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The strongly damping-dependent nonlinear dynamical response of classical superparamagnets is investigated
by means of an analytical approach. Using rigorous balance equations for the spin occupation numbers a
simple approximate expression is derived for the nonlinear susceptibility. The results are in good agreement
with those obtained from the exact(continued-fraction) solution of the Fokker-Planck equation. The formula
obtained could be of assistance in the modeling of the experimental data and the determination of the damping
coefficient in superparamagnets.
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I. INTRODUCTION

Superparamagnets are nanoscale solids or clusters with a
large net spinsS,101−104d. Due to the coupling to the en-
vironmental degrees of freedom(lattice vibrations, electro-
magnetic fields, nuclear spins, conduction electrons, etc.),
the spin is subjected to thermal fluctuations and may undergo
a Brownian-type rotation, surmounting the potential barriers
created by the magnetic anisotropy. This relaxation mecha-
nism was proposed by Néel in the late 1940’s(Ref. 1) and
subsequently reexamined by Brown2 by means of the theory
of stochastic processes(see also Ref. 3), establishing the ba-
sis of the modern study of these systems.

Classical spins with nonaxially symmetric Hamiltonians
can exhibit4 a large dependence of the thermoactivation es-
cape rateG on the Landau-Lifshitz damping coefficientl in
the medium-to-weak damping regime.l measures the rela-
tive importance of the relaxation and the precession in the
dynamics. Experiments on individual magnetic
nanoparticles,5 analyzed with accurate expressions for the
relaxation rate, gave damping coefficients in that regimel
<0.05−0.5.6

Uniaxial spins are supposed not to show important effects
of the damping except in high-frequency conditions(such as
FMR experiments). Somewhat unexpectedly, noninteracting
spins with uniaxial anisotropy, but subjected to alternate
forcing, exhibit a large nonlinear response very sensitive to
l,7 which has no analog in the low-frequency linear re-
sponse. This effect was interpreted in terms of the coupling,
via the driving field, of the precession of the spin and its
thermoactivation over the anisotropy barrier. On the other
hand, using micromagnetic Langevin simulations,8 Berkov
and Gorn9 found that uniaxial spins coupled via dipole-
dipole interaction also exhibit damping effects such as en-
hanced shifts of the blocking temperature and nonmonotonic
behavior of the linear susceptibility peaks with the coupling
strength. In Ref. 10 it was shown that these effects can be
interpreted on the basis of the expression derived forG in the

mentioned Ref. 4, which is valid for weak transversal fields
but arbitrary damping. Plugging heuristically into that relax-
ation rate the average dipolar fields obtained with thermody-
namic perturbation theory,11 the dynamical effects of the
damping on the linear response of dipole-dipole coupled sys-
tems could be qualitatively reproduced.10

In this article we use a similar analytical approach to
study the low-frequency nonlinear dynamical response of
noninteracting classical superparamagnets. We derive an ap-
proximate expression for the nonlinear susceptibility which
is in good agreement with the exact(continued-fraction) so-
lution of the Fokker-Planck equation. The formula obtained
is quite simple and may be used to model experimental data
of the nonlinear response. Exploiting its nontrivial damping
dependence, the equation could assist in obtaining the damp-
ing coefficient in these systems. The determination of the
intrinsic dependences of this parameter(on temperature,
pressure, etc.) could shed some light on the microscopic
mechanisms of spin-environment coupling in superparamag-
nets.

II. BROWN AND KUBO-HASHITSUME MODEL

Let us briefly consider the dynamics of a(sub)system ac-
counting for its interaction with the surrounding “medium.”
This interaction, after the elimination of the environmental
degrees of freedom, can usually be separated into a time-
dependent modulation of the system by the proper modes of
the environment(fluctuating term), and the back reaction on
the system of its action on the surrounding medium(relax-
ation or damping term).

This approach was particularized phenomenologically by
Brown2 and Kubo and Hashitsume3 to classical spins, by
introducing the stochastic partner of the Landau-Lifshitz
equation. The associated Fokker-Planck equation governing
the time evolution of the probability density of spin orienta-
tions PssWd can be written as12
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2tD]tP = iJW ·F1

l
BW e − ssW ∧ BW ed + iJW GP. s1d

Here JW =−isW∧ s] /]sWd is the generator of infinitesimal rota-

tions andBW e=−bs]H /]sWd is an effective field. The Landau-
Lifshitz relaxation parameterl (dimensionless) measures the
relative importance of the damping and precession terms.
Finally, tD is the relaxation time of isotropic spins(the coun-
terpart of the Debye time in dielectrics)

tD =
1

l

m

2gkBT
, s2d

wherem is the spin magnitude andg the gyromagnetic ratio.
For generalizations of the Brown and Kubo-Hashitsume
model, see, for instance, Refs. 13 and 14.

III. GENERIC BALANCE EQUATIONS

Before proceeding from the Fokker-Planck equation to
study the nonlinear dynamics, let us consider some generic
expressions for systems describable by a set of kinetic bal-
ance equations for some occupation numbersN+ andN−

Ṅ+ = − A+N+ + A−N−,

Ṅ− = A+N+ − A−N−. s3d

Here theA± are some transition amplitudes which depend on
the external forcing or control parameterj. The occupation
numbers satisfy the “constrain”N++N−=1, which indicates

the conservation of the number of representative points(Ṅ+

=−Ṅ−). The response of the system is characterized by the
difference in populationsDN=N+−N−, which obeys

d

dt
DN = − sA+ + A−dDN − sA+ − A−d. s4d

Thus, sA++A−d plays the role of a relaxation rate while the
inhomogeneous termsA+−A−d is to be related to the external
forcing.

To get the linear and first nonlinear susceptibilities(or
corrections to the linear susceptibility due to a weak static
forcing) we expandA± in a series of powers ofj to the third
order

A± . A0
± + jA1

± + j2A2
± + j3A3

±. s5d

Let us consider in detail the case of harmonic forcing
Djstd= 1

2Djse+ivt+e−ivtd. First, we replacej by Djstd in the
above expansion. Next, we plug into the dynamical equation
for DN both the resultingA±std and the Fourier expansion of
the population difference, namely,

DN . DN0 + SDj

2
DDN1 eivt + SDj

2
D2

DN2 e2ivt

+ SDj

2
D3

DN3 e3ivt + c.c. s6d

Equating the coefficients with the same oscillating factor

expskivtd one gets theDNk, which are directly related with
the susceptibilities. We keep at each orderk only the leading
term inDj (if required, the next order terms can be obtained
along the same lines).

Let us assume that in the absence of perturbation the two
states(wells) are equivalent(symmetric). Taking into ac-
count thatsA++A−d is a relaxation rate(and hence even inj)
and thatsA+−A−d is related to the forcing(odd in j), the
response will depend only on the sum of theAk

++Ak
− for even

k and the differenceAk
+−Ak

− for odd k [see Eq.(5)]. Taking
this into account, the amplitudes of the response read(DN0
=0 andDN2=0)

DN1 = −
A1

+ − A1
−

G0 + iv
, s7d

DN3 = −
A3

+ − A3
−

G0 + 3iv
+

sA1
+ − A1

−dsA2
+ + A2

−d
sG0 + ivdsG0 + 3ivd

, s8d

where we have introduced the relaxation rate in the absence
of forcing

G0 = A0
+ + A0

−. s9d

These results are quite generic. In particular cases theAk
± will

be constructed from the specific details of the model.

IV. BALANCE EQUATIONS: SPIN DYNAMICS

For a spin with the simplest uniaxial anisotropy in a field
(chosen by convenience to lay in theXZ plane), the Hamil-
tonian can be written as(sW=mW /m)

− bH = ssz
2 + jisz + j'sx. s10d

The anisotropy term has two minima atsz= ±1 (the “poles”)
with a barrier between them atsz=0 (the “equator”). The
spin-Hamiltonian parameters are introduced in temperature
units s=D /kBT is the anisotropy barrier whileji andj' are
the longitudinal and transverse components of the fieldj
=mB/kBT, with respect to the anisotropy axis.

A. Balance equations

Garaninet al.4 rigorously derived from the Fokker-Planck
equation a set of balance equations for the occupation num-
bers in the uppersz.0 well (our N+) and the lowersz,0
well (N−), namely,

Ṅ+ = GsN+
eqN− − N−

eqN+d,

Ṅ− = − GsN+
eqN− − N−

eqN+d. s11d

Here N±
eq=Z± /Z are the equilibrium occupation numbers

with Z± the partition function restricted to the upper and
lower wells, respectively. On comparing with the generic Eq.
(3), we find for the transition amplitudes(note the sign re-
versal)

A± = GN7
eq. s12d

The relaxation rateG is given by4
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G = S 1

Z+
+

1

Z−
D kBT

m/g
E

0

2p

dw e−bHF ] z

] w
+ ls1 − sz

2d
] z

] sz
G ,

s13d

wheresz andw (the azimuthal angle) are the canonical vari-
ables of the spin. The functionzssz,wd is determined by the
quasistationary solution of the Fokker-Planck equation

0 =
] H
] w

] z

] sz
−

] H
] sz

] z

] w
+ lFS−

] H
] sz

+ kBT
]

] sz
Ds1 − sz

2d
] z

] sz

+
1

1 − sz
2S−

] H
] w

+ kBT
]

] w
D ] z

] w
G ,

subjected to the boundary conditionsz=1 and z=0 at the
bottom of the lower and upper wells, respectively.

B. The transition amplitudes A± at low fields

In order to get the field expansion of the transition ampli-
tudesA±=GN7

eq, we need the corresponding expansions of
the equilibrium occupation numbers and the relaxation rate.

1. The low-field equilibrium occupation numbers

The partition function corresponding to the Hamiltonian
(10) can be written as

Z =E
−1

1

dszE
0

2p dw

2p
exps− bHd. s14d

The one-well partition functionsZ± correspond to integrate
sz over f0,1g and f−1,0g, respectively. Writing sx

=Î1−sz
2 cosw and following Shcherbakova15 in doing first

the integrals overw, we get the unified expression

Z± =E
0

1

dsz expsssz
2 ± jiszdI0sj'

Î1 − sz
2d, s15d

where we have made the change of variablesz→−sz in Z−
and I0 is the modified Bessel function of the first kind of
order 0(Ref. 16, Sec. 11.5). Thus,Z± can be written in terms
of an integral oversz only [compare Eq.(11) in Ref. 17].

Calling a= ±jisz and b=j'
Î1−sz

2 and using the expan-
sion (to third order) I0sbd.1+ 1

4b2, we obtain for the field-
dependent part of the integrand ofZ±

eaI0sbd . 1 + a +
1

2
a2 +

1

4
b2 +

1

6
a3 +

1

4
a b2. s16d

Now we introduce the zero-field averages in one well

ksz
l lw =

E
0

1

dsz sz
l essz

2

E
0

1

dsz essz
2

, s17d

where the denominator is proportional to the zero-field par-

tition functionZ0=e−1
1 dsz essz

2
. Introducing the expansion of

eaI0sbd in Eq. (15) we get the field expansions ofZ± and, by

adding them, that ofZ itself. Using the binomial formula to
get the corresponding expansion of 1/Z, and multiplying this
by those ofZ±, we finally obtain the equilibrium occupation
numbersN±

eq=Z± /Z. These can be written as(note thatN+
eq

+N−
eq=1)

N±
eq=

1

2
s1 ± z1ji ± z3ji

3 ± z1,2jij'
2 d, s18d

with the coefficientszj ,k given by

z1 = kszlw, s19d

z3 =
1

6
sksz

3lw − 3kszlwksz
2lwd, s20d

z1,2= −
1

4
sksz

3lw − kszlwksz
2lwd. s21d

In the coefficientszj ,k the first index is the power ofji and
the second(omitted when zero) the power ofj'. Note that
the expressions forN±

eq are valid for an arbitrary uniaxial
potential.

2. The low-field relaxation rate

As the spins have inversion symmetry in the absence of
the field, the total relaxation rate should be an even function
of the field(G accounts for jumps over the energy barrier in
both directions). For spins with uniaxial anisotropy we can
write10

G . G0s1 + giji
2 + g'j'

2 d, s22d

whereG0 is the zero-field relaxation rate and the expansion is
valid to third order. The vanishing of the term~jij' follows
from the invariance of the relaxation rate upon field reflec-
tion through the barrier plane in uniaxial spins.

3. Generic expression for the transition amplitudes

Plugging the expansions(18) and (22) in the expression
for the relaxation amplitudesA±=GN7

eq, we arrive at

2

G0
A7 = 1 ± sz1bidj + sgibi

2 + g'b'
2 dj2

± fsz3 + z1gidbi
3 + sz1,2+ z1g'dbib'

2 gj3, s23d

where we have introduced the direction cosines of the field

bi = ji/j, b' = j'/j.

Let us write the componentsAk
+±Ak

− that enter the equations
for the response[Eqs. (7) and (8)]. Note first that the ob-
tained result fulfills the consequences of the well-symmetry
mentioned aboveA0

+−A0
−=0 andA2

+−A2
−=0, along withA1

+

+A1
−=0 andA3

++A3
−=0. The combinations entering in the re-

sponse are given by

Ã0
+ + Ã0

− = 1,

− sÃ1
+ − Ã1

−d = z1bi,
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Ã2
+ + Ã2

− = gibi
2 + g'b'

2 ,

− sÃ3
+ − Ã3

−d = sz3 + z1gidbi
3 + sz1,2+ z1g'dbib'

2 ,

where we have introduced the notationÃ=A/G0.

V. EXPRESSIONS FOR THE DYNAMICAL
SUSCEPTIBILITIES

A. Generic expressions

Let us divide numerator and denominator of theDNk by
G0 and introduce the relaxation time

t = G0
−1. s24d

Then, Eqs.(7) and (8) appear withÃ’s s=A/G0d in the nu-
merator and factors 1+kivt in the denominator. The re-
sponse is the projection of the average spin onto the field
direction. This projection is obtained by multiplying the dif-
ference in the populations of both wellsDN by bi and the
spin magnitudem.

In order to get the susceptibilities, recall that we used the
field in temperature units,j=mB/kBT, which yields factors
sm/kBTdk. Thus, xskd=sm/kBTdkDNk3 smbid, and the linear
susceptibility reads

xs1d =
m2 bi

2

kBT

z1

1 + ivt
. s25d

For the first nonlinear susceptibility we obtain

xs3d =
m4 bi

4

skBTd3

z3 + sz3 + z1gidivt

s1 + ivtds1 + 3ivtd

+
m4 bi

2b'
2

skBTd3

z1,2+ sz1,2+ z1g'divt

s1 + ivtds1 + 3ivtd
, s26d

where we have grouped terms with the same powers ofbi
jb'

k ,
so that the angular dependence(tensor structure) is better
recognized.

Note that the expressions for the response are quite ge-
neric and depend only on the coefficients of the expansion of
the equilibrium occupation numbers and the relaxation rate.
Specific formulas will be obtained depending on the features
of the uniaxial potential and the approximations done in cal-
culating the coefficientszj ,k andgi,'.

B. The case of low temperatures

Let us now specialize the above formulas to the case of
low temperatures, where the superparamagnetic blocking
takes place for long measurement times(or equivalently low
frequencies, as those of ordinary magnetic experiments).

The coefficientszj ,k are determined by the one-well aver-
ages of low-order powers ofsz [Eqs. (19)–(21)]. For aniso-
tropy energy~sz

2, these can be obtained along the lines of the
calculation of Ref. 18 (Appendix A). Thus, using the
asymptotic expansion of the confluent hypergeometric
(Kummer) functions,16 one finds the following low-T expan-
sion:

ksz
l lw . 1 −

l

2s
+

lsl − 3d
4s2 , s27d

wheres=D /kBT. With this result, we immediately obtain the
coefficients of the field-expansion of the equilibrium occupa-
tion numbers

z1 = 1 −
1

2s
−

1

2s2 , s28d

z3 = −
1

3
+

1

2s
+

1

4s2 , s29d

z1,2= −
1

8s2 . s30d

For the relaxation rates we shall only obtain the leading or-
der term in 1/s; for consistency, the abovezj ,k will only be
used up to such order(we shall return to this point below).

To get the coefficientsgi and g' appearing on the field
expansion of the relaxation rate[Eq. (22)], one can choose
special configurations in which they are known(strictly lon-
gitudinal and transversal fields).10 Expanding the formula for
G in the presence of a longitudinal fieldji (Refs. 2 and 19)
one finds

Gsji,j' = 0d . G0S1 +
1

2
ji

2D, G0 =
1

tD

2
Îp

s3/2e−s,

whereG0 is Brown’s zero-field result for the relaxation rate.
Comparison with the general expansion(22) gives the longi-
tudinal coefficientgi=1/2. Note that in a longitudinal field
the damping parameterl only enters throughtD [Eq. (2)]
and hencel only matters to establish a global time scale. In
other words, results for different damping parameters pre-
sented in units oftD show complete dynamical scaling, and
in this sense thel dependence is said to be trivial.

Nontrivial effects of the damping arise in an oblique field.
Nevertheless, there is no general expression for the relax-
ation time in the presence of transverse fields. In Ref. 4,
however, a low-temperature formula valid for weak transver-
sal fields was derived, which is perfectly suited for the pur-
pose of determiningg', namely,

Gsji = 0,j'd . G0F1 +
1

4
Fsadj'

2 G, a = l s1/2. s31d

The functionFsad takes into account, without further ap-
proximations, the effects of the damping and is given in
terms of the incomplete gamma functiongsa;zd
=e0

zdt ta−1e−t by

Fsad = 1 + 2s2a2ed1/s2a2d gS1 +
1

2a2 ;
1

2a2D . s32d

Comparing with the expansion(22) one gets the transversal
coefficientg'=F /4.

Summarizing, the low-temperature coefficients in the field
expansion of the relaxation rate[Eq. (22)] are given by
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gi =
1

2
, g' =

1

4
Fsad. s33d

The functionF decreases towards 1 for strong damping[see
Eq. (41) below]. Then,gi and g' are of the same order of
magnitude. However,F grows as 1/l for weak damping,
where the relaxation time turns to be very sensitive to the
damping(or to transversal fields).

Before giving the corresponding expressions for the su-
ceptibilities, we write the complete formulas for the transi-
tion amplitudesA±=GN7

eq at low temperatures(including
only the leading order in the 1/s expansions)

A7 =
1

2
G0F1 ± bij +

1

2
Sbi

2 +
1

2
Fb'

2 Dj2

±
1

6
biSbi

2 +
3

2
Fb'

2 Dj3G . s34d

This expression can also be of use in other problems like the
obtaining of the linear susceptibility in weak bias fields.

The linear susceptibility arising from Eq.(25) simply
reads

xs1d =
m2 bi

2

kBT

1

1 + ivt
, s35d

while the nonlinear susceptibility obtained from Eq.(26) is
given by

xs3d = −
1

3

m4 bi
4

skBTd3

1 − 1
2ivt

s1 + ivtds1 + 3ivtd

+
1

4

m4 bi
2b'

2

skBTd3 Fsad
ivt

s1 + ivtds1 + 3ivtd
. s36d

This is one of the main results of this article. As special cases
we consider the response to a strict longitudinal probing field
(bi=1 andb'=0)

xi
s3d = −

1

3

m4

skBTd3

1 − 1
2ivt

s1 + ivtds1 + 3ivtd
, s37d

and the response of an ensemble of identical spins with axes
distributed at random(bi

4=1/5 andbi
2b'

2 =2/15)

xs3d = −
1

15

m4

skBTd3

1 −S1 + F

2
Divt

s1 + ivtds1 + 3ivtd
. s38d

Recall now that foroverdampedspins one hasF→1. There-
fore, the formula derived reduces in this case to

uxs3dul@1 = −
1

15

m4

skBTd3

1 − ivt

s1 + ivtds1 + 3ivtd
. s39d

This particular case(with 1/s corrections) was derived in
Ref. 20 from an analytical treatment of the Fokker-Planck
equation disregarding the precession terms.

C. Practicalities implementing the analytical expressions

To compensate for disregarding 1/s corrections, we can
heuristically replace the low-T equilibrium linear and nonlin-
ear susceptibilities by their exact expressions.18,21,22Further,
for axes at random, we can simply use the leading correction
for the equilibrium nonlinear susceptibility

xeq
s3d = −

1

15

m4

skBTd3S1 −
2

s
D . s40d

As for the functionFsad, we can use the approximate forms4

Fsad . H1 + 1/a2 − 1/s2a2d2, a . 1,

Îp/a − 1/3 +Îp a/6, a , 1.
s41d

Finally, for the relaxation time at zero field, we use the ac-
curate interpolation formula of Cregg, Crothers, and
Wickstead23

G0 =
1

tD
S 2

Îp

s3/2

1 + 1/s
+ s2−sD 1

expssd − 1
. s42d

With these prescriptions, no special functions appear in the
analytical formulas, which are expressed in terms of simple
functions and polynomials. We shall see below that the
agreement of the resulting formulas with the exact
continued-fraction results is quite good.

VI. RESULTS FOR THE NONLINEAR SUSCEPTIBILITY

Numerically exact results for the nonlinear susceptibility
can be obtained by solving the Fokker-Planck equation by
continued-fraction methods. In this approach, one considers
the equations for the spherical harmonicsYl

mssz,wd averaged
with respect to the nonequilibrium distributionPssWd obeying
Eq. (1). The equations for theYl

m (Refs. 24 and 25) (see Ref.
12 for an alternative derivation) can be solved perturbatively
in the forcingDjstd.7 At each perturbative level, on introduc-
ing appropriate 2-vectors and 232 matrices7,24 the equations
for the Yl

m can be cast into the form of a three-term recur-
rence relation(in the indexl with fixed m). This recurrence
can be solved efficiently and accurately by usingmatrix con-
tinued fraction methods.26 Eventually, the average response
of the system is obtained with help from the relationssz

=Î4p /3 Y1
0 andsx+ isy=−Î8p /3 Y1

1.
The features of the nonlinear susceptibility spectra of

classical superparamagnets in the experimentally most com-
mon case of anisotropy axes distributed at random are dis-
played in Fig. 1. The nonlinear susceptibilityxs3d shows a
large dependence onl,7 dependence that is absent in the
linear susceptibility for the same axes distribution and in the
longitudinal and strict transversenonlinear susceptibilities.
The sensitivity to the damping was interpreted in terms of
the dynamical saddle point created by the oblique driving
field in the uniaxial potential barrier. This saddle favors
interpotential-well jumps that would be unlikely if the field
were in the linear range(weakly deformed barrier), and
hence leads to an increase of the magnitude of the low-T
response.

To illustrate this interpretation, consider one spin that af-
ter a “favorable” sequence of fluctuations, approaches the top
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of the barrier but does not surmount it. In the subsequent
spiraling down back to the bottom of the well, a strongly
damped spin descends almost straightly, whereas a weakly
damped spin executes several rotationss,1/ld about the
anisotropy axis. This allows the weakly damped spin to pass
close to the saddle area, where it will have additional oppor-
tunities, not available for the damped spin, to cross the bar-
rier, enhancing its relaxation rate. Naturally, this mechanism
will make a difference at low temperatures, where reaching
the barrier region is a rare event.

The analytical expression derived in Sec. V is displayed
for comparison in Fig. 1. The agreement with the exact re-
sults is notable. The maximum relative error occurs when
l=0.01 at the peak ofxs3d8svd, and it is only a 2%; going to
much higher temperatures,s=10, where the approach should
start to fail, that error is still less than a 4%(recall that
typical experimental conditions correspond tos,20–25).
This agreement, in turn, supports the interpretation discussed
above of the damping dependence. The reason is that our
analytical expression includes at its heart the formula forG

in a weak transverse field,4 which accounts for the effects of
the corresponding saddle point on the relaxation rate.

VII. DISCUSSION

With help from the expression for the relaxation rate of
Garaninet al.,4 it has been shown that effects apparently
different as the damping dependence ofG in transverse
fields, the damping sensitivity of the nonlinear
susceptibility,7 and the effects of the damping on thelinear
response of dipole-dipole coupled systems,9,10 have a com-
mon origin, which is the strong sensitivity of the relaxation
rate to the damping in transverse fields.

The damping parameterl carries information of the cou-
pling with the environmental degrees of freedom causing the
relaxation in superparamagnets. In Ref. 7 it was suggested
that the largel dependence ofxs3d could be exploited to
determinel experimentally. This would by-pass its determi-
nation from the preexponential factort0 in the relaxation
time s~tDd, which usually only gives an order-of-magnitude
estimate. In addition, one does not need high frequencies to
explore the effects ofl, in contrast to magnetic resonance
experiments(avoiding the associated technical difficulties).
Clearly, the availability of a simple analytical expression to
model thexs3d data should be of great assistance to determine
l.

Coffey et al.27 suggested that a method based on the linear
susceptibility with superimposed bias fields would make the
resort to the nonlinear response unnecessary. However, in
their case the fittings should be done to a formula involving
more complicated expressions, both for the equilibrium parts
(numerically obtained) and the relaxation times(involving
the different Kramers’ regimes). In addition, their results
have to be eventually integrated over the distribution of an-
isotropy axis orientations.

Our expression is free from those complications(basically
involves the simple zero-fieldt of Brown and equilibrium
susceptitibilities known analytically). In addition, the mea-
surement ofxs3d is becoming standard(see, for instance, Ref.
28). In the modeling of real experiments the incorporation of
the particle-size distribution can be done by simple integra-
tion of our equation. For these reasons, we consider the
method based onxs3d more suited for the experimental deter-
mination of the important, and hitherto quite evasive, dissi-
pation parameter in superparamagnets. Finally, the genericity
of the intermediate expressions derived could allow the in-
corporation of quantum effects, by taking them into account
in the field-expansion coefficients of the equilibrium quanti-
ties and the relaxation rate.
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FIG. 1. Nonlinear susceptibilityxs3d of classical spins with ran-
domly distributed anisotropy axes vs frequency. The temperature is
kBT/D=0.05ss=20d andl=1,0.1,0.03, and 0.01(bottom to top).
The lines are the approximate formula(38) and the symbols the
exact continued-fraction solution(Ref. 7). The upper and lower
panels display, respectively, the real and imaginary parts
of xs3dsvd.
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