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Long semiannular Josephson junctions coupled to in-plane external static and rf magnetic fields are inves-
tigated analytically and numerically. A spatially homogeneous dc magnetic field applied in the plane of the
dielectric barrier and perpendicular to a plane containing the junction boundaries induces a potential well in
which trapped fluxons are pinned in the absence of a bias current. An applied rf field produces phase-locked
fluxon motion manifesting constant voltage steps in the current-voltage characteristics. Analytical expressions
obtained for depinning current, power-balance velocity, phase-locking range, and constant voltage steps using
perturbational analysis are found to be in very good agreement with the numerical results. The proposed device
is suitable for studying quantum dynamics of fluxons trapped in a potential well and in the fabrication of
devices like submillimeter-wave local oscillators and constant-voltage standard devices, etc.
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I. INTRODUCTION

Theoretical and experimental investigations of fluxon dy-
namics in long superconducting tunnel junctions are cur-
rently active subjects as the well-established classical fluxon
dynamics1,2 and the currently pursuing quantum dynamics3–5

find various applications in superconducting quantum elec-
tronic devices. Flux quanta(fluxon or Josephson vortex) in
long Josephson junctions(LJJ) have the characteristics of
solitons—nonlinear localized waves that preserve their shape
with time—and propagate as elastic particles.6 Fluxons, en-
demic to LJJs, have been employed in the fabrication of
devices like constant voltage standards,7 flux-flow
oscillators,8 current rectifiers,9,10 logic gates,11,12and recently
in qubits.13,14

LJJs of different geometries under various internal and
external conditions have been investigated in the past.15

Linear1,8,16 and annular17–19 LJJs subjected to in-plane
static20–22 and rf23–25 magnetic fields are studied and various
fluxon dynamical properties like fluxon trapping,26 fluxon
pinning,27 and phase-locked states28–30 are established theo-
retically and experimentally. Apart from these uniform ge-
ometries, nonuniform geometries,31 nonrectangular geom-
etries,32 heart-shaped geometries,13 semiannular and quarter-
annular geometries33 are also investigated to find further ap-
plications.

In recent times, studies have been focused on the influ-
ence of field-induced potentials on the flux motion in LJJs.
Influences of field-induced sinusoidal potential in annular
junctions20 and saw-tooth potential in a modified annular
junction10 are already experimentally verified. A heart-
shaped geometry13 is used to achieve a field-induced double-
well potential for demonstration of a fluxon qubit. Semian-
nular and quarter-annular geometries with magnetic fields
applied in the plane of the dielectric barrier have been inves-
tigated to obtain magnetic field-induced tilted potentials use-
ful for applications in bidirectional oscillators, current recti-
fiers, and in rf magnetic field rectifiers.33

The previous works on semiannular junctions33 were
based on an external magnetic field applied parallel to the

dielectric barrier and parallel to a plane containing the junc-
tion boundaries. In that configuration, the effective magnetic
field at the ends of the junction has opposite polarities which
support penetration of opposite polarity fluxons into the
junction in the presence of a forward biased current, and the
junction is found to be suitable for fabrication of fluxon-
based diodes for rectification of ac signals and rf magnetic
fields. Working of a bidirectional flux-flow oscillator was
also demonstrated for experimental realization. In this work,
we investigate a semiannular junction under in-plane static
and rf magnetic fields applied perpendicular to a plane con-
taining the junction boundaries. It is found that a dc magnetic
field induces a potential well which can be used for pinning
the trapped fluxons in the junction. In this configuration, the
external magnetic field is linked only with the interior of the
junction and not with the boundaries of the junction. There-
fore, the number of fluxons trapped in the junction is con-
served and the system is ideal for studying quantum dynam-
ics of trapped fluxons and in the studies of the characteristics
of a nonlinear oscillator. When the junction is irradiated with
an rf magnetic field, phase-locked fluxon motion with con-
stant voltage steps are observed in the current-voltage char-
acteristics(IVC). Different frequencies of the applied field
induce different voltage steps on the IVC and the junction
acts as a frequency to voltage transducer.

The paper is organized as follows. In Sec. II, we obtain
the dynamical equations describing the junction in a dc mag-
netic field. Simple perturbational analysis is carried out to
find expressions for field-induced potential well, power-
balance velocity, and fluxon depinning current in the junc-
tion. In Sec. III, we formulate the theoretical model describ-
ing the junction in an rf magnetic field and obtain
expressions for field-induced harmonically oscillating poten-
tial in the junction. An expression for phase-locking(PL)
range is also obtained using perturbational analysis. It is
found that in the phase-locked state, the fluxon moves at a
constant velocity determined by the frequency of the mag-
netic field. In Sec. IV, details of the numerical simulations
carried out to find the dc voltage characteristics, dependence
of depinning current, and critical currents on magnetic fields,
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rf current-voltage characteristics, and dependence of constant
voltage steps on the frequencies of the applied field are pre-
sented. All the analytical results obtained are compared with
numerical values and very good agreement is found. Major
results of this work and conclusions are presented in Sec. V.

II. DYNAMICAL EQUATIONS IN A STATIC MAGNETIC
FIELD

An LJJ with a semiannular shape is considered with an
external magnetic field applied parallel to the dielectric bar-
rier of uniform thickness and perpendicular to a plane con-
taining the junction boundaries(Fig. 1). The direction of the
applied field is indicated by arrows and the trapped fluxon’s
magnetic moment is represented using the unit vectorn̄. A
uniform dc bias is applied across the superconducting elec-
trodes to drive the fluxons(dc bias exerts Lorentz force on
the trapped fluxons). The external field interacts with the
interior of the junction and induce currents in closed form
across the junction which has a net zero value over the length
of the junction. The flux linked with the junction isdwsxd
=sDB̄·n̄ddx=DB cosfkx−sp /2dgdx, where B̄ is the strength
of the applied magnetic field,D=2lL is the effective penetra-
tion depth of the magnetic field into the junction,lL is the
London penetration depth of the superconducting electrodes,
k=p/ l is the normalized spatial periodicity of the magnetic
field inside the semiannular junction determined by the shape
of the junction, andl =L /lJ sl @1d is the normalized length
of the junction normalized to Josephson penetration depthlJ.
Therefore, the boundary conditions of the junction are

wxs0,td = wxsl,td = 0 s1d

Under these conditions, a semiannular LJJ in a static mag-
netic field is modeled with the general perturbed sine-
Gordon(sG) partial differential equation1,32,33

wtt − wxx + sinw = −
]

]x
sDB̄ · n̄d − awt + bwxxt − g, s2d

where wsx,td is the superconducting phase difference be-
tween the electrodes of the junction, the spatial coordinatex
is normalized tolJ, the timet is normalized to the inverse
plasma frequencyv0

−1, v0= c̃/lJ, c̃ is the maximum velocity
of the electromagnetic waves in the junction,a=1/v0RC is
the dissipation parameter due to quasiparticle current,
b=v0Lp/R is a surface damping term due to quasiparticle
surface current,R is resistance per unit length,Lp is induc-
tance per unit length,C is capacitance per unit length, and
g= j / j0 is the normalized amplitude of a dc bias normalized
to maximum Josephson currentj0. Various normalizations
are discussed in Refs. 16, 32, and 33. For a homogeneous
static magnetic field, the perturbed sG equation becomes

wtt − wxx + sinw = − bcosskxd − awt + bwxxt − g, s3d

with b=2ksB/Bc1d, whereBc1=F0/pLlJ is the first critical
penetration field for an LJJ andF0=h/2e=2.064310−15 Wb
is the flux quantum. Compared with the standard sG model
for Josephson junctions,1 this equation has an extra term,
gbsxd=−b cosskxd (see Fig. 2), which corresponds to a spa-
tially reversing field-induced driving force on the fluxons
reversing at the center of the junction. This force exerts a
transient force on the trapped fluxons and locates them at the
center of the junction. Thus, in the absence of a bias current,
fluxons are pinned by the external magnetic field in the junc-
tion.

On neglecting the small perturbationssa=b=g=b=0d,
Eq. (3) becomes the sG equation with the soliton solution2

wsx,td = 4 tan−1Fexp
ssx − x0d
Î1 − u2 G , s4d

wherex0=ut+x08 is the instantaneous location,u is the nor-
malized velocity,s=±1 is the polarity, andx08 is the initial
position of the soliton. The soliton solution corresponds to a
vortex of supercurrent, which carries a magnetic field of a
single flux quantumF0 (fluxon) localized aroundut and
traveling with the velocityu. In the classical regime, a fluxon
is considered as a nonrelativistic particle with rest massm0
=8, moving in one dimension.

FIG. 1. A sketch of a semiannular LJJ with an applied magnetic
field b parallel to the plane of the dielectric barrier of uniform
thickness and perpendicular to a plane containing the junction
boundaries(not drawn to scale). n̄ represents the direction of the
magnetic moment of a trapped fluxon.

FIG. 2. The potential wellUsx0d /C in the junction as a function
of the fluxon coordinatex0 sPd and the field-induced bias term
gbsxd /b ssd in a junction ofl =10 atg=0. Inset shows spatial pro-
file swxd of a trapped fluxon pinned at the center of the junction.
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A. Expression for the potential well

In order to obtain an expression for the field-induced po-
tential well, we first calculate the Lagrangian density of Eq.
(3) with a=b=g=0 as

L =
wt

2

2
−

1

2
Swx −

b

k
sinskxdD2

− 1 + cosw, s5d

where the first term represents the kinetic energy associated
with the energy density of the electric field, the second term
accounts for the potential energy density associated with the
magnetic field, and the third term represents the Josephson
coupling energy density. Therefore, the change in potential
energy density due to the applied field can be determined
from the second term of the above equation

Usxd =
1

2
Hwx

2 −
2b

k
sinskxdwx + Sb

k
sinskxdD2J . s6d

In the above equation, the first term is independent of the
applied field and the third term is independent of the fluxon
motion in the junction. Therefore, the change in the potential
due to the combined effect of fluxon motion and the applied
field can be determined by integrating the second term of the
above equation over the length of the junction. Since the
length of the junction is very large compared to the size of
the fluxon, integration can be extended from −` to +`. Re-
sults obtained in infinitely long junctions can be applied to
finite length junctions with fairly good accuracy.1 Hence, the
fluxon-induced potential as a function of fluxon coordinatex0
is calculated as

Usx0d = −
b

k
E

−`

+`

sinskxdwxdx. s7d

Substituting Eq.(4) in (7) and integrating, we get an expres-
sion for the potential

Usx0d = − 2bl sechSp2

2l
Î1 − u2Dsinskx0d. s8d

At velocitiesu.0, the above equation reduces to

Usx0d = − C sinskx0d, s9d

whereC=2bl sechsp2/2ld is a constant. The potential well
Usx0d, field-induced driving termgbsxd, and the spatial pro-
file of a single fluxonwx trapped in the junction are shown in
Fig. 2. The applied field induces a potential well in the junc-
tion with potential minimum located at the point where the
fluxon’s magnetic moment is directed along the external
field. In this model, the potential minimum is located at the
center of the junction. Thus, using semiannular geometry,
fluxons can be pinned at the center of the junction and the
geometry may find application in studying quantum dynam-
ics of fluxons.

B. Power-balance velocity

To find the power-balance velocity, we first make an en-
ergy balance analysis and determine the instantaneous rate of
change of fluxon velocity. The power-balance analysis pio-

neered by McLaughlin and Scott1 is applicable to infinite
length junctions. In semi-infinite length junctions at low
damping, it is assumed that fluxons attain the steady-state
velocity on moving a distance equal to the length of the
junction.

Energy of the unperturbed sG system is

HsG=E
−`

` F1

2
swt

2 + wx
2d + 1 − coswGdx. s10d

Inserting Eq.(4) in Eq. (10) and integrating, we get the en-
ergy of a fluxon moving with velocityu as HsG=8/Î1−u2.
Therefore, the rest energy of a fluxon in normalized units is
8. Perturbational parameters modulate the velocity of the
fluxon and may cause dissipation of energy. The rate of dis-
sipation is calculated by computing

d

dt
sHPd = fwxwtg−`

` −E
−`

`

fawt
2 + bwxt

2 + sb cosskxd + gdwtgdx,

s11d

where the first term on the right side accounts for the bound-
ary conditions and vanishes. Inserting Eq.(4) in Eqs. (11)
and making an energy balance analysis, we get

du

dt
=

p

4
gs1 − u2d3/2 − aus1 − u2d −

1

3
bu

+
p

4
bs1 − u2d3/2 sechFp2Î1 − u2

2l
Gcosskx0d. s12d

This expression describes the effects of perturbations on the
fluxon velocity. In the above equation, the first term on the
right-hand side represents the input power from the bias cur-
rent, the second and third terms represent energy dissipation
due to internal damping, and the fourth term accounts for the
effect of the external field.

At higher bias values, energy input to a fluxon is balanced
with the energy loss due to dissipation and the fluxon moves
at constant velocitysucd. Therefore, the rate of change of
fluxon velocity over a period can be taken as zero. The
steady velocityuc of a fluxon over a periodT is given by
uc=2l /T In the steady state, average rate of change of fluxon
velocity over a periodT is calculated ase0

Tsdu/dtddt=0. In-
tegrating Eq.(12) over a periodT=2l /uc we see that the last
term on the right-hand side vanishes, and we obtain

p

4
gs1 − uc

2d3/2 = aucs1 − uc
2d +

1

3
buc. s13d

At b=0 the power-balance velocity becomes

uc = ±F1 +S 4a

pg
D2G−1/2

. s14d

In deriving the above equation, we have not taken into ac-
count the energy loss during reflection at the boundaries.
Open boundary conditions affect the fluxon’s steady-state ve-
locity in two ways.34 The intrinsic energy losses in the re-
flection due to the dissipation parametera affect the steady-
state velocity, and the phase shift associated with the
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reflection gives a further correction to the average velocity.
The energy loss due toa during a reflection is given by35

DH1 = − 2p2afsud, s15d

where fsud is a velocity-dependent function which can be
approximated asfsud=1 at velocitiesu,1, and the phase
shift produced during reflection is given by36

d = − 2s1 − u2d1/2 ln u. s16d

In order to calculate the steady-state velocity, we have to
incorporate the reflection lossesDH1 at one end of the junc-
tion, which is 2p2a. The power delivered to a junction of
length l by the bias currentg is 2pgl. Therefore, taking the
energy loss during reflection, the effective driving termsg8d
in the junction may be defined as34

2pg8l = 2pgl − 2p2a. s17d

Substituting this effective driving termg8=g−spad / l in Eq.
(14), the steady-state velocityuc becomes

uc8 = ±31 +1 4a

pSg −
pa

l
D2

2

4
−1/2

. s18d

Finally, the phase-shift corrected steady-state velocity can be
calculated as35

u0 = uc8F1 −
d

l
G−1

, s19d

whered is given by Eq.(16) with u=uc. The above equation
gives steady-state velocity attained by a fluxon in a semian-
nular junction. The energy loss during reflection at the open
boundaries of the junction influences the steady-state veloc-
ity only at low bias values. At higher bias values, these cor-
rections are small and can be neglected. Moreover, all these
effects associated with the open boundary conditions will be
taken automatically in the direct numerical simulation of the
perturbed sG equation[Eq. (3)]. From the above expressions
we see that the power-balance velocity(and hence the aver-
age voltage) is determined by the dissipation parameters and
the bias current, and not by the external magnetic field. Thus,
external magnetic field has no influence on the steady-state
velocity of a fluxon in the junction.

C. Fluxon depinning current

At very low dc bias values, a trapped fluxon is pinned in
the potential well and corresponds to zero-voltage state.
Higher dc bias tilts the potential helping fluxons to move in
the junction. Fluxon motion in the junction contributes for
finite voltage states. The dc bias at which zero voltage
switches to a finite voltage corresponds to the fluxon depin-
ning current sgdd. At zero-voltage state(i.e., at u=0 and
du/dt=0), Eq. (12) becomes

g = − b sechFp2

2l
Gcosu, s20d

whereu=kx08 is an angular parameter which depends on the
initial location of the fluxon. From the above equation we

find the magnitude of the largest possible bias current for
zero-voltage state(i.e., depinning current) as

gd = Ub sechSp2

2l
DU . s21d

The threshold value for fluxon depinning is directly propor-
tional to the strength of the magnetic field and is determined
by the length of the junction. The open boundary conditions
influence the zero-voltage state in the junction. When a
fluxon is reflected at the open boundary, the threshold driving
term gth corresponding to fluxon annihilation can be calcu-
lated by equating the incident fluxon energy with the energy
loss due to reflection plus the fluxon rest energy. i.e.,

8

Î1 − uc
2

= 2p2a + 8. s22d

Substituting the steady-state velocity[Eq. (14)] in the above
equation, we get the approximate value of the fluxon annihi-
lation threshold at small velocities asgth=s2ad3/2.34 By in-
corporating the threshold for fluxon annihilation in the de-
pinning currentgd, we get the magnitude of the bias current
for average zero-voltage statesg0d as

g0 = b sechSp2

2l
D + s2ad3/2. s23d

This is the applied dc bias value below which zero-voltage
state exists in the junction. Abovegd, the fluxon gets de-
pinned in the potential well and aboveg0 the fluxon under-
goes periodic motion, which corresponds to a switching of
the IVC to finite voltage state from zero-voltage state. The
zero-voltage locking range in the junction can be obtained
from Eq. (20) by varyingu in the rangef0–pg as

sDgdS= 2b sechSp2

2l
D . s24d

The zero-voltage locking range is an important parameter in
studying dynamics of fluxons in the potential well.

III. DYNAMICAL EQUATIONS IN rf MAGNETIC FIELDS

Following the methods adopted in Sec. II, the dynamical
equations representing a semiannular LJJ in a harmonically
oscillating magnetic field applied parallel to the dielectric
barrier and perpendicular to a plane containing the junction
boundaries and with a dc bias across the superconducting
electrodes can be obtained from Eq.(3) as

wtt − wxx + sinw = − b sinsvtdcosskxd − awt + bwxxt − g,

s25d

wherev is the normalized frequency of the magnetic field
normalized to the Josephson plasma frequencyv0. As in Sec.
II, the boundary conditions of the junction are

wxs0,td = wxsl,td = 0. s26d

Details of the fluxon dynamics can be obtained by finding
the potential induced by the time-varying magnetic field in

P. D. SHAJU AND V. C. KURIAKOSE PHYSICAL REVIEW B70, 064512(2004)

064512-4



the junction and the energy change associated with the mov-
ing fluxon. The Lagrangian density of Eq.(25) with a=b
=g=0 is

L =
wt

2

2
−

1

2
Swx −

b

k
sinsvtdsinskxdD2

− 1 + cosw. s27d

Therefore, the corresponding potential energy density is ob-
tained from the second term of the above equation

Usx,td =
1

2
Hwx

2 −
2b

k
sinsvtdsinskxdwx

+ Sb

k
sinsvtdsinskxdD2J . s28d

The first term is independent of the applied field and the third
term is independent of the flux motion in the junction. There-
fore, the change in the potential due to the combined effect
of the applied field and the fluxon motion in the junction as
a function of the fluxon coordinatex0 can be determined
from the second term as

Usx0,td = −
b

k
E

−`

+`

sinsvtdsinskxdwxdx. s29d

Substituting Eq.(4) in (29) and integrating, we get

Usx0,td = − 2bl sechSp2

2l
Î1 − u2Dsinsvtdsinskx0d. s30d

At velocitiesu.0, the above expression becomes

Usx0,td = − C sinsvtdsinskx0d, s31d

whereC=2bl sechsp2/2ld is a constant. Equation(31) shows
that the potential is oscillating at the frequency of the applied
field. This oscillating potential modulates the fluxon velocity
and is responsible for the phase-locked fluxon motion in the
junction.

A. Phase-locking range

To calculate the phase-locked states, we first calculate the
net dissipation of energy by the perturbational parameters as

d

dt
sHPd = fwxwtg−`

` −E
−`

`

fawt
2 + bwxt

2

+ sb sinsvtdcosskxd + gdwtgdx. s32d

The first term on the right side in the above equation repre-
sents the boundary conditions and vanishes. Inserting Eq.(4)
in Eq. (32) and following perturbative analysis, we obtain the
rate of energy dissipation as

d

dt
sHPd = 2pgu −

8au2

Î1 − u2
−

8bu2

3s1 − u2d3/2

+ 2pbusechFp2

2l
Î1 − u2Gsinsvtdcosskx0d.

s33d

The above equation describes the effect of rf magnetic field

in modulating the fluxon energy. In deriving the above equa-
tion, we neglected the small contribution to the energy loss
during reflection at the boundaries and the phase-shift-
induced correction to the fluxon energy. In phase-locked
state, the fluxon executes periodic motion(at the period of
the magnetic field) with constant velocityu0=2l /T. The total
energy in the phase-locked state remains unchanged over a
periodsT=2p /vd. The net change in energy over a periodT
is calculated ase0

Tsd/dtdsHPddt=0 Integrating. Eq.(33) over
a periodT, we get

E
0

T

2pgu0dt −E
0

T 8au0
2

Î1 − u0
2
dt −E

0

T 8bu0
2

3s1 − u0
2d3/2dt

+E
0

T

2pbu0 sechFp2

2l
Î1 − u0

2Gsinsvtdcosskx0ddt = 0,

s34d

wherex0=u0t+u /k. Using the values ofu0 andT, the fluxon
coordinate can be expressed in terms of the frequencyv as
kx0=vt+u. Substituting in the above equation and integrat-
ing, we get

2pgu0 −
8au0

2

Î1 − u0
2

−
8bu0

2

3s1 − u0
2d3/2

− pbu0 sechFp2

2l
Î1 − u0

2Gsinu = 0. s35d

Therefore, we get the following condition for PL:

g =
4au0

pÎ1 − u0
2

+
4bu0

3ps1 − u0
2d3/2 +

b

2
sechFp2

2l
Î1 − u0

2Gsinu,

s36d

whereu=kx08. The largest dc bias for zero-voltage state can
be calculated from the above equation assgddrf

=sb/2dsechsp2/2ld, which is half of the fluxon depinning
current in a static field. By varyingu between −p/2 and
+p/2, we get the lower and upper threshold values of the
bias current for PL as

g1 =
4au0

pÎ1 − u0
2

+
4bu0

3ps1 − u0
2d3/2 −

b

2
sechFp2

2l
Î1 − u0

2G ,

s37d

g2 =
4au0

pÎ1 − u0
2

+
4bu0

3ps1 − u0
2d3/2 +

b

2
sechFp2

2l
Î1 − u0

2G .

s38d

The threshold values are found to be symmetric around the
IVC at no magnetic field. The range of PL is obtained as

Dg = g2 − g1 = b sechFp2

2l
Î1 − u0

2G . s39d

Sinceu0=2l /T= lv /p, the above equation for PL range be-
comes
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sDgdrf = b sechFp2

2l
Î1 −Svl

p
D2G . s40d

Thus, the PL range is found to be proportional to the strength
of the applied field and is determined by the field frequency
v and the junction lengthl. The locking range is independent
of the loss parametersa andb as well as the bias termg. We
note that atu0.0, the range of zero-voltage locked state in
an rf field becomes

sDgdrf = b sechFp2

2l
G , s41d

which is half of the zero-voltage range in a static field(24).23

In phase-locked state, the fluxon executes periodic motion
at the frequency of the applied field with constant velocity
u.u0 given by

u0 =
2l

T
=

lv

p
. s42d

Thus, PL velocity is determined by the frequency of the rf
field and the length of the junction. Since the average veloc-
ity is proportional to the voltage across the junction, the
above equation represents the frequency-voltage relation in
the junction. For a single fluxon, the maximum average nor-
malized velocity attainable isu0.1 and therefore we get the
maximum value of the fundamental harmonic frequency of
the rf field for PL asv0=p / l.

IV. NUMERICAL RESULTS

All analytical expressions obtained in the previous section
are verified using numerical simulations. The system is simu-
lated by solving the perturbed sG Eq.(3) using the boundary
conditions of Eq.(1). For the discretization of the differential
equations, we used an explicit method treatingwxx with a
five-point, wtt with a three-point, andwt with a two-point
finite-difference method. A time step of 0.0125 and a space
step of 0.025 is used in the discretization. The fluxon solu-
tion of Eq. (4) with zero velocity is used as the initial con-
dition. This corresponds to a single fluxon trapped at the
center of the junction. After the simulation of the phase dy-
namics for a transient time, we calculate the average voltage
kVl for a time interval T as kVl=s1/Tde0

Twtdt=fwsTd
−ws0dg/T. For faster convergence of our averaging proce-
dure, we additionally averaged the phaseswsxd over the
length of the junction. Since the mean voltage in the junction
is proportional to the average velocity of the fluxon, average
velocity of a fluxon is calculated using the relationkul
= l /2pkVl= l /2pkwtl. Details of the numerical simulation
procedure can be found in Refs. 12, 16, and 33.

A. IVC in a static magnetic field

The average velocities,kul, attained by a fluxon at differ-
ent bias currentsg are determined in the numerical simula-
tion, and a plot of the average velocity versus dc bias forms
the IVC of the junction. In the absence of external field(at
b=0), fluxon dynamics in semiannular LJJ is the same as that

in any ordinary rectangular junction and zero-voltage state
exists up to the critical valuegth=s2ad3/2. Abovegth, average
velocity increases gradually from zero value as the bias is
increased and finally reaches the maximum value,u.1.
When an external magnetic field is applied, a potential well
is induced in the junction and the fluxon remains pinned in
the potential well as long as the Lorentz force exerted on the
fluxon by the bias current is smaller than the pinning force. If
the pinning force is exceeded by the driving force, the fluxon
starts to move. As the fluxon gets depinned, a voltage jump
from zero to finite voltage is detected. The fluxon depinning
current depends on the magnitude and direction of the ap-
plied field. Thus, with external magnetic fields, greater
threshold biasg0 is required to get finite voltages. Figure
3(a) shows the IVC of a junction with a single trapped fluxon
at different magnetic fields. We have considered a junction
with parametersl =10, a=0.05, andb=0.01. The system is
started with a single fluxon trapped at the center of the junc-
tion. Simulation started withg=0 and then increased in very
small steps up to a maximum ofg=0.9. In all cases, at suf-
ficiently higher bias valuessg.g0d, average velocity in-
creases asymptotically and approaches the maximum veloc-
ity u.1 in the junction. At still higher bias values, the
junction switches to resistive state with uniformly increasing
nonlocalized phase values showing high voltage states.

The depinning currentgd is found to increase linearly
with the strength of the applied field due to strong pinning in

FIG. 3. (a) Applied dc biasg versus the average velocitykul
= l /2pkwtl at different values of the magnetic fields. The parameters
of the junction arel =10, a=0.05, andb=0.01. (b) Magnetic field
intensityb versus zero-voltage bias currentg0 showing linearity of
g0 with b on two junctions with parametersa=0.05 andb=0. Solid
lines represent values computed using Eq.(23) and symbols repre-
sent numerical results with a single fluxon trapped in the junction.
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higher fields. To check the linearity ofgd with b, the average
zero-voltage bias currentg0 calculated using Eq.(23) (solid
lines) along with that obtained in numerical simulation of
Eq. (3) (symbols) with a single fluxon trapped in the junction
is shown in Fig. 3(b). Theoretical values match exactly with
the numerical values.

B. Critical current versus magnetic field

The characteristics of an LJJ undergo drastic changes
when an external magnetic field is applied. It is important for
practical applications to know the behavior of the junction
under a static magnetic field, especially the dependence of
critical currentsgcd on the applied fieldsBd. In weak static
magnetic fields, LJJs behave like weak superconductors and
show the Meissner effect. In this regime the critical current
decreases linearly with the external field. This behavior ex-
ists up to the first critical field,Bc1. At this critical field,
magnetic flux in the form of fluxons can overcome the edge
barrier effects and can penetrate the junction.37 The depen-
dence ofgc on static magnetic fields2B/Bc1=b/kd applied to
a semiannular LJJ ofl =10 without any trapped fluxons is
shown in Fig. 4. For comparison, critical current versus mag-
netic field diffraction pattern of a standard rectangular LJJ is
also presented. The first critical fieldsBc1d for fluxon pen-
etration in semiannular junction is found to be approximately
twice that in a rectangular junction. Also, from the diffrac-
tion pattern it is noticed that at all magnetic fields, critical
current in semiannular junction is higher than that in a rect-
angular junction. This is expected as there is no flux linked at
the boundaries of the junction. The higher critical field val-
ues in semiannular junction show that the junction can be
easily decoupled from external fluctuations.

C. IVC in an rf magnetic field

To find the IVC of the junction in rf magnetic fields, we
directly integrated Eq.(25) with the boundary conditions
(26). Figure 5 shows the normalized dc biasg versus the
average velocitykul of a single fluxon in a junction ofl
=12, a=0.05, andb=0.01 at magnetic field amplitudesb
=0.2 andb=0.4. The frequency of the rf field is taken as

v=0.2. IVC without the external magnetic fieldsb=0d is
also plotted to show the symmetric locking range. Atg=0,
the fluxon is pinned in the potential minimum which is at the
center of the junction. For bias valuesfg, sgddrfg, the fluxon
executes oscillatory motion around the potential minimum
point, contributing a net zero voltage across the junction. At
higher values of the dc biasfg. sgddrfg, average velocity
increases gradually and the phase-locked fluxon motion is
manifested as a constant voltage step on the IVC. Constant
voltage steps are observed at the steady-state velocityu0
=slvd /p=0.76. The PL range is found to increase in propor-
tion with the strength of the applied field. It is noticed that
even for relatively large magnetic field amplitudes, very
close agreement is found between numerically obtained con-
stant voltage steps and analytically predicted results. On in-
creasing the bias values further, average velocity switches to
the asymptotic valueu.1. At still higher bias values, the
junction switches to resistive state showing high voltages.

D. Phase-locking range

The PL rangesDg /bd as a function of the velocity param-
eter v /k obtained using Eq.(40) together with the corre-
sponding values obtained by numerical simulation of Eq.
(25) in different length junctions are shown in Fig. 6. Nu-

FIG. 4. Critical current sgcd versus static magnetic field
s2B/Bc1=b/kd of a semiannular LJJssd and that of a rectangular
LJJ sPd of l =10, a=0.05, andb=0 without any trapped fluxons.

FIG. 5. IVC at different rf magnetic field intensities showing
constant voltage steps. The parameters arel =12, a=0.05,b=0.01,
andv=0.2.

FIG. 6. PL rangeDg /b as function of velocity parameteru0

=v /k. Theoretical values computed using Eq.(40) are shown(solid
lines) along with numerically obtained valuessPd for different
length junctions. The parameters area=0.05,b=0.01, andb=0.2.
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merically obtained values are shown as solid circles. The PL
range is independent of dissipation parameters, so we fixed
the parameters ata=0.05 andb=0.01 and used some dis-
crete values of the parameterv /k in the range 0 to 1 on
different length junctions. The perturbational result(40) pre-
dicts that the locking range is identical to the external mag-
netic field strengthb at the highest velocityv /k=1 in the
junction. Very good agreement is found between the pertur-
bational method and numerical solution of the perturbed sG
equation for almost all choices of parameters. Similar results
were obtained earlier in annular Josephson junctions.23

In order to check the validity of the frequency to voltage
relation(42), we numerically obtained the steady-state veloc-
ity u0 at different frequencies of the rf field keeping all other
parameters constant. In Fig. 7, PL velocities as a function of
the frequency of the rf field are shown on different length
junctions ofa=0.05,b=0.01,g=0.2, andb=0.3. PL veloc-
ity is found to vary linearly in accordance with the relation
(42). Solid lines represent values computed using Eq.(42),
and symbols represent numerically obtained values. As the
fundamental harmonic frequency approaches the PL fre-
quency limit v0=p / l =0.261 in a junction ofl =12, PL ve-
locity u0 approaches the maximum valueu.1. Results show
that the junction acts as a frequency to voltage standard and
is useful for measurement of unknown frequencies of rf
fields.

V. CONCLUSION

In this work, we have studied various static and dynami-
cal properties of a single fluxon trapped in a semiannular LJJ
under in-plane static and rf magnetic fields in the classical
regime. The external field contributes a spatially reversing
perturbation in the interior of the junction. It is demonstrated
that fluxons trapped in semiannular LJJ reside in a pinning
potential well when a uniform dc magnetic field is applied
parallel to the junction’s tunnel barrier and perpendicular to a
plane containing the junction boundaries. The height of the
potential well is determined by the strength of the applied
field and the dc bias applied to the junction. The system is
closely analogous to an annular junction as there is no inter-
action of the external magnetic field with the open bound-
aries of the junction, and so the number of fluxons trapped in
the junction is conserved. Investigations can be extended to
the quantum regime to find different quantum energy states
of the trapped fluxons useful for quantum computing appli-
cations. The semiannular junction in the proposed configura-
tion is useful for investigating thermal activation and quan-
tum tunneling properties of the fluxons. Fluxon motion is
found to be phase locked under an rf magnetic field. Phase-
locked state produces a constant voltage step in the IVC and
the junction may find application as constant voltage stan-
dards. We have considered only the fundamental harmonic
frequencies of the rf field. Analysis can be extended to find
the subharmonic phase-locked states that may find applica-
tion in submillimeter-wave local oscillators with potential
applications in space research. More interesting dynamics
can be observed when larger numbers of fluxons are trapped
in the junction and also in vertically stacked junctions. In-
vestigations under an ac bias can also be carried out to get
some useful applications. Using current fabrication methods
of the annular junctions and fluxon trapping techniques,38

semiannular junctions can be easily fabricated and experi-
mental realization becomes simple. In brief, we have pro-
posed a method for studying quantum dynamics of fluxons in
a potential well and for the fabrication of devices like con-
stant voltage standards and submillimeter-wave local oscilla-
tors.
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