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The end-to-end energy-energy correlations of random transverse field quantum Ising spin chains are com-
puted using a generalization of an asymptotically exact real space renormalization(B@ujpreviously
introduced. Away from the critical point, the average energy-energy correlations decay exponentially with a
correlation length that is the same as that of the spin-spin correlations. The typical correlations, however, decay
exponentially with a characteristic length, proportional to the square root of the primary correlation length. At
the quantum critical point, the average correlations decay subexponentiaﬂTyﬂe‘“”Sth, whereas the
typical correlations decay faster, ag X'\, with K a random variable with a universal distribution. The critical
energy-energy correlations behave very similarly to the smallest gap, computed previously; this is explained in
terms of the RG flow and the excitation structure of the chain. In order to obtain the energy correlations, an
extension of the previously used methods was needed; here, this was carried out via RG transformations that
involve a sequence of unitary transformations.
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[. INTRODUCTION end-to-end correlation function is calculated, providing a
sharp illustration of this point. The distribution of the order-

The random transverse field Ising modElk. (1)] is the  parameter correlations becomes a delta funaiemtered on
prototypical model of a quantum system with quenched ranits typical valug in the limit of infinite length; nevertheless,
domness. In this model, a ferromagnetic Ising interaction irthis is misleading: the average correlations even in the infi-
the z direction competes with a magnetic field in thelirec-  nite length limit are much stronger than the typical correla-
tion. Because the Hamiltonian contains both xtendz spin ~ tions that are obtained for almost all samples.
operators that do not commute with each other, and thus In this paper, we study the end-to-end Ising exchange en-
involves quantum fluctuations, it is sometimes referred to agrgy (6%0%) and transverse spif@™) correlations of long, but
the quantum Ising model. Reference 1 gives a thorough refinite, random transverse field Ising chains. The transverse
view of the pure transverse field Ising model. The randonspin correlations are as important to understand as the order-
transverse field Ising model undergoes a unusual quantuparameter correlationg.e., 6% correlations. Experimentally,
phase transition at zero temperature that is controlled by athe two correlation functions differ only in the polarization
infinite randomneséixed point>3 As a consequence, over a of the neutron beam, or, alternatively, the direction of a prob-
wide range of parameters, unusual low-temperature behaviang magnetic field. Furthermore, mechanical distortions of
is exhibited. In one dimension, many of the low-energy prop-the chain couple to its magnetic degrees of freedom through
erties have been found exactly, initially by McCoy and4®u the Ising interaction, so that spin Peierls and other magneto-
and by various authors recent§.’ The behavior in higher elastic effects are controlled Bfo” correlations. The behav-
dimensions has been shown to be in the same general claiss of the Ising energy and transverse magnetization correla-
as the one-dimensional systéf. tions are, as one would expect, significantly different from

In addition to the theoretical interest of the transversethose of the order parameter; indeed, it is not at all clear
field Ising model, models with similar behavior have beenwhether these correlations should exhibit the disparity be-
argued to be relevant for the low-temperature properties ofween their average and typical values that characterize the
heavy fermion materials, with randomness and proximity toorder-parameter correlations. Our analysis of thgtribu-

a quantum critical point playing key roles in producing tions of these quantities shows that such disparity indeed
nonfermi-liquid behaviot? exists, but in a more subtle way.

Much is already known about the random transverse field Computing the distributions of the Ising energy and trans-
Ising chain. Previous calculations have obtainedaberage verse spin correlations introduces new difficulties that com-
magnetization and” correlations’ But, as is often the case pel us to further develop the general renormalization group
in random systems, even in large samples some physicaRG) structure that was previously introducg®The formu-
guantities do not converge to a single value, but have a norlation presented here should be useful for other random
trivial distribution. In addition, the resulting distributions of quantum systems, in addition to random quantum Ising mod-
physical quantities are often such that the average value @ls. In particular, it should enable the study of time-
the quantity differs greatly from the typical valddefined, dependent correlation functions, needed for the understand-
for example, as the median of the distributid®''13Be-  ing of the dynamics of random quantum systems.
cause of the ubiquity of this type of behavior, it is clear that The organization of this paper is as follows: in the re-
knowledge about the probability distributions of physical mainder of this section, we review some aspects of the ran-
quantities is crucial for a full understanding of random sys-dom Ising model and introduce the quantities of interest. In
tems. In Ref. 6, the distribution of the order-paraméte) Sec. Il we develop and apply a unitary-transformation ap-
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—h_c°, —h,c;' —h,6}' clusters of spins and their moments can be computed.
N N Y\ As the energy scale is systematically reduced, the distri-
_ S _J i butions of the effective couplings become very broad for
J ,,6°,0 J, 6,6

—10~=170 . e .
oro small 5. Concomitantly, the averages of many quantities in

FIG. 1. The Hamiltonian of the transverse field model. Each sitdh€ ground state are determined by rare tails of their distri-
is a spin-1/2 that interacts via Ising exchange with its nearesPutions. An example of this behavior, which was mentioned
neighbors and can be flipped by the logahagnetic field. above in Sec. |, is given by the order-parameter correlations,

C#n,n+r)=(0%0%,,). Typically, the two sitesn and n+r

proach to the real space RG. In Secs. Ill and IV Laplacé‘ave correlations that decay exponentially witiNeverthe-

transforms of the energy and transverse spin correlations af@SS; at large separations,the average order-parameter cor-
derived and used in Sec. V to obtain the average and typic&f'ations,

correlations, and more general information about the distri- z _/rzn

: > : . CHn,n+r) =(020%,.), 3
butions. Finally, Sec. VI presents conclusions. Some techni- A ) = (0n0her) ®
cal details are relegated to an appendix. are dominated by the rare realizations for which the two

spins,n andn+r, are almost perfectly correlated with each
other in the ground state, i.e., they belong to the same cluster.
In the RG picture, this event happens when the two spins in
The Hamiltonian of the random quantum Ising model is question are not decimated until they join together into the
same spin cluster. Although the probability for this to happen
H == 2 (31110707, + 5, (1) vanishes in the limit —o, and therefore constitutes a rare
i tail of the correlations’ distribution, it vanishes less rapidly
with each site having two state#?=+1, with quantum fluc- than the typical correlations, and hence, dominates the
tuations between them caused by the transver§efields. average.
The system is illustrated in Fig. 1. Note that there are no
magnetic fields in the direction, so that there is a global C. Logarithmic energy scaling
symmetry of inversion about they spin plane. The presence _ )
of z fields would break this symmetry and change the low- ™Many properties of the random quantum Ising model can
energy physics radically. bg understood in terms of the s.calmg behawor.of the cluster
The quantum Ising model exhibits a quantum phase tranSi2€S, bond lengths, and coupling strengths with the energy
sition in its ground state when the nearest-neighbor interacc@/® and the deviation from criticality. At the critical
tion and the transverse field are of comparable strength. In BOINt, the distributions offy; and J;;., become infinitely
nonrandom model this occurs whérh. In a random sys- Proad as the energy scal®, approaches zero; the random
tem, where thel’s and theh’s are drawn independently from quantum critical point is thus an infinite randomness fixed
some distributions, the transition occurs wHeg h=log J, point2816 At this fixed point, the distribution of cluster and

where the overbars denote averaging over the randomness.J@nd lengths, the logarithms of the interactions in unit€lof

A. Random transverse field Ising model

convenient parametrization of the proximity to the transition Q
is {=log—,
- J
logh-logJ
5= , (2)
Q
var(log h) + var(log J) B=log—, 4)

h

and the deviation from criticalityd, all scale with the loga-
rithm of the energy scale,

with & positive in the disordered phase.

B. Real space RG

A powerful route to analytic information on this system is
a real space—or energy space—RG method that is a gener-
alization developed by one of d%f an RG introduced by
Ma, Dasgupta, and Hif:*>The real space RG is carried out

Q
I' = log EI (5)

Here, (), is the initial energy scale set by the strongest cou-
plings, and() is the magnitude of the largest remaining cou-

by decimating the term in the Hamiltonian—a sit&™), or a . .
bond (Jo“6%)—with the strongest interaction; second—order.pllngs after the stronger ones ha_ve been decimated. The scal-
' ing can equivalently be given in terms of a length scale,

perturbation_ the(_)ry results in new effective co_uplings. In the€—for example, the length of an effective bond—the scaling
case of demmatlng a.bond, a cluster fo_rms ywth a r.enormalbf log energies at fixed is of the form

ized transverse field; in the case of decimating a spin, a new
Ising interaction that couples its two neighbors forms. The g:z\ﬁ,
Hamiltonian preserves its form, with effective bonds cou-
pling spin clusters, and the energy scale—the maximum re- C=wl 6)
maining coupling—reduced. The effective bond strengths LA

and lengths, as well as the effective transverse fields on theherey andz are scale invariant random variables.
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Various basic results follow directly from this scaling. In Q ~ ¢29 (11)
particular, the linear number density of remaining spin clus- ) )
ters at scald” is with the effective dynamical exponent,
1
L =~ — 12
n= T2’ (7) E (12)

near the critical point.

The distributions of the log interactions also change form.
In the disordered phase, the distribution of the effective fields
does not continue to broaden, agd-I",, ~1/6. But the ef-
fective bonds become longer and longer and weaker and
weaker with the distribution of the lis broadening rapidly,
Rith typical {~T'. In the disordered phase, the average
. = . _ . ) order-parameter correlations decay exponentially with the
tion of ~In(E, ~Eo)/ L attains a universal scaling form in the ., e ation lengtht~ 1/ Nevertheless, the typical correla-

largelL, and smallb‘ limit.® From_ the RG structure, this can tions decay much faster; for example, end-to-end correla-
be seen by noting that the gap is the energy scale of the chajpy s of almost all samples decay a€ (Ref. 17. More

when it has only one remaining cluster—and thus, only Onpprecisely, asL — oo, the distribution of of the scaled log-

unfrozen degree of freedom. Therefore, the gap is approXizgrrelation function, A,/L, approaches a delta function

mately € ~ "L, with I o \E the sample-specific scale at peaked an,/L=26. The average correlations are thus domi-
which this last cluster is decimated. nated by exponentially rare samples that happen to have

In long finite chains of length., the end-to-end spin cor-  gnomalously strong exchanges and/or anomalously weak
relations(ajaf) are a useful probe of the long length-scale- .3ndom fields.

ordering tendencies. The distributions and moments of these |n the ordered phasei<0, at low-energy scales the fer-

can be calculated exactly in the asymptotic limit of long romagnetic clusters become bigger and bigger, until their
chains and smalls, these compare well with numerical sjze reaches the length of the system. The transverse fields
results® The distributions can be expressed usefully in termsyn these clusters concomitantly continue to become more
of broadly distributed. This tranverse field is the gap between
A= — loa CZ0 L 8 the symmetric and antisymmetric combinations of the two
=~logC*0,L). ®) “ordered” states of the cluster. As opposed to the clusters, the
remaining bonds stay relatively short at low energies, and
cal point, with a broad distribution on the same scale. Théhe'r distribution does not continue to broaden. These fields

average correlations, however, decay much more slowly"?‘.nd bonds thus ple}y .opposne roles in the two phase_s; as
only asC%1/L. discussed below, this is a general consequence of duality.

with ny @ nonuniversal prefactor inversely proportional to the
original bond lengths.

An example of the scaling of log-energies with length is
the gap,E;—Eg, between the ground state and the first ex-
cited state of long finite chains: Analytic and numerical re-
sults show that near the critical point the logarithm of the ga
is broadly distributed on the scald.. Indeed, the distribu-

This logarithm of the correlations scales with at the criti-

D. Ordered and disordered phases E. Duality

When § is nonzero but small, there are two scaling re- As for nonrandom classical and quantum Ising models,
gimes. At the early stages of the decimation process, clustethere is a dual description of the random quantum chain in
and interactions are not “aware” of being noncritical. In thisterms of bond variables. Instead of using the states| | ),
regime, the critical scaling holds. At longer scales, howeverpn each site, one can use the states of the bonds. This is done
there is a crossover to an off-critical regime. The crossoveby assigning+), |-) to the bond if the two spins surrounding
occurs when the typical cluster sizes and bond lengths are dfie bonds aréf 1), || |) or || 1), |1 |) respectively. These

order of thecorrelation length are domain-wall variables. In the new Hilbert space, if we
choose the quantization axis to keather tharg, the Hamil-
£~ 1 9) tonian has the same form, but withandJ exchanged. The
&’ duality is summarized in the following table:
and the log-energy scale is of order 1) -6
1
Ty ~=. (100 Jnna h,
0 h, = Jn e (13
At scales larger thag, the behavior is characteristic of one ‘fri Uﬁi’fm
of the two zero-temperatugghasesand thus depends on the 07051 o
sign of 6.

At low energies in the ordered and disordered phases, thé the 6 dependence of the distributions of the random cou-
scaling between energy and length scales is different fronplings has the formp;(J=X, §)=pp(h=X,-¢), the random
that at the critical point. For smad, in both phases model is self-dual with0 —4. More generally, it will not be
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_ho(’ox —h,0;* yield information on the transport of energy which is the
only locally conserved quantity in this system. Unfortu-
@ . _/1\ nately, in the bulk of the chain, correlations are very hard to
—Jy,9, o calculate for reasons discussed in Ref. 3. Therefore, we study
the somewhat simpler but closely related quantities: the end-
l duality to-end correlations of the energy density in finite chains, re-
stricting our analysis to equal time correlations.
~hy, =0 S Since the Hamiltonian involves two kinds of terndggoy
m A N andho™, to obtain theE-E correlations we need to calculate
h oo ol three  quantities, (Jo0407h.07), (hgoph of), and
00T 1Y

(J010607J.-1 L0 _107). However, the duality transformation

FIG. 2. A chain that terminates with the site 0 is dual to a chainSimplifies - matters, since it map$iagh.of at & to
that terminates with a site 0’, which experiences no transverse field010607 I -1 LO'IZ_—_l'O-IZ_ at -4, so we iny need to compute one
The bond operator ko5, 5%, is then the edge energy operator of of these quantities. Also, the mixed correlation function is
the dual chain. dual to itself, therefore the distribution @flg,a505h o)

must depend ofy, and be the same in the two phases. Note

exactly self-dual. But from the definition afin terms ofp,  that a related single-end quantity, the imaginary time 1‘;0”9'
andp, [Eg. (2)], and the universality at low energy scal@s lation funCt'°n<(_’)5(0)")(§(T)>’ was gqn3|der§d by Igldt gl.
particular, of the distributions of the effective couplingse The calculation of the quantities of interest requires an
expect that the asymptotic behavior at low energies an xtension of the methods used so far. The primary reason for

small & will indeed be self-dual for any well-behaved this is that the energy correlations are dominated by third-

distributions? order perturbative effects at each stage of the decimation, in
As we are interested in end-to-end correlations of finiteCONtaSt 0 the spin correlations, which are controlled by

chains, we must consider what happens to the ends of a Cha?r(]acond—order perturbative effects. .
To be able to carry out higher-order RG calculations, we

under the duality transformation. Leihgog be the energy develop an approach to the decimation in terms of unitary

operator on the left end-site. Under duality, this site will be R .
X ; ! transformations; this allows one to follow precisely how op-
mapped into a bond with corresponding energy operator

A7 o~z . . A erators of interestsuch ass™) evolve during the RG process.
hooty, 0%, (See Fig. 2 The bond in the dual chain implies a This approach thereby gives a systematic way to deal with

new site O'that corresponds to the domain-wall variable tohigher orders perturbative effects even in problems previ-
the left of the first spin in the original chain. This new site, ously analyzed using second-order perturbation thédiye

0, thus carries the information about an arbitrarily fixed ypjitary-transformations method is developed in the next sec-
boundary condition, e.g|,] )with respect to which the left- tion (Sec. 1.

most domain wall, and hence the original end spfp is

defined,; it thus cannot be entirely forgotten. But in the dual

Hamiltonian, the operato&é,, does not appear, so that the Il. UNITARY TRANSFORMATION RENORMALIZATION
dual end transverse field is zero, abf}, is time indepen- GROUP

dent. The same is true at the other end, where the extra spin |, this section, we develop a perturbative scheme based
is needed for the original{ to be defined. Superficially, the o ynitary transformations that will allow us to separate the
dual chain appears to have one exira degree of freedom a§5rious parts of the Hamiltonian and successively simplify
sociated with each end. But the orientation of the dual edgg e wave functions of the many-body system to a hierarchi-
spins is entirely a convention, and therefore, the additiona}, product of simple spin-wave functions. Simultaneously,

degrees of freedom have no effect. o _ we must keep track of the original operators in order to even-
Note that in the special case in which the original Cha'”tually compute their ground-state correlations.

starts with a spin to which no transverse field is applied, the \y, begin with the first stage of decimation by construct-
duality transformation yields a chain with the first bond turn-ing the eigenfunction of the highest energy part of the Hamil-
ing into a site. More generally, any site in the original chainygnian and transforming it to take into account the low-
on which there is no transverse field corresponds under dyspergy parts perturbatively. Specifically, the transformation
ality to a break in the chain that divides it into two uncoupledgetS rid of the off-diagonal parts that connect states with

parts. In the original variables, there are concomitantly tWQgge energy differences between them. For the Ising chain,
disconnected subspaces in which the spin that cannot flip h3gis can be done while preserving the form of the Hamil-
o,=*1, respectively. The parts of the chain to the left and togign.

the right of this spin are thus independent of each other. Given a Hamiltonian7¢, and a many-body ground-state

wave function,|G), with

o . . H|G) =Eg|G). 14

Our goal in this paper is to understand the energy density G)=EdlC) (14
(E-E) correlations of the random chain. These would be parwe can generally make a unitary transformation with a Her-
ticularly interesting at nonequal times, as they would thermmitian operatorS and write

F. Energy-energy correlations
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iS1/miSaiS| ) = oIS T

e5He5%|G) = €9(G), —h_o?, —"4S —h,o

s < (19 ) ) e
Hefi = =eSHe™S, and € IG)=[H), N~ 71()6f1(5()zv =319
with the goal to makéG) close to a product of simple wave
functions. Such transformations can be used to eliminate—or Heﬁ:eiS/ He™iS1
separate—Ilow-energy parts in the Hamiltonian.
Let H=Hq+V, whereH, is the high-energy part dff and
V is the remaining low-energy parts. The effective Hamil- . B B
tonian is then _h;q—l /0\00 _hfcl
i2 N \J
Hen=Ho+V +i[SHol +i[SVI+ Z[S[S Holl + O(S). Ty ° S T
(16) H —6’92 He™
If we are able to choos8 so that
V+i[SHyl=0, (17 —h_io7 -y}t
J_5=C Jy, =0,
thenHe will contain no first-order terms. The second-order W
corrections tdH, give rise to effective interactions. We may
now solve for the ground state &f.;, and hence the original Lol - o
H: hy 1
Hen|H) = Eg|H) FIG. 3. Site decimation. Spin 0 is almost frozen in thdirec-
tion due to the strong magnetic field. Quantum fluctuations cre-
IG) = €S|H) (18) ate a second nearest-neighbor effective interaction between sites -1

and 1. This interaction is weaker than anyJofg, Jo1, ho.
Iterating this process separates the higher-energy parts of the

Hamiltonian from the lower-energy parts. At each stage, the | order to eliminate the first-order couplings to spins0,

effective higher-energy parts can be simply diagonalizedmyst satisfy Eq(17); thus we first choose
The remaining nondiagonalized Hamiltonian only has pieces

with energy much lower then the gap of the high-energy J01 ~y le”yol

section, which was just diagonalized. The ground-state wave Sa=- _1 7607 = 2h, ’ (21)
function is then constructed perturbatively from the wave-

function |H), which is a hierarchical wave function simply which yields the following terms in the effective Hamil-
expressible in terms of the ground states of the high-energionian[Eq. (16)]:

parts of the sequence @i.4's. Each term in the hierarchy

will be a spin-cluster pointing in the direction of the trans- _ Jodioayy hodorayay hodinn .,
verse field. For an example, see E85) below. Hetr = hy s o401 o10;
Note that this method is related to the flow equation ap- (22)
proach for interacting quantum problems developed by Ke-
hrein and Wegnel?2° Note that site 1 is still coupled to adjacent sites by a second-

order interaction. We would like to restore the Hamiltonian

to its original form; thus we need to eliminate the new type
We now apply the transformationd5) to successively of interaction. To get rid of it, we perform another transfor-

reduce the maximum energy scale of the random quantumation using

Ising Hamiltonian, thereby obtaining a series of low-energy

effective Hamiltonians of the system. We begin by choosing S=- NoJos ~ S - h23120_z

A. Unitary RG for transverse field ising chain

the largest energy coefficient in the Hamiltonidn and de- 2h2 1 2h2 17 (23)
note itH, (with the corresponding coupling the initial energy . o _
scaleQ),): for example,Hy=-h,5% (see Fig. 3 LetV desig-  The effective Hamiltonian now includes
nate the part of the Hamiltonian that we would like to elimi- o .
nate. For the above example, we would like to eliminate the Heii = - .. =J-100%105 — ho0p

arts connecting site 1 to the rest of the chain: ~ agaxa - ngn
P J = J0206010% ~ 0% = 330505 + ...,

V== 3010607 = J12070%. (19

In addition to these two parts, the Hamiltonian also contains - o7, (24)

the parts involving the remainder of the chain, from which we see that in the low-energy subspacé{gf

Hi=...— ) 100%105— hooy — hy0s — 330505+ ... (200  the effective exchange between spins 0 and 2 is given by
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—h,0; —h,S; with spins 1 and 2 either in the stdtg;,)=|11)|1,) or in the
—() O — state|](15)=|11)|l2). Therefore, in the ground state f,
=L1092;% _J 6767 ~J1,97 05 ~znA . . .
=005, spins 1 and 2 form a ferromagnetic cluster, which we
denote as Eq12). We can define cluster operatoés, ,, and
S5 i i X ) . .
= 251 pEtS1 g &1, that operate on the spin clusteir2) in the following
way:
oo -1 O a-i 0 &(212)
-L,902,9 =797 65
holy v st s A -
e % % o1 K Oé[l 0%12)
FIG. 4. Bond decimation. Sites 0 and 1 are frozen into one AYay o A
cluster by the strong Ising interactiody;. Quantum fluctuations - 0“\1/0'2 O 0{12)- (29
produce an effective magnetic fieldy;=hgh;/Jg;, Which flips the )
composite spin cluster. This field is weaker than anpgfhy, Jo,. 1N terms of which
3 - Jordiz 25 Hefr = Ho= .- ~ho05 = Jo12060(12 ~ N120712
02~ : a7 A N
hy ~J123071905 ~ 303~ ..., (30)
Sinceh; is the strongest coupling energy in the chain, the
resulting effective bond obeys with
Jo2 < ho,dond1s 26 ~ _hh
02 0 -01 12 - - ( ) h(12): jl. 2 (31)
where the sharpness of the inequality is because we assume 12
strong randomness. We can now partially diagonatzg by . ) i
writing being the effective transverse field on the new clugle)
that has replaced the pair of spins 1 and 2 that now only
Hy=|— >1|é(1)> appear separately in the high-energy territig Again, sincg
Ji» is the strongest energy, and strong randomness is as-
IG) = &S S| H), 27) sumed, the effective transverse field obeys:
whered|—1)=|—1) and|GY) involves only the spins other Nz < hy,h,duo. (32)

than 1. We are left with a renormalized spin chain with the o _ o
spin at site 1 eliminated, and with an effective interaction In both the decimation cases we regain the initial form of

Ju20%5% between spin 0 and spin Pote that we could also the Hamiltonian, but with one less spin. As shown in Refs. 2
keep the high-energy sector that involJes,); the effective and 3, with even stronger rqndqmness. The Increase in 'the
Hamiltonian and state of the rest of the chain would diﬁerrandomness with each step justifies the iterative application

from those of the low-energy sector because of the presencﬁ%t the real I_spgcet RG r?_shdescribed ir;) this secfti(:rr:. Iu_lebacth
of &%, in Heg of Eq. (24).] step, we eliminate a high-energy subspace of the Hilber

f the chain, which i d by &om th in-
The analog of the above results for the case where aspace of the chain, which is gapped ) #om the remain

h . . _ 5757 s elimi qi [ﬁg subspace. The range of excitations in the remaining sub-
exchange interaction, e.gHo=-Ji2010%, Is eliminated I gn506 is much smaller thad. The iterative application of

(Fig. 9 the decimation procedure outlined here amounts to separat-
Ho == J1,0%0%, ing the Hilberf[ space of the chain into a hierarchy of sequen-
tially decreasing energy subspaces. If the coupling distribu-
tions expand without bounds during the flow, this method is
asymptotically exactt
After applying this set of transformation rulds (the
oy e, original chain lengthtimes, we are left with a single spin-
S, = oyos+ o16%, : -
AP 2315 cluster that carries the moments of some fraction of the set of
original spins. The ground state of the chain is then given by
hodot ~y~,  Nados., - the state in which this cluster points in thelirection due to
S=-" 5 0106~ 5 0303, (28)  the transverse field. In the same way, we can also access the
2\]12 2\]12 . . . . . .
various excitations of the quantum Ising chain by keeping
This could be obtained by using the duality described in theéhigh-energy subspaces in the decimation process.
introduction(Sec. | B and in Ref. 3, or by direct computa- At the end of the decimation process, the full effective
tion. The ground state df(y=-J;,070% is doubly degenerate Hamiltonian is given by

V=—h16){—h26'x,
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Gy =8V i? | eSSy, (34)

Note that the later transformations are the first to operate on

[H). In the end of the decimation procefd) is a product of

cluster wave functions, where each cluster points in the di-
FIG. 5. An example of hierarchical decimation of a chain with rection of the transverse field. For examgld) for a chain

four sites. First, site 1 is decimated. At a lower-energy scale, sites ®f four spins as in Fig. 5 is given by

and 3 form a ferromagnetic cluster, which we den@®). Cluster

(23) then forms a cluster with site 0. The last process is a decima-lH) = 1= ©029) =2 = (T12[12) + [ L2112 ([ TD) +]11).

tion of the cluster(023). The gound-state wave function of this (35)

chain is constructed perturbatively from the hierarchical wavefunc-

tion [H), which is given in Eq(35).

Hog= SISt eiS(Z)eiS(l)He_is(l)e_iS(Z) e—is(L‘l)e—is<U B. Evolution of effective operators
e

’ The quantities we are interested in can be written in terms
(33 of |[H) and the set of unitary transformations used in the RG

with SV representing the transformation of tjih stage of ~Process. For example, let us consider

the renormalization. At the final stage the free ground-state 555 = (Gle*oXlG 36
wave function|H), is related to the ground state of the origi- (001) = (Glao0t|G), (36)
nal problem by with |G) known in terms ofiH). We can write

|
xn iSU ig® gD axax, gD j§@ _igh)
(G|o5af |Gy =(H|ES ... "GhaTe™ e ...e S H)
iSO is® igWax gD ig?  igb ish i@ jgDax i g2 gD
=(H|S ... 575 Ge ™S ST eSS ... €575 Gle™S ST E5TH)

= (H|&507|H). (37

Thus, we see that calculating expectation values of an 1. Decimations away from the ends

operatorA with respect to the ground state) is equivalent A renormalization step that does not involve the end spin
to calculating the expectation value of the effective operatoiill generally leave the end operators unchanged, since the
A with respect tqH): generator of the unitary transformation of this RG st8p,
commutes withoy. The exception to this is when the deci-
mation involves spins adjacent to the end, for which
[S,05]# 0; however, it can be shown that to all orders in
perturbation theory, there is no contribution to the dominant

(G|AIG) = (HJAIH),

A=gSt @SSV pgisPeis? st (38) parts ofAthe correlation function from the resulting correc-
tions to o}.
2. Decimation of an end bond
IIl. TRANSVERSE FIELD CORRELATIONS If Jo; is decimated, sites 0 and 1 will form a clustét)
A. Renormalization of end spin operators (see Fig. 6. The dominant contribution to the correlation

function comes from the effective operatgh,,. This contri-

In order to obtain the transverse field part of the end-toy) ;o s obtained from the first order transformatiy,in
end energy correlationghyogh o7), we must consider the Eq. (29);

effects of the two types of renormalization stédecimation

of a site or a bongon the end operatorgy and o7. In this S iS ax —iS.  ax o PO ayar oA | Moy s
section, we show that the decimation of the first bond makes 90=¢"“6o¢™"*=Go+1 20, 060,00 | +1 2o, 160,90
the operator oy evolve to the effective operatoirg

=(Jo1/ o) 07y We also show that the decimation of the end &
site yields%=(J2,h/h3)&%, which is third order in the off- by BT
diagonal terms that couple high and low energies in the =0ﬁ+J_m%01—J_m“1“o- (39)

Hamiltonian. In this derivation, we neglect all the subleading
contributions to the flow of the edge operators; we show in  The first two terms in Eq(39) will not evolve under the
Appendix A that this is indeed justified. continuing renormalization. Their expectation values are
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FIG. 7. Evolution ofoy in a site decimation. Althoughr ob-

FIG. 6. Evolution ofdr in a bond decimation. When the end site 5ing an expectation value, its fluctuations are still influenced by the

forms a cluster with its neighbor, the operatgygets renormalized
and gains a factor dfi;/Jg;.

state of site 1. This is reflected in the renormalizationogfas
(J5,/h3)o which gives rise to a factor dfiZ;hy/h3) in the correla-
tion functions ofg?.

(HlagH) =0,
to truncated correlation functions, singéy) =1, (a¥)=0.
(H|ogo3|Hy = 1. (400 The flow of g} in this case is
The only piece of Eq(39) relevant to us is the third piece. hyJ2,
As indicated in Eq.(39), when the operator &35 is re- oo — 307 (44)
stricted to the low-energy subspace in which sites 0 and 1 ho

form a cluster, it is equivalent to the cluster operaigy,,.

Therefore, when the end spin forms a cluster with its neigh-

B. Evolution of the correlation function

bor via a bond decimation, the flow of the transverse spin is

given by

R h
70 2
‘]Ol

Fon. (41)

3. End site decimation

As the renormalization proceeds, the effective operators

oy and o] accrue multiplicative factors that will eventually
combine to form the end-to-end correlation function. The
evolution of these prefactors is obtained from E¢g4) and
(44) by the method outlined in Ref. 6.

At log-energy scald’, we write the effective operator of

If hy is the strongest interaction in the chain, site 0 will bethe end spin as

decimated. Applying the first-order transformati8g from
Eg. (21) to a7 yields

_ Joiay-
= 2h00%01'

= x| Jo1aynz ax . J01azn
o€=o€+l{ﬂcr%ol,o%}=o%+—oloéo€- (42
2h, ho
Applying the second-order transformation yields
h1Jo1 -5 -
S=- Zhg 050Y,
= x| M1301agay Ay Jolaza oy h1dogayn
5= 6% - { oy 550,55 + hlloéoi} =55+ = o0
0 0 0
h1J5: -
0% (43)
0

Once again, the first two terms in E&3) do not contribute

X0 oXI)e ™), (45)
Whereg{) operates on the first spin cluster of the renormal-
ized chain at the scalE. Using the logarithmic variableg
=log(Q2/h), {=log(€2/J), we can rewrite Eqg41) and(44)
and the results described in Figs. 6 and 7 in term4 of

bond-decimation:A O A + B4,

spin-decimation:A 0 A + B+ 2{p;. (46)

The quantities\, By, andlg (length of the cluster containing
the end spipare correlated at all stages of the renormaliza-
tion. Therefore, we must keep track of their joint distribution,
which we define as

ProHdIS,dBo, dA] = (B0, IS AD)dBdISdA.  (47)

Using the results of Ref. 3 and Eq&8) and (46), we can
write the evolution equation fou(3,l,A|T):
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+ f o(Bo= 0% A/ [D)P(LoIYR(BLI A - A" = 285 — B 81 - 1§ - 15— 19 8(8 - B dISAISISAA dB,dE,

+ f o(Bo 5N IDRBLIDP(Lo =05 SA = A’ = B) 81 =15 =15-19)8(8 - B, — B)dISISAISIA’ dBodB;

-f PO, dl"w(B,1,A|T),

(48)

in terms of the distribution® andR of the log couplings and lengths of the bonds and spin-clusters atlScBlaploying the

X
notation for convolutions introduced in Ref. 8x;) ®g(x,) = f(X1)g(X,) (X=X, —X,)dx;dx,, we can write the above equation

in a more compact way:

dw(B,1,A|T) a dw(B
dl - a

Bl [

1L A|D) 0t i b ¢ , ,
5 +fw<,6’o:0.lc.A ID)®P(£o,1D)@R(BIHSA - A’ = 2£, - B)dA'd{,

+fw(ﬂo,lg,A’|F)®R(ﬁl,I§)® P(§O,I8)5(A—A’—,81)d/\’—f P(O,I")dl' o(B,1,AT). (49

By Laplace transforming(3,1,A), with respect to bott
and A,

w(,B,y,)\):fdIfdAe"ye_)‘Aw(,B,l,A), (50)

we obtain
do(B,y.\I) _ da(B,y.\)
dr 9B
+ (B =0,y,\[I) f e 2'P(£,y)d¢R(B,Y)

B
+ f w(BO!y! )\)® R(Bl-)’) P(§0 = O,y)

- P(0,y=0)w(B,y,N). (51

In Ref. 3, the scaling limits of the functior®3,y), P(B,y)
are derived:

P(ZyD) =Y (y,I)e oD,
R(B.YII) =T(y,D)e P D,

A(y) o
[sinhA(y)['] ™

Y(y,I') =
m(y,I') = 6+ A(y)cot{ A(y)I'],
u(y,I') = - 6+ A(y)cotH A(y)I'],

Aly) =y + &, (52)

do(By.N) _ do(BY,N)
dr B

(.Y (.1
27+u

+w(0,\,y)

+Y(y,I) f o(Bo,y, e PMIT(y,T)
X (B~ Bo~ B1)dBdB1~ Y(0.I)w(B,y,N).
(53
To solve this we writew(B,y,\) in the following form:
o(B,y,N) = W(y,\)e P, (54)

under which Eq(53) becomes

dW__ s YODTG.D

W-Y(0,I)W. (55
dr 2\ + ©.0) (55

Using the definitions of the functions, T, u, and 7, we can
integrate Eq(55) and find

aar-r) SINHAWT] ( 2\ + U(y,F.)) 0,I")
sinfA(y)I]\ 2x +u(y,I) / #0,I)"
(56)

W= W,e'

The value ofW, can be found from the normalization con-
dition on the distributionw(3,1,A). To be a properly normal-
ized, w(B,l,A) has to obey

o]

fd,&u(ﬂ,y= OA=0)=1. (57

0

Using these results and the corresponding notations, we gefhis impliesWy=0,I")).
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Before proceeding, we should check what initial condi- o Lo -
tions this distribution satisfies. Settiig1 I', andy 0, we IHY) = TE(|T€>|T?> +|1DI), (62)
see A
Ay TN where{ andT represent the end clusters at this final stage of
w(B,0\[") = 7(0,I")e" ™ VPg™e, (58)  the RG. This yields Eq60)
The inverse Laplace transform nyields C=egrh=gh, (63)
w(B,0,AT) = 70,1 OTEsA - g). (59  hence

o . A=A+ Ay, (64)
The delta function in Eq(59) shows that the initial value of _ _ _
the correlation variable is the same as the transverse field, agereA is the desired log of the energy correlations.
it should be for this part of the energy-energy correlations. 5 Site Decimation
In the case of a site decimation it is unimportant which of
the last surviving clusters gets decimated. Let us assume that

After carrying out the decimation proceks 2 times and it is the left cluster£. This involves the unitary transforma-

following the flow of the edge energy operators, we end up; . : —_ AYnz
with two clusters. The remaining clusters correspond to th%Ion (dropping the tildep S,=~(Jq:/)5;5%, and makes the

left and right edges of the chain, and each has a distributiofround statgH) be

o(B,1,A|T) associated with it. In the next decimation step, 1

one of these clusters is decimated, and a single cluster forms. HY =|—)|—p) = §(|Te> +L)(T0+11)). (85
At this stage, we can compute the distribution of the energy

correlations from the flow of edge operators and the remainBy using the sum form in Eq61) and applyingS, we get
ing couplings. Note that thE at which a single cluster forms . ' ' .

is the logarithm of the gap between the first and second ex- CPeM™r~ > (H|&%7e | y)(yfe%e57e S H)

C. Last decimation step

cited stategas was also noted in Ref. 18 ¥#G
The computation of the truncated correlation function is Jor Jr o Jgr
as follows: ~ > (H[- T, todeyls ~atarH) = e
y#+G ¢ ¢ ¢
= (Glhoogh,o7|G) — (G|heap| GX(Glh o7 |G) (66)
= <H|e'Afa~§&§e'Ar|H> - <H|e'Aea~§|H><H|&;e-Ar|H>, This yields
(60) A=A+ Ao+ 205 (67)

whereA, and A, are the correlation factors picked up in the Th_e analog of Eq(25) in Ref. 6 for the measures defined
RG process, Eq46), for the left end and right end trans- Nere is

verse spins, respectively, and we have labeled the last re- dProb(A g, B2, 201S, BB Lo - e B A LT
maining spin clusterg andr. The correlation function can b . b
also be written as a sum over excited states: =aro(Be, Aul )P IDR(BLIDPLL 1) - ..
A8+ 18 +15+15+ .+l -L
C)EX: <h05)éhL5“f> _ <hO&6><hLa{> (B A1) dl e +17+17+17 r )
. . . . X B GiydA dA I}, (68)
=(Gl(hoag — (hoop)) (h a1 — (h.671))|G) with
= 2 (Glhoas|¥)(yth a7 |G) »
v+G 1 day
A - - —— = [P(0,l) + R(O,))]dI. 69
=N S (HIH ), (61) ar | teco «rom %9
G 0
where the sum ovey runs over all states except the ground Let us now define the functiod(A,I'|L) as
state. . o d Prolfchain of lengthL becomes a single cluster at
At the penultimate decimation step two processes are pos- _
sible: I' with log(C,) = A]=J(A,T'|L)dI"dA. (70

o The probability distribution of logC, ) is then given by
1. Bond Decimation

The two remaining clusters become a single cluster, and
the only remaining coupling is the transverse field, which f(A,L)= | J(A,T[L)dT. (71
makes the combined cluster point in tkelirection: 0

064409-10



ENERGY CORRELATIONS IN RANDOM TRANSVERSE. PHYSICAL REVIEW B 70, 064409(2004)

The functionJ(A,T'|L) has two contributions, the first state of the Hamiltonian in Eq(74) are duals to the
contribution cames from the case of the penultimate decima+ransverse-spin correlations calculated in Sec. Ill. This is ex-
tion being a bond decimatiofeq. (64)]. The second contri- plained below.

bution comes from the case of a site decimalfiig. (67)]. As was explained in the introductiai®ec. | B, the dual-
The combination of the two contribution yields ity transforms a bond to a spin, and vice versa. In the previ-
ous section we considered a chain that terminates with a site

JATIL) =ar | PO, Ayl Al) S, +1P that hgs a finite transverse field onhg> 0. The dual of this
(A.TIL) Ff OlaelBeAnldolBuioldlle+ T edge is a chain edge that terminates with a nonzero bond,

Jor1r=hg. The site 1 is the dual of the bond,; and, there-

- A - b
1= L)8(A = A = Ag)dAdA dl dldldfsds, fore experiences a field,, =J,,. Since there is no bondl ;,

b i.e.,J_10=0, the field on site Ois zero as wellsee Fig. 2
+ ZaFf P& 1) @(0,A 1) o(Br A, r) In what follows, we calculate the end-to-end correlations
of the exchange energy and the cross correlations between
X8l +19 +1, = L)S(A = Ag = A = 24,) the transverse spin and the exchange energy. In both cases

% b we will assume that the chain terminates with the energy
dAdA,dl dlgdl,dgdz;, (72) operators whose correlations we calculis in Eq.(74) for
wherellgr is the length of the effective bond connecting thethe exchange-energy correlatipnk the case of exchange-

last two clusters. energy correlations, both edges of the chain we consider will
The Laplace transform of is considerably simpler to terminate with a vanishing transverse fietg=h_=0. Simi-
write larly, when we calculate the edge correlations between the
exchange energy of sites 0 and 1, and the transverse spin on
JAT.y) =a [P, Ay)dp)2 site L, the edge transverse fielt, is set to 0. These rules
( y)=arlP y)(f w(B\.y)dB) allow us to use the dual of the functian(g,l,A|T") which

was derived in Sec. Ill B. We define the functigi,!, A |T)

+ Zf e 2 P(Z,y)dZw(0,A4,1,) f o(B,\,y)dB] as the dual ofw(8,!,A|T). This function will keep track of
the correlations and evolution of the operalgioo; in the

o(\,T')? 1 same way thatw(s,!,A|T’) was used to keep track of the
= arP(O,y)(ﬁym 0 (HyD)+N) correlations and evolution of the operatgiy.
The calculations carried out in this section assume that
+o 1 (73) one or both edge transverse fields are zero, but this does not
(u(yll)+2xn) | limit the generality of our results fariversalquantities. We

. ) ] ] expect that when the edge transverse fields are nonzero, the
Equation(73) is one of the main results of this paper; correlations of the last bond in a chain will only be modified
from it we will derive the typical and average correlation py 5 nonuniversal multiplicative factor from the correlations
functions, as well as information on the distribution@f. in the special case with no transverse field on the end spin.

B. Evolution of edge exchange-Energy Operator
IV. EXCHANGE ENERGY AND CROSS

CORRELATIONS As discussed above, the edge excha[lge enkygyo; is
) ) dual to the edge transverse field operdigr). Therefore, we
A. Boundaries and duality can obtain the distribution function for the evolution of the

The calculation of thdag—ha? correlations in the previ- €edge exchange-energy operator from the results of Sec. Ill.
ous section was simplified greatly because the only operators By making use of the dualitySec. | B, we can transform
a)(()L considered were end operators. In this section, we Ca]&” the results obtained in Sec. Il to the dual chain. As stated
culate expressions for the end-to-end correlations of the ex@bove, we define the analog ob(B,1,A[T') to be
change energy densityg?% We consider the special case ¢(¢,!,A[T): ¢({,1,A|T) keeps track of the bond strength of
for which one or both end transverse fielthg,and h , are  the end bond, its lengtfincluding the length of thé=0 end
zero, which simplifies the calculation considerably. We will site), and the log contribution to the correlation).
argue that the universal features of the correlations will bep(¢,1,A|T’) is obtained from the dual of E¢56):
the same as in the general case with nonzero end fields. _ _n—zuly T

The simplifications with vanishing end transverse-fields HLYN) = by, Ner e,
arise because this makes the exchange energy be an edge

operator in the sense that it is the first and last energy opera- g(y,\) = e(x—é)(F—F.)Sihh[A(Y)Fl] 2\ + ﬁy’r')u(o,l").
tor in the Hamiltonian: sinjA(y)I'T 2\ + #(y,I')
~zA A A ~z A 75
H == Jos040%h ~ s~ oo~y = I o1 6457 79
(74) C. Exchange-energy correlations

An edge bond is the dual of an edge site, and, therefore, the The results for the exchange-energy correlations are
edge-to-edge exchange-energy correlations of the groungiven, by duality, by Eq(73), with §— —4&. This yields
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e ’)\ ’ 1 x-B Ay = 'Sa'\x ~iS,, ‘SaAZAZ —iSy
JAT,y) =arR(0,y) L ( C et = (H|e%dreSeeSag ore e H)
(u(y|l) +2) \ (u(y|T) + ) S o
— (H|e%a07e S| H)(H| %67 7 %|H)

1
+2“(y'”+2”)' " :<HI(AX-#AZAZ)<AZAZ Jm)'m

< Ly —
oy~ =007 || T+ =0y

¢

h
¢
Since the results for the exchange-energy correlations are 3 3
identical to that of the transverse correlations, we will only - <H|<a.§_ #&3‘%)|H><H|(a§“~f+ T“g,%)“_b
analyze the later. h, h,
Y
D. Cross correlations—Ilast decimation step and final - =TT " (79
expression h,
In order to obtain the cross correlations, we need to com:rhus’ the cluster decimation process yields

bine the results for the edge transverse spin flow and A=A+ A+ 5. (80)
exchange-energy flow. In analogy to Sec. Ill, putting to- . L .
gether the two flows happens in the penultinate step of thgy duality, the bond decimation process yields

RG flow. The accumulated multiplicative factors, along with A=A+ A+ 5. (81
the couplings of the renormalized chain just before it is com-
pletely decimated, will determine the total correlations be-
tween the transverse spin and exchange energy.

In contrast to Sec. Ill, the last needed step of the RG to 1 1
obtain the cross correlations involves the transverse spin of JTly) = aF“’()"F)‘ﬁO"F)( Hy|l) +\ * u(y|T) + )\)'
one of the two clusters, and the bond between them:

Following the reasoning that led to Eq32) and(73) we
t:

(82
CE_B:<G|hOa)C()JL—lLa'IZ_—1a'|Z_|G> —(G|hoo%|G) This is the second main result in this paper, and it is analo-
o gous to Eq(73). Here we must bear in mind that the corre-
X{(G[JIL-1.0¢-101|G) lations obtained here are negatjsee Eq(79)]. This is to be

expected, since the two operata#$,and 6%, try to impose
competing orders; one tends to make each spin point ix the
AZaz A direction, whereas the other tends to creatduaterof spins
x(H|o7o7e M (H), (77 that point in thez direction.

= (Hle ™ &5% 0% M H) = (Hle &% H)

— V. RESULT
where B stands for bond. The two possibilities for the last SULTS ) o
step of the decimation process are the decimation of the bond The above result¢73) and (82) in principal allow the
(J"éF), or of thet Cluster(h})_ These two processes are dual to calculation of the distribution function for the |Og correla-

each other; hence we only need to consider one of them. L&©ONS, A=-10og(Cy), of long finite chains. In the following
us consider the site decimation. sections we calculate the average correlatidh)s,and the

As before, the ground state will be distribution, f(A |L), for all 4.
A. Average ho*-ho* and Jo?a?*-Jo?a” correlations

M=l =2+ + ). (78 L. Derivation of the Average

In this section we derive th@verage xx correlations. The
) R ) ~ BBcorrelations of the exchange energy are obtained from the
From the transformatio,=~(J,/h) %57 that induces this  y_x correlations upon the transformatidh-—3. In order to

decimation, the correlations are found to be: obtainC{*, we begin with Eq(73) in the following form:

70,1 sinhZ(AF,)A(Z)\ -5+A cotr(AF,))ze_(

— 2M+38)+2(\+0)T
INTY =0T sinnan) (26-1)2
« 1 N 2(26—-N)sinh(AT') _ 1
[(8+N)siN(AT) + A cosHAT)]?  [(2\ = 8)sinh(AT) + A cosHAT) 2 [(2\ + §)sinh(AT) + A cosHAT)? |

(83

First, we perform an inverse Laplace transfornyito recover the length dependence:
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L)= i (- )" #0,1) [(2A - I, + 1]2e—(2>\+35)r+2(>\+5)r,e—[52+(”?’T)Z]L

J\, T
(IID=2 D 0n  @o-a7
4L (nm)* 20m?  8L2(nm)8(286-\) 2L(m? AL(nm)* 2L(nm?
’ o0\ + 5){1 Lors J L @2\ - 5){1 Lod J =)
2(nm)°L 2(nm)°L
(84)
[
This is obtained by approximating the roots of 1/LY3<)\<L, and away from the critical regimél/&?
. <L), away from\=0. To get the equivalent expression for
asinh(AT') + A cosHAT) (85) y 9 d X

N[O 0, we need to be more careful with the third term of Eq.

with a=1, by y,=-8-(nw/T')?(1-2/Ta) and expanding (89 and get the next-order corrections. Note that there is no
Eq. (85) around these roots singularity in this expression at=24; this will have impli-
. , cations for the off-critical largé behavior.

ar
asinh(AT) + A cosiAT) = >, (- D™li(y-y,) —.
h(AT’) HAT) gl( )iy yn)ZmT > Result
(86) To get the final result foc_fx, all that remains is to set

NO 1. Neglecting terms suppressed by factorssef1, we

The roots in Eq(86) are given as an expansion in powers Ofobtain

1/T. Since we are interested in>1, we are content with
only the first two terms; in fact, as can be seen by the fol-
lowing Eg. (87), only the first nonvanishing power of I/
contributes to the average correlations. In addition, (B6)
is only valid fory,<1, i.e., fornm<T'. But since we are Also, for the exchange-energy correlations we obtain
interested in the large length behavior of the correlations, we o 1
can restrict our calculation to small valuesrmpfas they give CPB=~ A(Z)Zﬁe—b‘zL%Ll/s(w)Z/s(l - 5/2)2’3, (91)
the slowest decaying term in the correlations. L

The desired result is obtained by performing thente-
gral. This integral is dominated by the large exponent in

C_fx _ A?,X%.Je‘ PL-3L Y3231 + 5,2)2/3, (90)

where A7 and A§? are nonuniversal coefficients. When the
chain is not critical, we notice that the exponential decay is
e_(n?qr)zl__(z)\+ HI{+OllogN)+OLI) = gall) 87) controlled by the same _correlatipn lengtbs1/5°, as the

’ order-parameter correlation function.

1/3
which has a saddle point itS:[Z(nw)zL/Z)\+5] . The
exponential dependence then becomes B. Average cross correlations

1 @9t 1B, 1. Derivation of the Average
e 23{z(nw>2J r-T9 (88) :

In complete analogy with the derivation of the previous

and the saddle-point integration yields section, we proceed from E¢82) in the following form:

INL) ~ gl (- l)n+122/3\/§(n77 13 IT]y) ~ [(2AT, + 1))\2 - (5T|)2]e—2x(r—l“|)—smﬁzr)
1 13, 213 213 1 1
Xﬁse—éQL-SL ()25 + 812)2 o 21 (\+0) % (()\ + 25 [( ~ 9)SnAT) + & GoSHAD)]
(2xr, + 1)2 1 L1 1
N=28 ) 2\ + )% (N =28) [(\ + 8)sinh(AT’) + A cosHATI) ]
><<e2‘rfa (2N + 6)3 . (A=) | 1
N+ 8)(BN+20) 8(28—N) [(2\ — §)sinn(AT) + A cosiAT) ]
.\ el_%(Zé— NN+ 6% - 2\ +9)° ) . (A + ) 1 )
(2\ - 8)? an@2n-9)" 828+ N\) [(2\ + )Sinn(AT'") + A cosHAT) ]
(89) (92

This result is valid for the critical regimél/8°>L) when  Performing an inverse Laplace transformyirand then per-
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forming a saddle-point integration in, we find: *
= AJ(\,Ty)
* 2 2 Ay) =~ Y dar
2\ + 1) = (o 1
JA\L) = Elezm(( ! )\;,3 (1) )2\/§(nw)1/3@ T DO
n= o]
W20 52 2 tanhT\y)[3(I" - 3Ty + 10 tankl'\y)]
— L-3LY3nm)2/3\2/3 -5 A+6S = =3 dr’
e N-26" A+20 ’ y costl'vy)
|
5 1+i 5 1_i o )
T (93) - Sl s | Soaxeao | S o
8\ - 29) S\ +24) vy 7 ) cosHx) cosl(x)
Wy WIy
This result, as well as E¢89), is valid for 1/LY3< <L for "
all small or zeroé. .
- sinh(x) 77 ( 1)
- 9Wr = +0| — /. 95
Wh J cosH(x) X 4y3P2 (95)
2. Result v

The average-B correlation is obtained from the above by By performing the inverse Laplace transform, we get
setting\=1: -

[

_ 7\ — —
AP = %TV’L +0(1) = 3.1VL. (96)

1
SN 52L_3L1/3(7T)2/3, (94)

X-B __ _ AXx-B
CL - L5/6

The result in Eq(96) should be compared with the criti-

o cal behavior of the average correlation:
which is almost the same as E&0), but the s dependence

of the above result is strictly symmetric with respecttas log(e™) =~ - 3723113, (97

ted f bject that i If-dual. . . T
expected for an object that is sefi-dua The typical correlations decay ase™ ', with k of order

unity but random with a computable universal distribution.
. . . . . n 1/3 .
C. Typical correlations But the average correlation function 4se %", which de-

One of the striking features of random quantum systemgayf mych mforﬁ slowly. ﬁs claimed abover,] th'ﬁ means that
is that typical correlations are usually very different from ealizations of the quenched randomness that have an expo-

average correlations. Average correlation functions can be, a{?m'a”Y low p_rol_aablhty dominate the average.
here, dominated by samplésr spatial regionswith anoma- By dlffi[eznuatmg Eq.(95) once more with respect th,
lously strong correlations. The typical correlations are muctVe€ 98t(A()* Using that we get for the standard deviation
smaller and decay faster with distance. Indeed, for the raref A
dom Ising chain, the typical correlations hold f@most all = -
long-but-finite samples. The average end-to-end correlations V(A2 = (A2 = 5.6\L. (99)
are dominated by extremely rare samples.

In the off-critical regime,the typical correlations are wel
characterized by the average log correlations

| The distribution ofA/\L is thus indeed nontrivial for long
critical chains.

For the cross-correlation functiodg® 6%—hd*, the result

we get for the average log correlation(lsy a similar calcu-

Ctypical = e—log(C = e_A' Iation)
iti i =—Aj —~85_ 16 -
However, at the critical point, leg(C)=-A is of the same AB~ Fﬂ_ +0(1) = 3.0\L,

order as the logarithm of the typical correlations, but the
typical correlations will also have a very wide spread. More

precisely, there is a random proportionality constant relating e s
the log of the correlations to its average; this constant is VAZ) = (A5)° =~ 5.4VL. (99
ran'dom and vyldely varying. We W'” first mvesﬂga;e the Note the similar—but not identical—behavior of the two re-
typical correlations at the critical point, and then consider the
" : sults (99) and (96).
off-critical regime.
2. Off-critical x-x correlations

1. Typical correlations at the critical point ) ) ) )
To investigate thex-x energy correlations in the off-

The average log correlations are easily found at the critical regime, we pursue a different course of action. In-
critical point. Going back to E¢(73) and settingé=0, we  stead of setting. to 1, we invert the Laplace transform with
see that the Laplace transformlirof thex-x log correlations  respect to\ in expressior(73) and obtainJ(A,T'|y) in terms
is given by of A.
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Equation(73) can be written in the following form:
7(0,T) sint?(AT})
u(0,I') sinh(AT)3
+ A COth(AT)]2e 2\ Tg24T-331

1

JNTy) = A2V -6

" | (35+ A cothAT))2(8+ X + A COtHAT))2
2

" [35+ A cothAD) [0+ A + A cOt(AT)]
4

" [35+ A coth AD)[2x — 6+ A coth AD) P
4

" [36+ A coth AD)JF[2\ — 6+ A coth(A)] |

(100

This form of JO\,T'|y) lends itself to inverting the Laplace
transform and recovering the dependence. This givére-

glectingl'}, as beforg
7(0,I") 1
u(0,I') sinh(AT")3

X[( [A-20"-T))]
[36+ A coth(AT")J?

JATy) =

A% 23T QIA - 2(I' - T)]

. 2 )e_[A—z(F—FI)][&rA coth(AT)]
(36+ A coth AT))®

N ( 2A-2(0"-T)P?

[36+ A coth(Al')]
_ 4 3>e_%[A_2(r—rl)][—5+A coth(AT')]
[35+ A coth(AT)]

(101

with ® the Heaviside step function. Off critical, for long
enough chains, specifically with,> ¢~1/5° and the con-

comitant log-energy scalEs>1, one can expand

y

A= 5+ = (102

25’
and hence obtain
J(ATly) = 8% 2N >80T @IA - 2T - )]

X{([A—z(r—r.n
(457

+ )e—[A—2<F—F.>]<5+|ﬂ>e—5§m—2<r—r|)]

(46)°

(2[A—2(F—F,)]2 4 )
+ -
(49) (46)°

Xe—%[A—Z(F-Fl)](-t%ﬂ)e—;‘%[A—Z(F—D)]}. (103
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can invert the Laplace transform by inspection to obtain the
L dependence.

In the paramagnetic phagé>0), J(A,T'|L) is sharply
peaked for long chains at(R-T",)+44L. In the ferromag-
netic phasg5<0), it is instead sharply peaked atl2-T'))
+2|4|L. Integrating ovell” gives an exponential decay In
Thus, the distributions of the end-to-end transverse field log
correlations of long off-critical samples will have the form

PHALL) = f J(A,T|L)dr
L
{ e2N4G(A - 45) 6> 0
T | elda2dbgA - 28L) <0

(Recall thaty is the Heaviside step functionThis behavior,

with the exponential decay of almost all samples with a char-
acteristic length that is much shorter than the correlation
length, is similar to that of the order-parameter correlations
in the paramagnetic phase as discussed in Sec. | C of the
introduction.

(104)

3. Off-critical x-B correlations

The same analysis can be applied to ¥iB correlation
function. The mathematical expressions are simpler, but the
result is more interesting. Since this correlation function is
symmetric with respect té, we can choose to carry out the
analysis in the paramagnetic phage; 0. Using the same
simplifying limit as before (I'D 0, '6>1, y< 6%, and
keeping only the dominating terms in the disordered phase,
Eq. (82) becomes

J()\,F|y) ~ (:‘,—2)\(1"—11)—251"52(1_/y - 1y ) (105)
A - pA A
46 26

The inverse Laplace transform Mandy of this leads to
JNTly) =e2TO[A-2(I'-T)) - 26L]
-O[A-2('-T)) —46L]). (106
By integrating ovef’, we get for the distribution of the end-

to-end log cross-correlationgy=AXB, of long off-critical
chains,

©

ah= f JAT|L)dr
L
0, A <24L
1 — g ¥A-209L) 2L <A <4dL,
(1 -2 ld-4ab - A > 4|8L
(107

Most long samples will have & <A <44L; remembering
that this expression is valid only faré®> 1, we see that the
distribution will be roughly constant in this range. For larger
A, the distribution decays exponentially.

In the ferromagnetic phase, the same result for the cross

From the simple form of thg dependence in this limit, one correlations will obtain withs replaced by 8|. The behavior
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in this phase contrasts with that of tkex correlations whose ing operatorJo?c?, and disordering transverse field operator,
distribution of A is peaked near|gL, and thus are typically hd*, are negative because of their competing effects; they are
stronger than the cross correlations. also dual to each other.

The average correlations in the off-critical regime decay
with the same correlation lengthé~1/6% as the order-
parameter correlations. The typical correlations, however,

Looking at the earlier results for the average of the energyjecay much faster, and have the same correlation-length ex-
gap, AE, of finite chains$ we observe a strong resemblance ponent»=1, as the pure system. In Sec. V C 2 it was shown
to the results obtained here for the aver&gk correlations.  that the distribution ofo%6} is strongly peaked near ekp
In particular Eq(60) in Ref. 6, -46L) for 6>0 and near exp-2|4|L) for §<0, indicating a

— _3(7,_21)1/3 surprising asymmetry between the two phases. This asymme-
AE ~ Y63\ | (109  try is a result of the difference between the ordering and

D. Energy-energy correlations and the energy gap

disordering components of the energy density and their be-
o - havior in the corresponding pha?/ez,-s. At the critical point, the
2 log AE =~ log CFF. (109 typical correlations decay ase -, with K a random vari-
able; this is similar to the typical order-parameter correla-
ions.

The behavior of the end-to-end energy correlations turns
out to be related to that of the lowest-energy gap. We explain
"this in terms of the rare realizations of the guenched random-
L : o . ness that dominate: these are such that the gap and the cor-

i In th' (1_?3)’épe Hza}/'fllije fél_wctlorﬁDh[A AT F_')]E'm' relation function involve essentially the same product of ra-
plies that ~logC))>2(I'-I'). Since the appropriaté at  jo5 of 35 to h's. The connection between the energy

which the decimation eStainShing this correlation occurs i%orre]ations and the energy gap Suggests that the energy gap

gives the average gap at the critical podi®t0. We see that

Some relation between the gap and the energy correlations
to be expected, but the behavior of the two quantities is
surprising in its degree of the similarity. We will see that this
relationship between the gap and the energy correlatio
arises in the structure of the RG flow.

I'=-log AE, this implies that could be probed indirectly using the—in some cases more
AE\2 experimentally accessible—spatial correlations. This connec-
C< (E) (110 tion is reminiscent of that which occurs in conventional or-
|

dered phases in which the gap and spatial correlation length

To understand this inequality, consider the correlation coefare related. _ .
ficient e associated with an end site, and compare this to Unlike previous RG calculations of properties of the ran-
the transverse fielth on the end spin cluster. The strongestdo.m transverse field Ising model, the_energy correlations re-
correlations will occur if the chain undergoes a series quuweddthed devel?prkr)]etr_]t ozha forrr|13al|?m that t%oesRé)etyond
bonddecimations. Looking at Fig. 6, one can see that in thi%secon_—or er perturbation theory. Feriorming the rans-
, A ~ - ormation by unitary transformations proved to be a useful
case, the evolution af * andh are exactly the same; in ach 5 that allows one to follow readily the evolution of effec-
end-bond decimation they acquire a factor of héJo; at  tjve operators. Here, we have focused on end-to-end correla-
that scale. The strongest correlations dominate the averaggns pecause these are far simpler to handle analytically:
correlations. Therefore, chains in which the energy correlagorrelations in the bulk of the chain involve effective opera-
tions and the gap are strongly correlated also dominate thg,s on poth sides of the objects of interest and are much

average correlations. harder to deal with. Nevertheless, they could be computed by
numerically keeping track of the needed distributions.
VI. CONCLUSIONS For Ising chains, an alternative method for calculating

correlation functions is via othe Wigner-Jordan mapping of
In this paper we have investigated the various contributq. (1) to a free-fermion model. Unfortunately, this method

tions to the end-to-end energy correlations of random quargoes not offer much advantage: even in the resulting free-
tum Ising chains in the universal regime of long chains neaparticle problem, the primary obstacle is the diagonalization
the quantum phase transition. In principal, the main resulpf the random Hamiltonian. This can be done by numerical
obtained here, the Laplace transform of the distribution ofgiagonalization method$;2! but these are limited to rela-
the logarithm of the correlation functiorig3) and(82), can  tively small systems, and can currently be implemented only
be used to obtain the Complete distributions in the Scalin%n chains of an order of several hundred Spins_ With such
limit. We have explicitly computed the average and the typi-short lengths, numerics can be strongly affected by finite-size
cal correlations, as well as some other aspects of the distriffects, and extracting universal—nevermind exact—long-
butions, in various limits. The average correlations are domisjze limits is difficult?” An alternative to direct numerical
nated by exponentiallyin the chain lengthrare samples.  diagonalization is an iterative real space RG approach to the
Nevertheless, they still decay as°" ~ at the critical point. ~ diagonalization: the optimal strategy is analogous to that
This is in contrast to the power law decay of the averagevhich we use here.
order-parameter correlations. The various components of the The unitary transformation RG method developed in this
energy correlations are qualitatively similar, although theirpaper can also be used to study correlations in imaginary
distributions differ. The cross correlations between the ordertime. So far, mostly average quantities have been calculated
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(for instance, see Refs. 18, 22, and,23ut progress on dis- these operators have a nonvanishing expectation value in the
tributions should be possible utilizing the procedure de-ground state of the decimated part. Keeping them all we have
scribed here(Sec. I). More generally, the present RG

m.ethod. should 'be gpplicaple to 'other models bojth in one hoo% O Jmhlo)( J°1J12h20101+ 32 lehlhchl(fz
dimension and in higher dimensions, with the unitary RG 0 h 0
procedure enabling one to follow the flows numerically to (A2)
obtain information about the behavior of operators of interest
at both high and low energies. Another process that we need to consider is a bond decima-
tion close to the end. If we decimate the first bondy,o507,
ACKNOWLEDGMENTS then hOa)(; becomes
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+ §h<01)h23(01)20%’01)0¥, (A3)
APPENDIX: EFFECTS OF END OPERATORS

where the parentheses signify effective spin clusters. Going

When calculating the energy correlation functions, we
. : : further away from the end, a decimation of the second site in
kept terms that were third order or higher in the perturbatio
he chain, h,07%, will give

expansion. A conccern to the validity of our treatment is that

terms that were produced as fourth- or fifth-order terms at an 1 Jodin

early stage of the RG flow;, become more relevant than hoot 0 hodp + 2 h hoh,0§016% = ooy

terms that we kept that are produced at a later stage of the hi

RG flow, I',>T';. In this appendix we verify that end opera- 1 Ayny

tor effects that we excluded in the text can not give rise to * F‘JOZhOhZ(’O‘TZ’ (A4)

leading-order contributions to the various computed energy !

correlations. with site 1 eliminated. Note that site O is still the first site, but
In addition, The flow of the operat@r; when the end spin  Site 2 is now the next.

is decimated, will include a terd%a3. Naively, as this is an From the above processes, a pattern emerges. The fifth-

order—rather than a dlsorder—energy operator, it may makerder perturbation calculation above produces two dangerous
the disordered and ordered phases look indistinguishable &perators:
far as the transverse spin correlations are concerned. We will 5257 ~ysy (A5)
show here that this isot the case, and although these extra- 9091, 9091
neous operators do appear, their contribution is, at best, sule need to verify that these operators do not produce
dominant. leading-order correlations. The first step is to observe that
_ L instead of seeing the bare operat@rs, o507, a0y, appear-
End site decimation ing with varying prefactors, we see them appearing in the
In order to prove the above claims, we need to investigat§ombinations hoag, (1/02)h33010557, (1/Q)heJoshy%6Y,
the additional operators that arise when decimating ends. R&here() is the energy scale at which the operator appeared.
visiting the process of decimating an end site, we considefhere may be additional prefactors, which we will consider
the flow of the Operatohoo-x The f0||0W|ng table describes Shortly, but first let us establish that these forms have an
the series of transformation, and the effective operators tha@variant structure.

contribute tohyog:
Invariant Operators

S e : . .
— In this section we will show that the form of the operators
Si: _Jou oY% - J010%0% defined as follows:
2hy °
hoop
2 000:
SO: JOlr;l a_éa_{ _ ‘]Olhl a%a_)i + JOl?la)](_
2ho o o h2Jo1%5%
ov01¥ 0% 1
~Joadioh Jo1d1oNg ayayn
S;: Ollglyo_xa_é _0112-210'60)](_05 gy
h hO h0J01hl(TOO'1, (A6)
Jordidihs -y anny Jodid . z, I ayn is preseved during the RG flow. The coefficiehts h2J
CER N TS e . [0 OXE]
S 2hd 060177 o 212t Olehlhzalo% and hoJy;h; will only be replaced by their renormalized
(A1) counterparts every time that a decimation affects them. This

is demonstrated in the following examples.
The fourth line and the second line contain the terms that are The simplest example is the operatajoy. Under the
most likely to give a leading contribution to the correlations; decimation of Jy,0407,
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. hohy .
hoos 0 — =536 = he 57, (A7)
Jo1
Another example is the operat/Q?)h3J,,6%6%. The deci-

mation of the second bond )% 05, modifies this operator

hSJOIa%)&i O h(201)J(01)2&(201)aé

Ay~ hoh Ay~
hoJoih1 6967 O (%)h(mﬂ(onzhsz{on“}é- (A13)

01

as follows:
27 ~zn 2 ~7n~
hgJo10607 O hO‘]O(lz)O'éo'(Zﬂ)' (A8) Leading-order correlations
In the case of the operatdt/ Qz)hO;JO{hyl&_%‘}{’ the corre- Now that we know how the end operators neglected in the
sponding transformatio8,=(h,/2J,,) 516} yields text evolve, and discovered that their forms are invariant, we
heh, can show that these operators do not change the leading-
hoJo1h16%0% O hodoan—— o'oo'xo'2 hoJo12N12 590712 - order contributions to the correlation functions of interest.
J12 The xx correlation function is
N - Ay ") = (hoaohLat) — (hoap)(hLo7)
Decimating the second site in the chairh,o] involves R
the transformatior8,=(J;,/hy)636%, yielding the following =(Gl(hoop — (hoap)) (h a7 — (h 61))|G)
flow for the two operators (1/Q2)h3Jy6%6%, R -
5Y5 P (L1017 = 2, (Glhoagly)(¥ih 5t|G), (A14)

(1/19%)hJgihy %Y ¥#G

h23010%6% O hg‘]‘)l‘]lzaga{alzz h2Jeiozo%.  (A10)  with the sum over all excited states, _
hy As the RG process progresses, all the end operators will
&e generated several times. However, we need only concern
ourselves with the last set of these generated. Previously
generated edge operators will have a larger suppression due
off to the more times they underwent edge displacement.
U“VO)(Uz— hoJo2h2090%. Considering the last decimation step, which is needed to
obtain thex-x correlations and changing the notation so that
(A11) the remaining effective sites afer as in the text, we have

In all cases, the flow due to decimations leaves the three

forms of the end operators invariant. We excluded here the 2 (H|h,5% h(‘]erolo.z
cases of a decimation of the first site or bonds; these are he e

considered below.

The second transformation in this same decimation proce
is S,=(J;5h,/h?)5% 53, which gives rise to:

J01J12 h2

1

hO‘]Olhlo-Oo-l O ho

02 h{’Jfrh ol G| i, or + hZJerOJOZ
¢

Displacement prefactors O

As mentioned before and seen from the results of Eq. +i2h€J(rh 6Y6Y|H). (A15)
(A1), there are still multiplicative prefactors coming before r
the invariant operator forms. In EgA2), for instance, all o o
three operators from EqA6) have the prefactotyy/ho)2. The remaining low-energy parts of the Hamiltonian are
This suppression can be associated withdisplacemenof - ayn A
the edge to the next undecimated site. With the help of Eq. H ==hat = Ipotar =~ hear. (A16)
(A1), it can be easily shown that an end sitéo}) deci-

. . ) Two cases need to be considered: a site decimation and a
mation leads to the following flows:

bond decimation. In the case of a bond decimation, the

J R ground state of the system is
hoo O <h001> hon oy,

1
IHY) = E(lelw 1TlTe), (A17)

J010'ZO'Z D ( ) h1J12h20'10'2,
ho and we immediately see that the only excitation that contrib-
utes in the suntAl5) is the o507 term
Ayny 01 2
hO‘J01h10-00-1 0 ( ho) h J010'20'Z (A12) CEX ~ e_A‘«’_Afh(hr, (A18)
From the above equation we see that there is a factowhich shows that in this case the dangerous opergtgs
(Joa/hp)? associated with the displacement into the chain of(A5)] do not contribute to the correlations.
the %07, o%o) operators. This is repeated partially in the  The second case involves a site decimation. Let us assume
case of a bond decimation of thdgogo: that the dominant piece in EGAL6) is —h,o%:
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1
HE) =S+ (L) +T).  (A19)

In this case, the contribution of th&ja) product is only

second order, and we need to consider the unitary transfor-
mation that induces this decimation. To lowest order, this is

Si=-(J¢r/2hy) Yo%, Applying this to Eq.(A15), we get

.o 1 o

CletetArheh, = 3 (HhdSaoe S+ @hg\]er"%(ﬁ
e t

1 o .oy

+ Q_%thfrhrU¥U¥| ¢><‘/’|hrelsa0{e S

1 1
+ _hZJ{) 5’%6'Z+ _h(g\]g h &%&V|H>
Qrz r~er r Qf rtlr r
J(r'\ ~ 1 21 ~z~
~2 < H<H|‘hfh_0f0'f+§he~]eroffof
Y#G ¢ ¢

PHYSICAL REVIEW B 70, 064409(2004)

1 on Jor aun
+ _2h(‘]frhra'%aﬂ‘/’xﬂhrﬁa%a—?[
07 he
1 s
&hﬂerhrge(fﬂm

r

1
+—h2, 6507 +
Qrz r~er r

_ ‘]€r (h€ - hr)hr‘]?r (h€ B hr)hr‘]%r
=hh 5 + 2 - 2
h? Q7 97
J
~hh 3, (A20)
hr

which is the same result as was derived in the text, while
ignoring the additional edge operators from E45). In the
above we uset?/Q, ,<1.

This demonstration can be repeated for ¥xez correla-
tions and also carried to higher order with the same conclu-
sions. We have thus verified that the energy correlations can
be obtained from the leading contributions to the flow of the
edge energy operators in each step of the RG.
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and valuel, > h; with probability p,=1-p,. The first step in the
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