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The end-to-end energy-energy correlations of random transverse field quantum Ising spin chains are com-
puted using a generalization of an asymptotically exact real space renormalization group(RG) previously
introduced. Away from the critical point, the average energy-energy correlations decay exponentially with a
correlation length that is the same as that of the spin-spin correlations. The typical correlations, however, decay
exponentially with a characteristic length, proportional to the square root of the primary correlation length. At
the quantum critical point, the average correlations decay subexponentially asCL,e−constL1/3

, whereas the
typical correlations decay faster, as,e−KÎL, with K a random variable with a universal distribution. The critical
energy-energy correlations behave very similarly to the smallest gap, computed previously; this is explained in
terms of the RG flow and the excitation structure of the chain. In order to obtain the energy correlations, an
extension of the previously used methods was needed; here, this was carried out via RG transformations that
involve a sequence of unitary transformations.
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I. INTRODUCTION

The random transverse field Ising model[Eq. (1)] is the
prototypical model of a quantum system with quenched ran-
domness. In this model, a ferromagnetic Ising interaction in
thez direction competes with a magnetic field in thex direc-
tion. Because the Hamiltonian contains both thex andz spin
operators that do not commute with each other, and thus
involves quantum fluctuations, it is sometimes referred to as
the quantum Ising model. Reference 1 gives a thorough re-
view of the pure transverse field Ising model. The random
transverse field Ising model undergoes a unusual quantum
phase transition at zero temperature that is controlled by an
infinite randomnessfixed point.2,3 As a consequence, over a
wide range of parameters, unusual low-temperature behavior
is exhibited. In one dimension, many of the low-energy prop-
erties have been found exactly, initially by McCoy and Wu4,5

and by various authors recently.3,6,7 The behavior in higher
dimensions has been shown to be in the same general class
as the one-dimensional system.8,9

In addition to the theoretical interest of the transverse
field Ising model, models with similar behavior have been
argued to be relevant for the low-temperature properties of
heavy fermion materials, with randomness and proximity to
a quantum critical point playing key roles in producing
nonfermi-liquid behavior.10

Much is already known about the random transverse field
Ising chain. Previous calculations have obtained theaverage
magnetization andsz correlations.3 But, as is often the case
in random systems, even in large samples some physical
quantities do not converge to a single value, but have a non-
trivial distribution. In addition, the resulting distributions of
physical quantities are often such that the average value of
the quantity differs greatly from the typical value(defined,
for example, as the median of the distribution).2,3,11–13Be-
cause of the ubiquity of this type of behavior, it is clear that
knowledge about the probability distributions of physical
quantities is crucial for a full understanding of random sys-
tems. In Ref. 6, the distribution of the order-parametersŝzd

end-to-end correlation function is calculated, providing a
sharp illustration of this point. The distribution of the order-
parameter correlations becomes a delta function(centered on
its typical value) in the limit of infinite length; nevertheless,
this is misleading: the average correlations even in the infi-
nite length limit are much stronger than the typical correla-
tions that are obtained for almost all samples.

In this paper, we study the end-to-end Ising exchange en-
ergy sŝzŝzd and transverse spinsŝxd correlations of long, but
finite, random transverse field Ising chains. The transverse
spin correlations are as important to understand as the order-
parameter correlations(i.e., ŝz correlations). Experimentally,
the two correlation functions differ only in the polarization
of the neutron beam, or, alternatively, the direction of a prob-
ing magnetic field. Furthermore, mechanical distortions of
the chain couple to its magnetic degrees of freedom through
the Ising interaction, so that spin Peierls and other magneto-
elastic effects are controlled byŝzŝz correlations. The behav-
ior of the Ising energy and transverse magnetization correla-
tions are, as one would expect, significantly different from
those of the order parameter; indeed, it is not at all clear
whether these correlations should exhibit the disparity be-
tween their average and typical values that characterize the
order-parameter correlations. Our analysis of thedistribu-
tions of these quantities shows that such disparity indeed
exists, but in a more subtle way.

Computing the distributions of the Ising energy and trans-
verse spin correlations introduces new difficulties that com-
pel us to further develop the general renormalization group
(RG) structure that was previously introduced.3,6 The formu-
lation presented here should be useful for other random
quantum systems, in addition to random quantum Ising mod-
els. In particular, it should enable the study of time-
dependent correlation functions, needed for the understand-
ing of the dynamics of random quantum systems.

The organization of this paper is as follows: in the re-
mainder of this section, we review some aspects of the ran-
dom Ising model and introduce the quantities of interest. In
Sec. II we develop and apply a unitary-transformation ap-
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proach to the real space RG. In Secs. III and IV Laplace
transforms of the energy and transverse spin correlations are
derived and used in Sec. V to obtain the average and typical
correlations, and more general information about the distri-
butions. Finally, Sec. VI presents conclusions. Some techni-
cal details are relegated to an appendix.

A. Random transverse field Ising model

The Hamiltonian of the random quantum Ising model is

H = − o
i

sJi i+1ŝi
zŝi+1

z + hiŝi
xd, s1d

with each site having two states,ŝz= ±1, with quantum fluc-
tuations between them caused by the transverse,ŝx, fields.
The system is illustrated in Fig. 1. Note that there are no
magnetic fields in thez direction, so that there is a global
symmetry of inversion about thexy spin plane. The presence
of z fields would break this symmetry and change the low-
energy physics radically.

The quantum Ising model exhibits a quantum phase tran-
sition in its ground state when the nearest-neighbor interac-
tion and the transverse field are of comparable strength. In a
nonrandom model this occurs whenJ=h. In a random sys-
tem, where theJ’s and theh’s are drawn independently from
some distributions, the transition occurs whenlog h=log J,
where the overbars denote averaging over the randomness. A
convenient parametrization of the proximity to the transition
is

d ;
log h − log J

varslog hd + varslog Jd
, s2d

with d positive in the disordered phase.

B. Real space RG

A powerful route to analytic information on this system is
a real space—or energy space—RG method that is a gener-
alization developed by one of us,3 of an RG introduced by
Ma, Dasgupta, and Hu.14,15 The real space RG is carried out
by decimating the term in the Hamiltonian—a siteshŝxd, or a
bond sJŝzŝzd—with the strongest interaction; second-order
perturbation theory results in new effective couplings. In the
case of decimating a bond, a cluster forms with a renormal-
ized transverse field; in the case of decimating a spin, a new
Ising interaction that couples its two neighbors forms. The
Hamiltonian preserves its form, with effective bonds cou-
pling spin clusters, and the energy scale—the maximum re-
maining coupling—reduced. The effective bond strengths
and lengths, as well as the effective transverse fields on the

clusters of spins and their moments can be computed.
As the energy scale is systematically reduced, the distri-

butions of the effective couplings become very broad for
small d. Concomitantly, the averages of many quantities in
the ground state are determined by rare tails of their distri-
butions. An example of this behavior, which was mentioned
above in Sec. I, is given by the order-parameter correlations,
Czzsn,n+rd=kŝn

zŝn+r
z l. Typically, the two sitesn and n+r

have correlations that decay exponentially withr. Neverthe-
less, at large separations,r, the average order-parameter cor-
relations,

Czzsn,n + rd ; kŝn
zŝn+r

z l, s3d

are dominated by the rare realizations for which the two
spins,n and n+r, are almost perfectly correlated with each
other in the ground state, i.e., they belong to the same cluster.
In the RG picture, this event happens when the two spins in
question are not decimated until they join together into the
same spin cluster. Although the probability for this to happen
vanishes in the limitr →`, and therefore constitutes a rare
tail of the correlations’ distribution, it vanishes less rapidly
than the typical correlations, and hence, dominates the
average.3

C. Logarithmic energy scaling

Many properties of the random quantum Ising model can
be understood in terms of the scaling behavior of the cluster
sizes, bond lengths, and coupling strengths with the energy
scale and the deviation from criticality,d. At the critical
point, the distributions ofhi and Ji i+1 become infinitely
broad as the energy scale,V approaches zero; the random
quantum critical point is thus an infinite randomness fixed
point.2,8,16At this fixed point, the distribution of cluster and
bond lengths, the logarithms of the interactions in units ofV,

z ; log
V

J
,

b ; log
V

h
, s4d

and the deviation from criticality,d, all scale with the loga-
rithm of the energy scale,

G ; log
VI

V
. s5d

Here,VI is the initial energy scale set by the strongest cou-
plings, andV is the magnitude of the largest remaining cou-
plings after the stronger ones have been decimated. The scal-
ing can equivalently be given in terms of a length scale,
,—for example, the length of an effective bond—the scaling
of log energies at fixed, is of the form

z = zÎl ,

G = gÎl , s6d

whereg andz are scale invariant random variables.

FIG. 1. The Hamiltonian of the transverse field model. Each site
is a spin-1/2 that interacts via Ising exchange with its nearest
neighbors and can be flipped by the localx-magnetic field.
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Various basic results follow directly from this scaling. In
particular, the linear number density of remaining spin clus-
ters at scaleG is

n <
n0

G2 , s7d

with n0 a nonuniversal prefactor inversely proportional to the
original bond lengths.

An example of the scaling of log-energies with length is
the gap,E1−E0, between the ground state and the first ex-
cited state of long finite chains: Analytic and numerical re-
sults show that near the critical point the logarithm of the gap
is broadly distributed on the scaleÎL. Indeed, the distribu-
tion of −lnsE1−E0d /ÎL attains a universal scaling form in the
largeL, and smalld limit.6 From the RG structure, this can
be seen by noting that the gap is the energy scale of the chain
when it has only one remaining cluster—and thus, only one
unfrozen degree of freedom. Therefore, the gap is approxi-
mately VL,e−GL, with GL~ÎL the sample-specific scale at
which this last cluster is decimated.

In long finite chains of lengthL, the end-to-end spin cor-
relationskŝ0

zŝL
zl are a useful probe of the long length-scale-

ordering tendencies. The distributions and moments of these
can be calculated exactly in the asymptotic limit of long
chains and smalld; these compare well with numerical
results.6 The distributions can be expressed usefully in terms
of

Lz ; − log Czzs0,Ld. s8d

This logarithm of the correlations scales withÎL at the criti-
cal point, with a broad distribution on the same scale. The
average correlations, however, decay much more slowly:
only asCzz~1/L.

D. Ordered and disordered phases

When d is nonzero but small, there are two scaling re-
gimes. At the early stages of the decimation process, clusters
and interactions are not “aware” of being noncritical. In this
regime, the critical scaling holds. At longer scales, however,
there is a crossover to an off-critical regime. The crossover
occurs when the typical cluster sizes and bond lengths are of
order of thecorrelation length

j <
1

d2 , s9d

and the log-energy scale is of order

G3 ,
1

d
. s10d

At scales larger thanj, the behavior is characteristic of one
of the two zero-temperaturephases, and thus depends on the
sign of d.

At low energies in the ordered and disordered phases, the
scaling between energy and length scales is different from
that at the critical point. For smalld, in both phases

V , ,−zsdd s11d

with the effective dynamical exponent,

z<
1

udu
s12d

near the critical point.
The distributions of the log interactions also change form.

In the disordered phase, the distribution of the effective fields
does not continue to broaden, andb,G3,1/d. But the ef-
fective bonds become longer and longer and weaker and
weaker with the distribution of the lnJ’s broadening rapidly,
with typical z,G. In the disordered phase, the average
order-parameter correlations decay exponentially with the
correlation lengthj<1/d2. Nevertheless, the typical correla-
tions decay much faster; for example, end-to-end correla-
tions of almost all samples decay ase−2dL (Ref. 17). More
precisely, asL→`, the distribution of of the scaled log-
correlation function, Lz/L, approaches a delta function
peaked atLz/L=2d. The average correlations are thus domi-
nated by exponentially rare samples that happen to have
anomalously strong exchanges and/or anomalously weak
random fields.

In the ordered phase,d,0, at low-energy scales the fer-
romagnetic clusters become bigger and bigger, until their
size reaches the length of the system. The transverse fields
on these clusters concomitantly continue to become more
broadly distributed. This tranverse field is the gap between
the symmetric and antisymmetric combinations of the two
“ordered” states of the cluster. As opposed to the clusters, the
remaining bonds stay relatively short at low energies, and
their distribution does not continue to broaden. These fields
and bonds thus play opposite roles in the two phases; as
discussed below, this is a general consequence of duality.

E. Duality

As for nonrandom classical and quantum Ising models,
there is a dual description of the random quantum chain in
terms of bond variables. Instead of using the statesu↑ l, u↓ l,
on each site, one can use the states of the bonds. This is done
by assigningu+l, u−l to the bond if the two spins surrounding
the bonds areu↑ ↑ l, u↓ ↓ l or u↓ ↑ l, u↑ ↓ l respectively. These
are domain-wall variables. In the new Hilbert space, if we
choose the quantization axis to bex rather thanz, the Hamil-
tonian has the same form, but withh andJ exchanged. The
duality is summarized in the following table:

d −d

Jn n+1 hn

hn ⇒ Jn n+1 (13)
ŝn

x ŝn
zŝn+1

z

ŝn
zŝn+1

z ŝn
z

If the d dependence of the distributions of the random cou-
plings has the formrJsJ=X,dd=rhsh=X,−dd, the random
model is self-dual withd⇒−d. More generally, it will not be
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exactly self-dual. But from the definition ofd in terms ofrJ

andrh [Eq. (2)], and the universality at low energy scales(in
particular, of the distributions of the effective couplings), we
expect that the asymptotic behavior at low energies and
small d will indeed be self-dual for any well-behaved
distributions.25

As we are interested in end-to-end correlations of finite
chains, we must consider what happens to the ends of a chain
under the duality transformation. Let −h0ŝ0

x be the energy
operator on the left end-site. Under duality, this site will be
mapped into a bond with corresponding energy operator
−h0ŝ08

z ŝ18
z (see Fig. 2). The bond in the dual chain implies a

new site 0’that corresponds to the domain-wall variable to
the left of the first spin in the original chain. This new site,
0’, thus carries the information about an arbitrarily fixed
boundary condition, e.g.,u↑ lwith respect to which the left-
most domain wall, and hence the original end spinŝ0

z, is
defined; it thus cannot be entirely forgotten. But in the dual
Hamiltonian, the operatorŝ08

x , does not appear, so that the
dual end transverse field is zero, andŝ08

z , is time indepen-
dent. The same is true at the other end, where the extra spin
is needed for the originalŝL

x to be defined. Superficially, the
dual chain appears to have one extra degree of freedom as-
sociated with each end. But the orientation of the dual edge
spins is entirely a convention, and therefore, the additional
degrees of freedom have no effect.

Note that in the special case in which the original chain
starts with a spin to which no transverse field is applied, the
duality transformation yields a chain with the first bond turn-
ing into a site. More generally, any site in the original chain
on which there is no transverse field corresponds under du-
ality to a break in the chain that divides it into two uncoupled
parts. In the original variables, there are concomitantly two
disconnected subspaces in which the spin that cannot flip has
sz= ±1, respectively. The parts of the chain to the left and to
the right of this spin are thus independent of each other.

F. Energy-energy correlations

Our goal in this paper is to understand the energy density
sE-Ed correlations of the random chain. These would be par-
ticularly interesting at nonequal times, as they would then

yield information on the transport of energy which is the
only locally conserved quantity in this system. Unfortu-
nately, in the bulk of the chain, correlations are very hard to
calculate for reasons discussed in Ref. 3. Therefore, we study
the somewhat simpler but closely related quantities: the end-
to-end correlations of the energy density in finite chains, re-
stricting our analysis to equal time correlations.

Since the Hamiltonian involves two kinds of terms,Jŝ0
zŝ1

z

andhŝx, to obtain theE-E correlations we need to calculate
three quantities, kJ01ŝ0

zŝ1
zhLŝL

xl, kh0ŝ0
xhLŝL

xl, and
kJ01ŝ0

zŝ1
zJL−1 LŝL−1

z ŝL
zl. However, the duality transformation

simplifies matters, since it mapsh0ŝ0
xhLŝL

x at d to
J01ŝ0

zŝ1
zJL−1 LŝL−1

z ŝL
z at −d, so we only need to compute one

of these quantities. Also, the mixed correlation function is
dual to itself, therefore the distribution ofkJ01ŝ0

zŝ1
zhLŝL

xl
must depend onudu, and be the same in the two phases. Note
that a related single-end quantity, the imaginary time corre-
lation functionkŝ0

xs0dŝ0
xstdl, was considered by Iglóiet al.18

The calculation of the quantities of interest requires an
extension of the methods used so far. The primary reason for
this is that the energy correlations are dominated by third-
order perturbative effects at each stage of the decimation, in
contrast to the spin correlations, which are controlled by
second-order perturbative effects.

To be able to carry out higher-order RG calculations, we
develop an approach to the decimation in terms of unitary
transformations; this allows one to follow precisely how op-
erators of interest(such asŝx) evolve during the RG process.
This approach thereby gives a systematic way to deal with
higher orders perturbative effects even in problems previ-
ously analyzed using second-order perturbation theory.6 The
unitary-transformations method is developed in the next sec-
tion (Sec. II).

II. UNITARY TRANSFORMATION RENORMALIZATION
GROUP

In this section, we develop a perturbative scheme based
on unitary transformations that will allow us to separate the
various parts of the Hamiltonian and successively simplify
the wave functions of the many-body system to a hierarchi-
cal product of simple spin-wave functions. Simultaneously,
we must keep track of the original operators in order to even-
tually compute their ground-state correlations.

We begin with the first stage of decimation by construct-
ing the eigenfunction of the highest energy part of the Hamil-
tonian and transforming it to take into account the low-
energy parts perturbatively. Specifically, the transformation
gets rid of the off-diagonal parts that connect states with
large energy differences between them. For the Ising chain,
this can be done while preserving the form of the Hamil-
tonian.

Given a Hamiltonian,H, and a many-body ground-state
wave function,uGl, with

HuGl = EGuGl. s14d

we can generally make a unitary transformation with a Her-
mitian operatorS and write

FIG. 2. A chain that terminates with the site 0 is dual to a chain
that terminates with a site 0’, which experiences no transverse field.
The bond operator −h0ŝ08

z ŝ18
z , is then the edge energy operator of

the dual chain.
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eiSHe−iSeiSuGl = eiSuGl,

s15d
Heff = eiSHe−iS, and eiSuGl = uHl,

with the goal to makeuGl close to a product of simple wave
functions. Such transformations can be used to eliminate—or
separate—low-energy parts in the Hamiltonian.

Let H=H0+V, whereH0 is the high-energy part ofH and
V is the remaining low-energy parts. The effective Hamil-
tonian is then

Heff = H0 + V + ifS,H0g + ifS,Vg +
i2

2!
fS,fS,H0gg + OsS3d.

s16d

If we are able to chooseS so that

V + ifS,H0g = 0, s17d

thenHeff will contain no first-order terms. The second-order
corrections toH0 give rise to effective interactions. We may
now solve for the ground state ofHeff, and hence the original
H:

HeffuHl = EGuHl

uGl = e−iSuHl. s18d

Iterating this process separates the higher-energy parts of the
Hamiltonian from the lower-energy parts. At each stage, the
effective higher-energy parts can be simply diagonalized.
The remaining nondiagonalized Hamiltonian only has pieces
with energy much lower then the gap of the high-energy
section, which was just diagonalized. The ground-state wave
function is then constructed perturbatively from the wave-
function uHl, which is a hierarchical wave function simply
expressible in terms of the ground states of the high-energy
parts of the sequence ofHeff’s. Each term in the hierarchy
will be a spin-cluster pointing in the direction of the trans-
verse field. For an example, see Eq.(35) below.

Note that this method is related to the flow equation ap-
proach for interacting quantum problems developed by Ke-
hrein and Wegner.19,20

A. Unitary RG for transverse field ising chain

We now apply the transformations(15) to successively
reduce the maximum energy scale of the random quantum
Ising Hamiltonian, thereby obtaining a series of low-energy
effective Hamiltonians of the system. We begin by choosing
the largest energy coefficient in the Hamiltonian(1) and de-
note itH0 (with the corresponding coupling the initial energy
scaleVI): for example,H0=−h1ŝ1

x (see Fig. 3). Let V desig-
nate the part of the Hamiltonian that we would like to elimi-
nate. For the above example, we would like to eliminate the
parts connecting site 1 to the rest of the chain:

V = − J01ŝ0
zŝ1

z − J12ŝ1
zŝ2

z. s19d

In addition to these two parts, the Hamiltonian also contains
the parts involving the remainder of the chain,

H1 = . . .−J−10ŝ−1
z ŝ0

z − h0ŝ0
x − h2ŝ2

x − J23ŝ2
zŝ3

z + . . . s20d

In order to eliminate the first-order couplings to spin 0,S
must satisfy Eq.(17); thus we first choose

Sa = −
J01

2h1
ŝ0

zŝ1
y −

J12

2h1
ŝ1

yŝ2
z, s21d

which yields the following terms in the effective Hamil-
tonian [Eq. (16)]:

Heff = . . .−
J01J12

h1
ŝ0

zŝ1
xŝ2

z −
h0J01

h1
ŝ0

yŝ1
y −

h2J12

h1
ŝ1

yŝ2
y + . . .

s22d

Note that site 1 is still coupled to adjacent sites by a second-
order interaction. We would like to restore the Hamiltonian
to its original form; thus we need to eliminate the new type
of interaction. To get rid of it, we perform another transfor-
mation using

Sb = −
h0J01

2h1
2 ŝ0

yŝ1
z −

h2J12

2h1
2 ŝ1

zŝ2
y. s23d

The effective Hamiltonian now includes

Heff = . . .−J−10ŝ−1
z ŝ0

z − h0ŝ0
x

− J̃02ŝ0
zŝ1

xŝ2
z − h2ŝ2

x − J23ŝ2
zŝ3

z + . . .,

− h1ŝ1
x, s24d

from which we see that in the low-energy subspace ofH0,
the effective exchange between spins 0 and 2 is given by

FIG. 3. Site decimation. Spin 0 is almost frozen in thex direc-
tion due to the strong magnetic fieldh0. Quantum fluctuations cre-
ate a second nearest-neighbor effective interaction between sites −1
and 1. This interaction is weaker than any ofJ−10, J01, h0.
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J̃02 =
J01J12

h1
. s25d

Sinceh1 is the strongest coupling energy in the chain, the
resulting effective bond obeys

J̃02 ! h0,J01,J12, s26d

where the sharpness of the inequality is because we assume
strong randomness. We can now partially diagonalizeHeff by
writing

uHl = u → l1uG̃s1dl

uGl = e−iSae−iSbuHl, s27d

whereŝ1
xu→1l= u→1l anduG̃s1dl involves only the spins other

than 1. We are left with a renormalized spin chain with the
spin at site 1 eliminated, and with an effective interaction

J̄02ŝ0
zŝ2

z between spin 0 and spin 2.[Note that we could also
keep the high-energy sector that involvesu←1l; the effective
Hamiltonian and state of the rest of the chain would differ
from those of the low-energy sector because of the presence
of ŝs1d

x in Heff of Eq. (24).]
The analog of the above results for the case where an

exchange interaction, e.g.,H0=−J12ŝ1
zŝ2

z, is eliminated is
(Fig. 4)

H0 = − J12ŝ1
zŝ2

z,

V = − h1ŝ1
x − h2ŝ2

x,

Sa =
h1

2J12
ŝ1

yŝ2
z +

h2

2J12
ŝ1

zŝ2
y,

Sb = −
h0J01

2J12
2 ŝ1

yŝ0
z −

h3J23

2J12
2 ŝ3

zŝ2
y. s28d

This could be obtained by using the duality described in the
introduction(Sec. I E) and in Ref. 3, or by direct computa-
tion. The ground state ofH0=−J12ŝ1

zŝ2
z is doubly degenerate

with spins 1 and 2 either in the stateu↑s12dl= u↑1lu↑2l or in the
state u↓s12dl= u↓1lu↓2l. Therefore, in the ground state ofH0

=ŝ1
zŝ2

z, spins 1 and 2 form a ferromagnetic cluster, which we
denote as Eq.(12). We can define cluster operators,ŝs12d

z and
ŝs12d

x , that operate on the spin cluster(12) in the following
way:

ŝ1
z ⇒ ŝs12d

z

ŝ2
z ⇒ ŝs12d

z

− ŝ1
yŝ2

y ⇒ ŝs12d
x , s29d

in terms of which

Heff − H0 = . . .−h0ŝ0
x − J0s12dŝ0

zŝs12d
z − h̃s12dŝs12d

x

− Js12d3ŝs12d
z ŝ3

z − h3ŝ3
x − . . ., s30d

with

h̃s12d =
h1h2

J12
s31d

being the effective transverse field on the new cluster(12)
that has replaced the pair of spins 1 and 2 that now only
appear separately in the high-energy term inH0. Again, since
J12 is the strongest energy, and strong randomness is as-
sumed, the effective transverse field obeys:

h̃s12d ! h1,h2,J12. s32d

In both the decimation cases we regain the initial form of
the Hamiltonian, but with one less spin. As shown in Refs. 2
and 3, with even stronger randomness. The increase in the
randomness with each step justifies the iterative application
of the real space RG as described in this section. In each
step, we eliminate a high-energy subspace of the Hilbert
space of the chain, which is gapped by 2V from the remain-
ing subspace. The range of excitations in the remaining sub-
space is much smaller thanV. The iterative application of
the decimation procedure outlined here amounts to separat-
ing the Hilbert space of the chain into a hierarchy of sequen-
tially decreasing energy subspaces. If the coupling distribu-
tions expand without bounds during the flow, this method is
asymptotically exact.26

After applying this set of transformation rulesL (the
original chain length) times, we are left with a single spin-
cluster that carries the moments of some fraction of the set of
original spins. The ground state of the chain is then given by
the state in which this cluster points in thex direction due to
the transverse field. In the same way, we can also access the
various excitations of the quantum Ising chain by keeping
high-energy subspaces in the decimation process.

At the end of the decimation process, the full effective
Hamiltonian is given by

FIG. 4. Bond decimation. Sites 0 and 1 are frozen into one
cluster by the strong Ising interaction,J01. Quantum fluctuations

produce an effective magnetic field,h̃01=h0h1/J01, which flips the
composite spin cluster. This field is weaker than any ofh0, h1, J01.
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Heff = eiSsLd
eiSsL−1d

. . .eiSs2d
eiSs1dHe−iSs1d

e−iSs2d
. . .e−iSsL−1d

e−iSsLd
,

s33d

with Ss jd representing the transformation of thej th stage of
the renormalization. At the final stage the free ground-state
wave function,uHl, is related to the ground state of the origi-
nal problem by

uGl = eiSs1d
e−iSs2d

. . .e−iSsL−1d
e−iSsLd

uHl. s34d

Note that the later transformations are the first to operate on
uHl. In the end of the decimation process,uHl is a product of
cluster wave functions, where each cluster points in the di-
rection of the transverse field. For example,uHl for a chain
of four spins as in Fig. 5 is given by

uHl = u→s023dlu→1l = su↑0lu↑2lu↑3l + u↓0lu↓2lu↓3ldsu↑1l + u↓1ld.

s35d

B. Evolution of effective operators

The quantities we are interested in can be written in terms
of uHl and the set of unitary transformations used in the RG
process. For example, let us consider

kŝ0
xŝL

xl = kGuŝ0
xŝL

xuGl, s36d

with uGl known in terms ofuHl. We can write

kGuŝ0
xŝL

xuGl = kHueiSsLd
. . .eiSs2d

eiSs1d
ŝ0

xŝL
xe−iSs1d

eiSs2d
. . .e−iSsLd

uHl

= kHueiSsLd
. . .eiSs2d

eiSs1d
ŝ0

xe−iSs1d
e−iSs2d

. . .e−iSsLd
eiSsLd

. . .eiSs2d
eiSs1d

ŝL
xe−iSs1d

eiSs2d
. . .eiSsLd

uHl

= kHuŝ0
x˜ ŝL

x̃uHl. s37d

Thus, we see that calculating expectation values of an
operatorA with respect to the ground stateuGl is equivalent
to calculating the expectation value of the effective operator

Ã with respect touHl:

kGuAuGl = kHuÃuHl,

Ã = eiSsLd
. . .eiSs2d

eiSs1d
Ae−iSs1d

e−iSs2d
. . .e−iSsLd

. s38d

III. TRANSVERSE FIELD CORRELATIONS

A. Renormalization of end spin operators

In order to obtain the transverse field part of the end-to-
end energy correlations,kh0ŝ0

xhLŝL
xl, we must consider the

effects of the two types of renormalization steps(decimation
of a site or a bond) on the end operatorsŝ0

x and ŝL
x. In this

section, we show that the decimation of the first bond makes

the operator ŝ0
x evolve to the effective operatorŝ0

x˜

=sJ01/h0dŝs01d
x . We also show that the decimation of the end

site yieldsŝ0
x˜ =sJ01

2 h1/h0
3dŝ1

x, which is third order in the off-
diagonal terms that couple high and low energies in the
Hamiltonian. In this derivation, we neglect all the subleading
contributions to the flow of the edge operators; we show in
Appendix A that this is indeed justified.

1. Decimations away from the ends

A renormalization step that does not involve the end spin
will generally leave the end operators unchanged, since the
generator of the unitary transformation of this RG step,S,
commutes withŝ0

x. The exception to this is when the deci-
mation involves spins adjacent to the end, for which
fS,ŝ0

xgÞ0; however, it can be shown that to all orders in
perturbation theory, there is no contribution to the dominant
parts of the correlation function from the resulting correc-
tions to ŝ0

x.

2. Decimation of an end bond

If J01 is decimated, sites 0 and 1 will form a cluster(01)
(see Fig. 6). The dominant contribution to the correlation
function comes from the effective operatorŝs01d

x . This contri-
bution is obtained from the first order transformation,Sa in
Eq. (28):

s39d

The first two terms in Eq.(39) will not evolve under the
continuing renormalization. Their expectation values are

FIG. 5. An example of hierarchical decimation of a chain with
four sites. First, site 1 is decimated. At a lower-energy scale, sites 2
and 3 form a ferromagnetic cluster, which we denote(23). Cluster
(23) then forms a cluster with site 0. The last process is a decima-
tion of the cluster(023). The gound-state wave function of this
chain is constructed perturbatively from the hierarchical wavefunc-
tion uHl, which is given in Eq.(35).
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kHuŝ0
xuHl = 0,

kHuŝ0
zŝ1

zuHl = 1. s40d

The only piece of Eq.(39) relevant to us is the third piece.
As indicated in Eq.(39), when the operator −ŝ1

yŝ0
y is re-

stricted to the low-energy subspace in which sites 0 and 1
form a cluster, it is equivalent to the cluster operatorŝs01d

x .
Therefore, when the end spin forms a cluster with its neigh-
bor via a bond decimation, the flow of the transverse spin is
given by

ŝ0
x ⇒

h1

J01
ŝs01d

x . s41d

3. End site decimation

If h0 is the strongest interaction in the chain, site 0 will be
decimated. Applying the first-order transformationSa from
Eq. (21) to ŝ0

x yields

Sa = −
J01

2h0
ŝ0

yŝ1
z,

ŝ0
x˜ = ŝ0

x + iF j01

2h0
ŝ0

yŝ1
z,ŝ0

xG = ŝ0
x +

J01

h0
ŝ0

zŝ1
z. s42d

Applying the second-order transformation yields

Sb = −
h1J01

2h0
2 ŝ0

zŝ1
y,

ŝ0
x˜ = ŝ0

x − iFh1J01

2h0
2 ŝ0

zŝ1
y,ŝ0

x +
J01

h0
ŝ0

zŝ1
zG = ŝ0

x +
h1J01

h0
2 ŝ0

yŝ1
y

+
h1J01

2

h0
3 ŝ2

x. s43d

Once again, the first two terms in Eq.(43) do not contribute

to truncated correlation functions, sincekŝ0
xl=1, kŝ0

yl=0.
The flow of ŝ0

x in this case is

ŝ0
x ⇒

h1J01
2

h0
3 ŝ1

x. s44d

B. Evolution of the correlation function

As the renormalization proceeds, the effective operators

ŝ0
x˜ and ŝL

x̃ accrue multiplicative factors that will eventually
combine to form the end-to-end correlation function. The
evolution of these prefactors is obtained from Eqs.(41) and
(44) by the method outlined in Ref. 6.

At log-energy scaleG, we write the effective operator of
the end spin as

ŝ0
x ⇒ ŝ0

x˜ sGde−LsGd, s45d

where ŝ0
x˜ operates on the first spin cluster of the renormal-

ized chain at the scaleG. Using the logarithmic variablesb
=logsV /hd, z=logsV /Jd, we can rewrite Eqs.(41) and (44)
and the results described in Figs. 6 and 7 in terms ofL:

bond-decimation:L ⇒ L + b1,

spin-decimation:L ⇒ L + b1 + 2z01. s46d

The quantitiesL, b0, andl0
c (length of the cluster containing

the end spin) are correlated at all stages of the renormaliza-
tion. Therefore, we must keep track of their joint distribution,
which we define as

Probfdl0
c,db0,dLg = vsb0,l0

c,LuGddb0dl0
cdL. s47d

Using the results of Ref. 3 and Eqs.(28) and (46), we can
write the evolution equation forvsb , l ,L uGd:

FIG. 6. Evolution ofŝ0
x in a bond decimation. When the end site

forms a cluster with its neighbor, the operators0
x gets renormalized

and gains a factor ofh1/J01.

FIG. 7. Evolution ofs0
x in a site decimation. Althoughs0

x ob-
tains an expectation value, its fluctuations are still influenced by the
state of site 1. This is reflected in the renormalization ofs0

x as
sJ01

2 /h0
2ds1

x which gives rise to a factor ofsJ01
2 h0/h1

3d in the correla-
tion functions ofŝ0

x.
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dvsb,l,LuGd
dG

=
]vsb,l,LuGd

]b

+E vsb0 = 0,lc
0,L8uGdPsz0,l0

bdRsb1,l1
cddsL − L8 − 2z0 − b1ddsl − l0

c − l0
b − l1

cddsb − b1ddl0
cdl0

bdl1
cdL8db1dz0

+E vsb0,l0
c,L8uGdRsb1,l1

cdPsz0 = 0,l0
bddsL − L8 − b1ddsl − l0

c − l0
b − l1

cddsb − b1 − b2ddl0
cdl0

bdl1
cdL8db0db1

−E Ps0,l8ddl8vsb,l,LuGd, s48d

in terms of the distributionsP andR of the log couplings and lengths of the bonds and spin-clusters at scaleG. Employing the

notation for convolutions introduced in Ref. 3,fsx1d^

x

gsx2d=efsx1dgsx2ddsx−x1−x2ddx1dx2, we can write the above equation
in a more compact way:

dvsb,l,LuGd
dG

=
]vsb,l,LuGd

]b
+E vsb0 = 0,lc

0,L8uGd^

l

Psz0,l0
bd^

l

Rsb,l1
cddsL − L8 − 2z0 − bddL8dz0

+E vsb0,l0
c,L8uGd^

b,l

Rsb1,l1
cd^

l

Psz0,l0
bddsL − L8 − b1ddL8 −E Ps0,l8ddl8vsb,l,LuGd. s49d

By Laplace transformingvsb , l ,Ld, with respect to bothl
andL,

vsb,y,ld =E dlE dLe−lye−lLvsb,l,Ld, s50d

we obtain

dvsb,y,luGd
dG

=
]vsb,y,ld

]b

+ vsb0 = 0,y,luGd E e−2zlPsz,yddzRsb,yd

+E vsb0,y,ld^

b

Rsb1,ydPsz0 = 0,yd

− Ps0,y = 0dvsb,y,ld. s51d

In Ref. 3, the scaling limits of the functionsRsb ,yd, Psb ,yd
are derived:

Psz,yuGd = Ysy,Gde−zusy,Gd,

Rsb,yuGd = Tsy,Gde−btsy,Gd,

Ysy,Gd =
Dsyd

fsinhDsydGg
e−dG,

tsy,Gd = d + DsydcothfDsydGg,

usy,Gd = − d + DsydcothfDsydGg,

Dsyd = Îy + d2. s52d

Using these results and the corresponding notations, we get

dvsb,y,ld
dG

=
]vsb,y,ld

]b
+ vs0,l,yd

Tsy,GdYsy,Gd
2z + u

+ Ysy,Gd E vsb0,y,lde−tb1−lb1Tsy,Gd

3dsb − b0 − b1ddb0db1 − Ys0,Gdvsb,y,ld.

s53d

To solve this we writevsb ,y,ld in the following form:

vsb,y,ld = Wsy,lde−bl−bt, s54d

under which Eq.(53) becomes

dW

dG
= − st + ldW+

Ysy,GdTsy,Gd
2l + u

W− Ys0,GdW. s55d

Using the definitions of the functionsY, T, u, andt, we can
integrate Eq.(55) and find

W= W0e
sl+ddsG−GId

sinhfDsydGIg
sinhfDsydGg S2l + usy,GId

2l + usy,Gd D ts0,Gd
ts0,GId

.

s56d

The value ofW0 can be found from the normalization con-
dition on the distributionvsb , l ,Ld. To be a properly normal-
ized, vsb , l ,Ld has to obey

E
0

`

dbvsb,y = 0,l = 0d = 1. s57d

This impliesW0=ts0,GId.
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Before proceeding, we should check what initial condi-
tions this distribution satisfies. SettingG⇒GI andy⇒0, we
see

vsb,0,luGId = ts0,GIde−tsy,GIdbe−lb. s58d

The inverse Laplace transform inl yields

vsb,0,LuGId = ts0,GIde−ts0,GIdbdsL − bd. s59d

The delta function in Eq.(59) shows that the initial value of
the correlation variable is the same as the transverse field, as
it should be for this part of the energy-energy correlations.

C. Last decimation step

After carrying out the decimation processL−2 times and
following the flow of the edge energy operators, we end up
with two clusters. The remaining clusters correspond to the
left and right edges of the chain, and each has a distribution
vsb , l ,L uGd associated with it. In the next decimation step,
one of these clusters is decimated, and a single cluster forms.
At this stage, we can compute the distribution of the energy
correlations from the flow of edge operators and the remain-
ing couplings. Note that theG at which a single cluster forms
is the logarithm of the gap between the first and second ex-
cited states(as was also noted in Ref. 18).

The computation of the truncated correlation function is
as follows:

CL
xx = kGuh0ŝ0

xhLŝL
xuGl − kGuh0ŝ0

xuGlkGuhLŝL
xuGl

= kHue−L,ŝ
,̃

x
ŝr̃

xe−LruHl − kHue−L,ŝ
,̃

xuHlkHuŝr̃
xe−LruHl,

s60d

whereL, andLr are the correlation factors picked up in the
RG process, Eq.(46), for the left end and right end trans-
verse spins, respectively, and we have labeled the last re-
maining spin clusters, and r. The correlation function can
also be written as a sum over excited states:

CL
xx = kh0ŝ0

xhLŝL
xl − kh0ŝ0

xlkhLŝL
xl

= kGush0ŝ0
x − kh0ŝ0

xldshLŝL
x − khLŝL

xlduGl

= o
cÞG

kGuh0ŝ0
xuclkcuhLŝL

xuGl

= e−L,−Lr o
cÞG

kHuŝ0
xuclkcuŝ

1̃

xuHl, s61d

where the sum overc runs over all states except the ground
state.

At the penultimate decimation step two processes are pos-
sible:

1. Bond Decimation

The two remaining clusters become a single cluster, and
the only remaining coupling is the transverse field, which
makes the combined cluster point in thex direction:

uHsLdl =
1
Î2

su↑,̃lu↑r̃l + u↓,̃lu↓r̃ld, s62d

where,̃ and r̃ represent the end clusters at this final stage of
the RG. This yields Eq.(60)

CL
xx = e−L,−Lr = e−L, s63d

hence

L = Lr + L,, s64d

whereL is the desired log of the energy correlations.

2. Site Decimation

In the case of a site decimation it is unimportant which of
the last surviving clusters gets decimated. Let us assume that

it is the left cluster,,̃. This involves the unitary transforma-
tion (dropping the tildes) Sa=−sJ,r /h,dŝ

,̃

y
ŝr̃

z, and makes the

ground stateuHl be

HsLd = u→,lu→rl =
1

2
su↑,l + u↓,ldsu↑rl + u↓rld. s65d

By using the sum form in Eq.(61) and applyingSa we get

CL
xxeLl+Lr < o

cÞG

kHueiSaŝ,
xe−iSauclkcueiSaŝr

xe−iSauHl

< o
cÞG

kHu −
J,r

h,

ŝ,
zŝr

zuclkcu
J,r

h,

ŝ,
yŝr

yuHl =
J,r

2

h,
2 .

s66d

This yields

L = Lr + L, + 2z,̃r̃ . s67d

The analog of Eq.(25) in Ref. 6 for the measures defined
here is

dProbsL,,l,,b,,l1
b,z1,l1

c,b1,l2
b,z2, . . . ,l r,br,LruL,Gd

= aGvsb,,L,,l,dPsz1,l1
bdRsb1,l1

cdPsz2,l2
bd . . .

vsbr,Lr,l rddsl, + l1
b + l1

c + l1
b + . . . + l r − Ld

3dhbijdhzijdLrdL,dhl ij, s68d

with

1

aG

daG

dG
=E

0

`

fPs0,ld + Rs0,ldgdl. s69d

Let us now define the functionJsL ,G uLd as

d Probfchain of lengthL becomes a single cluster at

G with logsCLd = Lg = JsL,GuLddGdL. s70d

The probability distribution of logsCLd is then given by

fsL,Ld =E
0

`

JsL,GuLddG. s71d
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The function JsL ,G uLd has two contributions, the first
contribution cames from the case of the penultimate decima-
tion being a bond decimation[Eq. (64)]. The second contri-
bution comes from the case of a site decimation[Eq. (67)].
The combination of the two contribution yields

JsL,GuLd = aGE Ps0,l,r
b dvsb,,L,,l,dvsbr,Lr,l rddsl, + l,r

b

+ l r − LddsL − L, − LrddL,dLrdl,dl,r
b dlrdbrdb,

+ 2aGE Pszr,l,r
b dvs0,L,,l,dvsbr,Lr,l rd

3dsl, + l,r
b + l r − LddsL − L, − Lr − 2zrd

3dL,dLrdl,dl,r
b dlrdbrdzr , s72d

where l,,r
b is the length of the effective bond connecting the

last two clusters.
The Laplace transform ofJ is considerably simpler to

write

JsL,G,yd = aGfPs0,ydsE vsb,l,yddbd2

+ 2E e−2zlPsz,yddzvs0,L,,l,d E vsb,l,yddbg

= aGPs0,yd
vsl,Gd2

stsyuGd + ldF 1

stsyuGd + ld

+ 2
1

susyuGd + 2ldG . s73d

Equation (73) is one of the main results of this paper;
from it we will derive the typical and average correlation
functions, as well as information on the distribution ofCL.

IV. EXCHANGE ENERGY AND CROSS
CORRELATIONS

A. Boundaries and duality

The calculation of thehŝ0
x−hŝL

x correlations in the previ-
ous section was simplified greatly because the only operators
ŝ0,L

x considered were end operators. In this section, we cal-
culate expressions for the end-to-end correlations of the ex-
change energy density,Jŝzŝz. We consider the special case
for which one or both end transverse fields,h0 and hL, are
zero, which simplifies the calculation considerably. We will
argue that the universal features of the correlations will be
the same as in the general case with nonzero end fields.

The simplifications with vanishing end transverse-fields
arise because this makes the exchange energy be an edge
operator in the sense that it is the first and last energy opera-
tor in the Hamiltonian:

H = − J01ŝ0
zŝ1

z − h1ŝ1
x − . . . −hL−1ŝL−1

x − JL−1 LŝL−1
z ŝL

z .

s74d

An edge bond is the dual of an edge site, and, therefore, the
edge-to-edge exchange-energy correlations of the ground

state of the Hamiltonian in Eq.(74) are duals to the
transverse-spin correlations calculated in Sec. III. This is ex-
plained below.

As was explained in the introduction(Sec. I E), the dual-
ity transforms a bond to a spin, and vice versa. In the previ-
ous section we considered a chain that terminates with a site
that has a finite transverse field on it,h0.0. The dual of this
edge is a chain edge that terminates with a nonzero bond,
J0818=h0. The site 18 is the dual of the bondJ01 and, there-
fore experiences a fieldh18=J01. Since there is no bondJ−10,
i.e., J−10=0, the field on site 08 is zero as well(see Fig. 2).

In what follows, we calculate the end-to-end correlations
of the exchange energy and the cross correlations between
the transverse spin and the exchange energy. In both cases
we will assume that the chain terminates with the energy
operators whose correlations we calculate[as in Eq.(74) for
the exchange-energy correlations]. In the case of exchange-
energy correlations, both edges of the chain we consider will
terminate with a vanishing transverse field,h0=hL=0. Simi-
larly, when we calculate the edge correlations between the
exchange energy of sites 0 and 1, and the transverse spin on
site L, the edge transverse fieldh0 is set to 0. These rules
allow us to use the dual of the functionvsb , l ,L uGd which
was derived in Sec. III B. We define the functionfsz , l ,L uGd
as the dual ofvsb , l ,L uGd. This function will keep track of
the correlations and evolution of the operatorJ01ŝ0

zŝ1
z in the

same way thatvsb , l ,L uGd was used to keep track of the
correlations and evolution of the operatorh0ŝ0

x.
The calculations carried out in this section assume that

one or both edge transverse fields are zero, but this does not
limit the generality of our results foruniversalquantities. We
expect that when the edge transverse fields are nonzero, the
correlations of the last bond in a chain will only be modified
by a nonuniversal multiplicative factor from the correlations
in the special case with no transverse field on the end spin.

B. Evolution of edge exchange-Energy Operator

As discussed above, the edge exchange energyJ01ŝ0
zŝ1

z is
dual to the edge transverse field operatorh0ŝ0

x. Therefore, we
can obtain the distribution function for the evolution of the
edge exchange-energy operator from the results of Sec. III.

By making use of the duality(Sec. I E), we can transform
all the results obtained in Sec. III to the dual chain. As stated
above, we define the analog ofvsb , l ,L uGd to be
fsz , l ,L uGd: fsz , l ,L uGd keeps track of the bond strength of
the end bond, its length(including the length of theh=0 end
site), and the log contribution to the correlation,L.
fsz , l ,L uGd is obtained from the dual of Eq.(56):

fsz,y,ld = Fsy,lde−zl−zusy,Gd,

fsy,ld = esl−ddsG−GId
sinhfDsydGIg
sinhfDsydGg

2l + tsy,GId
2l + tsy,Gd

us0,Gd.

s75d

C. Exchange-energy correlations

The results for the exchange-energy correlations are
given, by duality, by Eq.(73), with d→−d. This yields
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JsL,G,yd = aGRs0,yd
Fsy,ld2

susyuGd + ldS 1

susyuGd + ld

+ 2
1

stsyuGd + 2ldD . s76d

Since the results for the exchange-energy correlations are
identical to that of the transverse correlations, we will only
analyze the later.

D. Cross correlations—last decimation step and final
expression

In order to obtain the cross correlations, we need to com-
bine the results for the edge transverse spin flow and
exchange-energy flow. In analogy to Sec. III, putting to-
gether the two flows happens in the penultinate step of the
RG flow. The accumulated multiplicative factors, along with
the couplings of the renormalized chain just before it is com-
pletely decimated, will determine the total correlations be-
tween the transverse spin and exchange energy.

In contrast to Sec. III, the last needed step of the RG to
obtain the cross correlations involves the transverse spin of
one of the two clusters, and the bond between them:

CL
x−B = kGuh0ŝ0

xJL−1LŝL−1
z ŝL

zuGl − kGuh0ŝ0
xuGl

3kGuJL−1LŝL−1
z ŝL

zuGl

= kHue−L,ŝ
,̃

x
ŝ

,̃

z
ŝr̃

ze−LruHl − kHue−L,ŝ
,̃

xuHl

3kHuŝ
,̃

z
ŝr̃

ze−LruHl, s77d

whereB stands for bond. The two possibilities for the last
step of the decimation process are the decimation of the bond
sJ,̃r̃d, or of the, clustersh,̃d. These two processes are dual to
each other; hence we only need to consider one of them. Let
us consider the site decimation.

As before, the ground state will be

uHl = u→,̃lu→r̃l =
1

2
su↑,̃l + u↓,̃ldsu↑r̃l + u↓r̃ld. s78d

From the transformationSa=−sJ,r /h,dŝr̃
zŝ

,̃

y
that induces this

decimation, the correlations are found to be:

CL
x−BeL,+Lr = kHueiSaŝ

,̃

x
e−iSaeiSaŝ

,̃

z
ŝr̃

ze−iSauHl

− kHueiSaŝ
,̃

x
e−iSauHlkHueiSaŝ

,̃

z
ŝr̃

ze−iSauHl

= kHuSŝ
,̃

x
−

J,r

h̃,

ŝ
,̃

z
ŝr̃

zDSŝ
,̃

z
ŝr̃

z +
J,r

h̃,

ŝ
,̃

xDuHl

− kHuSŝ
,̃

x
−

J,r

h̃,

ŝ
,̃

z
ŝr̃

zDuHlkHuSŝ
,̃

z
ŝr̃

z +
J,r

h̃,

ŝ
,̃

xDuHl

= −
J,̃r̃

h̃,

= − e−z,̃r̃ . s79d

Thus, the cluster decimation process yields

L = L, + Lr + z,̃r̃ . s80d

By duality, the bond decimation process yields

L = L, + Lr + b,̃. s81d

Following the reasoning that led to Eqs.(72) and(73) we
get:

Jsl,Guyd = aGvsl,Gdfsl,GdS 1

tsyuGd + l
+

1

usyuGd + l
D .

s82d

This is the second main result in this paper, and it is analo-
gous to Eq.(73). Here we must bear in mind that the corre-
lations obtained here are negative[see Eq.(79)]. This is to be
expected, since the two operators,ŝx andŝzŝz, try to impose
competing orders; one tends to make each spin point in thex
direction, whereas the other tends to create aclusterof spins
that point in thez direction.

V. RESULTS

The above results(73) and (82) in principal allow the
calculation of the distribution function for the log correla-
tions, L=−logsCLd, of long finite chains. In the following
sections we calculate the average correlations,CL, and the
distribution, fsL uLd, for all d.

A. Average hŝx−hŝx and Jŝzŝz−Jŝzŝz correlations

1. Derivation of the Average

In this section we derive theaverage x-x correlations. The
BB correlations of the exchange energy are obtained from the
x-x correlations upon the transformationd→−d. In order to
obtainCL

xx, we begin with Eq.(73) in the following form:

Jsl,Guyd =
ts0,Gd
us0,Gd

sinh2sDGId
sinhsDGd

D
s2l − d + D cothsDGIdd2

s2d − ld2 e−s2l+3ddG+2sl+ddGI

3F 1

fsd + ldsinsDGd + D coshsDGdg2 +
2s2d − ldsinhsDGd

fs2l − ddsinhsDGd + D coshsDGdg3 −
1

fs2l + ddsinhsDGd + D coshsDGdg2G .

s83d

First, we perform an inverse Laplace transform iny to recover the length dependence:

G. REFAEL AND D. S. FISHER PHYSICAL REVIEW B70, 064409(2004)

064409-12



Jsl,GuLd = o
n=1

`

s− 1dnts0,Gd
us0,Gd

fs2l − ddGI + 1g2

s2d − ld2 e−s2l+3ddG+2sl+ddGIe−fd2+snp
G d2gL

31 4Lsnpd4

G6sl + ddF1 +
G3sl + dd
2snpd2L

Ge
2Lsnpd2

sl+ddG3 +
8L2snpd6s2d − ld

G9s2l − dd3 e
2Lsnpd2

s2l−ddG3 −
4Lsnpd4

G6s2l − ddF1 +
G3s2l − dd
2snpd2L

Ge
2Lsnpd2

s2l−ddG32 .

s84d

This is obtained by approximating the roots of

a sinhsDGd + D coshsDGd s85d

with a<1, by yn=−d2−snp /Gd2s1−2/Gad and expanding
Eq. (85) around these roots

a sinhsDGd + D coshsDGd < o
n=1

`

s− 1dn+1isy − ynd
aG2

2np
.

s86d

The roots in Eq.(86) are given as an expansion in powers of
1/G. Since we are interested inG@1, we are content with
only the first two terms; in fact, as can be seen by the fol-
lowing Eq. (87), only the first nonvanishing power of 1/G
contributes to the average correlations. In addition, Eq.(86)
is only valid for yn!1, i.e., for np,G. But since we are
interested in the large length behavior of the correlations, we
can restrict our calculation to small values ofn, as they give
the slowest decaying term in the correlations.

The desired result is obtained by performing theG inte-
gral. This integral is dominated by the large exponent in

e−snp
G d2

L−s2l+ddGh+OflogsGdg+OsLG−3dj = egsGd, s87d

which has a saddle point atGS=f2snpd2L/2l+dg1/3
. The

exponential dependence then becomes

egsGd < egsGSd−1
2

3F s2l+dd4

2snpd2L
G1/3

sG − GSd2 s88d

and the saddle-point integration yields

Jsl,Ld < o
n=1

`

s− 1dn+122/3Îp

3
snpd1/3

3
1

L5/6e−d2L−3L1/3snpd2/3sl + d/2d2/3
3 e2GIsl+dd

3S2lGI + 1

l − 2d
D2 1

s2l + dd2/3

3 Se2− d
l+d

s2l + dd3

sl + dds3l + 2dd

+ e1− 2d
2l−d

s2d − lds2l + dd2

s2l − dd2 − e2− d
l+d

s2l + dd3

s4lds2l − ddD .

s89d

This result is valid for the critical regimes1/d2@Ld when

1/L1/3!l!L, and away from the critical regimes1/d2

!Ld, away froml=0. To get the equivalent expression for
l⇒0, we need to be more careful with the third term of Eq.
(89) and get the next-order corrections. Note that there is no
singularity in this expression atl=2d; this will have impli-
cations for the off-critical largeL behavior.

2. Result

To get the final result forCL
xx, all that remains is to set

l⇒1. Neglecting terms suppressed by factors ofd!1, we
obtain

CL
xx < A0

xx 1

L5/6e−d2L−3L1/3spd2/3s1 + d/2d2/3
, s90d

Also, for the exchange-energy correlations we obtain

CL
BB < A0

zz 1

L5/6e−d2L−3L1/3spd2/3s1 − d/2d2/3
, s91d

where A0
xx and A0

zz are nonuniversal coefficients. When the
chain is not critical, we notice that the exponential decay is
controlled by the same correlation length,j=1/d2, as the
order-parameter correlation function.

B. Average cross correlations

1. Derivation of the Average

In complete analogy with the derivation of the previous
section, we proceed from Eq.(82) in the following form:

Jsl,Guyd <
fs2lGI + 1d2 − sdGId2g

l
e−2lsG−GId

D2

sinhsDGd

3 S 1

sl + 2dd
1

fsl − ddsinhsDGd + D coshsDGdg

+
1

sl − 2dd
1

fsl + ddsinhsDGd + D coshsDGdg

+
sl − dd

ds2d − ld
1

fs2l − ddsinhsDGd + D coshsDGdg

+
sl + dd

ds2d + ld
1

fs2l + ddsinhsDGd + D coshsDGdgD .

s92d

Performing an inverse Laplace transform iny and then per-
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forming a saddle-point integration inG, we find:

JsluLd < o
n=1

`

e2lGI
ss2lGI + 1d2 − sdGId2d

l2/3 2Îp

3
snpd1/3 1

L5/6

3e−d2L−3L1/3snpd2/3l2/3Se2+ 2d
l−d

l − 2d
+

e2− 2d
l+d

l + 2d

−
sl − dde1+ d

2l−d

dsl − 2dd
+

sl + dde1− d
2l+d

dsl + 2dd
D . s93d

This result, as well as Eq.(89), is valid for 1/L1/3!l!L for
all small or zerod.

2. Result

The averagex-B correlation is obtained from the above by
settingl=1:

CL
x−B < − A0

x−B 1

L5/6e−d2L−3L1/3spd2/3
, s94d

which is almost the same as Eq.(90), but thed dependence
of the above result is strictly symmetric with respect tod, as
expected for an object that is self-dual.

C. Typical correlations

One of the striking features of random quantum systems
is that typical correlations are usually very different from
average correlations. Average correlation functions can be, as
here, dominated by samples(or spatial regions) with anoma-
lously strong correlations. The typical correlations are much
smaller and decay faster with distance. Indeed, for the ran-
dom Ising chain, the typical correlations hold foralmost all
long-but-finite samples. The average end-to-end correlations
are dominated by extremely rare samples.

In the off-critical regime,the typical correlations are well
characterized by the average log correlations

Ctypical = e−logsCd = e−L̄.

However, at the critical point, −logsCd=−L̄ is of the same
order as the logarithm of the typical correlations, but the
typical correlations will also have a very wide spread. More
precisely, there is a random proportionality constant relating
the log of the correlations to its average; this constant is
random and widely varying. We will first investigate the
typical correlations at the critical point, and then consider the
off-critical regime.

1. Typical correlations at the critical point

The average log correlationsL̄ are easily found at the
critical point. Going back to Eq.(73) and settingd=0, we
see that the Laplace transform inL of thex-x log correlations
is given by

L̄xxsyd = − *E
GI

`

]Jsl,G,yd
]l *

l⇒0

dG

=E
GI

`

2 tanhsGÎydf3sG − 3GIdÎy + 10 tanhsGÎydg
y coshsGÎyd3

dG

=
2

y3/213E
ÎyGI

`

sinhsxd
cosh4sxd

xdx+ 10E
ÎyGI

`

sinh2sxd
cosh5sxd

dx

− 9ÎyGI E
ÎyGI

`

sinhsxd
cosh4sxd

dx2 <
7p

4y3/2 + OS1

y
D . s95d

By performing the inverse Laplace transform, we get

L̄L
xx <

7Îp

4
ÎL + Os1d < 3.1ÎL. s96d

The result in Eq.(96) should be compared with the criti-
cal behavior of the average correlation:

logse−Ld < − 3p2/3L1/3. s97d

The typical correlations decay as,e−kÎL, with k of order
unity but random with a computable universal distribution.
But the average correlation function is,e−c8L1/3

, which de-
cays much more slowly. As claimed above, this means that
realizations of the quenched randomness that have an expo-
nentially low probability dominate the average.

By differentiating Eq.(95) once more with respect tol,
we getsLsyd

xx d2. Using that we get for the standard deviation
of Lxx:

ÎsLxxd2 − sLxxd2 < 5.6ÎL. s98d

The distribution ofL /ÎL is thus indeed nontrivial for long
critical chains.

For the cross-correlation function,Jŝz8ŝz−hŝx, the result
we get for the average log correlation is(by a similar calcu-
lation)

LL
x−B <

16

3Îp
ÎL + Os1d < 3.0ÎL,

ÎsLx−Bd2 − sLx−Bd2 < 5.4ÎL. s99d

Note the similar—but not identical—behavior of the two re-
sults (99) and (96).

2. Off-critical x-x correlations

To investigate thex-x energy correlations in the off-
critical regime, we pursue a different course of action. In-
stead of settingl to 1, we invert the Laplace transform with
respect tol in expression(73) and obtainJsL ,G uyd in terms
of L.
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Equation(73) can be written in the following form:

Jsl,Guyd =
ts0,Gd
us0,Gd

sinh2sDGId
sinhsDGd3 Df2l − d

+ D cothsDGIdg2e−2lsG−GIde+2dGI−3dG

3 F 1

s3d + D cothsDGdd2sd + l + D cothsDGdd2

+
2

f3d + D cothsDGdg3fd + l + D cothsDGdg

+
4

f3d + D cothsDGdgf2l − d + D cothsDGdg3

−
4

f3d + D cothsDGdg3f2l − d + D cothsDGdgG .

s100d

This form of Jsl ,G uyd lends itself to inverting the Laplace
transform and recovering theL dependence. This gives(ne-
glectingGI, as before)

JsL,Guyd <
ts0,Gd
us0,Gd

1

sinhsDGd3D3e+2dGI−3dGQfL − 2sG − GIdg

3FS fL − 2sG − GIdg
f3d + D cothsDGdg2

+
2

s3d + D cothsDGdd3De−fL−2sG−GIdgfd+D cothsDGdg

+ S 2fL − 2sG − GIdg2

f3d + D cothsDGdg

−
4

f3d + D cothsDGdg3De−1
2

fL−2sG−GIdgf−d+D cothsDGdgG ,

s101d

with Q the Heaviside step function. Off critical, for long
enough chains, specifically with,L@j<1/d2 and the con-
comitant log-energy scaleGd@1, one can expand

D < d +
y

2d
, s102d

and hence obtain

JsL,Guyd < udu3e+2dGI−sd+3ududGQfL − 2sG − GIdg

3FS fL − 2sG − GIdg
s4dd2

+
2

s4dd3De−fL−2sG−GIdgsd+udude− y
2udu

fL−2sG−GIdg

+ S2fL − 2sG − GIdg2

s4dd
−

4

s4dd3D
3e−1

2
fL−2sG−GIdgs−d+udude− y

4udu
fL−2sG−GIdgG . s103d

From the simple form of they dependence in this limit, one

can invert the Laplace transform by inspection to obtain the
L dependence.

In the paramagnetic phasesd.0d, JsL ,G uLd is sharply
peaked for long chains at 2sG−GId+4dL. In the ferromag-
netic phasesd,0d, it is instead sharply peaked at 2sG−GId
+2uduL. Integrating overG gives an exponential decay inL.
Thus, the distributions of the end-to-end transverse field log
correlations of long off-critical samples will have the form

fxxsL,Ld =E
GI

`

JsL,GuLddG

,H e−2dsL−4dLdQsL − 4dLd d . 0

e−udusL−2uduLdQsL − 2uduLd d , 0
. s104d

(Recall thath is the Heaviside step function.) This behavior,
with the exponential decay of almost all samples with a char-
acteristic length that is much shorter than the correlation
length, is similar to that of the order-parameter correlations
in the paramagnetic phase as discussed in Sec. I C of the
introduction.

3. Off-critical x-B correlations

The same analysis can be applied to thex-B correlation
function. The mathematical expressions are simpler, but the
result is more interesting. Since this correlation function is
symmetric with respect tod, we can choose to carry out the
analysis in the paramagnetic phase,d.0. Using the same
simplifying limit as before sGI ⇒0, Gd@1, y!d2d, and
keeping only the dominating terms in the disordered phase,
Eq. (82) becomes

Jsl,Guyd < e−2lsG−GId−2dGd2S 1/y

l − y
4d

−
1/y

l − y
2d

D . s105d

The inverse Laplace transform inl andy of this leads to

Jsl,Guyd < e−2dGd2sQfL − 2sG − GId − 2dLg

− QfL − 2sG − GId − 4dLgd. s106d

By integrating overG, we get for the distribution of the end-
to-end log cross-correlations,L=LL

x-B, of long off-critical
chains,

f sL,Ld
x−B =E

GI

`

JsL,GuLddG

, 50, L , 2uduL

1 − e−dsL−2uduLd, 2uduL , L , 4uduL

s1 − e−2d2Lde−udusL−4uduLd, L . 4uduL
.

s107d

Most long samples will have 2dL,L,4dL; remembering
that this expression is valid only forLd2@1, we see that the
distribution will be roughly constant in this range. For larger
L, the distribution decays exponentially.

In the ferromagnetic phase, the same result for the cross
correlations will obtain withd replaced byudu. The behavior
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in this phase contrasts with that of thex-x correlations whose
distribution ofL is peaked near 2uduL, and thus are typically
stronger than the cross correlations.

D. Energy-energy correlations and the energy gap

Looking at the earlier results for the average of the energy
gap,DE, of finite chains,6 we observe a strong resemblance
to the results obtained here for the averageE-E correlations.
In particular Eq.(60) in Ref. 6,

DE , L1/6e−3
2
Sp2L

2
D1/3

, s108d

gives the average gap at the critical pointd=0. We see that

2 logDE < log CL
EE. s109d

Some relation between the gap and the energy correlations is
to be expected, but the behavior of the two quantities is
surprising in its degree of the similarity. We will see that this
relationship between the gap and the energy correlations
arises in the structure of the RG flow.

In Eq. (103), the Heaviside functionQfL−2sG−GIdg im-
plies that −logsCsLd

G d.2sG−GId. Since the appropriateG at
which the decimation establishing this correlation occurs is
G=−log DE, this implies that

CL
xx , SDE

VI
D2

. s110d

To understand this inequality, consider the correlation coef-
ficient e−L associated with an end site, and compare this to

the transverse fieldh̄ on the end spin cluster. The strongest
correlations will occur if the chain undergoes a series of
bonddecimations. Looking at Fig. 6, one can see that in this

case, the evolution ofe−L andh̃ are exactly the same; in each
end-bond decimation they acquire a factor of theh0/J01 at
that scale. The strongest correlations dominate the average
correlations. Therefore, chains in which the energy correla-
tions and the gap are strongly correlated also dominate the
average correlations.

VI. CONCLUSIONS

In this paper we have investigated the various contribu-
tions to the end-to-end energy correlations of random quan-
tum Ising chains in the universal regime of long chains near
the quantum phase transition. In principal, the main result
obtained here, the Laplace transform of the distribution of
the logarithm of the correlation functions(73) and (82), can
be used to obtain the complete distributions in the scaling
limit. We have explicitly computed the average and the typi-
cal correlations, as well as some other aspects of the distri-
butions, in various limits. The average correlations are domi-
nated by exponentially(in the chain length) rare samples.
Nevertheless, they still decay ase−CL1/3

at the critical point.
This is in contrast to the power law decay of the average
order-parameter correlations. The various components of the
energy correlations are qualitatively similar, although their
distributions differ. The cross correlations between the order-

ing operator,Jszsz, and disordering transverse field operator,
hsx, are negative because of their competing effects; they are
also dual to each other.

The average correlations in the off-critical regime decay
with the same correlation length:j,1/d2, as the order-
parameter correlations. The typical correlations, however,
decay much faster, and have the same correlation-length ex-
ponent,ñ=1, as the pure system. In Sec. V C 2 it was shown
that the distribution ofŝ0

xŝL
x is strongly peaked near exps

−4dLd for d.0 and near exps−2uduLd for d,0, indicating a
surprising asymmetry between the two phases. This asymme-
try is a result of the difference between the ordering and
disordering components of the energy density and their be-
havior in the corresponding phases. At the critical point, the
typical correlations decay as,e−KL1/2

, with K a random vari-
able; this is similar to the typical order-parameter correla-
tions.

The behavior of the end-to-end energy correlations turns
out to be related to that of the lowest-energy gap. We explain
this in terms of the rare realizations of the quenched random-
ness that dominate: these are such that the gap and the cor-
relation function involve essentially the same product of ra-
tios of J’s to h’s. The connection between the energy
correlations and the energy gap suggests that the energy gap
could be probed indirectly using the—in some cases more
experimentally accessible—spatial correlations. This connec-
tion is reminiscent of that which occurs in conventional or-
dered phases in which the gap and spatial correlation length
are related.

Unlike previous RG calculations of properties of the ran-
dom transverse field Ising model, the energy correlations re-
quired the development of a formalism that goes beyond
second-order perturbation theory. Performing the RG trans-
formation by unitary transformations proved to be a useful
tool that allows one to follow readily the evolution of effec-
tive operators. Here, we have focused on end-to-end correla-
tions because these are far simpler to handle analytically:
correlations in the bulk of the chain involve effective opera-
tors on both sides of the objects of interest and are much
harder to deal with. Nevertheless, they could be computed by
numerically keeping track of the needed distributions.

For Ising chains, an alternative method for calculating
correlation functions is via othe Wigner-Jordan mapping of
Eq. (1) to a free-fermion model. Unfortunately, this method
does not offer much advantage: even in the resulting free-
particle problem, the primary obstacle is the diagonalization
of the random Hamiltonian. This can be done by numerical
diagonalization methods,18,21 but these are limited to rela-
tively small systems, and can currently be implemented only
on chains of an order of several hundred spins. With such
short lengths, numerics can be strongly affected by finite-size
effects, and extracting universal—nevermind exact—long-
size limits is difficult.27 An alternative to direct numerical
diagonalization is an iterative real space RG approach to the
diagonalization: the optimal strategy is analogous to that
which we use here.

The unitary transformation RG method developed in this
paper can also be used to study correlations in imaginary
time. So far, mostly average quantities have been calculated

G. REFAEL AND D. S. FISHER PHYSICAL REVIEW B70, 064409(2004)

064409-16



(for instance, see Refs. 18, 22, and 23), but progress on dis-
tributions should be possible utilizing the procedure de-
scribed here(Sec. II). More generally, the present RG
method should be applicable to other models both in one
dimension and in higher dimensions, with the unitary RG
procedure enabling one to follow the flows numerically to
obtain information about the behavior of operators of interest
at both high and low energies.
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APPENDIX: EFFECTS OF END OPERATORS

When calculating the energy correlation functions, we
kept terms that were third order or higher in the perturbation
expansion. A conccern to the validity of our treatment is that
terms that were produced as fourth- or fifth-order terms at an
early stage of the RG flow,G1, become more relevant than
terms that we kept that are produced at a later stage of the
RG flow, G2.G1. In this appendix we verify that end opera-
tor effects that we excluded in the text can not give rise to
leading-order contributions to the various computed energy
correlations.

In addition, The flow of the operatorŝ0
x when the end spin

is decimated, will include a termŝ0
zŝ1

z. Naively, as this is an
order—rather than a disorder—energy operator, it may make
the disordered and ordered phases look indistinguishable as
far as the transverse spin correlations are concerned. We will
show here that this isnot the case, and although these extra-
neous operators do appear, their contribution is, at best, sub-
dominant.

End site decimation

In order to prove the above claims, we need to investigate
the additional operators that arise when decimating ends. Re-
visiting the process of decimating an end site, we consider
the flow of the operatorh0ŝ0

x. The following table describes
the series of transformation, and the effective operators that
contribute toh0ŝ0

x:

SI h0ŝ0
x

I

Sa: −
J01

2h0
ŝ0

yŝ1
z − J01ŝ0

zŝ1
z

Sb:
J01h1

2h0
2 ŝ0

zŝ1
y −

J01h1

h0
ŝ0

yŝ1
y +

J01
2 h1

h0
2 ŝ1

x

Sc: −
J01J12h1

2h0
3 ŝ0

yŝ1
xŝ2

z −
J01J12h1

h0
2 ŝ0

zŝ1
xŝ2

z

Sd: −
J01J12h1h2

2h0
4 ŝ0

zŝ1
xŝ2

y J01
2 J12h1

2

h0
4 ŝ1

zŝ2
z +

J01
2

h0
4 J12h1h2ŝ1

yŝ2
y.

sA1d

The fourth line and the second line contain the terms that are
most likely to give a leading contribution to the correlations;

these operators have a nonvanishing expectation value in the
ground state of the decimated part. Keeping them all we have

h0ŝ0
x ⇒

J01
2 h1

h0
2 ŝ1

x +
J01

2

h0
4 J12h1

2ŝ1
zŝ2

z +
J01

2

h0
4 J12h1h2ŝ1

yŝ2
y.

sA2d

Another process that we need to consider is a bond decima-
tion close to the end. If we decimate the first bond, −J01ŝ0

zŝ1
z,

thenh0ŝ0
x becomes

h0ŝ0
x ⇒ −

h0h1

J01
ŝ0

yŝ1
y +

h0h1

J01
3 J12h2ŝ0

yŝ1
xŝ2

y = hs01dŝs01d
x

+
1

V2hs01dh2Js01d2ŝs01d
y ŝ2

y, sA3d

where the parentheses signify effective spin clusters. Going
further away from the end, a decimation of the second site in
the chain, −h1ŝ1

x, will give

h0ŝ0
x ⇒ h0ŝ0

x +
1

h1
2

J01J12

h1
h0h2ŝ0

yŝ1
xŝ2

y = h0ŝ0
x

+
1

h1
2J02h0h2ŝ0

yŝ2
y, sA4d

with site 1 eliminated. Note that site 0 is still the first site, but
site 2 is now the next.

From the above processes, a pattern emerges. The fifth-
order perturbation calculation above produces two dangerous
operators:

ŝ0
zŝ1

z, ŝ0
yŝ1

y. sA5d

We need to verify that these operators do not produce
leading-order correlations. The first step is to observe that
instead of seeing the bare operators,ŝ0

x, ŝ0
zŝ1

z, ŝ0
yŝ1

y, appear-
ing with varying prefactors, we see them appearing in the
combinationsh0ŝ0

x, s1/V2dh0
2J01ŝ0

zŝ1
z, s1/V2dh0J01h1ŝ0

yŝ1
y,

whereV is the energy scale at which the operator appeared.
There may be additional prefactors, which we will consider
shortly, but first let us establish that these forms have an
invariant structure.

Invariant Operators

In this section we will show that the form of the operators
defined as follows:

h0ŝ0
x,

h0
2J01ŝ0

zŝ1
z,

h0J01h1ŝ0
yŝ1

y, sA6d

is preseved during the RG flow. The coefficientsh0, h0
2J01,

and h0J01h1 will only be replaced by their renormalized
counterparts every time that a decimation affects them. This
is demonstrated in the following examples.

The simplest example is the operatorh0ŝ0
x. Under the

decimation of −J01ŝ0
zŝ1

z,
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h0ŝ0
x ⇒ −

h0h1

J01
ŝ0

yŝ1
y = hs01d

eff ŝs01d
x . sA7d

Another example is the operators1/V2dh0
2J01ŝ0

zŝ1
z. The deci-

mation of the second bond, −J12ŝ1
zŝ2

z, modifies this operator
as follows:

h0
2J01ŝ0

zŝ1
z ⇒ h0

2J0s12dŝ0
zŝs12d

z . sA8d

In the case of the operators1/V2dh0J01h1ŝ0
yŝ1

y, the corre-
sponding transformationSa=sh2/2J12dŝ1

zŝ2
y yields

h0J01h1ŝ0
yŝ1

y ⇒ h0J0s12d
h1h2

J12
ŝ0

yŝ1
xŝ2

y = h0J0s12dhs12dŝ0
yŝs12d

y .

sA9d

Decimating the second site in the chain, −h1ŝ1
x involves

the transformationSa=sJ12/h1dŝ1
yŝ2

z, yielding the following
flow for the two operators s1/V2dh0

2J01ŝ0
zŝ1

z,
s1/V2dh0J01h1ŝ0

yŝ1
y:

h0
2J01ŝ0

zŝ1
z ⇒ h0

2J01J12

h1
ŝ0

zŝ1
xŝ2

z = h0
2J02

effŝ0
zŝ2

z. sA10d

The second transformation in this same decimation process
is Sb=sJ12h2/h1

2dŝ1
zŝ2

y, which gives rise to:

h0J01h1ŝ0
yŝ1

y ⇒ h0
J01J12

h1
h1

h2

h1
ŝ0

yŝ1
xŝ2

y = h0J02
effh2ŝ0

yŝ2
y.

sA11d

In all cases, the flow due to decimations leaves the three
forms of the end operators invariant. We excluded here the
cases of a decimation of the first site or bonds; these are
considered below.

Displacement prefactors

As mentioned before and seen from the results of Eq.
(A1), there are still multiplicative prefactors coming before
the invariant operator forms. In Eq.(A2), for instance, all
three operators from Eq.(A6) have the prefactorsJ01/h0d2.
This suppression can be associated with thedisplacementof
the edge to the next undecimated site. With the help of Eq.
(A1), it can be easily shown that an end sites−h0ŝ0

xd deci-
mation leads to the following flows:

h0ŝ0
x ⇒ SJ01

h0
D2

hs01dŝs01d
x ,

h0
2J01ŝ0

zŝ1
z ⇒ SJ01

h0
D2

h1J12h2ŝ1
yŝ2

y,

h0J01h1ŝ0
yŝ1

y ⇒ SJ01

h0
D2

h1
2J01ŝ1

zŝ2
z. sA12d

From the above equation we see that there is a factor
sJ01/h0d2 associated with the displacement into the chain of
the ŝ0

zŝ1
z, ŝ0

yŝ1
y operators. This is repeated partially in the

case of a bond decimation of the −J01ŝ0
zŝ1

z:

h0
2J01ŝ0

zŝ1
z ⇒ hs01d

2 Js01d2ŝs01d
z ŝ2

z

h0J01h1ŝ0
yŝ1

y ⇒ Sh0h1

J01
2 Dhs01dJs01d2h2ŝs01d

y ŝ2
y. sA13d

Leading-order correlations

Now that we know how the end operators neglected in the
text evolve, and discovered that their forms are invariant, we
can show that these operators do not change the leading-
order contributions to the correlation functions of interest.
The xx correlation function is

CL
xx = kh0ŝ0

xhLŝL
xl − kh0ŝ0

xlkhLŝL
xl

= kGush0ŝ0
x − kh0ŝ0

xldshLŝL
x − khLŝL

xlduGl

= o
cÞG

kGuh0ŝ0
xuclkcuhLŝL

xuGl, sA14d

with the sum over all excited states,c.
As the RG process progresses, all the end operators will

be generated several times. However, we need only concern
ourselves with the last set of these generated. Previously
generated edge operators will have a larger suppression due
to the more times they underwent edge displacement.

Considering the last decimation step, which is needed to
obtain thex-x correlations and changing the notation so that
the remaining effective sites are,, r as in the text, we have

CL
xx <

e−L,−Lr

h,hr
o

cÞG

kHuh,ŝ,
x +

1

V,
2h,

2J,rŝ,
zŝr

z

+
1

V,
2h,J,rhrŝ,

yŝr
yuclkcuhrŝr

x +
1

Vr
2hr

2J,rŝ,
zŝr

z

+
1

Vr
2h,J,rhrŝ,

yŝr
yuHl. sA15d

The remaining low-energy parts of the Hamiltonian are

H = − h,ŝ,
x − J,rŝ,

zŝr
z − hrŝr

x. sA16d

Two cases need to be considered: a site decimation and a
bond decimation. In the case of a bond decimation, the
ground state of the system is

uHsLdl =
1
Î2

su↓,lu↓rl + u↑,lu↑rld, sA17d

and we immediately see that the only excitation that contrib-
utes in the sum(A15) is the ŝ,

xŝr
x term

CL
xx < e−L,−Lrh,hr , sA18d

which shows that in this case the dangerous operators[Eq.
(A5)] do not contribute to the correlations.

The second case involves a site decimation. Let us assume
that the dominant piece in Eq.(A16) is −h,ŝ,

x:
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uHsLdl =
1

2
su↓,l + u↑,ldsu↓rl + u↑rld. sA19d

In this case, the contribution of theŝ,
xŝr

x product is only
second order, and we need to consider the unitary transfor-
mation that induces this decimation. To lowest order, this is
Sa=−sJ,r /2h,dŝ,

yŝr
z. Applying this to Eq.(A15), we get

CL
xxeL,+Lrh,hr < o

cÞG

kHuh,e
iSaŝ,

xe−iSa +
1

V,
2h,

2J,rŝ,
zŝr

z

+
1

V,
2h,J,rhrŝ,

yŝr
yuclkcuhre

iSaŝr
xe−iSa

+
1

Vr
2hr

2J,rŝ,
zŝr

z +
1

Vr
2h,J,rhrŝ,

yŝr
yuHl

< o
cÞG

, HkHu − h,
J,r

h,

ŝ,
zŝr

z +
1

V,
2h,

2J,rŝ,
zŝr

z

+
1

V,
2h,J,rhrŝ,

yŝr
yuclkcuhr

J,r

h,

ŝ,
yŝr

y

+
1

Vr
2hr

2J,rŝ,
zŝr

z +
1

Vr
2h,J,rhrŝ,

yŝr
yuHl

= h,hr
J,r

h,
2 +

sh, − hrdhrJ,r
2

Vr
2 −

sh, − hrdhrJ,r
2

V,
2

< h,hr
J,r

hr
2 , sA20d

which is the same result as was derived in the text, while
ignoring the additional edge operators from Eq.(A5). In the
above we usedh,

2/Vr,,!1.
This demonstration can be repeated for thexx-z correla-

tions and also carried to higher order with the same conclu-
sions. We have thus verified that the energy correlations can
be obtained from the leading contributions to the flow of the
edge energy operators in each step of the RG.
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