w, and rcrab=const
=sq2,0

2d−1, instead of Eq.(19). Without the finite cutoffj in
Eq. (17), the out-of-plane resistivity of incoherent crystals
cannot have metallicT dependence at high temperatures.

The data20 that lead to Eq.(17) seem to indicate a phe-
nomenon which can be described as a “hard core” of the
phase-coherent volume. Even whensab→0 at high tempera-
ture, the in-plane phase coherence is retained within the area
of the size,j2,20320 Å2. One might speculate that such
an unusually large value of the coherence length at room
temperature, accompanied by decreasing conductivity, is due
to backscattering resulted from static disorder. In this sense,
the “hard core” of the phase-coherent volume of extended
states may have the same origin as the phenomenon of
Anderson localization.

IV. SCALING APPROACH

A phenomenological description of conductivities that
does not rely on specific microscopic models can be devel-
oped on the basis of the one-parameter scaling hypothesis.9,10

It asserts that the rate of change of the conductance of a
microscopic block with its size depends only on the conduc-
tance itself and nothing else. By extension, the derivative of
the conductance of the phase-coherent volume
d ln gw /d ln ,w should also be a function ofgw only, namely

d ln gw

d ln ,w

= ksgw/ḡd. s22d

A nontrivial content of this statement is that the other factors
affecting conductance, such as the concentration of dopants
or impurities do not change the functional dependence
ksgw / ḡd, but may only affect the normalization constantḡ. It
was further suggested in Refs. 9 and 10 thatḡ is universal
s,e2/hd. This assumption seems to be too narrow and cannot
hold for all systems. A counter example is a crystal with
dopants that change the number of carriers, while the coher-
ence length is dominated, let us say, by inelastic electron-
phonon interaction. Thus, the conductance changes with the
concentration of dopants, while,w remains constant(at a
given temperature). For Eq. (22) to hold in this case, the
normalization constant must be concentration dependent. If a
crystal is incoherent, the general statement(22) about con-
ductance of the phase coherence volume can be translated
into experimentally verifiable form.

According to Eq.(9), the anisotropy is a measure of the
coherence length,w=h,0 fh;ssab/scd1/2g. On the other
hand, the in-plane conductivity differs from conductancegw

by a constant factorsab=gw /,0 [see Eq.(5)]. Thus, the ob-
servable consequence of the one parameter scaling hypoth-
esis is that
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d ln sab

d ln h
= kssab/s̄d . s23d

In other words, the derivativesd ln sab/d ln h for a family
of crystals(such as YBa2Cu3O6+x, for example) should be
the same function ofsab and should differ from each other
only by thex-dependent normalization constants̄. For the
conductuctivity itself, Eq.(23) translates into a two param-
eter scaling

sab

s̄
= fSh

h̄
D . s24d

One can speculate thats̄ changes predominantly with chang-
ing the density of carriers, whileh̄ reflects mostly the degree
of disorder present in the crystal. The scenario presented by
Eq. (23) is illustrated in Fig. 1(a). The bold segments are
schematic representations ofkssabd for several levels of dop-
ing. The range ofsab corresponds to “accessible” tempera-
tures Tmin,T,Tmax. (Tmax is typically 300–350 K and
Tmin.Tc in superconducting crystals.) The thin lines indicate
the hypothetical extensions of the trajectories to “experimen-
tally inaccessible” range of conductivities and temperatures.
One of the most interesting points here is how the out-of-

plane conductivity evolves with doping. By definition,
scshd=sabshd /h2 [see also Eq.(10)], so that

d ln sc

d ln h
= k − 2. s25d

Therefore, bothsab andsc are metallic fork.2, while me-
tallic sab and nonmetallicsc coexist for 0,k,2. Both con-
ductivities are nonmetallic fork,0. Segment 1 in Fig. 1(a)
represents a regime where both conductivitiessab andsc are
metallic at all temperaturesT.Tmin, because the whole seg-
ment is located above the thresholdk=2.

Segment 2 corresponds to a slightly underdoped system.
At high temperatures(smallersab) k.2 and, therefore,sc is
metallic and increases with increasingh~,w; sc reaches a
maximum when kssabd=2 and decreases with further
increasing,w. Therefore, at this level of dopingsc has a
maximum(rc has a minimum) within the accessibleT inter-
val sTmin,T,Tmaxd. The in-plane conductivity remains
metallic.

Segment 3 represents a moderately underdoped system. It
is located entirely within the range 0,k,2 and corresponds
to metallicsab and nonmetallicsc for all Tmin,T,Tmax.

Segment 4 corresponds to strongly underdoped crystals
with the in-plane conductivity changing from metallic at
high T sk.0d to nonmetallic at lowerT sk,0d. The singu-
larity k=0 is integrable:

kssd < ± zSln
smax

s
D1/2

, s26d

so thatsabshd determined by the equation

E
smax

sab d ln s

kssd
= ln

h

h1
s27d

reaches the maximum valuesmax at a finite h=h1
and decreases with further increasingh (decreasing
temperature). Equations (26) and (27) give sabshd
<smax exph−z2 ln 2sh /h1d /4j.

Finally, segment 5 corresponds to an insulating crystal
with nonmetalllicsab and sc. As shown, all five curves in
Fig. 1(a) represent the same dependencekss / s̄d shifted with
respect to each other, when plotted against lns, because of
the different values ofs̄ which is determined by the density
of carriersn and the level of disorder. The reduction ofn by
doping reducess̄, shifting the respective segment ofkss / s̄d
to lower values ofs and, at the same time, ahead along the
trajectory in terms of the reduced variables / s̄. Thus, the
experimental data plotted ass vs anisotropy would present
the “snapshots” of different stages of evolution of a given
system along the common trajectory. For example, close to
optimal doping,rc is metallic in YBa2Cu3Ox,

21 presumably
because the minimum inrc is hidden by the onset of super-
conductivity. The decrease of oxygen content shifts the
“observable part” of the trajectory so that it crosses the
threshold k=2 and the minimum inrc becomes evident
at Tc,T,300 K. This corresponds to YBa2Cu3Ox with
x<6.88 and 6.78 which exhibit a minimum inrc at
T<150 and 300 K, respectively.30 At even lower oxygen

FIG. 1. (a) Sketch of the trajectorieskssabd vs ln sab. Bold
segments correspond to “experimentally accessible” values of con-
ductivities as explained in the text. The thin lines are hypothetical
extensions of the trajectories drawn under the assumption that the
segments corresponding to different doping levels are parts of a
continuous curvekss / s̄d, shifted with respect to each other due to
different normalization constantss̄. (b) Sketch of the insulatingsAd
and metallicsCd branches of the universal trajectories. Trajectory
sBd is the separatrix andsDd is the hypothetical “supermetallic”
branch which corresponds to metallicrc andrab.
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content, the minimum inrc shifts above the room tempera-
ture andrc appears nonmetallic at all temperatures below
300 K.

A single universal trajectory shown in Fig. 1(a) predicts
that, as temperature decreases, the incoherent crystals at all
doping levels would eventually become insulating. First,rc
becomes nonmetallic whenk,2 and then, at even lower
temperature,rab turns nonmetallic(k,0). Support for this
scenario can be found in the experiments where supercon-
ductivity was suppressed by the magnetic field to reveal the
underlying normal state. In the samples of Bi2Sr2CuOy (Ref.
23) and Bi2Sr2−xLaxCuO6+d (Ref. 12) the prominent upturn in
rab has been revealed belowTc. The same phenomenon takes
place in La2−xSrxCuO4 (Ref. 24) and Pr2−xCexCuO4.

25

The results of the search for the universal trajectory de-
scribed by Eq.(24) was reported in Ref. 31. We have found
that when the conductivity is plotted vs anisotropy, the ap-
propriately normalized data for several crystals of
YBa2Cu3O6+xand Y1−xPrxBa2Cu3O7−d with widely different
composition fall on the same curve.

The analysis of the experimental data also suggest that
one type of trajectorykssd shown in Fig. 1(a) cannot de-
scribe all incoherent crystals. Similar to the genuinely 2D
system,32 the incoherent crystals may undergo metal-
insulator transition. This scenario is schematically described
in Fig. 1(b) by the trajectoriesA, B, andC. The trajectoryA
is the same as in Fig. 1(a) and corresponds to the insulating
phase. The trajectoryC describes the metallic branch, andB
is the separatrix. The notion of insulating and metallic phase
refers only to the in-plane resistivity. The out-of-plane resis-
tivity is nonmetallic in either case as long ask,2.

In the limit k→0 the separatrix can be approximated as
k<a ln sres/s. Then, Eq.(27) gives

sab = sres exph− h−aj < sress1 − h−ad. s28d

Taking into account the relationship between the anisotropy
and coherence length, one can rewrite the Eq.(28) as fol-
lows:

rab = rres expHS ,0

,w
DaJ < rresF1 +S ,0

,w
DaG . s29d

The out-of-plane resistivity diverges in the same temperature
range. From Eq.(28) follows

rab = rres expHSrab

rc
Da/2J , s30d

which gives

rc =
rab

flnsrab/rresdg2/a <
rres

1+2/a

srab − rresd2/a . s31d

Typically, the anisotropyh is very large andrab described
by Eq. (28) is practically temperature independent, equal to
the residual valuerres=sres

−1. One of the samples of
Bi2Sr2CuOy studied in Ref. 23 appears to exhibit the proper-
ties of the “separatrix crystal.” Its in-plane resistivity remains
temperature independent between 11 and 0.7 K. The out-of-
plane resistivity in the same range of temperatures diverges.

Next, let us consider the metallic branch, the trajectoryC

in Fig. 1(b). It describesrab that is metallic at all tempera-
tures(k.0 for all values ofsab). In incoherent crystals the
phase-coherent volume is “two dimensional”(contains only
one bilayer) and therefore, in the limit,w→`, the conduc-
tance should become size independent and, correspondingly,
k→0. Let us assume thatk can be approximated as

kssd < s̄/s. s32d

In a different context a similar asymptotic dependence of the
logarithmic derivative was discussed in Ref. 33. Integration
of Eq. (27) leads to

sab = s̄ lnsh/h0d, s33d

where h0 is a constant of integrationsh.h0d. Given the
definition of h=src/rabd1/2, this translates into the following
relationship between resistivities:

rc = h0
2rab expH r̄

rab
J, r̄ = 2s̄−1. s34d

Both parametersh0 andr̄ are doping dependent. Whilerab is
metallic at all temperatures,rc reaches minimum atrab= r̄.
Depending on wherer̄ lies with respect to the range of mea-
suredrab, we will see all three types ofrcsTd dependence
discussed above. At sufficiently low temperatures the tem-
perature dependence of the coherence length is a power law,
which translates into the logarithmic increase of the conduc-
tivity

sab = s̄ lns,w/,0h0d , lnsT0/Td, s35d

while the out-of-plane resistivityrc diverges as the power
law.

In Fig. 2 the logarithmic dependence given by Eq.(33) is
illustrated by the data obtained on several samples of
Y1−yPryBa2Cu3O7−d. This is the same data as in Ref. 31. In
Ref. 31 it was presented as lns vs ln h in order to demon-

FIG. 2. Conductivity of Y1−yPryBa2Cu3O7−d single crystals vs
logarithm of anisotropy. The solid lines are guide to the eye that
correspond tosab~ ln h dependence. The inset shows conductivity
vs logarithm of temperature.

PHENOMENOLOGY OF CONDUCTION IN INCOHERENT… PHYSICAL REVIEW B 70, 064515(2004)

064515-7



strate the scaling given by Eq.(24), but such presentation
obscured the functional dependencefshd~ ln h. The inset to
Fig. 2 shows the conductivity of the same crystals vs loga-
rithm of temperature. It is obvious that the conductivity can-
not be described by the logarithmic temperature dependence.
This is because theT dependence of,w in this temperature
range has not yet settled into power law, but the trajectory
kssd is already well described by the asymptotic dependence
(32). Apparently, even thek.0 part of the trajectory of the
insulating sample Y0.47Pr0.53Ba2Cu3O7−d is well described by
Eq. (32).

Let us now turn to the insulating branch, the trajectory
A in Fig. 1(b). Usually it is assumed that in the insulat-
ing regime the mechanism of conduction is hopping:
s,exph−x,wj, which leads tokssd=lnss /s0d. There is,
however, another possibility. In 2D insulator the limiting
value of kssd may be zero, just as for the metallic branch:
kssd→0 as,w→` ands→0. In Fig. 3 the alternative tra-
jectory of insulating(nonhopping) branchsAd that illustrates
this scenario is shown. Assuming thatkssd is an analytical
function, the simplest option is

kssd < −
s

s0
s36d

whens→0. This leads to

rab = r0 lnsh/h0d. s37d

At low temperatures, when,w,T−g, resistivity will acquire
the logarithmicT dependence

rab = r0 lns,w/,0h0d , lnsT0/Td. s38d

This logarithmicT dependence of the resistivity observed in
Bi2Sr2−xCuO6+d (Ref. 12) and YBa2Cu3O7−y (Ref. 11) has
attracted a great deal of attention and has not been explained
by any microscopic model. The trajectoryA in Fig. 3 de-
scribes the in-plane resistivity that has metallic temperature
dependence at high temperature, reaches minimum when
k=0 and logarithmically diverges at low temperature. The
out-of-plane resistivity diverges as a power of temperature.11

The trajectoriesB andC in Fig. 3 describe the separatrix and
metallic branch, respectively, that are the same as in Fig.
1(b).

The last trajectorysDd shown in Fig. 1(b) describes a
“supermetallic” branch, such that bothrc andrab are metallic
at all temperaturessk.2d. If we take the asymptotic behav-
ior of k<2+s0/s, the resulting

sab =
s1

2
S h

h0
D2

−
s0

2
. s39d

Heres1 andh0 are constants of integration. Using the defi-
nition of h we get

rc = rmin + grab. s40d

While rab→0, rc tends to a finite value. The asymptotic
value k=2 corresponds to diffusive in-plane motion of car-
riers. If we take the quasiclassicalsab,tw and ,w

2 ,Dtw,
thensab,,w

2, which corresponds tok=2.

V. MAGNETORESISTIVITY

The effect of the magnetic field on resistivity of the inco-
herent crystals can be straightforwardly deduced from Eqs.
(9) and (10) as long as we know what effect the magnetic
field has on the coherence length. Hereafter I will discuss
only the orbital partof the magnetoresistivity. Spin-dependent
and orbital contributions can be separated due to their differ-
ent field dependences.34–36 Normally, the application of the
magnetic field perpendicular to the conducting layers de-
creases,w.13 The first obvious observation that follows from
Eq. (9) is that magnetoanisotropy is always negative:

Dsrc/rabd
rc/rab

=
2D,w

,w

, 0. s41d

Magnetoanisotropy can be measured directly and, in fact,
more accurately than the separate magnetoresistivitiesDrab
andDrc by the six-point method.34,37Even when both coher-
ence lengths(in-plane and out-of-plane) change with tem-
perature, Eq.(41) holds as long as the coherence length in
the direction of the applied field does not change by the field,
see Eq.(6). Indeed, in Refs. 23 and 34 the negative magne-
toanisotropy was observed in all samples of Bi2Sr2CuOy and
YBa2Cu3O7−d.

Since both conductivitiessab and sc are determined by
the in-plane coherence length, Eqs.(23) and (25), there is a
direct relationship between the type of conduction(metallic
or nonmetallic) and the sign and magnitude of the magne-
toresistivities(MR):

Drab

rab
= − k

D,w

,w

,
Drc

rc
= − sk − 2d

D,w

,w

. s42d

For 0,k,2, Drab is positive andDrc negative. In other
parts of the trajectories both magnetoresistivities are either
positive or negative. Since the temperature dependence of
the resistivities is determined by theT dependence of,w,
there is a relationship between the temperature coefficient of
the resistivity and the sign of magnetoresistivity

FIG. 3. Sketch of three branches of the scaling trajectories: in-
sulating(nonhopping) sAd, metallicsCd, and separatrixsBd. Unlike
Fig. 1, kssd is shown vss, not ln s.
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] rab,c

] H
= Q

] rab,c

] T
, s43d

whereQ=s],w /]Hd / s],w /]Td.0. As long as the magnetic
field reduces the coherence length, its effect is equivalent to
the increasein temperature. Thus, the coexistence of metallic
rab and nonmetallicrc in many cuprates translates into op-
posite signs of magnetoresistivities. The correlation between
MR and the sign and magnitude of]r /]T has been well
documented in literature.22,23,34,36,38

There is an elegant and conceptually straightforward way
to verify experimentally the relationship between the aniso-
tropy and coherence length(9), using the well established
theory of magnetoresistance due to quantum interference.
Since the coherent trajectories are confined to a single bi-
layer (and therefore two dimensional) the field dependence
of magnetoresistance is given by

Drab,c ~
] rab,c

] T
lnsB/Bwd. s44d

This follows from Eqs. (42) and (43) and
D,w,−lnsB/Bwd.13,34 Here B.Bw="c/4eDtw=f0/4pDtw

and f0=pc" /e<2310−7 G cm2 is the quantum of flux.
The coherence length in the diffusive regime is defined as
,w

2 =kx2l=s1/2dkr 2l=2Dtw. This follows from the probability
to find a particle at a distancer from the starting point:
dWsr ,td~exph−r 2/4Dtjdr . Thus,Bw=f0/2p,w

2.
According to Eq.(9), in incoherent crystals a product of

seemingly totally unrelated quantitiesBwrc/rab should re-
main constant, even though both the anisotropy of resistivity
andBw strongly change with temperature. Moreover, a com-
bination such as

,w,c = S f0

2pBw

sc

sab
D1/2

s45d

determines the out-of-plane phase coherence length and
should yield a value of the order of interatomic(interlayer)
distance. The logarithmic field dependence of MR has been
observed in the normal state of layered cuprates.34,39,40At
sufficiently low temperatures the value ofBw can be reliably
established by fitting MR data to the theory of weak local-
ization. This type of experiment requires both the anisotropy
and MR to be measured on the same crystal.

In Ref. 34 the magnetoresistivity data obtained on a
YBa2Cu3O6.25 crystal at T=75 K indicate thatBw<0.3 T.
The temperature dependence of the anisotropy of this sample
is shown in Fig. 4 and atT=75 K it is about 1900. Therefore,
Eq. (45) yields

,w,c = 7.4 Å. s46d

Note that in YBa2Cu3O6.25 crystal the anisotropy decreases
below<130 K. This underdoped crystal exhibits the proper-
ties of the semicoherent system, discussed below in Sec. VII,
and at 75 K,w,c has already increased beyond the minimum
value,0=6 Å.

Violation of Kohler’s rule. The origin of the Kohler’s rule
can be illustrated in Eq.(42). In the weak field regime

D,w

,w

, − svctwd2, s47d

wherevc is the cyclotron frequency. Thus, according to Eq.
(42):

Drab

rab
, ksvctwd2.

In Fermi liquidsk;1 and a plot of MR vsB2tw
2 produces a

straight line withT-independent slope.41 In incoherent crys-
tals even this modified Kohler’s relationship does not hold
because the trajectoryk is not a constant, Fig. 1. Even if we
would somehow manage to reliably determinetw, the slope
of the plotDrab/rab vs svctwd2 will be proportional tok and
change with temperature.

An important consequence of Eqs.(41) and (42) is that
the trajectoryksTd or kssd can be extracted from MR data if
the magnetoanisotropy is measured along with the compo-
nents of MR. Namely, from Eqs.(41) and (42) follows

k = −
2D ln rab

D lnsrc/rabd
. s48d

Thus, the trajectories of the type shown in Figs. 1 or 3 can be
directly obtained by measuring both components of MR
similar to how it was done in Ref. 34. The applicability of
Eq. (48) does not depend on whether the field dependence of
MR is quadratic or not.

VI. EFFECT OF ELEMENTAL SUBSTITUTIONS AND
RADIATION-INDUCED DISORDER

The analysis given in the previous section can be readily
extended to another property of layered crystals: the response
of the resistivities to elemental substitutions, especially those
that replace Cu in the CuO2 planes. The impurities reduce the

FIG. 4. Temperature dependence of the anisotropy of two un-
derdoped YBa2Cu3Ox single crystals. The anisotropy of
YBa2Cu3O6.36 crystal increases monotonically in the temperature
range shown. The more underdoped YBa2Cu3O6.25 sample has non-
monotonic temperature dependence of the anisotropy. The value of
rc/rab<1.93103 at T=75 K is indicated. The dashed curve is a
hypothetical extrapolation of the high temperature behavior of the
anisotropy. It shows what the values of the anisotropy would have
been, had the out-of-plane coherence length remained constant,
equal to 6 Å, see discussion in Sec. VII B.
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in-plane coherence lengths],w /]x,0d by decreasing the
elastic mean free path and the diffusion coefficient(x is the
concentration of substitutions). Therefore, the anisotropy of
the incoherent crystals always decreases with concentration
of such impurities, while the resistivities change according to
the position of a given crystal on the trajectory, Fig. 1(a):

] ln rab

] x
= − k

] ln ,w

] x
,

] ln rc

] x
= − sk − 2d

] ln ,w

] x
. s49d

This conclusion can be illustrated on the examples of
Bi2Sr2CasCu1−xMxd2O8+y (M =Zn, Mn, Fe, Co, and Ni).42,43

Undoped Bi2Sr2CaCu2O8+y crystals exhibit metallicrabsTd
and nonmetallicrcsTd, so that below room temperature
0,k,2 and, as the result,]rab/]x.0 while ]rc/]x,0. All
elemental substitutions examined in Refs. 43 and 42 lead to
decreasing ofrc and increasing ofrab.

Sometimes, the increase of thec-axis conductivity in re-
sponse to a perturbation has been interpreted in literature as a
crossover to coherent transport in thec direction. We see that
this is not necessarily the case. The anisotropy andrc may
decrease due to the reduction of the in-plane phase coherence
length, even when thec-axis coherence length remains fixed.

Radiation-induced disorder in the CuO2 planes may have
the same effect on the resistivity as the elemental substitu-
tions. The metallic in-plane resistivity of nonirradiated crys-
tals and films increases with the amount of absorbed radia-
tion and even changes its temperature dependence44

revealing a minimum inrab at low temperature. Unfortu-
nately, I am not aware of any report on the effect of irradia-
tion on the out-of-plane resistivity.

Unlike magnetoresistivity, the response to substitutions
for Cu on the planes is very dramatic. Small, of the order of
one percent, doping drastically affects the magnitude and
temperature dependence of the resistivities. Therefore, the
differential relation given by Eq.(49) can only give a quali-
tative idea of the changes introduced by this type of doping.
For example, in Bi2Sr2CasCu1−xZnxd2O8+y crystals just 1% of
Zn doping reduces the anisotropy by an order of magnitude.
The change inconcentration of such dopants may not only
drive the crystal along the given scaling trajectory, but can
cause the metal-insulator transition.

One can ask why a very small concentration of defects in
the CuO2 planes so drastically alters the resistivity and the
in-plane coherence length, while the response to other sub-
stitutions, for example to Pr substitution for Y, is much more
gradual.One scenario is that the defects on the planes violate
the reflection symmetry of the CuO2 bilayers and cause hy-
bridization of the even and odd subbands.45–48 If the relax-
ation rates of these subbands are very different, this hybrid-
ization may lead to drastic reduction of the decoherence
time.

VII. SEMICOHERENT CRYSTALS

Between two extremes, conventional Fermi liquids with
temperature-independent anisotropy on one hand and inco-
herent layered conductors, exhibiting the strongest possible
rate of change of the anisotropy on the other, there is an

intermediate class of layered crystals. In these systems the
out-of-plane coherence length changes with temperature, but
not at the same rate as the in-plane coherence length. As the
result, in such “semicoherent crystals,” the anisotropy
changes with temperature, but not as strongly, and not nec-
essarily monotonically as in incoherent layered systems.

The first simplest scenario of semicoherence is that,w,ab
@,w,c and,w,c is so short that the Ioffe-Regel limit still af-
fects its temperature dependence:,w,c=,0+vF,ctw, while
,w,ab=vF,abtw. This empirical interpolation form of,w,c takes
into account that the coherence length cannot be arbitrarily
small and saturates at high temperature at a finite limit. The
anisotropy then is given by

sab

sc
=

vF,ab
2 tw

2

s,0 + vF,ctwd2 . s50d

The anisotropy monotonically increases with decreasing
temperature and saturates at the level determined by the an-
isotropy of the three-dimensional Fermi surface. If we take
the conventional form of metallicrab,tw

−1, the out-of-plane
resistivity is given by

rc = hmax
2 rab

srab/r̄ + 1d2 . s51d

It is nonmetallic at high temperatures, reaches maximum
whenrab= r̄ and decreases at lower temperatures. There are
several types of layered crystals that exhibit the temperature
dependence of the resistivities qualitatively similar to that
described by Eq.(51). In Ref. 49 the coherence-incoherence
transition was examined with angle-resolved photoemission
spectroscopy and electronic transport measurements. In
sBi0.5Pb0.5d2Ba3Co2Oy and NaCo2O4 crystals the crossover to
3D coherence is accompanied by a maximum inrcsTd, while
rabsTd remains metallic and anisotropy increases with de-
creasing temperature and saturates at a large value. A simi-
lar behavior of rcsTd and rabsTd characterizes Sr2RuO4

crystals.50 Note that the maximum inrc in semicoherent
crystals is in stark contrast to the minimum inrc in incoher-
ent crystals, Eqs.(20), (21), or (34). One can suggest that in
some crystals it might be possible to observe the out-of-plane
resistivity with two extrema: the minimum at higher tem-
peratures where the crystal is incoherent and the maximum at
lower temperature that indicates a crossover to 3D coher-
ence.

A. Nd2−xCexCuO4−y crystals

Another type of semicoherent systems that presents a
greater challenge to interpretation is electron-doped
Nd2−xCexCuO4−y single crystals. These layered crystals have
large anisotropy,104−105 even though both resistivitiesrab
and rc have metallicT dependence aboveTc. The tempera-
ture dependence of the in-plane resistivity is quadratic as in
conventional Fermi liquid type metals. In Ref. 51 the resis-
tivity of several crystals with nominal Ce concentration of
x=0.08 and 0.29 were presented. The lower and higher Ce
concentration corresponds to underdoped and overdoped re-
gimes respectively. However, because of uncontrolled oxy-
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gen content the resistivities vary even within each group with
the same Ce content. In Fig. 5 the data from Ref. 51 are
presented in order to identify the relationship between aniso-
tropy and in-plane resistivity. For all samples it can be well
approximated by

rc

rab
~ rab

−b, rc = Arab
1−b. s52d

The 3D coherent transport corresponds to the exponent
b=0, while the incoherent transport is characterized by
b=2 [Graf, Rainer, Sauls relationship,8 Eq. (11)]. If we take
rab,tw

−1,,w,ab
−1 , Eqs.(6) and (52) are equivalent to the fol-

lowing relationship between the in-plane and out-of-plane
coherence lengths:

,w,c ~ ,w,ab
1−b/2. s53d

Note that in Fig. 5 the exponentb systematically decreases
with overdoping(higher Ce concentration).

B. Nonmonotonic temperature dependence of anisotropy

The third scenario of gradually developing coherence in
the c direction differs from the previous two in the way the
anisotropy changes with temperature. Both Eqs.(50) and
(52) describe monotonically increasing with decreasing tem-
perature anisotropy and metallic in-plane resistivity. In litera-
ture one can find several examples of underdoped crystals in
which rab is nonmetallic at low temperatures and anisotropy
changes nonmonotonically, namely, exhibits a maximum at
finite temperature.

One example of such behavior is shown in Fig. 4. The less
underdoped YBa2Cu3O6.36 crystal has monotonically in-
creasing anisotropy. The anisotropy of stronger underdoped
YBa2Cu3O6.25 crystal reaches maximum atTm<130 K and
decreases rapidly at lower temperatures. The temperature de-
pendence of the resistivities of these samples is shown in
Ref. 34. The YBa2Cu3O6.36 crystal has metallicrab, while
YBa2Cu3O6.25 has nonmetallicrab at T,Tm.

According to Eq.(6), the decrease of the anisotropy at
lower temperatures indicates that belowTm the out-of-plane

coherence length increases more rapidly than the in-plane
coherence length. Presumably, if the crystal remains in the
normal state at sufficiently low temperature, or superconduc-
tivity is suppressed by the magnetic field, the anisotropy of
crystals such as YBa2Cu3O6.25 will eventually stabilize at the
level determined by the anisotropy of the 3D wave functions
of the localized electrons, which is smaller than the maxi-
mum value of the anisotropy at intermediate temperatures.

There are several points worth noting. There is a widely
held opinion, expressed in literature, that the tendency to
establish the out-of-plane coherence increases only with in-
creasing number density of charge carriers, while the under-
doped crystals are incoherent and become more so with de-
creasing number of charge carriers. Especially in
YBa2Cu3Oy, the disruption of the CuO chains is thought to
be the main reason for increasing anisotropy. This is obvi-
ously not the case, and the systematic study of the evolution
of the anisotropy with oxygen content31 shows that the an-
isotropy at a given temperature reaches maximum at an in-
termediate oxygen content.

Apparently, in cuprates there is a mechanism of interlayer
decoherence, of a still unknown nature, which can be over-
come by the phase transition into the superconducting state.
This takes place in optimally and slightly underdoped cu-
prates. If, however, the onset of superconductivity is some-
how prevented, one can expect that at sufficiently low tem-
peratures 3D coherence will still be established. As in the
case of YBa2Cu3O6.25, Fig. 4, this will manifest itself as the
decrease in anisotropy below a certain temperature. How low
is this temperature is a measure of strength of the decoher-
ence mechanism. Then, it is obvious that the mechanism of
decoherence is stronger in YBa2Cu3O6.36 and other YBCO
crystals with higher oxygen content than in YBa2Cu3O6.25.
This observation has to be contrasted with the behavior of
Pr-doped, fully oxygenated, Y1−xPrxBa2Cu3O7−d single
crystals.18,31 Even the very strongly underdoped
Y0.47Pr0.53Ba2Cu3O7−d and insulating PrBa2Cu3O7−d remain
incoherent, with increasing anisotropy, at temperature as low
as 1.9 K.

A conclusion that one can make from this is that in YBCO
and its derivatives the CuO chain layer is responsible for the
interlayer decoherence. In Y1−xPrxBa2Cu3O7−d crystals the
chain layer is fully formed and the mechanism of decoher-
ence is strongest. In YBa2Cu3O6.25 this mechanism is weak-
ened to such extend that it allows the process of establishing
3D coherence to begin at temperature as high as 130 K.

The central role of the chain layer in YBCO is also cor-
roborated by the value of,w,c<7.4 Å, Eq.(46). At this tem-
perature s75 Kd the anisotropyrc/rab<1900 and,w,c is
already increasing beyond its minimum value,0<6 Å at
higher temperatures. If,w,c were still equal 6 Å atT=75 K
the anisotropy at this temperature would have been 1900
3 s7.4/6d2=2900. This is close to the value of the anisotropy
one gets extrapolating the high-temperature behavior of the
anisotropy of YBa2Cu3O6.25 as shown by the dashed line in
Fig. 4.

Thus, the loss of phase coherence of the charge carriers
takes place during their transfer from the CuO2 planes to the
charge reservoir. Otherwise, if the loss of coherence was tak-
ing place during the charge carriers transfer between the

FIG. 5. Anisotropy vs in-plane resistivity for several
Nd2−xCexCuO4−y crystals. The exponentb is defined by Eq.(52).
The straight lines are power law fits to the data.
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neighboring CuO2 bilayers, the value of,0 would be equal to
the distance between the bilayers(12 Å) (see Sec. III and
comparison with the solvable model8).

C. Intrinsic tunneling spectroscopy in semicoherent crystals

The intrinsic tunneling spectroscopy in small crystals52,53

and mesastructures26,27,54–56may provide a powerful tool for
investigation of the process of establishing the interlayer co-
herence of single charge carriers. The most studied crystals
such as Bi2Sr2CaCu2O8+x sBi-2212d and Bi2Sr2Cu2O6+d sBi
-2201d are found to have current-voltagesI -Vd characteris-
tics similar to that of a stack of Josephson junctions. These
intrinsic junctions are formed by the charge reservoir layers
sandwiched between superconducting CuO2 units (a super-
conducting unit is either a single CuO2 layer such as in
Bi-2201 or a CuO2 bilayer in Bi-2212 and YBCO). Below
critical temperature theI -V characteristics consist of mul-
tiple hysteretic branches. Each branch corresponds to switch-
ing of one intrinsic junction from the superconducting to the
normal state.

In mesa structures the number of charge reservoir layers
can be made smalls10–20d and, correspondingly, the num-
ber of branches is easily countable. For example, in Ref. 26
the number of branches remains the same in the temperature
interval from 70 to 4.2 KsBi-2212d. This is understandable
if the single quasiparticles remain incoherent, so that the
Cooper pairs from each individual CuO2 unit form a Joseph-
son junction across every charge reservoir in the mesa. The
normal statec-axis resistance of that sample increases with
decreasing temperature, corroborating the assertion that this
crystal is incoherent.

What would change in this picture if the crystal was semi-
coherent? If the out-of-plane phase coherence length of
single quasiparticles,w,c is already greater than its minimum
value ,0 at temperatures aboveTc, but atTc is still shorter
than the height of the mesa, the number and the properties of
the intrinsic junctions will be different from those formed in
incoherent crystal. To illustrate that, let us say that just above
Tc, in the normal state, a number of neighboring CuO2 units
have formed “coherent clusters.” This means that the single
charge quasiparticles in these clusters consist of the orbitals
of several(two or more) neighboring CuO2 units, as opposed
to incoherent crystals where the wave functions of the qua-
siparticles consist of the orbitals of one CuO2 unit only. The
rest of the CuO2 units in the mesa remain incoherent.

Let N be the number of CuO2 units in the mesa. And letn2
be the temperature dependent number of double coherent
clusters sn2,N/2d. Then N−2n2 is the number of single
incoherent units. For simplicity we have neglected the prob-
ability of formation of coherent clusters consisting of three
and more CuO2 units.

Below Tc the quasiparticles form Cooper pairs in both
coherent clusters and single units. When the superconducting
order parameter is extended throughout the crystal, the in-
trinsic junctions with the lowest critical currentJc are the
ones between two neighboring coherent clusters, or between
a single unit and coherent cluster, or between two single
units. The total number of these junctions isN−n2sTd. In

other words, a charge reservoir “hidden” inside every double
cluster does not form a weak junction. Thus, the number of
hysteretic branches inI -V characteristicNb=N−n2sTd and,
therefore, can be noticeably smaller than the number of unit
cells along thec axis. Even more telling, the number of
branches will be temperature dependent, decreasing with de-
creasing temperature.

Generally, we can introducenk as the average number of
coherent clusters consisting ofk CuO2 units so that
ok=1

N knk=N. The number of charge reservoir layers hidden
inside these clusters isok=1

N sk−1dnk. Then the number of
low-Jc hysteretic junctions and, correspondingly, the number
of low-Jc hysteretic branchesNb=ok=1

N nk—the total number
of coherent clusters. In incoherent crystalsNb=N, since the
only clusters are single units. As the coherence of single
charge quasiparticles sets in, the number of coherent clusters
along the height of the mesa decreases and in the limit when
,w,c exceeds the height of the mesa, the mesa itself becomes
one coherent cluster so that only one branch ofI -V charac-
teristic,V=0, remains as long asI ,Jc.

Obviously, this a very simplistic description of a complex
process of breaking up of coherence along the long chain of
CuO2 units. For example, one can expect that once the
lowest-Jc junctions are broken, the increasing current will
start breaking coherence of the coherent clusters. This may
result in another sequence of hysteretic branches. Joule heat-
ing will complicate further this picture. My point, however,
is that in the mesas made of semicoherent crystals the pattern
of hysteretic branches and its evolution with temperature
might be distinctly different from that found in Bi-2201 or
Bi-2212.

Semicoherent crystals for this type of experiment, in ad-
dition to those already mentioned above, may include
RBa2Cu3O6+x sR=Tm,Lud (Ref. 57) and Nd2−xCexCuO4−y.

58

A characteristic feature that indicates semicoherence is the
maximum inrc or anisotropy atT=100–150 K.

VIII. CONCLUSIONS AND SUGGESTIONS

This paper presents a phenomenological approach to un-
derstanding the normal-state transport properties of incoher-
ent and semicoherent layered crystals. It is based on the fun-
damental relationship between the resistive anisotropy and
the phase coherence lengths derived in Sec. II. This relation-
ship is especially useful when one of the coherence lengths is
fixed, temperature-independent distance as is the case in
some layered crystals such as superconducting cuprates and
many others. In Sec. III we have shown that the results ob-
tained by our approach are equivalent to those obtained for a
solvable microscopic model.8 Application of this approach to
hopping conduction in layered crystals and to crystals such
as optimally doped cuprates show a good agreement with
experimental data.

In incoherent crystals the resistive anisotropy is a measure
of the in-plane coherence length and, therefore, such systems
allow an effective application of the scaling theory as dem-
onstrated in Sec. IV. One of the important consequences
of the scaling approach is the idea of the universal trajecto-
ries. We suggest that the families of cuprates such as
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YBa2Cu3O6+y with different oxygen content or
Y1−xPrxBa2Cu3O7−d with different Pr concentration are de-
scribed by the same dependence of conductivity vs aniso-
tropy, Eqs.(23) and(24). This type of scaling has been found
in Ref. 31.

Moreover, the scaling approach allows us to predict two
important asymptotic branches of the in-plane conductivity.
Using simple analytical form of the scaling trajectory we
have shown that the metallic branch of incoherent crystal can
be described by logarithmically increasing conductivity:
sab~ lns,wd. This asymptotic behavior is illustrated in Fig. 2.
For the insulating branch, using a simple analytical expan-
sion of the scaling trajectory, we obtain the resistivity that is
increasing logarithmically:rab~ lns,wd. At sufficiently low
temperatures, when,w,T−g, this crosses over into the fa-
mous logarithmic temperature dependence:rab~ lns1/Td.

In Sec. V the magnetoresistivity of incoherent crystals is
discussed. One of the most interesting conclusions is that at
temperatures where MR due to quantum interference can be
observed one can also determine the out-of-plane phase co-
herence length, Eq.(45). In Sec. VI we consider the effect of
elemental substitutions and radiation induced disorder. The
treatment used in the previous sections also allows to explain
sometimes puzzling conflicting responses of in-plane and
out-of-plane resistivities to the perturbations such as impuri-
ties and imperfections.

In Sec. VII we discussed the semicoherent crystals in
which both in- and out-of-plane coherence lengths change
with temperature, but at different rates. Three scenarios are
discussed; all of them, it seems, can be found in either over-
doped or underdoped cuprates.

Possible future experiments. Typically in the literature, the
problem of the normal state of the cuprates is stated in terms
of the anomalies of the out-of-plane conductivity. We see
that the properties ofsc are entirely determined by the fact
that the out-of-plane coherence length has a fixed value and
does not change with temperature, Eq.(10). Then, the real
unresolved question about the anomalous properties of the
normal state in cuprates is the nature of the strong mecha-
nism of decoherence of the charge carriers over very short
distance(confinement). While this question is important in
and of itself, it is also a key question which is necessary to
address in order to understand the superconductivity in cu-
prates, which is likely to be the phase transition that allows
the system to overcome the confinement.

One possible scenario of decoherence was outlined in
Ref. 59, where the confinement was attributed to the dephas-
ing of the tunneling charge carriers resulted from the inter-
action with charge fluctuations. While this effect appears to
be too weak to account for the phenomenon of confinement,

it raises the question, how strong is the dephasing mecha-
nism? For example, as was discussed above, Pr doped
YBCO crystals remain incoherent even atT<2 K. However,
if the confinement is the result of a conventional process of
finite strength, one can reasonably assume that eventually, at
sufficiently low temperature, even these systems will begin
to form 3D coherence in the normal state.

As was discussed in Sec. VII B the decoherence mecha-
nism appears to be determined by the properties of the
charge reservoir and is weaker in both overdoped and under-
doped cuprates. In underdoped cuprates the transition to 3D
coherence manifests itself as the maximum of anisotropy at
finite temperature which has been observed in YBCO, Fig. 4,
and in Nd2−xCexCuO4−y crystals.58 However, the strongest
confinement in YBCO is associated with fully oxygenated
CuO chain layer. In my view, it would be very important to
find out if, indeed, the fully oxygenated derivatives of
YBCO, in which superconductivity is suppressed, will ex-
hibit the maximum in anisotropy in the normal state. This
can be done with Pr-doped YBCO or YBa2sCu1−xMxd3O7−d,
or a combination of both types of doping optimized with the
goal to minimizeTc, but retain reasonably high conductivity.

Another important experiment would be to verify Eq.
(45). Since the theory of MR due to quantum interference is
well established, this relationship is a direct consequence of
our main result, Eqs.(6) and (9). At this point it has been
applied at only one temperature and the result looks reason-
able, Eq.(46). If it can be substantiated for different types of
incoherent crystals that the length determined by Eq.(45) is
indeed of the order of interlayer distance and remains rela-
tively T independent over a wide range of temperatures, it
will be an experimental proof of the fundamental relation-
ship between the resistive anisotropy and coherence lengths.

There remains also the question of the universal trajecto-
ries, Eq.(23). In Ref. 31 the two parameter scaling depen-
dencessshd, Eq. (24), were obtained by measuring the re-
sistivities rc and rab. However, the magnetoresistivity
measurements allow to go further and obtain the one param-
eter differential trajectorieskssd directly according to Eq.
(48).

Last, but not least, is the possibility to observe the estab-
lishing of interlayer coherence with the help of intrinsic tun-
neling spectroscopy. To my knowledge, no experiments on
the crystals in whichrcsTd exhibits a crossover from inco-
herent to coherent transport have been conducted so far.
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