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Energy barriers in spin glasses
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For an Ising spin glass on a hierarchical lattice, we show that the energy barrier to be overcome during the
flip of a domain of size scales a4.9"* for all dimensionsd. We do this by investigating appropriate lower
bounds to the barrier energy, which can be evaluated using an algorithm that remains fast for large system sizes
and dimensions. The asymptotic lintit—« is evaluated analytically.
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Energy barriers determine the dynamics of glassy systemtice givesf= 0.25(Ref. 9 while on a simple cubic lattice its
that have a complex energy landscape with many metastabialue is close to 0.28. Thus the hierarchical lattice provides
states. Typically, the fluctuations between free energyeasonably good estimates for the value of the expoféat
minima in these system&ither between different realiza- least for low-dimensional systemand it is our hope that it
tions or in the same random systestale with observation is equally useful for determining the value gf
sizeL asL’ It is generally assumed that the free energy The problem of finding energy barriers in glassy systems
barriers encountered in moving from one minimum to an-numerically is usually NP-completé We will therefore not
other scale with observation size la However, there exist attempt to calculate the barrier exactly, but we will rather
so far few numerical studies of the value of this exponent inplace bounds on it. Since the upper boufrld—-1 is already
spin glasses, probably because of the difficulty of the probknown due to the above-cited argument by Fisher and Huse,
lem (in contrast to the many studies 6. For directed poly-  we will show in the following that there exists a lower bound
mers in random systems, the identity  was demonstrated to the barrier energy that increases with system size’ds
some time agé.For Ising spin glasses, Fisher and Huse de- A hierarchical lattice is constructed by starting with one
rived within the droplet picture the double inequaliy<¢»  bond connecting two sites. This bond is replaced with a unit
<d-1 (Ref. 2 for dimensiond. The lower limit is due to the consisting of 2-* pairs of bonds, with a new site between
fact that a domain wall must be introduced into the system ieach pair. Each of the“onds is again replaced with a unit
all its spins are to be flipped. However, the minimum domainof 24-1 pairs of bonds, etc., leading to a lattice wit Bond
wall energy scales ak®. The upper limit is obtained by afterl iterations. In Fig. 1 the first three steps of this process
moving a straight domain wall through the system. Sinceare illustrated fod=2. Evaluating a thermodynamic quantity
such a domain wall breaks’™! bonds, its energy cannot be on the hierarchical lattice withlevels is equivalent to evalu-
larger than~L9"1, Several experiments on tweRef. 3 and  ating it on ad-dimensional hypercubic lattice of linear size 2
three-dimensiondlspin glasses as well as a numerical stud-using the Migdal-Kadanoff approximation. Recently, also the
ies in two dimensiorfspoint towards a value af close to or  dynamics of spin glasses have been studied on hierarchical
identical tod—1. However, other experimefitand numeri- lattices®'3“although there is no simple relation to the dy-
cal studie$ suggest a much smaller value ¢f An equality  namics on hypercubic lattices. In Refs. 8 and 14, approxima-
=0 is sometimes tacitly assumed, as for instance in a recenitons based on renormalization ideas were made.
publication on spin glass dynamics on the hierarchical We focus on the energy barrier that must be overcome
lattice® where the probability for a spin flip on the length when moving from the ground state to the lowest-energy
scaleL is chosen to be a function of the effective coupling configuration with a domain wall. This domain-wall configu-
strength on this scale, which increased.4s ration is obtained by flipping one of the two level-0 spins and

In this paper, we consider the Ising spin glass on an hier-
archical lattice and show in fact thgt=d-1 in all dimen-
sions. The Hamiltonian of the system is given by

H=-3 35S, (1 .
% 1SS ) <>

where(ij) indicates the sum over all nearest-neighbor pairs, *s® s®
and the spins assume the values +1. We will mainly consider =50 s
a Gaussian distribution of couplings with zero mean and unit

width. The hierarchical lattice gives for the exponehtn FIG. 1. Iterative construction of the hierarchical lattice. At each
dimensiond=2 the value -0.271Ref. 9 which compares step, each bond is replaced witA 2 pairs of bonds, with a new
well with the value -0.29 from recent numerical studies onlattice site in between. Different grey shades indicate sites added at
the square lattic& In three dimensions the hierarchical lat- different iteration steps.
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FIG. 2. (3) The right-hand corner site drawn largb) its nearest FIG. 3. A subunit of three spins and the energies associated with
neighbors drawn largec) its next-nearest neighbors drawn large. the different spin configurations mentioned in the text. The figure is

drawn for the case that the right-hand bond is stronger than the
by determining the new ground state with this fixed newleft-hand bond(J2|>|J1)).

configuration of the level-0 spins. On an hierachical lattice,
i -1
domain walls always cut exactly"* bonds. We allow only pling to its left neighbor is stronger than the absolute value

single-spin flips when moving from the initial to the final o yhe coupling with the corner spin, must not be flipped.
state, since this is the_real_lstlc dynamics fc_)r th_'s problem. Atrpis is because for a given configuration of its two neighbor-
zero temperaturéhe situation we are considering herthe 4 snins. the energy is always lower when the intermediate

free-energy barrier is identical to the energy barrier. As indi-ghin hag the orientation that satisfies the left-hand bond and
cated above, our goal is to show that there exists a low

ossibly frustrates the right-hand bond. Since the values of
bound that scales ds™. For this purpose, we consider thee'5 y g

) : ) ) the couplings are assigned at random, only about half of the
neighborhood of the right-hand level-0 sp_ln,d_tlhe COMeTintermediate spins are candidates for being flipped before the
spin” (see Fig. 2 We focus our attention on its“ -~ level-l

iahb d it /2141 levell—1 corner spin.
nearest neighbors and its/2)*" level{1-1) next-nearest Evaluating all possible combinations of these intermediate

neighbors. At the moment where the corner spin is flippedgping that might be flipped before the corer spin costs a
the next-nearest neighbors are in a configurafign. We do  ~omputer time that increases exponentially with the number
not know the configuration of these spins which is associateds ihese spins. We will therefore later make an approxima-
with the true barrier, but we know that the optimum spin-flip j5, that underestimates the above-defined lower bound to

sequence which passes through the true barrier state mygk parrier. In order to define the quantities we need, let us
have one of the possible configuratiods,, of the next-  fist consider a subunit of three spifeee Fig. 3 The corner
nearest-neighbor spins at the moment where the corner spithin on the right-hand side, one of its next-nearest neighbors

is flipped. Therefore we will later minimize our lower bound q the |eft of it, and the intermediate spin sitting between the
with respect tC,,,, We start from the configuration of low- o and connected to both of them. The left-hand spin is

est energy that can be obtained with a given configuratioiyeq The corner spin is first in its initial configuration. The

Conn Of the next-nearest neighbors of the right-hand comef,iermediate spin has the configuration that minimizes the

spin and with the two corner spins fixed at their initial con- gnergy. This initial energy is our reference energy, and we set
figuration. Clearly, the energy of this state is at least as hight 15 zero. Now lete? be the energy of the three-spin unit

as the energy of the initial configuration. We next calculatehen the intermediate spin is flipped, and E? be the
the minimum energy barrier that must be overcome when th%nergy of the three-spin unit when the right-hand sgpire
right-hand comer spin is flipped with the configuration of the coer spin is flipped without first flipping the intermediate
next-nearest neighbors remaining fixed. This minimum engyin and le! be the energy of the three-spin unit when the
ergy barrier is obtained by first flipping a suitable SeleCt'O”right-hand spin is flipped and the intermediate spin is ad-
of the nearest-neighbor spins of the comer spin, before thgsteq sych that it minimizes the energy. If the left-hand bond
corner spin itself is flipped. The barrier state is the one im+g gironger than the right-hand bond, we hat®= e, oth-
mediately before or immediately after the corner spin isgnyise we have? > e, ' '

flipped, and it is reached from our initial state by spin flips  Noy Jet n count all those three-spin units for which the
each of which increases the energy. Minimizing the energyntermediate spin is being flipped before the corner spin, and
barrier (i.e., the energy difference between the barrier stat§e; m count all those three-spin units for which the interme-

and our initial statpwith respect t&,,, gives a lower bound  §iate spin is not flipped before the corner spin. The energy of
to the true barrier. This is because the energy of our initiaf,o system just before the corner spin is flipped is
configuration is at least as high as that of the true initial

configuration and since the energy of our barrier state cannot S W = W
be larger than that of the true barrier state. - € = EB
In the following, we determine this lower bound to the
barrier. The right-hand corner spin is connected to each of itg,§ the energy of the system right after the corner spin is
next-nearest neighbors vi&2 intermediate(leveld) spins, flipped is
each of which initially assume the orientation that has the
lower energy. Our task now consists in finding those inter- S @4 = R
mediate spins that have to be flipped before the corner spin is ~ €m - € —FB -
flipped, such that the barrier energy is as low as possible.
Intermediate spins, for which the absolute value of the cou- The lower bound we are looking for is then

064412-2



ENERGY BARRIERS IN SPIN GLASSES PHYSICAL REVIEW B0, 064412(2004)

4T T T T T T 1 together a contribution <2%(|J1|) to Ey, The last quarter of
- N all three-spin units are initially frustrated in the left-hand
03 . bond and make together a contributiofr%|J2|-2/J1|) to

| _ Eoue Together this givesE,,=29%|J2|-|J1]), which is

éqn o2l i positive sincgJ2|>|J1|. For a Gaussian bond distribution of
| ] unit width, (|J1)y=2(y2-1)/\7=0.467 and(|J2))=2/\=7
=1.128, leading toE,,,=0.3305x 2971, in agreement with
0.1 N our asymptotic limit in Fig. 4.
i ] Our lower bounds obtained by calculatio(?) is negative
0 ; ' th ' |6 ' g ' 1'0 . 1'2 ' 1'4 for d=2 and is therefore useless in this case. The reason is

d that the value of'? is more often negative id=2 than in
higher dimensiongbecause we start from the higher initial
FIG. 4. E_bub_lzd‘l as function of dimension. The dashed hori-  pypple energy leading to a large difference betweEré”
zontal Ilne_lnd_lcates the anal_ytlcally_ determined asymptotic valueand E(Bz) and making the inequality in the second line(&f
0.3305 which is approached in the linlt- . worse than in higher dimensions. In order to obtain a positive
Epup @lso ind=2, we replace in the second line &#) the
Eg=Minc Min,n Max ES’,EQ] term %(Eg)+Eg)) with the more general expressi@Ey’
1 +(1—a)EB), which is valid for all 0<a<1. We then obtain
= Min¢ Minnm[—(Eg) + E§32>)]
n L2 S= Mincnnnz Min[ae? + (1 -a)€", (1 -a)e?].
i o1 S @ '
- Mmcnnan”’m{Z(; (e +en) % €m )} Choosinga>0.5 places more weight on the larger energy
E(Bl) and make<,, , indeed positive. Already foa=0.51 we
= Ming }2 Min[e? + € €?]=s. (2)  obtain a positiveE,,;/2=0.0039, and fora=0.74, it is as
nnn 25 large as 0.12. lnl=1, the barrier energy is twice the absolute
value of the largest bond, which increases isL for a
Gaussian distribution of bonds. We therefore obtgipart
from logarithmic corrections iml=1) the general result that
the barrier scales on the hierarchical lattice forda#is 91,

SinceS underestimatekg, it is also a lower bound to the
barrier, and we focus on it in the following. We now perform
the minimization with respect to the configuration of the
pext—nearest-nelghbpr spirG,,, For each .bubble c_onS|st— implying ¢=d—1.
ing of the corner spin, a next-nearest-neighbor afid b-

: diat ins. th tribution to the ab . . Inthe following, we argue that our results can be gener-
ermediate spins, the contribution to th€ above SUm 1S Minlz i e 16 other bond distributions. For some distributions, our
mized if the next-nearest neighbor is in the configuration tha

.Iexpression forE,,, can become negative. This happens for

leads to the higher initial bubble energy. We are interested fhstance for the & model, where the final state of the bubble
the average of the above sum over many different SYStMR{an be reached from the initial state without first increasing

Since the contributions of the bubbles to this average arg, energy(E,,,=—1.5 ford=3). In this case we modify our
u : :

additive, it is suff|C|er_1t o take the average over one bubbleaculation in the following way: we first perform a sufficient
and our lower bg’_r}‘s.'s then_for largel. simply the number amount of decimation steps on the hierarchical lattice, until
of bubbl_es,(_L/Z) , times this average. The lower bound to the distribution of the renormalized bonds is such that our
the barrier is therefore for large given by expressiors [Eq. (2)] for the lower bound becomes positive.
S=(L/2)% 1 X Epyp~ L42, (3) It must eventually become positive since the asymptotic

i.e., it scales ad% . For a Gaussian distribution of unit
width of the couplings, the bubble average has in three di-
mensions the valué&, ,=0.364, i.e., it is positive. It in- 03
creases with increasing dimension and approaches for large
dimensions the asymptotic valug,,,=0.3305x 241 (see -
Fig. 4). o
For the limitd—c we can prove analytically thai,, is o
positive. For each three-spin unit, we call the weaker cou-
pling J1, and the stronger couplind?. In the limit d— o, -
one-quarter of all three-spin units are initially not frustrated
and have the stronger bond on the left-hand side. They make 0.1
together a contribution®%(|J1|) to E,,, One-quarter of all 2
three-spin units are initially not frustrated and have the
weaker bond on the left-hand side. They make together a FiG. 5. The figure shows a plot /2% for a J=+21-/2
contribution 273(|32)) to Ey,, One-quarter of all three-spin pond distribution after one decimation step as function of dimen-
units are initially frustrated on the right-hand bond and makesion d.

064412-3



B. DROSSEL AND M. A. MOORE PHYSICAL REVIEW Br0, 064412(2004)

bond distribution(if rescaled to unit widthis for all distri- To conclude, we have shown that the energy barrier that
butions with finite moments the same and is very close to anust be overcome when introducing a domain wall into an
Gaussian distribution. Then our argument can be repeated asing spin glass on a hierarchical lattice scales in all dimen-
the coarse-grained lattice, giving a new lower bound to theijons ad 92, for all bond distributions with finite moments.
barrier energy for the original lattice. This is because that remains to be seen if these results can be generalized to
energy of the system with a given configuration of thoseconventional lattices. Conventional lattices do not have lat-
spins that survived the renormalization procedure can nevefee sites with a coordination numbef-! and might there-

be smaller than that of the renormalized system. It turned oUWy e have a smaller exponerit However, the experimental
that performipg one'decimation step is suffigignt for thke £ 44t fory appear to be generally closer de-1 than to the
model even ind=3 in ordﬁr to obtain a positive value of «jya1value 6. Since experimental results on spin glasses are
Epuy Figure 5 showss,,/2° as function ofd for the dis- ¢ always probing droplets on the length scales at which
tribution of bonds that is obtained after one decimation Stel?jroplet scaling ideas can be expected to apply without the
for bond V_aluegziz(lfd)lz_- (The values are selected such ;e of corrections to scalifgjit is unrealistic to expect per-
Fhat the width of the dlstrlbgtlo_n gfter_ one decimation stepsgct agreement for the value of the exponentA further

is 1) The data are almost indistinguishable from those Ofcomplication is that experimental and numerical data are of-

Fig. 4. This is to be expected in higher dimensions, since thgp studied at temperatures quite close to the transition tem-
bond distribution after one decimation step is a binomialyeratyreT,, when crossover to critical behavior will also
distribution, which approaches a Gaussian in high d'mentomplicate the analysfS.

sions. We therefore obtain even for thd system a lower
bound to the barrier that scales B$*. However, we can This work was supported in part by ESF's SPHINX pro-
expect strong finite-size effects for small system sizes. gramme.
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