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The oscillating magnetic interlayer coupling of Fe over spacer layers consisting of CuxPd1−x alloys is
investigated by first principles density functional theory. The amplitude, period, and phase of the coupling, as
well as the disorder-induced decay, are analyzed in detail and the consistency to the Ruderman-Kittel-Kasuya-
Yoshida theory is discussed. An effect of the Fermi surface nesting strength on the amplitude is established
from first principles calculations. An unexpected variation of the phase and disorder-induced decay is obtained
and the results are discussed in terms of asymptotics.
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I. INTRODUCTION

An interesting feature of random substitutional metallic
alloys is their rapidly but smoothly changing Fermi surfaces
as the electron per atom ratio,e/a, varies with concentration.
Such Fermi surface evolution can give rise to dramatic
physical phenomena like spin- and charge-density waves or
compositional ordering,1 to mention but a few.

A well-studied effect which is directly governed by the
Fermi surface is the magnetic interlayer coupling(MIC) be-
tween two magnetic layers across a paramagnetic spacer as
the spacer thickness is varied. Many studies exist that con-
firm the role of the Fermi surface of the spacer as mainly
governing the coupling, both experimental2–4 and
theoretical.5–9 The description of the MIC is thus well devel-
oped in the cases of both pure metal and random substitu-
tional metallic alloy spacers and the physical effect that is
responsible for the effect is understood to be spin dependent
confined electronic states in the spacer. The common models
are the so called Ruderman-Kittel-Kasuya-Yoshida(RKKY )
model10,11and the quantum well model.6 The theories predict
that among several things, the Fermi surface will play an
important role in changing the period, amplitude, phase, and
decay of the MIC when the spacer is alloyed. The phase is
affected by the type of extremal points on the spacer Fermi
surface, which may change with concentration. The period
changes since the length of the Fermi surface caliper changes
as confirmed by Okuno12 and Bobo13 for a Co/Cu1−xNix/Co
system and investigated theoretically by Lathiotakis.14–16Fi-
nally, the amplitude of the MIC oscillation is influenced by
the change in nesting at the Fermi surface.

In some cases, the amplitude does not change very much
when the spacer is alloyed12,13 but in other alloys and for
some growth directions the effect is dramatic.17–19 In the
cases where the amplitude is changed by alloying the spacer,
it always becomes smaller with increasing impurity concen-
tration. In the studied materials, the decrease in amplitude is
not a nesting effect but a disorder-induced damping of the
electronic states in the spacer.

One very interesting case where the Fermi surface nesting
could affect the amplitude of the MIC in addition to the
disorder broadening is the CuxPd1−x alloy. This system ex-
hibits Fermi surface driven compositional ordering where the
nesting of the Fermi surface is responsible for the
concentration-dependent peaks observed in x-ray diffuse
scattering in the concentration range 0.5øxø0.6.1,20 Recent
experimental studies of the Fermi surface nesting show an
exceptionally flat region in the[110] direction in a face-
centered-cubic(fcc) Cu0.6Pd0.4 random alloy sample.21 From
this observation it is reasonable to believe that the nesting
might manifest itself as an increase of the amplitude at this
concentration. In this paper we will calculate the MIC of the
Fe/CuxPd1−x/Fe system as function ofx. We will investigate
the variation of the period, amplitude, phase, and disorder-
induced decay with concentration for spacer thicknesses up
to 22 ML. The nesting effect on the amplitudes will be ana-
lyzed in detail and the validity of extracting asymptotic prop-
erties from this type of calculations is discussed.

II. THEORY

A. Definition

In this paper, the following definition of the MIC was
used

JsNd = E↑↓
totsNd − E↑↑

totsNd. s1d

Here E↑↓s↑↑d
tot is the total energy of the system with the total

magnetic moment of the Fe layers on one side of the system
antiparallel(parallel) to the Fe layers on the other side andN
the number of atomic monolayers in the spacer.

In all calculations we used the Korringa-Kohn-Rostocker
(KKR)22 method within the frozen core and atomic-sphere
approximations together with the local spin density approxi-
mation as parameterized in Ref. 23. To carry out the
multilayer calculations, the interface Green’s function tech-
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nique developed by Skriver and Rosengaard24 was used. The
bulk alloys as well as the layered alloys were treated within
the coherent potential approximation(CPA).25–27

An advantage of the Green’s function technique is that it
ensures a correct description of the loss of translational sym-
metry perpendicular to the interface without the use of an
artificial slab or supercell geometry. The multilayer systems
consisted of self-consistently calculated bulk potentials for
fcc Fe as boundary conditions to the left and right of the
multilayer region that consisted of the alloy spacer and some
Fe layers that were included in the self-consistent calcula-
tion. The spin alignment of the two sides was either parallel
or antiparallel. The spacer material was a disordered binary
alloy of the form CuxPd1−x for x=0.4–0.9. The calculations
were converged up to an energy difference of 0.1mRy be-
tween iterations. Thek-point sampling convergence was
checked, and we used 1024k points in the irreducible part of
the two-dimensional Brillouin zone. The bulk, as well as the
multilayer calculations were calculated in an ideal fcc lattice
with the lattice parameter linearly interpolated between Cu
and Pd for each concentration. This means that the fcc Fe
boundary conditions were recalculated for every Cu concen-
tration that was going to be used in the slab in order to adapt
to the global volume change. The choice of fcc Fe in the
structure is purely technical in order to optimize the speed of
the calculations. A more realistic system would be embed-
ded, thin fcc Fe layers in the alloy but that choice would
demand calculations that include more atomic layers and our
investigation would become intractable. The MIC should,
however, not be qualitatively affected by our choice of semi-
infinite fcc Fe as boundary conditions since the properties of
the MIC are mainly dictated by the spacer material.

All our calculations were performed scalar relativistically
and the detailed form of the Fermi surfaces may have
changed if the calculations would have included spin-orbit
coupling. However, by comparing our bulk calculations of
extremal Fermi surface vectors and shapes of the Fermi sur-
faces to the fully relativistic calculations and experiments in
Refs. 21 and 28, we conclude that the error from the scalar
relativistic approximation is small.

B. Model

The strength of a total energy calculation is that the MIC
is obtained directly from the independently calculated ener-
gies for each magnetic configuration by using the definition.
To gain physical insight, however, we need to consider a
model for the MIC. A good choice in this case is to look at
the RKKY model for a simple, symmetric quantum well po-
tential but for a general Fermi surface. Such a case is de-
scribed in detail by Bruno and Stiles5,6 where the final result
in the asymptotic limit(`) can be written as

J`sNd = o
i

− F "

2p2kiniuDRu2Gcoss2QiN + fid
N2 . s2d

Here, the sum is over the stationary points of the Fermi sur-
face andQi are the vectors on the Fermi surface that con-
nects the extremal points.N is the thickness of the spacer
defined as number of monolayers andfi is the phase. The

generalized Fermi surface radiiki are defined as

ki = FÎ]2Qiskid
]kx

2

]2Qiskid
]ky

2 − S ]2Qiskid
]kx]ky

D2G−1

s3d

andni are the reduced Fermi velocities.DR is the difference
in reflection amplitude between spin-up and spin-down elec-
trons in the well. For a more detailed description of the re-
flection amplitudes, see Refs. 6, 5, and 11. From now on we
will assume that there is only one extremal spanning vector
sQd on the Fermi surface in the direction that we are inves-
tigating. In Fig. 1, a spanning vector is displayed on a cut
through the Cu0.7Pd0.3 Fermi surface. The generalized Fermi
surface radius is calculated by using such spanning vectors in
a centered difference approximation of Eq.(3) where the
coordinate system is rotated so thatkx andky are perpendicu-
lar to the(110) direction.

One could expect that the theory breaks down in case of
an alloy spacer but as showed in Refs. 14 and 17 the effect of
an alloy spacer is an additional exponential damping factor
to the formula for the MIC so that

J`
alloysNd = J`sNde−N/L. s4d

The characteristic lengthL is given by

1

L
=

1

l+ −
1

l− , s5d

where l+s−d are the mean-free paths in the direction of
growth at the two edges of the Fermi surface. In our case we
have a symmetric, single sheet Fermi surface so that the
condition l+=−l− is fulfilled and the characteristic length
can be calculated asL=sl+d /2. The mean-free paths are cal-
culated as 1/l=d, whered is the half-width of the Fermi
surface as illustrated in Fig. 2.

For the calculation of the Fermi surface half-widths, the
Bloch spectral function

Assk,Ed = −
1

p
Im Tr Gssk,Ed s6d

from the Greens function of spins, wave vectork, and en-
ergy E was evaluated at the Fermi energyEF. Since we are

FIG. 1. A cut of the Cu0.7Pd0.3 Fermi surface in thekz=0 plane.
The nesting area is clearly visible at this concentration. The span-
ning vectorQ is displayed together with the direction of growth
([110]) and the definition ofki. The “fuzziness” of the surface rep-
resents the half-width of the Bloch spectral function displayed in
Fig. 2.
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only interested in the behavior along the[110] direction, we
need not to perform the calculation in the full Brillouin zone
but restrict the values ofk to theG-D-X line.

III. RESULTS

A. Magnetic moments

The magnetic moments of the interface Fe layer is about
2.9 mB for the 40% Cu systems and decreases linearly with
concentration to 2.6mB for the 90% Cu cases. This is mainly
a volume effect since the global volume decreases linearly
over the concentration range. For each Cu concentration, the
change in moment of the interface Fe is very small when the
spacer thickness is varied. In the spacer, the interface Pd
atoms have a moment of 0.25mB for the 40% Cu system and
0.18mB for the 90% Cu case. The Cu atoms always have a

very low moment, less than 0.05mB. The layer-resolved
magnetic moment in the spacer averaged over the Cu and Pd
atoms always decays to zero within 4 ML from the Fe inter-
face.

B. Magnetic interlayer coupling

In Fig. 3 we have plotted the MIC for some of the Cu
concentrations considered. In order to make the small oscil-
lations visible, the amplitudes are multiplied by the square of
the spacer thickness. We can see that the periods of the os-
cillations are between 2 and 3 ML and that no additional
damping to the amplitudes is evident. There is also an obvi-
ous aliasing effect in the 80% case where the “beat” of the
oscillation comes from the fact that the period is close to 2
ML and thus the frequency is close to the Nyquist
frequency.30 For the 80% case, the beat is shown through
shading, but the effect is present for concentrations down to
55% and we believe that this phenomena is partly respon-
sible for the uncertainty in the Fourier analysis performed
later. In the 90% case there is also a new period that appears
and this can be seen from the “wavy” form of the MIC.
Further processing of the data is not possible without the aid
of Fourier analysis and in the following, we will extract in-
formation from the Fourier spectra of the data in Fig. 3.

C. Nesting vector

First we investigate the change in Fermi surface nesting
vector as function of concentration. In Fig. 4 we have plotted
the Fermi surface spanning vectors in the interval 0.4øx
ø0.9 as obtained both directly from the Fermi surface cal-
culation and from the Fourier transform of the MIC as func-
tion of spacer thickness. The Fourier transforms always
showed one single distinct peak and theq vector for the peak
could easily be obtained. A representative Fourier transform
for x=0.6 is displayed in the inset. Although some of the
layer thicknesses that were used in the Fourier transform
clearly are not in the asymptotic region we still get a very
good agreement with the nesting vectors from the bulk cal-

FIG. 2. The Bloch spectral function along the lineG-D-X for
some of the calculated concentrations. The widths for each concen-
tration s2dd are indicated by the horizontal arrows.

FIG. 3. The MIC as function of spacer thickness for all the Cu
concentrations considered(circles). The solid lines are the Fourier
backtransforms and they serve as a guide to the eye. The aliasing
phenomena is visible for concentrations over 55%. The occurrence
of a second, longer period is visible in the 90% case.

FIG. 4. The nesting vector as obtained by a direct calculation of
the bulk Fermi surface and as calculated from a Fourier transform
of the MIC. The direction is(110). Several experimental results are
included for comparison: Smedskjaer,29 Wilkinson,21 and
Ohshima.1 The inset shows an example of a raw data Fourier trans-
form of the MIC for 60% Cu and how the values for the amplitude
sAQd and nesting vectorsQd are obtained.
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culations. We can see that the two theoretical curves agree
within 5% for all concentrations which indicates that the
Fermi surface is well defined in the multilayer system despite
the fact that the symmetry is broken in the direction of
growth. The spanning vector increases from,0.55 to,0.67
within the considered concentration interval which translates
into a period decrease of the MIC from,2.6 to ,2.1 ML,
respectively. For comparison, experimentally obtained span-
ning vectors are also plotted, and the agreement is very good.

It is noteworthy that in our bulk calculation of Fe, we see
a transition from a high-spin state to an intermediate-spin
state where the magnetic moment changes from,2.5mB to
,1.6mB when the lattice parameter is decreased below
3.61 Å. This implies that we have to limit our investigation
to a concentration interval belowx=0.9 in order to avoid the
effect of this transition in Fe on the MIC.

D. Amplitude

In this section we discuss the results obtained for the am-
plitudes associated with the spanning vectors shown in the
previous section. In Fig. 5 we show the amplitude as calcu-
lated from the maximum of the Fourier transform for each
Cu concentration. This means that the value ofAQ is the
strength of the prefactor in Eq.(2) for the nesting vectorsQd
provided that the coupling is proportional toN−2. As will be
clear in the discussion about decay later, it is at least very
close to this value. Also shown in the figure is the general-
ized Fermi surface radius and the characteristic length
(which are the two bulk properties that are defined by the
radius associated with the curvature of the Fermi surface and
the inverse of the disorder-induced damping). It is worth
noting here that a change in Fermi surface curvature does not
generally affect the phase of the MIC unless the nesting re-
gion changes between convex, concave or a saddle point.11

The well-pronounced peak in the amplitude atx=0.61 is lo-
cated in a global minimum of the coupling which is in agree-

ment with an increased characteristic length for concentra-
tions to the right of the peak. The amplitude should,
however, have a global minimum at 50% Cu if only the
characteristic length is considered, but in this alloy thed
band of Pd is intersecting the Fermi energy for concentra-
tions below 50%31 and we believe this changes the magnetic
properties of the spacer, thus having a considerable effect on
the MIC.32 We have also noted that the Fourier transforms
change somewhat depending on how many spacer thick-
nesses that are taken into account. For example if we exclude
the small spacer thicknesses with{1–3} ML CuPd and do the
transformation on MIC datasets with{4–22} ML we see a
small shift in theAQ peak positions. However, the peak inAQ
does not change position by more than ±1 on the concentra-
tion axis if the number of points is varied. This means that
despite not being in the asymptotic region, the effect of
Fermi surface nesting is clearly visible.

There are no experimental data concerning the MIC for
systems with a CuPd alloy as a spacer and the only investi-
gation of the Fermi surface nesting is that of Wilkinson21 by
positron annihilation. From that work, a crude estimate of the
change in nesting may be obtained by comparing the number
of measured nesting vectors from the total histograms of the
Cu60Pd40 and Cu72Pd28 measured Fermi surfaces, which is a
change of about 75%. The change in MIC amplitude in our
calculation between adjacent concentrations with a large dif-
ference in amplitude is about 6%. To make a direct experi-
ment on the MIC in this system would probably be a delicate
task but the calculated change in amplitude is in principal not
beyond experimental detection. We have calculated the MIC
by assuming semi-infinite Fe layers in the fcc structure for
computational reasons but the effect should also be seen in a
system with embedded Fe or Co layers that could adapt to
the fcc structure of the CuPd alloy. Whether the fabrication
of such multilayers is possible is, at least to our knowledge,
an open question.

E. Phase

As explained in the general theory for a pure metal spacer
in Ref. 11, there should be a phase shift of the MIC associ-
ated with a change in the spacer Fermi surface curvature.

In our case, the neighborhood around the nesting vectorQ
changes from a minimum to a saddle point when the Cu
concentration is changed from 40% to 90%. In order to in-
vestigate such a phase shift in our calculation, we have cal-
culated the phasesfd of the oscillationfJsNdg from the Fou-

FIG. 5. The amplitude of the largest Fourier transform peak of
the MIC for each concentration together with the characteristic
lengths and the Fermi surface curvature as calculated from Eq.(3)
(arbitrary units).

FIG. 6. The phase shift of the oscillation as calculated byf
=arctanfImsFd /ResFdg and shifted back to the interval 0øføp.
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rier transform fFsJ* N2dg by f=arctanfImsFd /ResFdg and
the result is shown in Fig. 6.

It is clearly evident that our phase changes continuously
with concentration and does not show any abrupt changes as
might be expected. An explanation may be that the phase is
more sensitive to the change in band matching at the inter-
faces as the concentration is varied than to the change in
Fermi surface curvature. Experimental studies of the phase
as function of impurity concentration in the magnetic layer
argue that the large observed phase change is due to the
altered band matching at the interfaces.33 In the alloy spacer,
the Fermi surface is also not as well defined as in a pure
metal(cf. Fig. 2) and the diffuseness may then be responsible
for a smearing of the phase shift over a much broader con-
centration range. There may also be other effects that influ-
ence the phase such as the electronic topological transitions
of the Fermi surface at 50% and 63% Cu31 and the aliasing
effect due to the discrete monolayer sampling of the MIC.

IV. DISCUSSION

A. Nesting from bulk Fermi surface

In order to investigate the nesting from the bulk Fermi
surface we have adopted the spanning vector counting
method suggested by Wilkinson.21 In order to do so, we cal-
culated the spectral function in the full Brillouin zone ac-
cording to Eq.(6) on a grid ofs64364364d k points. The
spectral function was then further interpolated to a 120
31203120 mesh. This mesh was used to construct an iso-
surface for a given intensity cut of the spectral function. This
value was chosen as the highest value possible that still re-
sulted in a continuous surface. Since the isosurface was con-
structed from the spectral function, it consisted of two sepa-
rate sheets, but the distance between those sheets was
minimized due to the choice of the intensity cut and tests
were made to ensure no double peaks when the nesting
check was calculated. After this procedure the number of
points on the Fermi surface was about 70 000.

We then created a histogram of vectors connecting two
points on this surface along a given direction, in our case
[110]. This histogram then showed a peak for the vector
length that is most frequently represented on our Fermi sur-
face.

The discrete representation of the Fermi surface and the
rounding error when calculating the length of the vectors
with this method resulted in rough histograms that were
smoothed by convolution with a Gaussian function. The in-
tensity of the histograms was also normalized with the num-
ber of points on the Fermi surface in order to compare inten-
sities of different concentrations.

In Fig. 7 we have plotted the intensity maximum of the
histogram divided by the total number of points on the Fermi
surface. It is clear that there is a peak for concentrations
around 61%. Compared to the maximum of the generalized
curvature there is a difference of about 3 units on the con-
centration axis and the result agrees perfectly with the maxi-
mum amplitude of the MIC.

The histogram in Fig. 7 has an unexpected nonmonotonic
behavior. We believe that the reason is that the Fermi sur-
faces were calculated on a grid and thereby the spatial reso-
lution becomes quite low for computer memory reasons. The
sparse grid is then responsible for the “jagged” appearance of
the figure. Although the figure has this drawback, the peak at
60% is still visible and distinguishable from the “noise.”

B. Amplitude

The amplitude of the MIC is a much more complicated
quantity to calculate compared to the period of the oscilla-
tion. From Eq.(2) we can see that the amplitude, even in the
ideal model case, depends on a number of factors. In this
discussion we will assume that the Fermi velocity termsnd is
constant or at least very slowly varying over the concentra-
tion interval. An estimation of the change in Fermi velocity
may be performed by inspecting the bulk band structure of
Cu and Pd for the[110] direction and taking the slope of the
band at the Fermi level. Our estimation gives a change in
Fermi velocity of no more than 4% over our concentration
interval.

The reflection coefficients are much harder to estimate.
They may, in general, vary irregularly with concentration and
the quadratic contribution to the amplitude is strong. A quan-
titative investigation of the variation of the reflection coeffi-
cients with concentration is a comprehensive task and is be-
yond the scope of this paper. Calculations of reflection
coefficients were made in Refs. 34–36. However, abovex
=0.55, thed band of Pd is already below the Fermi energy
and the variation in band matching(at least at the Fermi
level) is only from thes band. Thes band is not changing
very much between Cu and Pd so we assume that the band
matching, which gives the reflection coefficients, does not
change very much in the interval. We therefore assume that
the reflection coefficients will not affect the trend of the am-
plitudes more than in a monotonic way.

The remaining quantities that affect the coupling are the
generalized Fermi surface radius and characteristic length.
They were calculated from the Fermi surfaces of the corre-
sponding CuPd bulk alloys and since we are not completely
in the asymptotic region, the comparison to the amplitudes
from the full multilayer calculations is not strictly justified.
However, the concentrations wherek diverges and the am-
plitude has a maximum are very close and we argue that the

FIG. 7. The normalized number of vectors that take part in the
nesting in the[110] direction.
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small discrepancy is partly due to this preasymptotic effect.
Close tox=0.58, the Fermi surface is perfectly flat in one

ki direction and does thus show nesting along a line. The
result is that Eq.(3) breaks down and diverges. At the polek
changes sign which reflects the change from a minimum to a
saddle point around the nesting caliper. In Fig. 5, therefore,
the absolute value ofk is displayed(in arbitrary units).

C. Decay

The characteristic length that was calculated within this
model is displayed in Fig. 5. In order to check for the extra
decay that is associated with the characteristic length, we
have also performed a least squares fit of exponentially de-
caying functions to the MIC. From that analysis, we have
concluded that there is no decay, apart from the assumed
1/N2 decay, in the calculated MIC on the order of the esti-
mations in Fig. 5. This indicates that the disorder induced
decay is not easily observed in the studied spacer thickness
range.

The lack of damping is also evident in two cases in Ref.
18, Fig. 3 where the MIC was calculated for Cu0.5Au0.5,
Cu0.75Ni0.25 and Cu0.5Zn0.5. We have calculated the character-
istic lengths for these three alloys in the same way as for our
CuPd case to be 23, 87, and 23 ML, respectively. In Ref. 18,
there is only clear exponential damping for the CuZn case
although the damping is the same for the CuAu alloy. It is
then very interesting to examine Ref. 17 where the same
authors present an extended calculation of the CuAu system
[Fig. 4(e)] where they double the number of calculated
spacer layers from 45 to 90 ML, the damping then appear-
ing for thicknesses over 45 ML. An estimate of the exponen-
tial damping from the figures presented gives the character-
istic length for the CuAu case to be,76 ML whereas the
same property for CuZn becomes,25 ML which agrees
with our calculated characteristic length from the Fermi sur-
face. Thus, the damping term may not be as simple as pre-
viously thought and may contain some unknown, element
specific, prefactor which would explain the appearance of the
damping in the CuAu case. It may also be that, for some
cases, the damping cannot be calculated from a single point
on the Fermi surface by using the Bloch spectral function
within the CPA.

Since we calculate the characteristic lengths from the
point where the nesting vector touches the Fermi surface we
neglect contributions from all other vectors when the Fermi
surface is flat. In our case this may be a large source of error
since we are investigating a system with substantial nesting.
It is not known how all factors in Eq.(2) converge withk

points for total energy calculations and we speculate that the
exponential damping term may be very hard to converge.

V. CONCLUSIONS

The amplitude maximum of the MIC and the maximum
nesting strength show a remarkable agreement. We thus con-
clude that the MIC is affected by the nesting in a way that is
well described by the RKKY model. However, the agreement
between the divergence of the generalized Fermi surface ra-
dius and the peak in MIC is not perfect and an analysis of the
nesting of the bulk alloy Fermi surfaces show that the true
nesting peak and the divergence in Fermi surface radius do
not occur at exactly the same concentration.

The expected phase shift that is associated with the diver-
gence of the generalized Fermi surface curvature is not seen
in our calculations but the phase changes continuously over
the concentration range. We expect that the phase shift
should be seen if the calculation was extended further into
the asymptotic region. We also do not see the anticipated
disorder-induced decay of the amplitude and the comparison
to calculations by Bruno and Kudrnovsky17,18 indicates that
this decay may be visible only for very large systems
sN.45d.

The increase in the calculated amplitude is about 10% and
would in principle be measurable in an experiment if the
interface quality is good enough.

VI. SUMMARY

We have performed fullab initio, total energy calculations
of the MIC in Fe/CuxPd1−x/Fe random alloy systems for
0.4øxø0.9 and spacer thicknesses of 1–22 ML. At the
concentrationx,0.6 we see a large effect on the amplitude
from Fermi surface nesting. We have also investigated the
period, phase, and disorder-induced decay of the MIC. The
small difference in predicted amplitude maximum from bulk
Fermi surface calculations is argued to originate mainly from
preasymptotic effects. The results give important information
on the applicability of asymptotic models for the MIC.
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