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Static and rf magnetic field effects on fluxon dynamics in semiannular Josephson junctions
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Long semiannular Josephson junctions coupled to in-plane external static and rf magnetic fields are inves-
tigated analytically and numerically. A spatially homogeneous dc magnetic field applied in the plane of the
dielectric barrier and perpendicular to a plane containing the junction boundaries induces a potential well in
which trapped fluxons are pinned in the absence of a bias current. An applied rf field produces phase-locked
fluxon motion manifesting constant voltage steps in the current-voltage characteristics. Analytical expressions
obtained for depinning current, power-balance velocity, phase-locking range, and constant voltage steps using
perturbational analysis are found to be in very good agreement with the numerical results. The proposed device
is suitable for studying quantum dynamics of fluxons trapped in a potential well and in the fabrication of
devices like submillimeter-wave local oscillators and constant-voltage standard devices, etc.
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I. INTRODUCTION dielectric barrier and parallel to a plane containing the junc-
tion boundaries. In that configuration, the effective magnetic

Theoretical and experimental investigations of fluxon dy-f_ Id at th ds of the i ion h ) larii hich
namics in long superconducting tunnel junctions are curl'€!d at the ends of the junction has opposite polarities whic

rently active subjects as the well-established classical fluxo§UPPOrt penetration of opposite polarity fluxons into the
dynamicé? and the currently pursuing quantum dynarfies junction in the presence of a forward biased current, and the
find various applications in superconducting quantum eleclunction is found to be suitable for fabrication of fluxon-
tronic devices. Flux quantéluxon or Josephson vortgin based diodes for rectification of ac signals and rf magnetic

long Josephson junctiond.JJ)) have the characteristics of f'Fldsc'i Workngg tog? b|d|rec§|onalt fllux—f:pwt.osulllaicr)].r wask
solitons—nonlinear localized waves that preserve their shap%SO emonstrated for experimental reafization. in this work,

o . . we investigate a semiannular junction under in-plane static
with time—and propagate as elastic partideduxons, en- o . . ~
demic to LJJs, have been employed in the fabrication o nd rf magnetic fields applied perpendicular to a plane con

\ . aining the junction boundaries. It is found that a dc magnetic
devices like = constant vlco>ltage stanldlaz?dsﬂux-flow field induces a potential well which can be used for pinning
.OSC'”a.torf’jlaurrent rectifiers;'logic gates;-'?and recently the trapped fluxons in the junction. In this configuration, the
in qubits:=** _ _ _ external magnetic field is linked only with the interior of the
LJJs of different geometries under various internal andynction and not with the boundaries of the junction. There-
external conditions have been investigated in the Past. fore, the number of fluxons trapped in the junction is con-
Linear-®1® and annular~'° LJJs subjected to in-plane served and the system is ideal for studying quantum dynam-
stati¢®-22and rf3-2>magnetic fields are studied and various ics of trapped fluxons and in the studies of the characteristics
fluxon dynamical properties like fluxon trappiA@fluxon  of a nonlinear oscillator. When the junction is irradiated with
pinning?” and phase-locked statés*® are established theo- an rf magnetic field, phase-locked fluxon motion with con-
retically and experimentally. Apart from these uniform ge-stant voltage steps are observed in the current-voltage char-
ometries, nonuniform geometriés,nonrectangular geom- acteristics(IVC). Different frequencies of the applied field
etries?? heart-shaped geometri€ssemiannular and quarter- induce different voltage steps on the IVC and the junction
annular geometri€dare also investigated to find further ap- acts as a frequency to voltage transducer.
plications. The paper is organized as follows. In Sec. Il, we obtain
In recent times, studies have been focused on the influthe dynamical equations describing the junction in a dc mag-
ence of field-induced potentials on the flux motion in LJJs.netic field. Simple perturbational analysis is carried out to
Influences of field-induced sinusoidal potential in annularfind expressions for field-induced potential well, power-
junctiong® and saw-tooth potential in a modified annular balance velocity, and fluxon depinning current in the junc-
junction'® are already experimentally verified. A heart- tion. In Sec. I, we formulate the theoretical model describ-
shaped geomettyis used to achieve a field-induced double-ing the junction in an rf magnetic field and obtain
well potential for demonstration of a fluxon qubit. Semian-expressions for field-induced harmonically oscillating poten-
nular and quarter-annular geometries with magnetic fieldsial in the junction. An expression for phase-lockiigL)
applied in the plane of the dielectric barrier have been invesrange is also obtained using perturbational analysis. It is
tigated to obtain magnetic field-induced tilted potentials usefound that in the phase-locked state, the fluxon moves at a
ful for applications in bidirectional oscillators, current recti- constant velocity determined by the frequency of the mag-
fiers, and in rf magnetic field rectifiefs. netic field. In Sec. 1V, details of the numerical simulations
The previous works on semiannular junctidhsvere carried out to find the dc voltage characteristics, dependence
based on an external magnetic field applied parallel to thef depinning current, and critical currents on magnetic fields,
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FIG. 2. The potential welU(xg)/C in the junction as a function
of the fluxon coordinates, (®) and the field-induced bias term
Y%(X)/b (O) in a junction ofl =10 aty=0. Inset shows spatial pro-
file (¢,) of a trapped fluxon pinned at the center of the junction.

x=!

FIG. 1. A sketch of a semiannular LJJ with an applied magnetic ) 0 —
field b parallel to the plane of the dielectric barrier of uniform Pt~ Prx T SN = _a_x(AB ) - agt Boge— Y, (2)
thickness and perpendicular to a plane containing the junction
boundariegnot drawn to scale n represents the direction of the where ¢(x,t) is the superconducting phase difference be-
magnetic moment of a trapped fluxon. tween the electrodes of the junction, the spatial coordirate

is normalized to\;, the timet is normalized to the inverse

rf current-voltage characteristics, and dependence of constaptasma frequencyg®, wo=C/\;, T is the maximum velocity
voltage steps on the frequencies of the applied field are predf the electromagnetic waves in the junctiars 1/woRC is
sented. All the analytical results obtained are compared witthe dissipation parameter due to quasiparticle current,
numerical values and very good agreement is found. MajoB=woL,/R is a surface damping term due to quasiparticle
results of this work and conclusions are presented in Sec. \gurface currentR is resistance per unit length,, is induc-
tance per unit lengthC is capacitance per unit length, and
v=jlj, is the normalized amplitude of a dc bias normalized
to maximum Josephson currejy. Various normalizations
are discussed in Refs. 16, 32, and 33. For a homogeneous

An LJJ with a semiannular shape is considered with arstatic magnetic field, the perturbed sG equation becomes
external magnetic field applied parallel to the dielectric bar- @ = Oxct SiNE=—bcogkx) — ag,+ Bowe— v, (3
rier of uniform thickness and perpendicular to a plane con-
taining the junction boundarigfig. 1). The direction of the ~ With b=2k(B/B.1), whereBe; =®y/mAN, is the first critical
applied field is indicated by arrows and the trapped fluxon'spenetration field for an LJJ anbly=h/2e=2.064x 10 **Wb
magnetic moment is represented using the unit veatak is the flux quantum. Compared with the standard sG model
uniform dc bias is applied across the superconducting eledor Josephson junctioristhis equation has an extra term,
trodes to drive the fluxonglc bias exerts Lorentz force on (X)=-bcogkx) (see Fig. 2, which corresponds to a spa-
the trapped fluxons The external field interacts with the tially reversing field-induced driving force on the fluxons
interior of the junction and induce currents in closed formreversing at the center of the junction. This force exerts a
across the junction which has a net zero value over the lengifiansient force on the trapped fluxons and locates them at the
of the junction. The flux linked with the junction ide(x)  center of the junction. Thus, in the absence of a bias current,
:(AE-W)dx:AB cogkx—(r/2)Jdx, whereB is the strength I!uxons are pinned by the external magnetic field in the junc-
of the applied magnetic fieldy=2\, is the effective penetra- 'O . .
tion dep?tFr)] of the gmagnetic field into the junctidn_,pis the On neglecting the small perturbatiorig=/5=y=b=0),
London penetration depth of the superconducting electrode&d- (3) becomes the sG equation with the soliton solition
k=/1 is the normalized spatial periodicity of the magnetic . (X = Xo)
field inside the semiannular junction determined by the shape e(x,t) =4 tan exp? , (4)
of the junction, and=L/\; (I>1) is the normalized length Al
of the junction normalized to Josephson penetration depth wherex,=ut+X; is the instantaneous location,is the nor-

II. DYNAMICAL EQUATIONS IN A STATIC MAGNETIC
FIELD

Therefore, the boundary conditions of the junction are malized velocity,oc==1 is the polarity, and is the initial
position of the soliton. The soliton solution corresponds to a
ex(0,1) = (I,t)=0 (1) vortex of supercurrent, which carries a magnetic field of a

single flux quantum®, (fluxon) localized aroundut and
Under these conditions, a semiannular LJJ in a static magraveling with the velocity. In the classical regime, a fluxon
netic field is modeled with the general perturbed sineds considered as a nonrelativistic particle with rest mags
Gordon(sG) partial differential equatiol?2-33 =8, moving in one dimension.
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A. Expression for the potential well neered by McLaughlin and Scbtis applicable to infinite

In order to obtain an expression for the field-induced po_Iength junctions. In semi-infinite length junctions at low

tential well, we first calculate the Lagrangian density of Eq.9amPing, it is assumed that fluxons attain the steady-state

(3) with a=B==0 as velocity on moving a distance equal to the length of the
junction.
2 2 ;
1 b Energy of the unperturbed sG system is
L :%—5<¢X—Esin(kx)> -1+ cosg, (5) 9y P y

11
sG— Z(? + 2 +1-
where the first term represents the kinetic energy associated H f_w {2(% ¢ + 1 - cose |dx. (10

with the energy density of the electric field, the second term

accounts for the potential energy density associated with th#serting Eq.(4) in Eqg. (10) and integrating, we get the en-
magnetic field, and the third term represents the Josephs@igy of a fluxon moving with velocityi as H®=8/y1-u
coupling energy density. Therefore, the change in potential herefore, the rest energy of a fluxon in normalized units is
energy density due to the applied field can be determine@. Perturbational parameters modulate the velocity of the
from the second term of the above equation fluxon and may cause dissipation of energy. The rate of dis-
sipation is calculated by computing

2
U(x) = %{(pi 2 sin(kx) ¢y + (E sin(kx)) } (6)

d " *
k d—t(HP) =[x - J [agf + Beg + (b cogkx) + y)edx,

In the above equation, the first term is independent of the -
applied field and the third term is independent of the fluxon (11)

motion in the junction. Therefore, the change in the potentia{N
due to the combined effect of fluxon motion and the applieda
field can be determined by integrating the second term of th(gl
above equation over the length of the junction. Since the
length of the junction is very large compared to the size of du_ 7 2302 5 1

the fluxon, integration can be extended from to +x<. Re- at 27(1 —u)T - au(l-u) - §ﬁu

sults obtained in infinitely long junctions can be applied to .

finite length junctions with fairly good accuraéydence, the T Vi-u

fluxon-induced potential as a function of fluxon coordinate +40(- b9 seck{ o) ]COS(kXO)' (12)
is calculated as

here the first term on the right side accounts for the bound-
ry conditions and vanishes. Inserting E4) in Egs. (11
nd making an energy balance analysis, we get

m This expression describes the effects of perturbations on the
U(xg) = _9 Sin(kx) ¢, dx 7 fluxon velocity. In the above equation, the first term on the
%o PxHR right-hand side represents the input power from the bias cur-
rent, the second and third terms represent energy dissipation
Substituting Eq(4) in (7) and integrating, we get an expres- due to internal damping, and the fourth term accounts for the

—00

sion for the potential effect of the external field.
2 At higher bias values, energy input to a fluxon is balanced
U(xo) = — 2bl secl‘(—\ﬂl —u2> sin(kxg). (8)  Wwith the energy loss due to dissipation and the fluxon moves
2 at constant velocity(u.). Therefore, the rate of change of
At velocitiesu=0, the above equation reduces to fluxon velocity over a period can be taken as zero. The
steady velocityu, of a fluxon over a period is given by
U(xg) = — C sin(kxp), 9) u.=2l/T In the steady state, average rate of change of fluxon

velocity over a periodr is calculated aﬂ(du/dt)dtzo. In-
tegrating Eq(12) over a periodl=2l/u. we see that the last
term on the right-hand side vanishes, and we obtain

where C=2bl sect{7?/2l) is a constant. The potential well
U(xp), field-induced driving termy,(x), and the spatial pro-
file of a single fluxony, trapped in the junction are shown in
Fig. 2. The applied field induces a potential well in the junc- T 232 s 1

tion with potential minimum located at the point where the ZV(1 ~Up)” = aug(1-up) + gﬂuc- (13
fluxon’s magnetic moment is directed along the external

field. In this model, the potential minimum is located at theAt =0 the power-balance velocity becomes

center of the junction. Thus, using semiannular geometry, 27-1/2

fluxons can be pinned at the center of the junction and the u :{1 +(4_a> } (14)
geometry may find application in studying quantum dynam-

ics of fluxons.

my

In deriving the above equation, we have not taken into ac-
count the energy loss during reflection at the boundaries.
Open boundary conditions affect the fluxon’s steady-state ve-
To find the power-balance velocity, we first make an en-ocity in two ways3* The intrinsic energy losses in the re-
ergy balance analysis and determine the instantaneous rateftgction due to the dissipation parameteaffect the steady-
change of fluxon velocity. The power-balance analysis piostate velocity, and the phase shift associated with the

B. Power-balance velocity
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reflection gives a further correction to the average velocityfind the magnitude of the largest possible bias current for

The energy loss due ta during a reflection is given By zero-voltage stat@.e., depinning currentas
AH, = - 27%af(u), 15 772
! af(u) (19 V4= bsec)’(—) . (21
where f(u) is a velocity-dependent function which can be 2l

approximated ag(u)=1 at velocitiesu~1, and the phase The threshold value for fluxon depinning is directly propor-
shift produced during reflection is given y tional to the strength of the magnetic field and is determined
5=-21-w¥)Inu. (16) py the length of the junction. The open bo_unda_ry conditions
influence the zero-voltage state in the junction. When a
In order to calculate the steady-state velocity, we have tdluxon is reflected at the open boundary, the threshold driving
incorporate the reflection lossé$i; at one end of the junc- term v, corresponding to fluxon annihilation can be calcu-
tion, which is 27%«. The power delivered to a junction of lated by equating the incident fluxon energy with the energy
lengthl by the bias curreny is 2myl. Therefore, taking the loss due to reflection plus the fluxon rest energy. i.e.,
energy loss during reflection, the effective driving tefm)
. - - . 8
in the junction may be defined #s ———=27%a+8. (22)

1 12
27yl = 2yl — 27 (17 Vi-u

Substituting this effective driving term’ =y—(7a)/l in Eq.
(14), the steady-state velocity, becomes

Substituting the steady-state velocjyq. (14)] in the above
equation, we get the approximate value of the fluxon annihi-
lation threshold at small velocities ag,=(2a)%23* By in-

) Ao 2|12 corporating the threshold for fluxon annihilation in the de-
U =%1+ ) : (18)  pinning currenty,, we get the magnitude of the bias current
77(')/— I_> for average zero-voltage statg,) as
Finally, the phase-shift corrected steady-state velocity can be Y%=b sec|<ﬂ—2> +(2a)%2. (23
calculated % 2l
51t This is the applied dc bias value below which zero-voltage
Up = Uy 1—|— , (19)  state exists in the junction. Abovey, the fluxon gets de-

pinned in the potential well and abovg the fluxon under-
whereé is given by Eq(16) with u=u,. The above equation goes periodic motion, which corresponds to a switching of
gives steady-state velocity attained by a fluxon in a semianthe IVC to finite voltage state from zero-voltage state. The
nular junction. The energy loss during reflection at the operzero-voltage locking range in the junction can be obtained
boundaries of the junction influences the steady-state velogrom Eq.(20) by varying ¢ in the rangg0—] as

ity only at low bias values. At higher bias values, these cor- 2

rections are small and can be neglected. Moreover, all these (Ay)s=2b sec?{—). (24)
effects associated with the open boundary conditions will be 2l

taken automatically in the direct numerical simulation of the
perturbed sG equatidiEqg. (3)]. From the above expressions
we see that the power-balance velodiiyd hence the aver-
age voltaggis determined by the dissipation parameters and

the bias current, and not by the external magnetic field. Thusjii. DYNAMICAL EQUATIONS IN rf MAGNETIC FIELDS
external magnetic field has no influence on the steady-state
velocity of a fluxon in the junction.

The zero-voltage locking range is an important parameter in
studying dynamics of fluxons in the potential well.

Following the methods adopted in Sec. Il, the dynamical
equations representing a semiannular LJJ in a harmonically
C. Fluxon depinning current oscillating magnetic field applied parallel to the dielectric
At very low dc bias values, a trapped fluxon is pinned inParrier and perpendicular to a plane containing the junction
the potential well and corresponds to zero-voltage statel?lound%”es andbwnrtl) a dcdlr;las across the superconducting
Higher dc bias tilts the potential helping fluxons to move in €/€Ctrodes can be obtained from K8) as
the junction. Fluxon motion in the junction contributes for  , _ o+ sing = - Db sin(wt)cogkx) — @+ Ber— ¥,
finite voltage states. The dc bias at which zero voltage o5
switches to a finite voltage corresponds to the fluxon depin- (29
ning current(yy). At zero-voltage statdi.e., atu=0 and  wherew is the normalized frequency of the magnetic field

du/dt=0), Eq.(12) becomes normalized to the Josephson plasma frequangcyls in Sec.
y[ﬂl} I, the boundary conditions of the junction are
=-bsech — |cos#, 20
i 2 (20 £0.0= 0,0, =0, (26)

where #=kx; is an angular parameter which depends on the Details of the fluxon dynamics can be obtained by finding
initial location of the fluxon. From the above equation wethe potential induced by the time-varying magnetic field in
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the junction and the energy change associated with the mowa modulating the fluxon energy. In deriving the above equa-
ing fluxon. The Lagrangian density of E(R5) with =8  tion, we neglected the small contribution to the energy loss
=y=0is during reflection at the boundaries and the phase-shift-
2 b ) induced correction to the fluxon energy. In phase-locked
L = P _<¢X_ e sin(wt)sin(kx)) —-1+cose. (27) state, the fI_uxpn executes periodic mOtICHI the period of
2 2 k the magnetic fielgwith constant velocityl,=21/T. The total
Therefore, the corresponding potential energy density is o energy in the phase-locked state remains unchanged over a
. ' . period(T=27/w). The net change in energy over a peribd
tained from the second term of the above equation

is calculated ag(d/dt)(H?)dt=0 Integrating. Eq(33) over
a periodT, we get

JTz Yugdlt JT Batg . (T_8US
i [ B2 [ _8BU
o 0 0 \’,1_u3 0 3(1—Ug)3/2

U(x,t) = %{@;’ - z—kb sin(wt)sin(kx) ¢,

b 2
+ (E sin(wt)Siﬂ(kx)) . (28)

T 2 —
The first term is independent of the applied field and the third + J 2mbug 330{5\1 - US} sin(wt)cogkxy)dt=0,
term is independent of the flux motion in the junction. There- 0

fore, the change in the potential due to the combined effect (39
of the applied field and the fluxon motion in the junction as
a function of the fluxon coordinatg, can be determined
from the second term as

wherexy,=ugt+ 6/k. Using the values ofiy and T, the fluxon
coordinate can be expressed in terms of the frequeneg
kxo=wt+ 6. Substituting in the above equation and integrat-

b (™ . _ ing, we get
U(Xg,t) =—— sin(wt)sin(kx) g, dx. (29)
KJ N Baui  8pUS
Substituting Eq(4) in (29) and integrating, we get o Vi-u2 3(1-ud)*?
R 7 )
U(xo,t) = - 2bl secl{a\r’l - u2>sin(wt)sin(kxo). (30) - by, sec{avl - ug sin6=0. (35)
At velocitiesu=0, the above expression becomes Therefore, we get the following condition for PL:
U(Xo,t) = = C sin(wt)sin(kxp), (31 4ay 4puy b [ —]
) ] Y= > + 235+ 5 sech —-v1-ug|siné,
whereC=2bl secliz?/2l) is a constant. Equatiaf31) shows m1l-uy 3m(l-up™* 2 L 2l
that the potential is oscillating at the frequency of the applied (36)

field. This oscillating potential modulates the fluxon velocity
and is responsible for the phase-locked fluxon motion in thevhere §=kx;. The largest dc bias for zero-voltage state can
junction. be calculated from the above equation d3y)y
=(b/2)sect{7?/2l), which is half of the fluxon depinning
A. Phase-locking range current in a static field. By varying between -/2 and
To calculate the phase-locked states, we first calculate the7/2, we get the lower and upper threshold values of the
net dissipation of energy by the perturbational parameters d¥as current for PL as

d P * 2 2 40(U0 4BUO —
— = i = + - -sech ——v1-ug|,
M) =l f 3 [aei + B [N 2 3n1-w¥ 2% 2 V1-to
+ (b sin(wt)cogkx) + 7) @, Jdx. (32) (37
The first term on the right side in the above equation repre- r 7
sents the boundary conditions and vanishes. Inserting4xq. Vo= A/,auo s+ 4Bu02 T 9 sech 7]—2\'1 - ug .
in Eq.(32) and following perturbative analysis, we obtain the ml-uj 3ml-up™ 2 [2 |
rate of energy dissipation as (39)
E(HP) =27y - Bau? _ 8pu” The threshold values are found to be symmetric around the
dt Vi-u? 3(1-u?d3? IVC at no magnetic field. The range of PL is obtained as
772 r’ 2 1 71-2 5
+ 2mbusec E\el—u sin(wt)cogkxy). Ay=1y,- y,=bsec EVl‘Uo ) (39)
(33

Sinceuy=2l/T=lw/m, the above equation for PL range be-
The above equation describes the effect of rf magnetic fieldomes
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(40) 0.
Thus, the PL range is found to be proportional to the strength
of the applied field and is determined by the field frequency 0.
o and the junction length The locking range is independent =
of the loss parametersand 8 as well as the bias term We
note that atu,=0, the range of zero-voltage locked state in 0.

an rf field becomes

A T T TR |
0.0 0.2 0.4 0.6 0.8 1.0
<u>

0.0
(@)

2
(Ay)=hb secv{a , (41
which is half of the zero-voltage range in a static fi¢?d).?3
In phase-locked state, the fluxon executes periodic motion
at the frequency of the applied field with constant velocity

u==ug given by

lw

2l

Up T - . (42) N
Thus, PL velocity is determined by the frequency of the rf
field and the length of the junction. Since the average veloc-
ity is proportional to the voltage across the junction, the
above equation represents the frequency-voltage relation in
the junction. For a single fluxon, the maximum average nor-
malized velocity attainable igy=1 and therefore we get the

maximum value of the fundamental harmonic frequency of_”';'G' 3. (a()j_#pplied dlc bias%yhversus the ?_\/T(;ag_?hvelocim
the rf f|e|d f0r PL a.S(UO:W/I. = ’7T<g0t> at different values of the magnetlc lelds. e parameters

of the junction ard =10, «=0.05, andB3=0.01.(b) Magnetic field
intensityb versus zero-voltage bias currept showing linearity of
Yo With b on two junctions with parametets=0.05 and3=0. Solid
. . . . . . _lines represent values computed usin and symbols repre-
All a.n.alytlca.‘l eXpreSSI.OnS O.btamed in the previous .Sec_t'orgent nuir)nerical results Withpa single flgx?r?)trappe()j/ in the jchtion.
are verified using numerical simulations. The system is simu-
lated by solving the perturbed sG E@) using the boundary in any ordinary rectangular junction and zero-voltage state
conditions of Eq(1). For the discretization of the differential exists up to the critical valugy,=(2a)*2 Above y, average
equations, we used an explicit method treating with a  velocity increases gradually from zero value as the bias is
five-point, ¢, with a three-point, andp; with a two-point  increased and finally reaches the maximum value;1.
finite-difference method. A time step of 0.0125 and a spacdVhen an external magnetic field is applied, a potential well
step of 0.025 is used in the discretization. The fluxon soluis induced in the junction and the fluxon remains pinned in
tion of Eq. (4) with zero velocity is used as the initial con- the potential well as long as the Lorentz force exerted on the
dition. This corresponds to a single fluxon trapped at theluxon by the bias current is smaller than the pinning force. If
center of the junction. After the simulation of the phase dy-th€ pinning force is exceeded by the driving force, the fluxon
namics for a transient time, we calculate the average voltaggie'ts to move. As the fluxon gets depinned, a voltage jump

(V) for a time interval T as (V):(llT)fggotdt:[@(T) from zero to finite voltage is detected. The fluxon depinning

— #(0)]/T. For faster convergence of our averaging proce_current depends on the magnitude and direction of the ap-

- plied field. Thus, with external magnetic fields, greater
dure, we additionally averaged the phasel) over the  yhreshold biasy, is required to get finite voltages. Figure

length of the junction. Since the mean voltage in the junctionsa) shows the 1VC of a junction with a single trapped fluxon
is proportional to the average velocity of the fluxon, averageyt different magnetic fields. We have considered a junction

® b

IV. NUMERICAL RESULTS

velocity of a fluxon is calculated using the relatido)
=1/12m(V)=1/27({¢;). Details of the numerical simulation
procedure can be found in Refs. 12, 16, and 33.

A. IVC in a static magnetic field

The average velocitiegy), attained by a fluxon at differ-

with parameterd=10, «=0.05, andB=0.01. The system is
started with a single fluxon trapped at the center of the junc-
tion. Simulation started withy=0 and then increased in very
small steps up to a maximum of=0.9. In all cases, at suf-
ficiently higher bias valuegy>v,), average velocity in-
creases asymptotically and approaches the maximum veloc-
ity u=1 in the junction. At still higher bias values, the

ent bias currenty are determined in the numerical simula- junction switches to resistive state with uniformly increasing
tion, and a plot of the average velocity versus dc bias formsionlocalized phase values showing high voltage states.

the IVC of the junction. In the absence of external figd

The depinning currentyy is found to increase linearly

b=0), fluxon dynamics in semiannular LJJ is the same as thawith the strength of the applied field due to strong pinning in
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FIG. 5. IVC at different rf magnetic field intensities showing
constant voltage steps. The parameterd a2, a=0.05, 3=0.01,
and w=0.2.

FIG. 4. Critical current(y,) versus static magnetic field
(2B/B¢1=b/k) of a semiannular LJJO) and that of a rectangular
LJJ (@) of =10, =0.05, andB=0 without any trapped fluxons.

»=0.2. IVC without the external magnetic field=0) is

higher fields. To check the li [ ith b, th
igher fields. To check the linearity of with b, the average also plotted to show the symmetric locking range.y*0,

zero-voltage bias currenf, calculated using Eg23) (solid A . . o o
lines) along with that obtained in numerical simulation of the fluxon is pmneq in the pptentlal minimum which is at the
Eq. (3) (symbol3 with a single fluxon trapped in the junction CENter of the junction. For bias valug< (yu)], the fluxon

is shown in Fig. 8). Theoretical values match exactly with €Xecutes oscillatory motion around the potential minimum
the numerical values. point, contributing a net zero voltage across the junction. At

higher values of the dc biasy>(yy){], average velocity
N o increases gradually and the phase-locked fluxon motion is
B. Critical current versus magnetic field manifested as a constant voltage step on the IVC. Constant

The characteristics of an LJJ undergo drastic change¥oltage steps are observed at the steady-state velogity
when an external magnetic field is applied. It is important for=(Iw)/w=0.76. The PL range is found to increase in propor-
practical applications to know the behavior of the junctiontion with the strength of the applied field. It is noticed that
under a static magnetic field, especially the dependence &ven for relatively large magnetic field amplitudes, very
critical current(y,) on the applied fieldB). In weak static close agreement is found between numerically obtained con-
magnetic fields, LJJs behave like weak superconductors arfdant voltage steps and analytically predicted results. On in-
show the Meissner effect. In this regime the critical currentcreasing the bias values further, average velocity switches to
decreases linearly with the external field. This behavior exthe asymptotic valuei=1. At still higher bias values, the
ists up to the first critical fieldB. At this critical field, junction switches to resistive state showing high voltages.
magnetic flux in the form of fluxons can overcome the edge
barrier effects and can penetrate the junclibithe depen- D. Phase-locking range
dence ofy, on static magnetic fiel(2B/B.,=b/k) applied to
a semiannular LJJ df=10 without any trapped fluxons is ) . .
shown in Fig. 4. For comparison, critical current versus mag—eter w/k obtained using Eq(40) together with the corre-

netic field diffraction pattern of a standard rectangular LJJ isspon_dlng_ values Obta"?ed t_)y numerical 5|rr_1ulat_|on of Eg.
also presented. The first critical fiel@8.;) for fluxon pen- (25) in different length junctions are shown in Fig. 6. Nu-
etration in semiannular junction is found to be approximately
twice that in a rectangular junction. Also, from the diffrac-
tion pattern it is noticed that at all magnetic fields, critical
current in semiannular junction is higher than that in a rect-
angular junction. This is expected as there is no flux linked at
the boundaries of the junction. The higher critical field val-
ues in semiannular junction show that the junction can be
easily decoupled from external fluctuations.

The PL rangdAy/b) as a function of the velocity param-

C. IVC in an rf magnetic field

L M 1 L 1 M L
To find the IVC of the junction in rf magnetic fields, we 0.0 0.2 0.4 0.6 0.8 1.0
directly integrated Eq(25) with the boundary conditions o /k
(26). Figure 5 shows the normalized dc bigsversus the FIG. 6. PL rangeAy/b as function of velocity parameter,
average velocitu) of a single fluxon in a junction of =,k Theoretical values computed using E40) are showr(solid

=12, «=0.05, andB=0.01 at magnetic field amplitudds lines) along with numerically obtained value®) for different
=0.2 andb=0.4. The frequency of the rf field is taken as length junctions. The parameters are0.05,3=0.01, andb=0.2.
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V. CONCLUSION

In this work, we have studied various static and dynami-
cal properties of a single fluxon trapped in a semiannular LJJ
under in-plane static and rf magnetic fields in the classical
regime. The external field contributes a spatially reversing
perturbation in the interior of the junction. It is demonstrated
that fluxons trapped in semiannular LJJ reside in a pinning
potential well when a uniform dc magnetic field is applied
parallel to the junction’s tunnel barrier and perpendicular to a
06 0.7 0.8 0.9 1.0 plane containing the junction boundaries. The height of the
potential well is determined by the strength of the applied
field and the dc bias applied to the junction. The system is

FIG. 7. rf magnetic field frequency as a function of the PL  closely analogous to an annular junction as there is no inter-
velocity up. The parameters are=0.05, 3=0.01,b=0.3, andy  action of the external magnetic field with the open bound-
=0.2. Solid lines represent values computed using @@ and  aries of the junction, and so the number of fluxons trapped in
symbols represent numerically obtained values. the junction is conserved. Investigations can be extended to

the quantum regime to find different quantum energy states

of the trapped fluxons useful for quantum computing appli-
merically obtained values are shown as solid circles. The Plations. The semiannular junction in the proposed configura-
range is independent of dissipation parameters, so we fixegbn is useful for investigating thermal activation and quan-
the parameters a¥=0.05 andB=0.01 and used some dis- tum tunneling properties of the fluxons. Fluxon motion is
crete values of the parameter/k in the range 0 to 1 on found to be phase locked under an rf magnetic field. Phase-
different length junctions. The perturbational regd®) pre- locked state produces a constant voltage step in the IVC and
dicts that the locking range is identical to the external magthe junction may find application as constant voltage stan-
netic field strengttb at the highest velocity/k=1 in the  dards. We have considered only the fundamental harmonic
junction_ Very good agreement is found between the perturfrequencies of the rf field. Analysis can be extended to find
bational method and numerical solution of the perturbed sdhe subharmonic phase-locked states that may find applica-
equation for almost all choices of parameters. Similar result§0n in submilimeter-wave local oscillators with potential
were obtained earlier in annular Josephson junctidns. applications in space research. More interesting dynamics

In order to check the validity of the frequency to voltage @1 be observed when larger numbers of fluxons are trapped

relation(42), we numerically obtained the steady-state veloc-" ttt'1_e J?ncnon gnd also |rt1)_vert|cally|stagked Ju_n(étlonts.t In- .
ity ug at different frequencies of the rf field keeping all other VEStIgations under an ac bias can aiso be carried out to ge

parameters constant. In Fig. 7, PL velocities as a function ofome useful applications. Using current fabrication methods

. . of the annular junctions and fluxon trapping technictfes,
the frequency of the rf field are shown on different length . : ; : X -
junctions ofa=0.05, 3=0.01, y=0.2, ando=0.3. PL veloc- semiannular junctions can be easily fabricated and experi

o . ! ; . mental realization becomes simple. In brief, we have pro-
ity is found to vary linearly in accordance with the relation osed a method for studvina quantum dvnamics of fluxons in
(42). Solid lines represent values computed using &4), P ying 9 y

and symbols represent numerically obtained values. As thé potential well and for the fabricgt.ion of devices like con-
) ' Stant voltage standards and submillimeter-wave local oscilla-

fundamental harmonic frequency approaches the PL fret-OrS

quency limit wg=7/1=0.261 in a junction of=12, PL ve- '

locity uy approaches the maximum value- 1. Results show ACKNOWLEDGMENT
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