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For an Ising spin glass on a hierarchical lattice, we show that the energy barrier to be overcome during the
flip of a domain of sizeL scales asLd−1 for all dimensionsd. We do this by investigating appropriate lower
bounds to the barrier energy, which can be evaluated using an algorithm that remains fast for large system sizes
and dimensions. The asymptotic limitd→` is evaluated analytically.
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Energy barriers determine the dynamics of glassy systems
that have a complex energy landscape with many metastable
states. Typically, the fluctuations between free energy
minima in these systems(either between different realiza-
tions or in the same random system) scale with observation
size L as Lu. It is generally assumed that the free energy
barriers encountered in moving from one minimum to an-
other scale with observation size asLc. However, there exist
so far few numerical studies of the value of this exponent in
spin glasses, probably because of the difficulty of the prob-
lem (in contrast to the many studies ofu). For directed poly-
mers in random systems, the identityc=u was demonstrated
some time ago.1 For Ising spin glasses, Fisher and Huse de-
rived within the droplet picture the double inequalityuøc
ød−1 (Ref. 2) for dimensiond. The lower limit is due to the
fact that a domain wall must be introduced into the system if
all its spins are to be flipped. However, the minimum domain
wall energy scales asLu. The upper limit is obtained by
moving a straight domain wall through the system. Since
such a domain wall breaksLd−1 bonds, its energy cannot be
larger than,Ld−1. Several experiments on two-(Ref. 3) and
three-dimensional4 spin glasses as well as a numerical stud-
ies in two dimensions5 point towards a value ofc close to or
identical tod−1. However, other experiments6 and numeri-
cal studies7 suggest a much smaller value ofc. An equality
c=u is sometimes tacitly assumed, as for instance in a recent
publication on spin glass dynamics on the hierarchical
lattice,8 where the probability for a spin flip on the length
scaleL is chosen to be a function of the effective coupling
strength on this scale, which increases asLu.

In this paper, we consider the Ising spin glass on an hier-
archical lattice and show in fact thatc=d−1 in all dimen-
sions. The Hamiltonian of the system is given by

H = − o
ki j l

JijSiSj , s1d

whereki j l indicates the sum over all nearest-neighbor pairs,
and the spins assume the values ±1. We will mainly consider
a Gaussian distribution of couplings with zero mean and unit
width. The hierarchical lattice gives for the exponentu in
dimensiond=2 the value −0.27(Ref. 9) which compares
well with the value −0.29 from recent numerical studies on
the square lattice.10 In three dimensions the hierarchical lat-

tice givesu<0.25(Ref. 9) while on a simple cubic lattice its
value is close to 0.20.11 Thus the hierarchical lattice provides
reasonably good estimates for the value of the exponentu (at
least for low-dimensional systems) and it is our hope that it
is equally useful for determining the value ofc.

The problem of finding energy barriers in glassy systems
numerically is usually NP-complete.12 We will therefore not
attempt to calculate the barrier exactly, but we will rather
place bounds on it. Since the upper boundc=d−1 is already
known due to the above-cited argument by Fisher and Huse,
we will show in the following that there exists a lower bound
to the barrier energy that increases with system size asLd−1.

A hierarchical lattice is constructed by starting with one
bond connecting two sites. This bond is replaced with a unit
consisting of 2d−1 pairs of bonds, with a new site between
each pair. Each of the 2d bonds is again replaced with a unit
of 2d−1 pairs of bonds, etc., leading to a lattice with 2Id bond
after I iterations. In Fig. 1 the first three steps of this process
are illustrated ford=2. Evaluating a thermodynamic quantity
on the hierarchical lattice withI levels is equivalent to evalu-
ating it on ad-dimensional hypercubic lattice of linear size 2I

using the Migdal-Kadanoff approximation. Recently, also the
dynamics of spin glasses have been studied on hierarchical
lattices,8,13,14 although there is no simple relation to the dy-
namics on hypercubic lattices. In Refs. 8 and 14, approxima-
tions based on renormalization ideas were made.

We focus on the energy barrier that must be overcome
when moving from the ground state to the lowest-energy
configuration with a domain wall. This domain-wall configu-
ration is obtained by flipping one of the two level-0 spins and

FIG. 1. Iterative construction of the hierarchical lattice. At each
step, each bond is replaced with 2d−1 pairs of bonds, with a new
lattice site in between. Different grey shades indicate sites added at
different iteration steps.
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by determining the new ground state with this fixed new
configuration of the level-0 spins. On an hierachical lattice,
domain walls always cut exactlyLd−1 bonds. We allow only
single-spin flips when moving from the initial to the final
state, since this is the realistic dynamics for this problem. At
zero temperature(the situation we are considering here), the
free-energy barrier is identical to the energy barrier. As indi-
cated above, our goal is to show that there exists a lower
bound that scales asLd−1. For this purpose, we consider the
neighborhood of the right-hand level-0 spin, the “corner
spin” (see Fig. 2). We focus our attention on itsLd−1 level-I
nearest neighbors and itssL /2dd−1 level-sI −1d next-nearest
neighbors. At the moment where the corner spin is flipped,
the next-nearest neighbors are in a configurationCnnn. We do
not know the configuration of these spins which is associated
with the true barrier, but we know that the optimum spin-flip
sequence which passes through the true barrier state must
have one of the possible configurationsCnnn of the next-
nearest-neighbor spins at the moment where the corner spin
is flipped. Therefore we will later minimize our lower bound
with respect toCnnn. We start from the configuration of low-
est energy that can be obtained with a given configuration
Cnnn of the next-nearest neighbors of the right-hand corner
spin and with the two corner spins fixed at their initial con-
figuration. Clearly, the energy of this state is at least as high
as the energy of the initial configuration. We next calculate
the minimum energy barrier that must be overcome when the
right-hand corner spin is flipped with the configuration of the
next-nearest neighbors remaining fixed. This minimum en-
ergy barrier is obtained by first flipping a suitable selection
of the nearest-neighbor spins of the corner spin, before the
corner spin itself is flipped. The barrier state is the one im-
mediately before or immediately after the corner spin is
flipped, and it is reached from our initial state by spin flips
each of which increases the energy. Minimizing the energy
barrier (i.e., the energy difference between the barrier state
and our initial state) with respect toCnnn gives a lower bound
to the true barrier. This is because the energy of our initial
configuration is at least as high as that of the true initial
configuration and since the energy of our barrier state cannot
be larger than that of the true barrier state.

In the following, we determine this lower bound to the
barrier. The right-hand corner spin is connected to each of its
next-nearest neighbors via 2d−1 intermediate(level-I) spins,
each of which initially assume the orientation that has the
lower energy. Our task now consists in finding those inter-
mediate spins that have to be flipped before the corner spin is
flipped, such that the barrier energy is as low as possible.
Intermediate spins, for which the absolute value of the cou-

pling to its left neighbor is stronger than the absolute value
of the coupling with the corner spin, must not be flipped.
This is because for a given configuration of its two neighbor-
ing spins, the energy is always lower when the intermediate
spin has the orientation that satisfies the left-hand bond and
possibly frustrates the right-hand bond. Since the values of
the couplings are assigned at random, only about half of the
intermediate spins are candidates for being flipped before the
corner spin.

Evaluating all possible combinations of these intermediate
spins that might be flipped before the corner spin costs a
computer time that increases exponentially with the number
of these spins. We will therefore later make an approxima-
tion that underestimates the above-defined lower bound to
the barrier. In order to define the quantities we need, let us
first consider a subunit of three spins(see Fig. 3): The corner
spin on the right-hand side, one of its next-nearest neighbors
to the left of it, and the intermediate spin sitting between the
two and connected to both of them. The left-hand spin is
fixed. The corner spin is first in its initial configuration. The
intermediate spin has the configuration that minimizes the
energy. This initial energy is our reference energy, and we set
it to zero. Now letes1d be the energy of the three-spin unit
when the intermediate spin is flipped, and letes2d be the
energy of the three-spin unit when the right-hand spin(the
corner spin) is flipped without first flipping the intermediate
spin, and letesfd be the energy of the three-spin unit when the
right-hand spin is flipped and the intermediate spin is ad-
justed such that it minimizes the energy. If the left-hand bond
is stronger than the right-hand bond, we havees2d=esfd, oth-
erwise we havees2d.esfd.

Now let n count all those three-spin units for which the
intermediate spin is being flipped before the corner spin, and
let m count all those three-spin units for which the interme-
diate spin is not flipped before the corner spin. The energy of
the system just before the corner spin is flipped is

o
n

en
s1d ; EB

s1d,

and the energy of the system right after the corner spin is
flipped is

o
m

em
s2d + o

n

en
sfd ; EB

s2d.

The lower bound we are looking for is then

FIG. 2. (a) The right-hand corner site drawn large,(b) its nearest
neighbors drawn large,(c) its next-nearest neighbors drawn large.

FIG. 3. A subunit of three spins and the energies associated with
the different spin configurations mentioned in the text. The figure is
drawn for the case that the right-hand bond is stronger than the
left-hand bondsuJ2u. uJ1ud.

B. DROSSEL AND M. A. MOORE PHYSICAL REVIEW B70, 064412(2004)

064412-2



EB = MinCnnn
Minn,m MaxfEB

s1d,EB
s2dg

ù MinCnnn
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2
sEB

s1d + EB
s2ddG

= MinCnnn
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s1d + en

sfdd + o
m
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s2dDG

= MinCnnn

1

2o
i

Minfei
s1d + ei

sfd,ei
s2dg ; S. s2d

SinceS underestimatesEB, it is also a lower bound to the
barrier, and we focus on it in the following. We now perform
the minimization with respect to the configuration of the
next-nearest-neighbor spins,Cnnn. For each “bubble” consist-
ing of the corner spin, a next-nearest-neighbor and 2d−1 in-
termediate spins, the contribution to the above sum is mini-
mized if the next-nearest neighbor is in the configuration that
leads to the higher initial bubble energy. We are interested in
the average of the above sum over many different systems.
Since the contributions of the bubbles to this average are
additive, it is sufficient to take the average over one bubble,
and our lower bondS is then for largeL simply the number
of bubbles,sL /2dd−1, times this average. The lower bound to
the barrier is therefore for largeL given by

S= sL/2dd−1 3 Ebub, Ld−1, s3d

i.e., it scales asLd−1. For a Gaussian distribution of unit
width of the couplings, the bubble average has in three di-
mensions the valueEbub=0.364, i.e., it is positive. It in-
creases with increasing dimension and approaches for large
dimensions the asymptotic valueEbub=0.330532d−1 (see
Fig. 4).

For the limit d→` we can prove analytically thatEbub is
positive. For each three-spin unit, we call the weaker cou-
pling J1, and the stronger couplingJ2. In the limit d→`,
one-quarter of all three-spin units are initially not frustrated
and have the stronger bond on the left-hand side. They make
together a contribution 2d−3kuJ1ul to Ebub. One-quarter of all
three-spin units are initially not frustrated and have the
weaker bond on the left-hand side. They make together a
contribution 2d−3kuJ2ul to Ebub. One-quarter of all three-spin
units are initially frustrated on the right-hand bond and make

together a contribution −2d−3kuJ1ul to Ebub. The last quarter of
all three-spin units are initially frustrated in the left-hand
bond and make together a contribution 2d−3kuJ2u−2uJ1ul to
Ebub. Together this givesEbub=2d−2kuJ2u− uJ1ul, which is
positive sinceuJ2u. uJ1u. For a Gaussian bond distribution of
unit width, kuJ1ul=2sÎ2−1d /Îp=0.467 and kuJ2ul=2/Îp
=1.128, leading toEbub=0.330532d−1, in agreement with
our asymptotic limit in Fig. 4.

Our lower boundSobtained by calculation(2) is negative
for d=2 and is therefore useless in this case. The reason is
that the value ofes2d is more often negative ind=2 than in
higher dimensions(because we start from the higher initial
bubble energy), leading to a large difference betweenEB

s1d

andEB
s2d and making the inequality in the second line of(2)

worse than in higher dimensions. In order to obtain a positive
Ebub also in d=2, we replace in the second line of(2) the
term 1

2sEB
s1d+EB

s2dd with the more general expressionaEB
s1d

+s1−adEB
s2d, which is valid for all 0,a,1. We then obtain

S= MinCnnn o
i

Minfaei
s1d + s1 − adei

sfd,s1 − adei
s2dg.

Choosinga.0.5 places more weight on the larger energy
EB

s1d and makesEbub indeed positive. Already fora=0.51 we
obtain a positiveEbub/2.0.0039, and fora=0.74, it is as
large as 0.12. Ind=1, the barrier energy is twice the absolute
value of the largest bond, which increases asÎln L for a
Gaussian distribution of bonds. We therefore obtain(apart
from logarithmic corrections ind=1) the general result that
the barrier scales on the hierarchical lattice for alld asLd−1,
implying c=d−1.

In the following, we argue that our results can be gener-
alized to other bond distributions. For some distributions, our
expression forEbub can become negative. This happens for
instance for the ±J model, where the final state of the bubble
can be reached from the initial state without first increasing
the energy(Ebub=−1.5 ford=3). In this case we modify our
calculation in the following way: we first perform a sufficient
amount of decimation steps on the hierarchical lattice, until
the distribution of the renormalized bonds is such that our
expressionS [Eq. (2)] for the lower bound becomes positive.
It must eventually become positive since the asymptotic

FIG. 5. The figure shows a plot ofEbub/2
d−1 for a J= ±2s1−dd/2

bond distribution after one decimation step as function of dimen-
sion d.

FIG. 4. Ebub/2
d−1 as function of dimensiond. The dashed hori-

zontal line indicates the analytically determined asymptotic value
0.3305 which is approached in the limitd→`.
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bond distribution(if rescaled to unit width) is for all distri-
butions with finite moments the same and is very close to a
Gaussian distribution. Then our argument can be repeated on
the coarse-grained lattice, giving a new lower bound to the
barrier energy for the original lattice. This is because the
energy of the system with a given configuration of those
spins that survived the renormalization procedure can never
be smaller than that of the renormalized system. It turned out
that performing one decimation step is sufficient for the ±J
model even ind=3 in order to obtain a positive value of
Ebub. Figure 5 showsEbub/2

d−1 as function ofd for the dis-
tribution of bonds that is obtained after one decimation step
for bond valuesJ= ±2s1−dd/2. (The values are selected such
that the width of the distribution after one decimation step
is 1.) The data are almost indistinguishable from those of
Fig. 4. This is to be expected in higher dimensions, since the
bond distribution after one decimation step is a binomial
distribution, which approaches a Gaussian in high dimen-
sions. We therefore obtain even for the ±J system a lower
bound to the barrier that scales asLd−1. However, we can
expect strong finite-size effects for small system sizes.

To conclude, we have shown that the energy barrier that
must be overcome when introducing a domain wall into an
Ising spin glass on a hierarchical lattice scales in all dimen-
sions asLd−1, for all bond distributions with finite moments.
It remains to be seen if these results can be generalized to
conventional lattices. Conventional lattices do not have lat-
tice sites with a coordination numberLd−1 and might there-
fore have a smaller exponentc. However, the experimental
data forc appear to be generally closer tod−1 than to the
“rival”value u. Since experimental results on spin glasses are
not always probing droplets on the length scales at which
droplet scaling ideas can be expected to apply without the
use of corrections to scaling,10 it is unrealistic to expect per-
fect agreement for the value of the exponentc. A further
complication is that experimental and numerical data are of-
ten studied at temperatures quite close to the transition tem-
peratureTc, when crossover to critical behavior will also
complicate the analysis.15
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