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In many antiferromagnetic, quasi-two-dimensional materials, doping with holes leads to “stripe” phases, in
which the holes congregate along antiphase domain walls in the otherwise antiferromagnetic texture. Using a
suitably parametrized two-dimensional Heisenberg model on a square lattice, we study the spin wave spectra
of well-ordered spin stripes, comparing bond-centered antiphase domain walls to site-centered antiphase do-
main walls for a range of spacings between the stripes and for stripes both aligned with the lattice(“vertical”)
and oriented along the diagonals of the lattice(“diagonal”). Our results establish that there are qualitative
differences between the expected neutron scattering responses for the bond-centered and site-centered cases. In
particular, bond-centered stripes of odd spacing generically exhibit more elastic peaks than their site-centered
counterparts. For inelastic scattering, we find that bond-centered stripes produce more spin wave bands than
site-centered stripes of the same spacing and that bond-centered stripes produce rather isotropic low energy
spin wave cones for a large range of parameters, despite local microscopic anisotropy. We find that extra
scattering intensity due to the crossing of spin wave modes(which may be linked to the “resonance peak” in
the cuprates) is more likely for diagonal stripes, whether site- or bond-centered, whereas spin wave bands
generically repel, rather than cross, when stripes are vertical.
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I. INTRODUCTION

Many doped strongly correlated materials exhibit evi-
dence for an emergent length scale in the form of “stripes,”
i.e., regular antpihase domain walls in an otherwise antifer-
romagnetic texture. The strongest evidence for striped struc-
tures in nickelate perovskites and some related cuprates has
come from neutron scattering,1–5 which is capable of detect-
ing the spin texture directly through diffraction. Since sev-
eral theories of high temperature superconductivity make
contact with such structures,6–12 it is important to improve
our microscopic picture of them. In particular, it is not yet
known from experiment whether the antiphase domain walls
sit primarily on nickel(copper) sites, or rather sit primarily
on oxygen sites.

When undoped, the nickel-oxygen(and copper-oxygen)
planes in these materials are antiferromagnetic, with spin
moments localized on the Ni(Cu) sites, as evidenced by a
peak in elastic neutron scattering atsp ,pd.13 Upon hole dop-
ing, this peak is observed to split into four(or perhaps
two14,15) “incommensurate peaks,”16 indicating an extra
modulation on top of the antiferromagnetic wavelength. For
the case of collinear spins, this is consistent with the forma-
tion of periodic antiphase domain walls in the antiferromag-
netic texture(i.e., stripes).

On a two-dimensional square lattice, these domains con-
sist of a strip of antiferromagnet with spin up on, say, the
“A” sublattice, separated by a domain wall from a strip of
antiferromagnet with spin up on the “B” sublattice, and so
on, as in Fig. 1. The figures necessarily depict a certain width
for each antiphase domain wall, but the widths are not
known and are in reality likely less sharp than shown in the
figure. In both cases, neighboring antiferromagnetic patches
have spin up on opposite sublattices, which washes out any

signal at the antiferromagnetic peaksp ,pd. Rather, satellite
peaks are observed aroundsp ,pd, at a distance determined
by the spacing between domain walls. When the domain
walls are site-centered, all couplings are antiferromagnetic,
including couplings across the domain walls. Bond-centered
domain walls, however, have some ferromagnetic
couplings.17 That is, bond-centered configurations consist of
antiferromagnetic patches which areferromagnetically
coupled across the domain wall. As shown in Fig. 1, we
consider stripes aligned with the lattice direction(called
“vertical stripes”) or aligned along the lattice diagonals
(called “diagonal stripes”).

In this article we focus on the spin wave spectra and ex-
pected magnetic scattering intensities of bond-centered and
site-centered stripe phases of various spacings and orienta-
tions. Other stripe phases are certainly possible, such as
phases which mix site- and bond-centered domain walls, or
phases in which the spacing of the antiphase domain walls is
not commensurate with the underlying lattice, or “dynamic”
stripes,18 which fluctuate in time. We will not consider these
cases here, but focus on well-ordered spin stripes which have
purely site- or bond-centered domain walls. As we will show
below, there are qualitative differences between the spin
wave spectra of bond- and site-centered domain walls, indi-
cating that in some cases inelastic neutron scattering may be
able to distinguish between the two. In addition, there is a
difference in the number of peaks in the elastic spin structure
factor for odd stripe spacings, indicating that elastic neutron
scattering alone may be able to distinguish as well.

II. MODEL

We consider static, ordered arrays of antiphase domain
walls in an otherwise antiferromagnetic texture. Although the
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domain walls collect charge,19–22 we neglect this charge
component, as we are interested solely in the response of the
spin degrees of freedom. We use a Heisenberg model on a
two-dimensional square lattice:

H =
1

2 o
kr ,r8l

Jr ,r8SrSr8, s1d

wherekr ,r 8l runs over all spin sites, and the exchange cou-
pling is Jr ,r8. Within an antiferromagnetic patch, nearest
neighbor couplings are antiferromagnetic withJr ,r8=Ja.0.
Couplings across a domain wall depend upon the configura-
tion and are enumerated below. All other couplings are ne-
glected. When comparing to the nickel oxides(copper ox-
ides), our lattice corresponds to the nickel(copper) sites
within the nickel-oxygen(copper-oxygen) planes.

A. Vertical stripes

We consider first the case where stripes run parallel to the
Ni-O (Cu-O) bond direction; we call these “vertical” stripes.
As illustrated in Fig. 1, when the domain wall is centered on
a lattice site, we may describe the system as having no net
spin on the domain wall.23 In this case, spins from the edges
of neighboring antiferromagnetic patches are coupled across
the domain wallantiferromagnetically, Jr ,r8=Jb.0 with Sr
=0 on the domain wall, as illustrated in Fig. 1(a). Within the
antiferromagnetic patches, nearest neighbor spins are of
course also antiferromagnetically coupled,Jr ,r8=Ja.0.
When, however, the domain wall is bond-centered—that is,
situated between two sites as in Fig. 1(b)—spins from the
edges of neighboring antiferromagnetic patches areferro-

magneticallycoupled, and we haveJr ,r8=Jb,0 across the
domain wall. Nearest neighbor exchange couplings within
each antiferromagnetic patch remain antiferromagnetic,
Jr ,r8=Ja.0. We shall see that this ferromagnetic couplingJb

of spins across the domain wall leads to distinctive features
for the spin waves in the bond-centered case.

We define the magnetic Bravais lattice as follows.24 Let p
denote the distance between domain walls. We will hence-
forth work in units where the square lattice spacinga=1. For
p=odd, we choose the basis vectorsA1=sp,0d and A2

=s0,2d, and for p=even, we useA1=sp,1d and A2=s0,2d.
For site-centered configurations, there areN=2p sites within
each unit cell which include 2sp−1d spins and 2 sites with no
static spin component. For bond-centered domain walls,
there areN=2p spins in each unit cell.(See Fig. 2.)

We use the notation VSp and VBp to refer to vertical
stripes of spacingp in a site(S)- or bond(B)-centered con-
figuration, respectively. For example, VS3 refers to a vertical
site-centered configuration with spacingp=3 between do-
main walls.

B. Diagonal stripes

For diagonal stripes, the antiphase domain walls are ori-
ented along thes1, ±1d direction in a square lattice(recall
we have set the lattice spacinga=1). For the same micro-
scopic interaction strengths(deriving Jr ,r8 from, e.g., a Hub-
bard model), spins are more strongly coupled across the do-
main wall than in the vertical case. For example, with
diagonal bond-centered stripes, each spin neighboring the
domain wall interacts withtwo nearest neighbor(ferromag-
netically coupled) spins across the domain wall, as shown in

FIG. 1. (Color online) (a) Site-centered vertical stripe pattern withp=4 lattice constants between domain walls. In this configuration,
exchange couplingsJa.0 andJb.0 are all antiferromagnetic.(b) Bond-centered vertical stripe pattern with spacingp=4. The exchange
couplingJa.0 is antiferromagnetic, whileJb,0 is ferromagnetic.(c) Diagonal site-centered domain walls have couplingJb.0 for next
nearest neighbor spins coupled across the domain wall along the vectors(2,0) and (0,2), and couplingJc.0 diagonally to “Manhattan”
second neighbors across the domain walls along the vector(1,1), in units where the square lattice spacinga=1. (d) Diagonal bond-centered
domain walls have nearest neighbor ferromagnetic couplingJb,0 across the domain wall. The size of each figure has been chosen for visual
clarity.
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Fig. 1(d). Contrast this with the vertical stripes of Figs. 1(a)
and 1(b), where each spin neighboring a domain wall inter-
acts with only one spin across the domain wall. Diagonal
site-centered stripes are even more strongly coupled, with
two different types of interactions across the domain wall,
one of which we labelJb because it connects spins along a
bond direction[connecting spins along the vectors(2,0) and
(0,2) across the domain wall], and the other we labelJc [con-
necting spins along the vector(1,1) across the domain wall],
as shown in Fig. 1(c).

For diagonal stripes, the magnetic Bravais lattice differs
from the vertical case. Forp=odd spacing between domain
walls, we choose the basis vectorsA1=sp,0d and A2

=s−1,1d, and for p=even, we use A1=s2p,0d
andA2=s−1,1d. For site-centered configurations, whenp is
even there areN=2p sites within each unit cell which in-
cludes 2sp−1d spins and 2 sites with no static spin compo-
nent, and whenp is odd, there areN=p sites within each unit
cell, which includesp−1 spins, and one empty site. For
bond-centered domain walls, there areN=2p spins in each
unit cell whenp is even, and there areN=p spins in the unit
cell whenp is odd.(See Fig. 7.)

We use the notation DSp and DBp to refer to diagonal
stripes of spacingp in a site(S)- or bond(B)-centered con-
figuration, respectively.

III. SPIN WAVE THEORY

The elementary excitations of ordered spin textures may
be studied using the well-known technique of Holstein-
Primakoff bosons. The same dispersion is obtained by quan-
tizing the classical spin waves, and the methods are equiva-
lent asS→`. We use each description when convenient. As
it is physically more transparent, we review here the latter
method,25 discussing the former in Appendix A.

In the classical spin wave approach, each spin is treated as
precessing in the effective field produced by its coupled
neighbors, via the torque equations of a spin in a magnetic

field.25 The rate of change of the spin at positionr is de-
scribed by

"
dSr

dt
= mr Ã Hr

ef f, s2d

wheremr andHr
ef f are, respectively, the corresponding mag-

netic moment and effective magnetic field at positionr , de-
fined by

mr = − gmBSr

Hr
ef f =

1

gmB
o
r8

Jr ,r8Sr8. s3d

Within our model, Eq.(1), the torque equations become

dSr
x

dt
= −

1

"SSr
yo

r8

Jr ,r8Sr8
z − Sr

zo
r8

Jr ,r8Sr8
y D

dSr
y

dt
= −

1

"SSr
zo

r8

Jr ,r8Sr8
x − Sr

xo
r8

Jr ,r8Sr8
z D

dSr
z

dt
< 0, s4d

where we have assumed largeS and small oscillations, so
that changes inSz can be neglected. We seek solutions of the
form

Sr
x = Si

x expfisk · r − vtdg,

Sr
y = Si

y expfisk · r − vtdg, s5d

wherei labels spins within the unit cell, i.e.,i =1,2, . . . ,N; N
is the total number of spins in the unit cell;k=skx,kyd, and
r =srx,ryd. Setting the determinant of the coefficients ofSi

x

and Si
y to zero yields the dispersion relations for the spin

wave.

FIG. 2. (Color online) Vertical
site- and bond-centered configura-
tions, showing even and odd spac-
ing. “S” refers to site-centered
configurations, and “B” refers to
bond-centered configurations. The
number label is the spacingp be-
tween domain walls. Dotted verti-
cal lines mark antiphase domain
walls. The solid boxes denote unit
cells. The height of the arrows
represents the net spin on a site,
which is expected to peak be-
tween domain walls.
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We calculate the zero-temperature dynamic structure fac-
tor using Holstein-Primakoff bosons:

Ssk,vd = o
f

o
i=x,y,z

ukf uSiskdu0lu2d sv − v fd. s6d

Hereu0l is the magnon vacuum state andufl denotes the final
state of the spin system with excitation energyv f. SinceSz

does not change the number of magnons, it leads to the elas-
tic part of the structure factor. Single magnon excitations
contribute to the inelastic response throughSxskd andSyskd.

IV. RESULTS FOR VERTICAL STRIPES

We begin with our results for ordered, vertical stripe
phases. We discuss magnon excitation energies as functions
of momentum, the dynamic spin structure factors, the elastic
response, the velocities of the acoustic bands, and analytic
results for dispersion relations for small unit cell sizes. Fig-
ure 2 shows schematic representations of vertical stripes that
are site- and bond-centered, with both even and odd spacing.
In this figure(in contrast to Fig. 1) we have used the length
of the arrow to represent the net spin on a site. The net spin
is expected to be smaller near domain walls(as it is always
zero on a domain wall). Our zero frequency results incorpo-
rate this general form factor. For the finitev results, we use
a form factor with the same net spin on each occupied site.

A. Elastic peak at „0,p…

Elastic neutron scattering can in principle detect one im-
portant qualitative difference between bond- and site-
centered stripes. For odd stripe spacings, both bond- and
site-centered stripes have magnetic reciprocal lattice vectors
at s0,pd. However, site-centered stripes are forbidden from
producing weight ats0,pd, whereas bond-centered stripes
generically show weight at this point. This is related to the
discrete Fourier transform of the spin structure. Taking ad-
vantage of the antiferromagnetic long range order in one di-
rection and the finite spacing between stripes in the other, we
can describe the spin structure in real space by a function

Szsn,md = cosspmdo
j=0

j8

Aj e
is2p/pd jn s7d

= fsndgsmd, s8d

wherem is the discretey coordinate parallel to the stripes,n
is the discretex coordinate perpendicular to them, and where
j8=p−1 for p odd, with j8=2p−1 for p even. The functions
fsnd andgsmd are shown schematically in Fig. 3. The elastic
scattering cross section is proportional to the Fourier trans-
form of Szsn,md:26

S ds

dV
D

el
~ o

m,n
eiskmm+knndkSzsm,ndlkSzs0,0dl

= o
m

eikmm cosspmdo
j=0

j8

Ajo
n

eiknneis2p j /pdn

= Nmsdkm,p + dkm,−pdo
j=0

j8

Ajo
n

Nndkn,−2p j /p. s9d

We emphasize that this expression allows forany form factor
and is not restricted to configurations where each occupied
site has a full quantum of spin. In the case where each occu-
pied site has the same net spin, the ratio of intensity at the
main peakssp±p /p,pd to that at s0,pd is 2 in the VB3
case, and 2.6 in the VB5 case. Site-centered stripes always
have A0=0, while A0 is generically nonzero for bond-
centered stripes(although it can be fine-tuned to zero). A
finite j =0 term produces elastic weight ats0,pd. This can be
understood heuristically from considering the functionfsnd,
shown schematically for the VB5 case in Fig. 3. Odd-spacing
bond-centered stripes generically have a net magnetization in
the function fsnd, while symmetry forbids this for site-
centered stripes.

FIG. 3. (Color online) Schematic representation of vertical
stripes withp=odd widths, indicating the pattern of the functions
gsmd and fsnd. Note that for the bond-centered case with odd stripe
spacings, the functionfsnd can have a net magnetization, producing
elastic weight at the peaks0,pd.
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B. Analytic results for small p

For small p, which corresponds to small unit cell sizes,
we can obtain analytic results for the dispersion relation of
the acoustic mode. For the case VS3, we find

Sv VS3

JaS
D2

= 4sl + 1d + C − 4sl + 1dD, s10d

where

l = UJb

Ja
U ,

C = 2lfs3kxd + 8fskyd − 4f 2skyd,

D = u1 − fskyduÎ1 −
2lfs3kxd
sl + 1d2 s11d

and the functionf is defined as

fsxd = 1 − cossxd. s12d

The acoustic spin wave velocity parallel to the stripe di-
rection sk i ŷd may be obtained by settingkx=0 above, and
taking ky!1. In this case,fskxd=0, fskyd→ 1

2ky
2, and v VB2

→viukyu, where

vi = 1
2
Îl + 3vAF, s13d

andvAF=2Î2JaS is the velocity of the pure antiferromagnet
with coupling Ja and no antiphase domain walls. The spin
wave velocity perpendicular to the stripe direction may be
similarly obtained:

v' =
3Î2

4
Îlsl + 3d

l + 1
vAF. s14d

For l@1, these approachv'→ s3/Î2dÎl vAF and vi

→ s1/2dÎl vAF.
For the case VB2, the problem reduces to diagonalizing a

434 matrix, with the result

Sv VB2

JaS
D2

= 2sl2 + 3l + 2d + A − 2Îsl2 + 3l + 2d2 + B

s15d

where
A = 2fs2kyd,

B = − 1
2l2fs4kxd − 4fskyd − 4sl2 + 3ldfs2kxd

− 4fskyds1 − fskyd + sl2 + 3lds1 − fs2kxddd. s16d

The spin wave velocities in the case VB2 are

vi =
Î3

2
vAF, s17d

independent ofl, and

v' =Î 3l

2sl + 1d
vAF. s18d

For l@1, we note thatv' saturatesat

v' →Î3

2
vAF. s19d

That v' saturates with largel is in contrast to the behavior
of site-centered cases and can lead to rather isotropic spin
wave cones for the bond-centered case,3,4 despite local mi-
croscopic anisotropy. As discussed in the next section, for
bond-centered stripes with any spacingp, vi is independent
of l andv' saturates with largel.

C. Numerical results

For most values of the stripe spacingp, the spin wave
matrices are sufficiently large that one must use numerical
diagonalizations to obtain the dispersion relations of the vari-
ous modes. From the corresponding eigenfunctions we can
then also calculate the spectral intensity(proportional to the
dynamic structure factor) that these magnon states would
contribute to the inelastic neutron scattering. Figures 4 and 5
show the calculated dispersion and scattering intensities for
site- and bond-centered vertical stripes of various spacings.
Our results for site-centered stripes are consistent with those
of Ref. 24. For the site-centered case, bands never cross for
l,1. At the critical couplingsl=1 andl=2.5, site-centered
bands appear to cross. Away from these couplings, vertical
site-centered bands generally repel rather than cross. Forl
=1, the dispersion is very similar to that of a pure antiferro-
magnet, albeit with different magnetic reciprocal lattice vec-
tors. For any couplingl, as p→`, the result for a pure
two-dimensional antiferromagnet is recovered. Forp increas-
ing but finite, the number of bands as well as the number of
reciprocal lattice vectors increases. However asp→`, all
spectral weight is transferred to the response of a pure anti-
ferromagnet.

Figure 5 shows representative results for vertical bond-
centered antiphase domain walls with spacingsp=2, 3, and
4. In this case, the critical point where bands appear to touch
is at lc<0.56 and is at most only weakly dependent onp.
Away from the critical coupling, bands never appear to cross,
but rather level repulsion is observed. There are other notable
differences between the site- and bond-centered cases. For
one thing, for the same spacingp, bond-centered configura-
tions yield one more band: site-centered configurations have
p−1 bands, whereas there arep bands for bond-centered
configurations.

A qualitative difference between the two cases is the scal-
ing of the band energies with couplingl. For site-centered
configurations, all bands increase their energy monotonically
with the coupling ratiol. This is in contrast with the bond-
centered case, where for largeJb, only the top band is af-
fected by the ferromagnetic coupling(that is, it increases
linearly with l), but all other bands saturate asl is in-
creased. The behavior of the top band can be understood by
considering the spins that are ferromagnetically coupled
across the domain wall. In the top band, these spins precess
p out of phase with each other, and the dispersion is domi-
nated by the behavior of the effective ferromagnetic dimers,
yielding v→2uJbuS/" as uJbu→`, as shown in Appendix B.

An important consequence of the saturation of the lower
bands asl gets large in the bond-centered cases is that the
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low-energy spin wave velocities alone,v' and vi, cannot
readily be used to extract the relation between the bare ex-
change couplingsJa and Jb. We explore this point in more
detail in the next section.

In Fig. 6 we present the spin wave velocities perpendicu-
lar sv'd and parallelsvid to the stripe orientation for the
acoustic(lowest) bands as functions of the coupling constant
ratio l. These are compared to the reference velocity,vAF of
the pure antiferromagnet, which is independent of the cou-
pling l and equivalent top→`.

While in both the site- and bond-centered cases[Figs. 6(a)
and 6(b), respectively] the perpendicular velocity depends on
the coupling ratio, in the bond-centered casev' rapidly satu-
rates to a value close tovi for largel. As a consequence, the
value of the coupling ratiol=Jb/Ja cannot be determined
solely by the ratio of the acoustic velocities but requires ad-
ditional information, such asvAF.

The curves ofv' and vi cross atl=1 for the bond-
centered case, apparently independent ofp for the widths we
have studied. The crossing is at most weakly dependent onp
in the site-centered case, occurring atl=2/7 for DS3, and at
l=0.3 for DS4. For all spacings studied, we find that in the
bond-centered case,vi is independent of the couplingl and
that v' rapidly saturates with largel. As p gets larger, both
of these velocities approachvAF. For the VB3 configuration,
vi=0.9vAF, independent ofl. Notice that the independence
of vi upon l and the rapid saturation ofv' as l becomes
larger than 1 means that bond-centered configurations can
produce rather isotropic spin wave cones.3,4

V. RESULTS FOR DIAGONAL STRIPES

Figure 7 depicts representative diagonal configurations,
for site- and bond-centered domain walls and with even and
odd spacing. As mentioned in Sec II B, for a given micro-
scopic model, diagonal stripes are more strongly coupled
across the domain wall than vertical stripes. In addition,
there are more parameters to consider for site-centered diag-
onal stripes: we must includeJc as well asJb (see Fig. 1),
since both couplings appear to the same order if derived
from, e.g., a Hubbard-like model.

A. Elastic peak at (0,0)

Like their vertical counterparts,bond-centereddiagonal
stripes can produce new peaks in the elastic response. With
diagonal stripes the new weight is physically transparent. For
all bond-centered domain walls, nearest-neighbor spins are
ferromagnetically coupled across the wall, and in the diago-
nal case, nearest neighbor pairsalong a single domain wall
all have their moments pointing in the same direction, lead-
ing to a domain wall magnetization. As Fig. 7 illustrates, for
diagonal stripes with evenp, adjacent domain walls have
alternating signs of the magnetization. But diagonal stripes
with odd spacing have the same magnetization direction on
each domain wall. This generically leads to net ferromag-
netism and a peak at(0,0), unless parameters are fine-tuned.
In a three-dimensional antiferromagnet(as may happen,17

e.g., with weakly coupled planes) domain walls are two di-
mensional(planar), and this peak appears either ats0,0,pd if

FIG. 4. Spin wave spectra and intensities for vertical, site-centered stripes. All spectra are reported atky=p as a function of the transverse
momentumkx. The frequencyv is in units ofJaS. Apparent crossings only occur atl=1 andl=2.5.
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the diagonal in-plane stripes lie directly on top of each other
from plane to plane(meaning there is also no net magneti-
zation on a domain wall), or at (0,0,0) if the stripes are di-
agonal within a plane and in their correlation from plane to
plane.

B. Analytic results for small p

As for the case of vertical stripes discussed in Sec. IV B,
for small p, it is possible to obtain analytic forms for the
acoustic dispersion relations for diagonal stripes in both the
site- and bond-centered cases.

For the case DS3, the analytic dispersion is

SvDS3

JaS
D2Y 2 = fskx − kyd + l2fs2skx − kydd + 2llc fskx − kyd

+ sl + lcdff s2kx + kyd + fskx + 2kydg s20d

+ lf fs3kxd + fs3kydg, s21d

wherelc= uJc/Jau, and where the functionf is defined as

fsxd = 1 − cossxd, s22d

as in Sec. IV B.
The dispersion perpendicular to the stripes, along thek

=skx,kxd direction, is then

vskx,kxd
JaS

= Î8s2l + lcdUsinS3kx

2
DU , s23d

which yields for the velocity in that direction

v' =
3Î2l + lc

2Î2
vAF, s24d

which approachesv'→ 3
2
Î2l vAF for large l, and v'

→ 3
2
Îlc vAF for largelc.

FIG. 5. Spin wave spectra and intensities for vertical, bond-centered stripes. All spectra are reported atky=p as a function of the
transverse momentumkx. The frequencyv is in units ofJaS.
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In the parallel directionskx,−kxd, the dispersion becomes

1

8
Svskx,− kxd

JaS
D2

= s1 + l + lc + coskx + l coss2kxdd s25d

3s1 + 2l + 2l coskxdsin2 kx

2
, s26d

which gives

vi =
Îs1 + 4lds2 + 2l + lcd

2Î2
vAF. s27d

This approachesvi→l vAF for large l, andvi→Îlc/8 vAF
for largelc.

For the case DB2, the analytic dispersion is

SvDB2

JaS
D2Y 2 = 4ls1 + ld + A − lÎ16s1 + ld2 + B

s28d
where

A = s1 − l2dfskx − kyd,

B = − 8s1 + ld2fskx − kyd + s2 − fskx − kyddf2fskx − kyd

− 2fs2kx − 2kyd − fs3kx + kyd − fskx + 3kydg. s29d

Perpendicular to the stripes, alongk =skx,kxd, the velocity is

v' =Î l

l + 1
vAF, s30d

saturating tov'→vAF asl@1. In the directionk =skx,−kxd,
parallel to the stripes, the velocity is

vi = 1
2
Îl + 1vAF. s31d

C. Numerical results

In Fig. 8, we plot the dispersion and intensities for DS3
and DS4 alongskx,kxd for various values of the coupling
ratio l= uJb/Jau, settingJc=0. (See Fig. 1 for the definitions
of Jb andJc.) Similar results using aJc only model(i.e., with
Jb=0) are reported in Ref. 24. Our results show similar band
structures but with critical couplingl=1, which is only half
of the Jc only model.

However, the effects ofJb andJc depend upon the direc-
tion in k space. In Fig. 9 we show the effects of varying the
couplingsJb and Jc for two cuts in momentum space for
DS3. For a cut perpendicular to the stripe direction,Jb andJc
have more or less the same effect, although sinceJb couples
more spins thanJc, it has a more dramatic effect. Increasing
either coupling broadens the bandwidth in a roughly linear
manner with negligible effect on the shape. However, for the

FIG. 6. Spin wave velocities for(a) VS3 and (b) VB3 as a
function of the coupling ratiol. The solid curves in panel(a) are
analytic results for VS3 calculated in Sec. IV B. Symbols in both
(a) and(b) are numerical results. The velocities parallel and perpen-
dicular to the stripe direction are equal to each other forl=2/7 and
l=1 in the site- and bond-centered cases, respectively. Qualitatively
similar behavior is found for other stripe spacings.

FIG. 7. (Color online) Diago-
nal site- and bond-centered con-
figurations, showing even and odd
spacing. Dotted lines denote do-
main walls. Solid parallelograms
denote unit cells.
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cut skx,−2kxd, we see that the presence ofJb produces inflec-
tion points whenJc=0, and can produce flat-topped disper-
sions if Jc is included as well.

We show in Fig. 10 the calculated dispersion relations and
intensities for the bond-centered diagonal case, for spacings
p=2, 3, and 4. As in the vertical case, the number of bands is
equal top. A striking difference in the spectra of odd spac-
ings is seen, as the net ferromagnetism in the system changes
the low-energy character of the spin waves from a linear
(antiferromagnetic-like) to a quadratic(ferromagnetic-like)

dispersion. Rather than the band repulsion observed in the
vertical case(except at finely tuned values of the coupling),
crossing of optical bands is generic in the bond-centered di-
agonal case. Note the ability of optical bands to cross, indi-
cating a difference in symmetry for the crossing bands. Also
evident in the dispersion of DB4 is the downturn of the
acoustic band at 2p magnetic reciprocal lattice vectors, twice
as many as in the odd case.(See Sec. II B.) This is expected
because of the doubling of the unit cell necessary to accom-
modate even spacing. Note, however, that spectral weight is

FIG. 8. Dispersion and intensities for DS3 and DS4 alongskx,kxd, direction withJb only. The frequencyv is in units ofJaS. For all plots,
Jc=0.

FIG. 9. Dispersion and intensities for DS3
along skx,kxd and skx,−2kxd, directions, compar-
ing the effects ofJb andJc. The frequencyv is in
units of JaS.
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forbidden at these extra reciprocal lattice vectors, including
the sp ,pd point.

In Fig. 11, we plot the spin wave velocities for DS3.
When Jb and Jc are both finite, there is a wide range of

couplingsl for which the spin wave velocities parallel and
perpendicular to the stripes are nearly equal, while this ap-
proximate isotropy is confined to a narrow range ofl if
eitherJb or Jc is zero. Figure 12, which presentsv' andvi

FIG. 11. Velocities parallelsvid and perpendendicularsv'd to the stripe direction, as compared tovAF, for DS3. In the first panel,Jc

=0, and the velocities are plotted as a function oflb=Jb/Ja. In the second panel,Jb=0, and the velocities are plotted as a function oflc

=Jc/Ja. In the third panel,Jb=Jc, and the velocities are plotted as a function oflb=lc.

FIG. 10. Dispersion and intensities for diagonal bond-centered domain walls alongskx,kxd direction, atl=0.1,0.5,1.0, forp=2, 3, and
4. The frequencyv is in units ofJaS.
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for the case DB4, shows the characteristic saturation ofv'

with largel for bond-centered stripes.

VI. EXPERIMENTAL IMPLICATIONS

We have shown that for a certain class of nontrivial spin
orderings on a lattice, the spin wave response is sensitive to
the microscopic placement of the antiphase domain walls.
Furthermore, even elastic neutron scattering can in principle
distinguish site- from bond-centered for odd stripe spacings,
whether vertical or diagonal.

While both site- and bond-centered odd width vertical
stripe configurations will produce elastic weight at
sp± sp /pd ,pd, only configurations that are phase-shifted
from the site-centered configuration(e.g., a bond-centered
configuration) are capable of producing weight ats0,pd, and
the observation of this peak along with peaks at
sp± sp /pd ,pd would rule out a site-centered vertical con-
figuration. A similar ferromagnetic peak, i.e., at(0,0), would
rule out site-centered diagonal stripes.17

Figures 6 and 12 illustrate another important implication
for experiments: The transverse spin wave velocityv' in the
acoustic bandsaturatesfor largel in the bond-centered case
for both vertical and diagonal stripes. In fact, all but the top
band in the bond-centered case saturate and becomeindepen-
dent of Jb for large Jb. As noted above, this unfortunately
means that an estimate ofl=Jb/Ja cannot necessarily be
discerned directly from the ratiov' /vi but requires either
independent knowledge of whether the stripes are site- or
bond-centered, or an appropriate estimate of the bare cou-
pling (from, e.g.,vAF).

A prominent piece of phenomenology in the cuprates is
the “resonance peak” observed in neutron scattering,27–29

which is the presence of extra scattering weight appearing at
sp ,pd at finite frequency, typically of order 40 meV. One
proposal is that this may be due to spin waves crossing.30,31

We note that for vertical stripes, spin waves generically repel
and appear to cross only at finely tuned values of the cou-
pling. For site-centered configurations, this corresponds to
l=1 andl<2.5, while for bond-centered configurations, the
critical coupling is nearl<0.56. However, a finite energy
resolution measurement would not be able to distinguish ac-

tual crossings from near crossings. In the bond-centered case
with largel, the first optical mode has more weight atsp ,pd
than the acoustic band, which would tend to leave the weight
near the elastic incommensurate peakssp± sp /pd ,pd rather
disconnected from what might be called a “resonance peak”
in this configuration. We also note that our calculations show
that band crossings are more generic in the presence of di-
agonal stripes than vertical stripes.

The nickelate compound La1.69Sr0.31NiO4 shows evidence
from neutron scattering of diagonal stripes with spacingp
=3.3,4 As Sr is substituted for La, holes are doped into the
NiO2 planes. Neutron scattering has been used to map out
the acoustic spin wave dispersion for this material. The data
reveal rather isotropic spin wave cones, i.e., thatv' and vi

are rather similar, with v'<s1.03±0.06dvAF and vi

<s0.86±0.06dvAF,3 wherevAF is the acoustic spin wave ve-
locity of the undoped antiferromagnet. For the DS3 state, if
we includeonly Jb or only Jc, we find no coupling strengthl
for which these two relations can be simultaneously satisifed.
The presence of the two couplings together, as shown in Fig.
11 with Jb=Jc, can account for the proper relationship among
the velocities, but only for a small range of rather small
coupling ratio. As a general trend, we find approximate isot-
ropy of the spin wave cones to be more robust for bond-
centered stripes(in both vertical and diagonal cases), and so
one might suspect bond-centered stripes could be responsible
for the near isotropy of the spin waves in this material. How-
ever, as we have shown, the DB3 configuration yields a fer-
romagnetic spin wave dispersion, which is certainly not sup-
ported by the data.

In the related compound La2NiO4.133,
17 signatures of spin

stripes have been detected in neutron scattering. “Incommen-
surate peaks” are observed to persist up to a temperatureTm,
above which magnetic peaks indicative of stripe structure
can be regained by application of a 6T magnetic field. The
field-induced stripe spacing(both above and slightly below
Tm) is smaller than the zero-field stripe spacing observed
below Tm. As noted by the authors,17 the ferrimagnetic re-
sponse is naturally explained by bond-centered stripes. In the
high temperature field-induced stripe phase, the diagonal
stripes have spacingp=3. Our results in Fig. 10 suggest that
this field-induced transition should be accompanied by a dra-
matic change in the low-energy spin wave dispersion, from
linear to quadratic.

We have also shown that(as in the site-centered case24)
the number of bands in a bond-centered configuration is set
by the number of spins in the unit cell, rather than by the
spacingp. Generally, for both vertical and diagonal stripes,
site-centered stripes havesp−1d spin wave bands, and bond-
centered stripes havep bands. The exception is the case of
diagonal site-centered stripes with odd spacingp, which has
1
2sp−1d bands. An experimental consequence of this is that
for a given value ofp, bond-centered stripes havep spin
wave bands, whereas site-centered stripes have at mostp
−1 bands. Although not yet observed experimentally, this
means that the upper bands can also be used to distinguish
site- from bond-centered stripes. Findingp bands along with
incommensurate peaks indicative of spacingp would rule out
site-centered stripes. For diagonal odd width stripes, the

FIG. 12. Velocities parallelsvid and perpendendicularsv'd to
the stripe direction, as compared tovAF, for DB4.
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threshold is even lower. For, e.g., DS3, only one spin wave
band is expected, whereas for DB3, we expect to find three
bands. The observance of a second band(or eqivalently a
spin wave crossing) for diagonalp=3 stripes would rule out
a site-centered configuration. Of course, negative evidence is
dicier, and the observance of the smaller number of bands
cannot distinguish the two, as it cannot rule out the possibil-
ity that the top band is too faint to be observed.

VII. CONCLUSIONS

In conclusion, we have studied regular arrays of antiphase
domain walls in two-dimensional Heisenberg antiferromag-
nets and find that their location relative to the lattice, i.e.,
whether they are site-centered or bond-centered, produces
distinct effects which may be measurable in a diffraction
probe such as neutron scattering. In particular, arrays of odd-
width, bond-centered antiphase domain walls generically
produce more elastic peaks than site-centered stripes. In ad-
dition, bond-centered stripes generically produce more bands
than site-centered stripes. We further find that low-energy
spin wave velocities are not always directly related to the
exchange couplings in the model, and in particular for bond-
centered configurations, rather isotropic spin wave cones are
predicted for a wide range of parameters.
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APPENDIX A: SPIN-WAVE METHODS

We rewrite the Hamiltonian equation(1) using the ladder
operators:

H =
1

2 o
kr ,r8l

Jr ,r8FSr
zSr8

z +
1

2
sSr

+Sr8
− + Sr

−Sr8
+ dG . sA1d

We now replace the spin operators by Holstein-Primakoff
(HP) bosons32

Si
+ = Î2Sai , Si

− = Î2Sai
+, Si

z = S− ai
+ai , sA2d

for odd sitesi occupied by a spin up, and

Si
+ = Î2Sai

+, Si
− = Î2Sai , Si

z = − S+ ai
+ai , sA3d

for even sitesi occupied by a spin down. Here,i labels each
spin within a unit cell, i.e.,i =1,2, . . . ,N, where N is the
number of spins in the unit cell. We use oddi to represent
Sz=↑ spins and even i forSz=↓ spins. We Fourier transform
the bosonic operators via

aiskd =
1
În

o
r[odd i

are
ik·r ,

ajskd =
1
În

o
r[even i

are
−ik·r . sA4d

Finally, we get the Hamiltonian in momentum space

H = o
i j

Ai,j ai
+skdajskd +

1

2o
i j

fBij ai
+skdaj

+skd

+ Bij
* ajskdaiskdg, sA5d

whereA=A+ andBT=B.
The quadratic Hamiltonian(A5) can be diagonalized via a

canonical symplectic transformation33 T, b=Ta, using the
bosonic metric

h = S I 0

0 − I
D , sA6d

whereI is theN3N indentity matrix. This leads to

Hskd = o
a
Fba

+skdvaskdbaskd +
1

2
vaskdG . sA7d

We now consider the structure factor. OnlySx andSy con-
tribute to the inelastic part of the structure factor. In terms of
HP bosons,

Sk
x =

1

2
sSk

+ + Sk
−d =ÎS

2S o
i[odd

fai
+s− kd + aiskdg

+ o
i[even

fai
+skd + ais− kdgD . sA8d

We then substitute Eq.(A8) into the structure factor and
keep only the creation operatorshb1

+skd ,b2
+skd , . . .j, which

connect the vacuum to singly excited states. This gives

Sinsk,vad = 2o
f

ukf uSk
xu0lu2dsv − v fd

= SUk1uSo
i

aibi
+Du0lU2

= Suo
i

aiu2, sA9d

whereai is the ith component of the(orthonormalized) ei-
genvectorual of the Hamiltonian using the bosonic metric,
corresponding to eigenvalueva.

APPENDIX B: DIMERIZED SPIN MODEL

We consider an isolated system of two spins with ferro-
magnetic couplingJb. In the ground state, the two spins are
aligned. When the spins tilt a bit, each produces an effective
field acting on the other. Using the classical spin wave
method, we have

dS1

dt
= −

Jb

"
S1 Ã S2,

dS2

dt
= −

Jb

"
S2 Ã S1. sB1d

Ignoring the change inSz, the x, y components of the two
spins satisfy

dS1
x

dt
= −

dS2
x

dt
= −

JbS

"
sS1

y − S2
yd,

dS1
y

dt
= −

dS2
y

dt
=

JbS

"
sS1

x − S2
xd. sB2d

Integrating yieldsS1
x,y=−S2

x,y+c, wherec is a constant of in-
tegration. Since we allow onlySz to have a constant compo-
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nent,c=0. Taking the second derivative ofS1
x, we find

d2S1
x

dt2
= −

JbS

"
SdS1

y

dt
−

dS2
y

dt
D

= −
JbS

"2 fJbSsS1
x − S2

xd + JbSsS1
x − S2

xdg

= − 2
Jb

2S2

"2 fS1
x − S2

xg = − 4
Jb

2S2

"2 S1
x, sB3d

which is a harmonic oscillator equation. If we setS1
xsx,td

=usxdeivt, we see that the oscillation frequency is

v = 2
uJbu
"

S, sB4d

which recovers the largeJb limit of Eq. (15).
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