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Nonlinear response of superparamagnets with finite damping: An analytical approach
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The strongly damping-dependent nonlinear dynamical response of classical superparamagnets is investigated
by means of an analytical approach. Using rigorous balance equations for the spin occupation numbers a
simple approximate expression is derived for the nonlinear susceptibility. The results are in good agreement
with those obtained from the exa@ontinued-fractiop solution of the Fokker-Planck equation. The formula
obtained could be of assistance in the modeling of the experimental data and the determination of the damping
coefficient in superparamagnets.
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[. INTRODUCTION mentioned Ref. 4, which is valid for weak transversal fields
but arbitrary damping. Plugging heuristically into that relax-
Superparamagnets are nanoscale solids or clusters withadion rate the average dipolar fields obtained with thermody-
large net spin(S~10'-10%. Due to the coupling to the en- namic perturbation theory, the dynamical effects of the
vironmental degrees of freedo(tattice vibrations, electro- damping on the linear response of dipole-dipole coupled sys-
magnetic fields, nuclear spins, conduction electrons),etc.tems could be qualitatively reproductd.
the spin is subjected to thermal fluctuations and may undergo In this article we use a similar analytical approach to
a Brownian-type rotation, surmounting the potential barriersstudy the low-frequency nonlinear dynamical response of
created by the magnetic anisotropy. This relaxation mechaioninteracting classical superparamagnets. We derive an ap-
nism was proposed by Néel in the late 194@Ref. 1) and  proximate expression for the nonlinear susceptibility which
subsequently reexamined by Brotny means of the theory is in good agreement with the exgcbntinued-fraction so-
of stochastic processésee also Ref.)3 establishing the ba- lution of the Fokker-Planck equation. The formula obtained
sis of the modern study of these systems. is quite simple and may be used to model experimental data
Classical spins with nonaxially symmetric Hamiltonians of the nonlinear response. Exploiting its nontrivial damping
can exhibit a large dependence of the thermoactivation esdependence, the equation could assist in obtaining the damp-
cape ratd” on the Landau-Lifshitz damping coefficientin ~ ing coefficient in these systems. The determination of the
the medium-to-weak damping regime.measures the rela- intrinsic dependences of this paramet@n temperature,
tive importance of the relaxation and the precession in thgressure, etg.could shed some light on the microscopic
dynamics.  Experiments on individual magnetic mechanisms of spin-environment coupling in superparamag-
nanoparticles, analyzed with accurate expressions for thenets.
relaxation rate, gave damping coefficients in that regkme
~0.05-0.5°
Uniaxial spins are supposed not to show important effects Il. BROWN AND KUBO-HASHITSUME MODEL
of the damping except in high-frequency conditigasch as
FMR experiments Somewhat unexpectedly, noninteracting Let us briefly consider the dynamics ofsubsystem ac-
spins with uniaxial anisotropy, but subjected to alternatecounting for its interaction with the surrounding “medium.”
forcing, exhibit a large nonlinear response very sensitive tarhis interaction, after the elimination of the environmental
N,/ which has no analog in the low-frequency linear re-degrees of freedom, can usually be separated into a time-
sponse. This effect was interpreted in terms of the couplingdependent modulation of the system by the proper modes of
via the driving field, of the precession of the spin and itsthe environmentfluctuating tern), and the back reaction on
thermoactivation over the anisotropy barrier. On the othethe system of its action on the surrounding medi@eiax-
hand, using micromagnetic Langevin simulatinBerkov  ation or damping term
and Gorfl found that uniaxial spins coupled via dipole- This approach was particularized phenomenologically by
dipole interaction also exhibit damping effects such as enBrowr? and Kubo and Hashitsurhdo classical spins, by
hanced shifts of the blocking temperature and nonmonotonimtroducing the stochastic partner of the Landau-Lifshitz
behavior of the linear susceptibility peaks with the couplingequation. The associated Fokker-Planck equation governing
strength. In Ref. 10 it was shown that these effects can bthe time evolution of the probability density of spin orienta-
interpreted on the basis of the expression derived'forthe  tions P(S) can be written &€
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S I . expkiot) one gets the\N,, which are directly related with
21pdP =17 XBe‘ (SOBe) +iT|P. D the susceptibilities. We keep at each orfl@nly the leading
R term in A€ (if required, the next order terms can be obtained
Here 7=~is0(4/#9) is the generator of infinitesimal rota- along the same lings _
tions andB,=-B(7H/9) is an effective field. The Landau- Let us assume that in the absence of perturbation the two

Lifshitz relaxation parametex (dimensionlessmeasures the statﬁfngetl([ilf'&g) ?qun:allem(;ynm:nftrlga Eal:\mg |\r;ton ?C'
relative importance of the damping and precession terms°Y a S a relaxation ratéa ence even i)

Finally, 7o is the relaxation time of isotropic spitithe coun- and that(A*.—A‘) is related to the forcing{gdd _in &), the
terpart of the Debye time in dielectrics response will depend only on the sum of #yg+ A, for even
k and the difference\,—A, for odd k [see Eq(5)]. Taking

21 m 5 this into account, the amplitudes of the response (&ad,
(I 29k T’ @ - andAN,=0)
wherem is the spin magnitude angdthe gyromagnetic ratio. AN = — AI -A] 7)
For generalizations of the Brown and Kubo-Hashitsume 1= Io+io’
model, see, for instance, Refs. 13 and 14.
Al-A;  (AI-A)AS+A,
Ill. GENERIC BALANCE EQUATIONS ANg=-—=—3+ (AL~ A) Ay + Ay) (8)

[p+3io (Fg+iw)(ly+3iw)’
Before proceeding from the Fokker-Planck equation to
study the nonlinear dynamics, let us consider some generi
expressions for systems describable by a set of kinetic baP
ance equations for some occupation numiérsand N_ To=AL+A;. (9)

here we have introduced the relaxation rate in the absence
f forcing

I'\I+ =—A"N,+A™N_, These results are quite generic. In particular casesgiveill
be constructed from the specific details of the model.

N_=A'N, - A'N_. (3)

Here theA* are some transition amplitudes which depend on
the external forcing or control paramet&rThe occupation
numbers satisfy the “constraii,+N_=1, which indicates
the conservation of the number of representative pdiNts

=-N_). The response of the system is characterized by the ~BH=0S+ &5, + £, 5. (10)
difference in populationdN=N,—-N_, which obeys

IV. BALANCE EQUATIONS: SPIN DYNAMICS

For a spin with the simplest uniaxial anisotropy in a field
(chosen by convenience to lay in t& plane, the Hamil-
tonian can be written a@=m/m)

The anisotropy term has two minimagt +1 (the “poles’)
d . . with a barrier between them &,=0 (the “equator). The
d_tAN =-(A"+A)AN-(A"-A"). (4)  spin-Hamiltonian parameters are introduced in temperature
units o=D/kgT is the anisotropy barrier whil§ and¢, are
Thus, (A*+A") plays the role of a relaxation rate while the the longitudinal and transverse components of the field
inhomogeneous terd*— A7) is to be related to the external =mB/kgT, with respect to the anisotropy axis.
forcing.
To get the linear and first nonlinear susceptibilities A. Balance equations
corrections to the linear susceptibility due to a weak static

. 4 . )
forcing) we expandA® in a series of powers d to the third Garaninet al* rigorously derived from the Fokker-Planck

equation a set of balance equations for the occupation num-

order bers in the uppes,>0 well (our N,) and the lowers,<0
Af = AL+ EAT + AL + EAL. (5)  well (N.), namely,
Let us consider in detail the case of harmonic forcing N, = T(NSIN_ - N°9N,,),
AE(t)=3A&Ee“+e7Y). First, we replace by A&(t) in the
above expansion. Next, we plug into the dynamical equation o ean| _ N[E
for AN both the resultingd*(t) and the Fourier expansion of N-= - T(NeN- - NZN,). (19
the population difference, namely, Here N$%=Z,/Z are the equilibrium occupation numbers
) with Z, the partition function restricted to the upper and
AN = AN, + (A—g)ANl got 4 (A_g) AN, e?et lower wells, respectively. On comparing with the generic Eq.
2 2 (3), we find for the transition amplitudgsote the sign re-
A 5)3 ’ versa)
+| =] AN; €'+ c.c. 6
( 2 3 © A*=TN, (12)

Equating the coefficients with the same oscillating factorThe relaxation ratd is given by
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adding them, that of itself. Using the binomial formula to
get the corresponding expansion ofZ, /and multiplying this
by those ofZ,, we finally obtain the equilibrium occupation
numbersN$?=Z,/ Z. These can be written gsote thatN$
+N%9=1)

NONLINEAR RESPONSE OF SUPERPARAMAGNETS WITH
1 1 \keT (?" F d
(2B e n-02)
Z+ Z_ m/'y 0 (990 (952
(13

wheres, and ¢ (the azimuthal angbeare the canonical vari-

ables of the spin. The functiof(s,, ¢) is determined by the 1
quasistationary solution of the Fokker-Planck equation NE%= 5(1 2061+ 258 + 21 5618, (18)
_IHaL ML ){(— on ., kBTi>(1 —sﬁ)&—g with the coefficients , given by
deds, Jsde s, s, I8, 2,=(s) (19)
\"Al
1 aH 9 \at
Y12\ de e Tag)ae ) 1
oo mee 2= £ (SDu~ Ak, (20)
subjected to the boundary conditiogs1l and (=0 at the
bottom of the lower and upper wells, respectively. 1
21 2=~ Z(<S§>w - <SZ>W<S§>W) (21)

B. The transition amplitudes A* at low fields

In order to get the field expansion of the transition ampli-In the coefficients;  the first index is the power of; and
tudesA*=I'N$%, we need the corresponding expansions ofthe secondomitted when zerpthe power ofé, . Note that
the equilibrium occupation numbers and the relaxation ratethe expressions foN;* are valid for an arbitrary uniaxial

1. The low-field equilibrium occupation numbers

The partition function corresponding to the Hamiltonian

(10) can be written as

1 2 d(P
Z= f dszf —exp(- BH). (14
-1 0 277

The one-well partition function&€, correspond to integrate
s, over [0,1] and [-1,0], respectively. Writing s,

=\1-< cos¢ and following Shcherbakov&in doing first
the integrals overp, we get the unified expression

1
zZ,= fo ds, explos2t £8)lo(€,V1-5), (19

where we have made the change of variagle-s, in Z_

and |, is the modified Bessel function of the first kind of

order O(Ref. 16, Sec. 11)5Thus, Z, can be written in terms
of an integral oves, only [compare Eq(11) in Ref. 17.

Calling a=+§;s, and bzgl\s"l—sﬁ and using the expan-
sion (to third ordej Io(b):1+ib2, we obtain for the field-
dependent part of the integrand &£

1 1 1 1
lgb) =1+a+ Ea2+ Zb2+ —a%+-a b2,

6 4 (16

Now we introduce the zero-field averages in one well

1
f ds, S
(=

f dszze"Sg
0

(17)

where the denominator is proportional to the zero-field par-
- . 2 . .
tition function Z():ffldsZ €. Introducing the expansion of

e¥ly(b) in Eg. (15) we get the field expansions &, and, by

potential.

2. The low-field relaxation rate

As the spins have inversion symmetry in the absence of
the field, the total relaxation rate should be an even function
of the field(I" accounts for jumps over the energy barrier in
both directiong For spins with uniaxial anisotropy we can
writel©

I=Ty1+ 9||§H2 +9,8), (22)

wherel'y is the zero-field relaxation rate and the expansion is
valid to third order. The vanishing of the terng ¢, follows
from the invariance of the relaxation rate upon field reflec-
tion through the barrier plane in uniaxial spins.

3. Generic expression for the transition amplitudes

Plugging the expansiond8) and (22) in the expression
for the relaxation amplitude&*=TNEY we arrive at
2 _

AT=12(@b)é+(gbf +g,bh)E
0
+[(z3+z,9)b} + (z,+ 2,9,)bPT 1€, (23)

where we have introduced the direction cosines of the field

by=§/¢ by=¢/¢
Let us write the component&; + A, that enter the equations
for the responsg¢Egs. (7) and (8)]. Note first that the ob-
tained result fulfills the consequences of the well-symmetry
mentioned abovéd;—-A;=0 andA;-A,=0, along withA]
+A;=0 andA;+A;=0. The combinations entering in the re-
sponse are given by

R+ Ro=1

- (KI - RAD =ziby,
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A;+A; =gl +g, b7, :1_|—+u 27
— (A5 =A3) = (z3+ 219)b + (22 + 2,9, )byb? whereo=D/kgT. With this result, we immediately obtain the

coefficients of the field-expansion of the equilibrium occupa-

where we have introduced the notatiEFFA/Fo. tion numbers

V. EXPRESSIONS FOR THE DYNAMICAL S = 1 1 (28)
1_ 1
SUSCEPTIBILITIES 20 20°
A. Generic expressions 11 1
Let us divide numerator and denominator of thi, by Z3=-— 3 + % + 202" (29
I'g and introduce the relaxation time d
=Tk (24) 1
o~ ) 21’2: - Q . (30)
Then, Eqgs(7) and (8) appear withA's (=A/T’y) in the nu-

merator and factors lkwr in the denominator. The re- o he relaxation rates we shall only obtain the leading or-

sponse s th_e project_ion .Of the_average spi_n onto the fielgier term in 1b; for consistency, the abovg, will only be
direction. This projection is obtained by multiplying the dif- used up to such ordewe shall return to this point below

fer_ence in.the populations of both welleN by b, and the To get the coefficientsy and g, appearing on the field
spin magnituden. expansion of the relaxation raf&qg. (22)], one can choose

In order to get the susceptibilities, recall that we used th%pecial configurations in which they are knovetrictly lon-

field in temperature units$=mB/kgT, which yields factors o el :

p o p ) gitudinal and transversal fields’ Expanding the formula for
(M/kgT)*. Thus, x=(m/kgT)“AN X (mh), and the linear i e presence of a longitudinal field (Refs. 2 and 19
susceptibility reads

one finds
m bz
= I 1 1 1 )
X kT 1+ior (25 I'(&,&, =0) 21“0(14,55%), Fo:—?ame o
DN

For the first nonlinear susceptibility we obtain . , . .
wherel'y is Brown’s zero-field result for the relaxation rate.

m* bﬁ‘ 3+ (zz+ 219))i o7 Comparison with the general expansi@®2) gives the longi-
= (keT)3 (L +iwn(1+ 3w tudinal coefficientg;=1/2. Note that in a longitudinal field
the damping parametex only enters throughrp [EQ. (2)]
and hencex only matters to establish a global time scale. In
other words, results for different damping parameters pre-

] . sented in units of, show complete dynamical scaling, and
where we have grouped terms with the same powebdtf, i this sense tha dependence is said to be trivial.

so that the angular dependengensor structuneis better Nontrivial effects of the damping arise in an oblique field.

recognized. ) ) Nevertheless, there is no general expression for the relax-
Note that the expressions for the response are quite 9&rion time in the presence of transverse fields. In Ref. 4,

neric and depend only on the coefficients of the expansion dfowever, a low-temperature formula valid for weak transver-

the equilibrium occupation numbers and the relaxation rategy) fields was derived, which is perfectly suited for the pur-
Specific formulas will be obtained depending on the featuref,Ose of determining ,, namely,

of the uniaxial potential and the approximations done in cal-
culating the coefficientg; andg; ;.

(3

m* b’b] 5+ (z1,+ 29 )iwT
ksT)® (L+iwn(1+3wr) '’

(26)

1
I'(§=0,¢,) = Fo[l + ZF(a)fi], a=x 2. (31
B. The case of low temperatures

o The functionF(«) takes into account, without further ap-

Let us now specialize the above formulas to the case Ofroximations, the effects of the damping and is given in
low temperatures, where the superparamagnetic blockingyrms of the incomplete gamma functiony(a;z)
takes place for long measurement tinjesequivalently low  _— 4t let by
frequencies, as those of ordinary magnetic experiments

The coefficientg, , are determined by the one-well aver- 2 1/(202) 1 1
ages of low-order powers &, [Egs. (19—21)]. For aniso- Fla) =1+22a%) N1 T 2d2) (32
tropy energyxs2, these can be obtained along the lines of the
calculation of Ref. 18(Appendix A). Thus, using the Comparing with the expansiof22) one gets the transversal
asymptotic expansion of the confluent hypergeometricoefficientg, =F/4.
(Kummey functionst® one finds the following lowF expan- Summarizing, the low-temperature coefficients in the field
sion: expansion of the relaxation rafgq. (22)] are given by
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C. Practicalities implementing the analytical expressions

1 1
=—, =—F(a). 33 . . .
G 2 9 4 (@) (33 To compensate for disregarding d torrections, we can

_ heuristically replace the low-equilibrium linear and nonlin-
The functionF decreases towards 1 for strong damplisge  ear susceptibilities by their exact expressi&h&-22Further,
Eq. (41) below]. Then,g, andg, are of the same order of for axes at random, we can simply use the leading correction
magnitude. Howeverf grows as 1X for weak damping, for the equilibrium nonlinear susceptibility
where the relaxation time turns to be very sensitive to the

. . 1 m4 2
damping(or to transversal fields YI=- = _Z (40)
Before giving the corresponding expressions for the su- €4 15(kgT)3 ol

ceptibilities, we write the complete formulas for the transi—A for the functionF(e) th imate form
tion amplitudesA*=T'N* at low temperaturegincluding s forthe function(a), we can use the approximate forms

only the leading order in the &/expansions 1+ 1/a? - 112272, a>1,
Fla)=1 — — (41)
Vala—1/3 +V 7 al6, a<l.

_ 1 1 1
AT ==T,| L+bé+= b2+—Fb2)2 . o ,
2 0{ 1 2( L ¢ Finally, for the relaxation time at zero field, we use the ac-

1 3 curate interpolation formula of Cregg, Crothers, and
+ gb,<b2 + EFbi)gfﬂ] _ (34)  Wickstead®
12 o Y 1
This expression can also be of use in other problems like the To= o\l + Lo o2 expa) -1’ (42)

obtaining of the linear susceptibility in weak bias fields.
The linear susceptibility arising from Eq25) simply  With these prescriptions, no special functions appear in the

reads analytical formulas, which are expressed in terms of simple
functions and polynomials. We shall see below that the
W _ m? bf 1 agreement of the resulting formulas with the exact

- keT 1+iwr’ (39 continued-fraction results is quite good.

while the nonlinear susceptibility obtained from Eg&6) is VI RESULTS FOR THE NONLINEAR SUSCEPTIBILITY

given by Numerically exact results for the nonlinear susceptibility
L can be obtained by solving the Fokker-Planck equation by
@__ 1 m* bﬁ‘ 1-jiwr continued-fraction methods. In this approach, one considers
X = (kT3 (L +iwn(1+3wr) the equations for the spherical harmoni§¥s,, ¢) averaged
41212 . with respect to the nonequilibrium distributid®(S) obeying
+ 1m® bib} Fo) loT (36)  EQ.(1). The equations for th¥" (Refs. 24 and 2p(see Ref.
4 (kgT)® (1+ion(1+3iw7) 12 for an alternative derivatigrtan be solved perturbatively

o ) ) ) _ in the forcingA£&(t).” At each perturbative level, on introduc-
This is one of the main results of this article. As special casercng appropriate 2-vectors and<2 matrice$2?4the equations
we consider the response to a strict longitudinal probing fielgy, the Y™ can be cast into the form of a three-term recur-

(b,=1 andb, =0) rence relatior(in the index| with fixed m). This recurrence
4 1. can be solved efficiently and accurately by usmatrix con-
X(3) - 1 m 1-3lo7 (37) tinued fraction method€ Eventually, the average response
I 3kgN3(L+iwnN(1+3wn)’ of the system is obtained with help from the relatia)s

f ; o712yl
_ ) _ ) =473 Y? ands, +is,=-v8m/3 Y.
and the response of an ensemble of identical spins with axes The features of the nonlinear susceptibility spectra of

distributed at randonbf=1/5 andbfb? =2/15) classical superparamagnets in the experimentally most com-
mon case of anisotropy axes distributed at random are dis-
1_(1 +F)i played in Fig. 1. The nonlinear susceptibiligf® shows a
4 wT 7 . .
—F__ 1 m 2 38 large dependence ox,” dependence that is absent in the
X = 15(kBT)3(1 +ion(l+3wn (38) linear susceptibility for the same axes distribution and in the

. longitudinal and strict transversaonlinear susceptibilities.
Recall now that fooverdampedpins one has —1. There-  The sensitivity to the damping was interpreted in terms of

fore, the formula derived reduces in this case to the dynamical saddle point created by the oblique driving
. ) field in the uniaxial potential barrier. This saddle favors
W 1 m l-ioT (39) interpotential-well jumps that would be unlikely if the field

were in the linear rangéweakly deformed barrigr and
hence leads to an increase of the magnitude of theTlow-
This particular cas¢with 1/o correction$ was derived in  response.

Ref. 20 from an analytical treatment of the Fokker-Planck To illustrate this interpretation, consider one spin that af-
equation disregarding the precession terms. ter a “favorable” sequence of fluctuations, approaches the top

1T T 1B (kTP (L+in) (L + Bwr)
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20000 - T T0.01 in a weak transverse fiefdwhich accounts for the effects of

1=0.03 the corresponding saddle point on the relaxation rate.

A=0.1
15000 - A=1
10000 - VIl. DISCUSSION
%< With help from the expression for the relaxation rate of
5000 ¢ Garaninet al,* it has been shown that effects apparently
different as the damping dependence Iofin transverse
ol fields, the damping sensitivity of thenonlinear
susceptibility! and the effects of the damping on tlieear
5000 response of dipole-dipole coupled systet$have a com-
1078 mon origin, which is the strong sensitivity of the relaxation
rate to the damping in transverse fields.
The damping parametar carries information of the cou-
10000 pling with the environmental degrees of freedom causing the
relaxation in superparamagnets. In Ref. 7 it was suggested
5000 that the largex dependence of® could be exploited to
determine\ experimentally. This would by-pass its determi-
nation from the preexponential factaey, in the relaxation
. Ol time (e 7p), which usually only gives an order-of-magnitude
e, estimate. In addition, one does not need high frequencies to

-5000 explore the effects ok, in contrast to magnetic resonance
experimentgavoiding the associated technical difficuldies

Clearly, the availability of a simple analytical expression to

- - A=0.01 —— 4 ,
10000 =003 —— model they!® data should be of great assistance to determine
=01 —— \
A= —— '

-15000 5 = 5 5 Coffey et al 2’ suggested that a method based on the linear

10 10 10 10 10 susceptibility with superimposed bias fields would make the
“% resort to the nonlinear response unnecessary. However, in

FIG. 1. Nonlinear susceptibility'® of classical spins with ran- their case the fittings should be done to a formula involving

domly distributed anisotropy axes vs frequency. The temperature i§'0'€ C(_)mphcated_ expressions, both fqr the_ qu|l|br|u_m parts

ksT/D=0.05(=20) and\=1,0.1,0.03, and 0.0bottom to top. (num(-_zncally obtainedand 'Fhe relaxat|o_r_1 tmegnyolvmg

The lines are the approximate formu(@g) and the symbols the the different Kramers’ regimgs In addition, their results

exact continued-fraction solutio(Ref. 7. The upper and lower have to be eventually integrated over the distribution of an-

panels display, respectively, the real and imaginary partdSOtropy axis orientations.

of Y¥(w). Our expression is free from those complicatidbasically
involves the simple zero-fielad of Brown and equilibrium

of the barrier but does not surmount it. In the subsequentusceptitibilities known analytically In addition, the mea-
spiraling down back to the bottom of the well, a strongly Surement of'® is becoming standarcee, for instance, Ref.
damped spin descends almost straightly, whereas a weakR®)- In the modeling of real experiments the incorporation of
damped spin executes several rotatigrsl/\) about the t_ e particle-size d_lstrlbutlon can be done by simple |_ntegra-
anisotropy axis. This allows the weakly damped spin to pasion of our equatlson. For these reasons, we consider the
close to the saddle area, where it will have additional opporMethod based og'® more suited for the experimental deter-
tunities, not available for the damped spin, to cross the bafhination of the important, and hitherto quite evasive, dissi-
rier, enhancing its relaxation rate. Naturally, this mechanisnPation parameter in superparamagnets. Finally, the genericity

will make a difference at low temperatures, where reachin@f the intermediate expressions derived could allow the in-
the barrier region is a rare event. corporation of quantum effects, by taking them into account

The analytical expression derived in Sec. V is displayed'f‘ the field—expansiqn coefficients of the equilibrium quanti-
for comparison in Fig. 1. The agreement with the exact relies and the relaxation rate.
sults is notable. The maximum relative error occurs when
A=0.01 at the peak 0f®’(w), and it is only a 2%; going to

much higher temperatures=10, where the approach should ACKNOWLEDGMENTS
start to fail, that error is still less than a 4%ecall that
typical experimental conditions correspond do-20-25. This work was partially supported by DGESpain),

This agreement, in turn, supports the interpretation discussderoject No. BFM2002-00113 and the Swedish Foundation
above of the damping dependence. The reason is that ofer Strategic Researat8SBH. Discussions with P. Svedlindh,
analytical expression includes at its heart the formulalfor P. J6nsson, and F. Luis are warmly acknowledged.
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