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Anisotropy is added to the Edwards-Anderson model in such a way that interactions along thex axis are
stronger by a factorf with respect to other interactions. Hysteresis cycles for square and cubic ±J Ising spin
glasses are obtained by Monte Carlo simulations. Concentrationx of ferromagnetic interactionss−Jd, tempera-
tureT, andf are varied to study their effects on the characteristics of the hysteresis loops. Several behaviors are
simulated and compared to experimental curves, finding similarities. Important aspects such as virgin curve,
remnant magnetization, and coercive field are discussed in detail. It is found that anisotropy tends to stabilize
spin-glass phases, leading to a larger remnant magnetization and larger coercive field.
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I. INTRODUCTION

The Edwards-Anderson(EA) model1 has been investi-
gated for about three decades following several motivations.
In these systems, ferromagnetic interactionss−Jd in concen-
tration x, and antiferromagnetic interactionss+Jd in concen-
tration 1−x, are distributed at random in a lattice. Probably
the main motivation has been the possible use of this model
as a general guide towards most of the phenomena that char-
acterize a spin glass.2 Along this line of thought we present
here the results on magnetic properties of ±J Ising square
lattices(with some calculations for cubic lattices), where in-
teractions(independent of the sign) are stronger along one
direction with respect to the other(s) by a factor f.3,4 This
establishes a geometrical anisotropy affecting the magnetic
interactions and having a deep influence on the spin-glass
properties of the EA model. Thus, for instance, it has been
found3,5 that ground-state energy lowers, degeneracies de-
crease, and site-order parameters increase upon increasingf,
thus making more stable a possible spin-glass phase.

Then, it is possible to think that a larger stability on the
spin-glass behavior will also show in magnetic properties of
the systems. In particular, magnetization in the presence of
an external magnetic field, reflecting competition of several
realizations of internal local fields with the externally applied
magnetic field, would give rise to a rich phenomenology
worth of studying. This is the main purpose of this paper.

Very little is known with respect to the anisotropy effects
on the hysteresis loops of these systems. It is known that
simulations of hysteresis curves6,7 of ±J Ising lattices pro-
duce sectors very similar to those found in some real
systems.8,9 Preliminary results4 show that hysteresis curves
of anisotropic ±J Ising lattices present wiggles, or small
jumps, as it is found in some real systems where frustration
occurs.10 The energy dissipated per cycle(area within the
hysteresis loop) increases with the anisotropy factor, which is
in good correspondence with the larger values for order pa-
rameters under the same conditions.

In the present paper we want to extend this study to an-
swer the following questions related to isotropic and aniso-

tropic magnetic hysteresis simulations on the EA model: Is it
possible to simulate the virgin curve outside the main loop as
in many spin glasses?8 What are the main features of the
low-temperature hysteresis curves as functions off? What is
the behavior of the coercive field upon variation of both
anisotropy factorf and temperatureT? What is the behavior
of the remnant magnetization as functions off andT? What
is the role ofx, the concentration of ferromagnetic interac-
tions? How do hysteresis curves change shape upon varying
x in its range[0,1]? In answering these and other possible
questions we will bear in mind the behavior of some real
spin-glass systems.8–11

The paper is organized as follows. In Sec. II we give a
formal presentation of the model focusing on the anisotropy
factor f. In Sec. III we present the main results and discuss
some of their most important features. Finally, in Sec. IV we
make a summary of the main conclusions.

II. THEORY AND DEFINITIONS

Let us consider a spinSij at sitei j of a square lattice(SL)
with coordination numberZ=4 and a total ofLx3Ly=N
sites, all occupied by Ising one-half spins. We assume peri-
odic boundary conditions and a homogeneous magnetic field
B applied to the lattice. Interactions among spins can be ei-
ther ferromagnetic(F) in proportionx, or antiferromagnetic
(AF) in proportion 1−x. In the present paper we introduce an
anisotropy to the local fields such that interactions along the
directionx have the strengthfx, which is in general different
from interaction along the directiony with the strengthfy.

Such a system is described by an Ising Hamiltonian,

H = Hx + Hy − Bo
j=1

Ly

o
i=1

Lx

Sij , s1d

where the asymmetric components are written as

Hx = fxo
j=1

Ly

o
i=1

Lx

JijxSijSi+1j , s2d
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Hy = fyo
i=1

Lx

o
j=1

Ly

JijySijSij +1. s3d

Exchange interactionsJijx and Jijy can take values either
=−J (F) or +J (AF), with J.0. In these unitsB, temperature
T, and total energyE are measured in units ofJ. It is conve-
nient to define a relative anisotropy factorf = fx/ fy, which we
will use from here on. The extension to a simple cubic lattice
(CL) with Z=6 is straightforward, withfz= fy.

For a given concentrationx, different systems are pos-
sible, according to the distribution of bonds through the lat-
tice. A sample is a random distribution of bonds that is kept
frozen and stored. Then, for each such sample, different an-
isotropic realizations are achieved by simply varyingf in the
range from 1.0 to any high anisotropic value. In the present
paper we scan up tof =12.

For a given sample, the magnetization per site is

msB,dB/udBu,T, fd =
1

N
o
i=1

N

Si , s4d

wheredB/ udBu=−1 s+1d for decreasing(increasing) B.
Hysteresis curves for isotropic lattices have been previ-

ously reported.6,7,12We present here a systematic study based
on hysteresis simulations for anisotropic SLs. Emphasis of
the presentation will be on low-temperature(LT) hysteresis
behavior of SLs upon variations off and x. This treatment
can be easily extended to CLs, which we do to study the
behavior of the virgin curve(VC) in the original isotropic
samples.

Simulations are done as follows: A system(SL or CL) and
a sizeN are chosen. Five hundred random samples are then
considered in sequential order. For each sample a new calcu-
lation is started for eachf value.B is treated as an indepen-
dent variable and will be varied in steps ofdB equivalent to
flipping one spin at a time. For each value ofB the energy is
thermalized by means of a Monte Carlo(MC) calculation
with the Metropolis algorithm, over 104 MC steps.12 Magne-
tization is evaluated and stored. Two different processes will
be analyzed. For each sample,(1) several hysteresis cycles
(including the virgin curve) are obtained, and(2) the first
complete cycle is stored to perform statistics over 500
cycles, one for each sample.

It is well known that the MC method with the Metropolis
algorithm faces difficulties for the particular case ofT=0.0,
f =1.0, andx=0.5. Special treatment has been developed to
overcome this particular difficulty.13,14However, most of our
work is far from this particular point of the multidimensional
parameter space to be considered below. It is worth noticing
that upon the slightest anisotropy the accidental degeneracies
are removed and a true ground-energy valley arises.3,5 Due to
the previous argument we will stick to the MC method with
the Metropolis algorithm through the entire parameter space.

The choice of MC steps was based on the reproducibility
of the hysteresis loops. Since hysteresis measurements are
essentially done upon varying magnetic field at a given tem-
perature, it corresponds to an out-of-equilibrium experiment.
Hence, results can vary depending on the speed at which
magnetic field is changed. Eventually, if huge times are used

between successive magnetic field variations, better equili-
bration can be achieved and the loop can tend to close. This,
in fact, happens for the systems under study and eventually
also for some real experiments for systems with strong com-
petitions among interactions. On the other hand, if too short
times are used, simulations depend on the seed of the MC
process. We have made the decision of choosing an equili-
bration time that gives reproducible results independent of
the initial seed and sequence of visited states. Such reproduc-
ible results could still be subject to small variations if longer
times are used, however, this would affect all the results here
in the same direction(tiny closing of the loops), which
would still allow for the discussion of general tendencies on
the other relaxation processes that produce larger effects
(magnetic field and temperature variation). A set of 500
samples 12312, isotropic case,T=0.1, was studied system-
atically for the isotropic case(the less convenient case) in-
creasing equilibration times between 100 MC steps through
100 000 MC steps. It is found that already at 1000 MC steps
the loops are reproducible with negligible variations when
they are run under different sequential conditions. Then, at
10 000 MC steps no variations on the shape of the loops are
found within two significant digits of precision. Then we
have used this equilibration time, 104 MC steps, through all
simulations reported here.

The choice of the number of samples used to average over
different disorder realizations was established after studying
the stability of the results for several physical magnitudes
that characterize these systems.15,16 In Fig. 1 we present pro-
gressive average values for the ground-state energy per bond
k«gln, for n samples withn=1,2,3, . . . ,500. We have used
here the same 500 samples of size 12312 with an anisotropy
factor f =3.0. As it can be seen in the main body of Fig. 1 the
average value of the energy oscillates strongly for a small
number of samplessn,50d. Then, as the number of samples
considered in the average increases the oscillations are
dumped, showing the onset of convergence in the upper in-
set. Finally, for even larger values ofn the oscillations are
strongly dumped to a desired degree of accuracy, as shown in
the lower inset. We can conclude that convergence is fast and
is even faster whenf is increased. Convergence of other
physical parameters was studied in a similar way for differ-

FIG. 1. Progressive average values for the ground-state energy
per bond as a function of the number of samples used to obtain such
averages. The upper inset shows the onset of stabilization for the
range 50,n,100; the lower inset shows a stabilized function for
the range 450,n,500.
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ent temperatures.5 The worst convergence conditions are for
the isotropic case and equal amounts of F and AF bonds, for
which it was found that average values based on 300 samples
are stable within two significant figures.15,16Then, using 500
samples ensures reliable results throughout the entire param-
eter space.

Samples of different sizes were calculated. However, in
the rest of the presentation we restrict ourselves to sizeN
=12312 due to highly demanding computer times and stor-
age of data. No important size effects were observed forN
larger than 838, as will be shown below.

III. RESULTS AND DISCUSSION

Let us begin by considering a cubic lattice withx=0.5
(equal amounts of F and AF bonds) and f =1.0, namely, an
isotropic case. As a first application we takeT=0.0001(con-
sidered true zeroT as far as these simulations are concerned).
The MC process begins at a random state(with magnetiza-
tion close to zero) and no magnetic field. Then,B is slowly
increased up to saturation, thus generating the so-called vir-
gin curve(VC). ThenB is slowly decreased up to saturation
in the opposite sense, returning back to saturation for posi-
tive field closing a loop. This process is repeated as many
times as needed. In Fig. 2 we present the VC and six con-
secutive hysteresis loops for one particular sample. In the
upper part of Fig. 2(a) we present the six consecutive loops
without the VC, emphasizing the first quadrant only(B.0,

m.0), with the aim of reaching a better resolution on the
different loops. On the left-hand side of Fig. 2(a) a small
portion with B,0 can be seen, and we can clearly observe
each one of the six paths corresponding to each one of the
simulated loops. For the intervals 0,B,2 and 2,B,4
only five are observed. This number is reduced to one in the
following stepsB.4d. That is to say, for each field interval
there are several possible magnetization values and some can
be more frequently visited than others. A different way of
phrasing the same phenomenon is by saying that no return-
point memory(RPM) is observed. Such property is not guar-
anteed for systems with competing interactions, thus, in the
case of random fields, in some cases RPM is obeyed17 and in
other systems with competitive interactions, such property is
absent.13,18

In Fig. 2(b), we present the VC and the average hysteresis
curve obtained from previous loops. As it can be noticed, the
VC lays outside the main loop, which is particularly notori-
ous for the interval 2,B,4 in Fig. 2(b). This fact is actu-
ally observed for some real spin glasses.8 Such an interesting
feature was reproduced by our simulations for most of our
samples, both SLs and CLs.

From now on we report properties on SLs only, although
similar behaviors are found also in CLs. Computer times
needed for CLs are huge, compared to times needed in the
case of SLs with a similar number of spins. Since all the
phenomena are present in both lattices, focusing on the
simple system(SL in this case) allows for an inclusion of
more parameters which can be widely varied.

We now proceed to study variations of the LT hysteresis
cycle for increasing values off. The introduction of the an-
isotropy factorf, changes the energy scale, which affects the
values of the magnetic field. In order to present hysteresis
loops for different anisotropy factors within a common field
framework, we introduce a convenient renormalization fac-
tor. Namely, the renormalized magnetic fieldB* is defined as

B * sfd =
ZB

2f + sZ − 2d
. s5d

In Fig. 3 we present hysteresis loops for different aniso-
tropy factors as functions of the renormalized magnetic field
B*. Each curve is defined by average values over 500
samples of size 12312, at four different values off; namely,
f =1.0(isotropic), 1.5(slightly anisotropic), 3.0(anisotropic),
and 6.0(highly anisotropic). T is again 0.0001 and VCs are
suppressed for clarity. Several comments are in order. First,
simulations of LT hysteresis curves exhibit sectors within the
loop (regulated byZ) as actually shown by some real spin-
glass systems;8,9 In particular the closing of the loop atB*
=0.0, due to cancellation of local fields, is also shown by
simulations. Second, a small anisotropysf =1.5d breaks loops
and sectors into ladders of irregular step width and height;
step width is governed by values of the external field coin-
ciding with critical values of internal fields for which spin
turnovers are possible, thus producing magnetization jumps.
Such fields areB* =±4.0,±s4f / f +1d ,±f4sf −1d / f +1g ,±4/ f
+1, and 0.0(for Z=4). Third, simulations for SL lead to nine
steps; however, in real systems irregularities in the lattice can

FIG. 2. Low-temperature virgin curve(VC) followed by six
consecutive hysteresis loops for one isotropic 83838 sample. No-
tice that the VC lays outside of the loops, and that no return-point
memory is observed. Both facts are actually observed for some real
spin glasses.
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bring in more steps, or small wiggles, in the hysteresis
loops.10 Fourth, the particular case of having all steps of the
same width is obtained here forf =3.0. Fifth, for high aniso-
tropy, the main effects are observed:(a) terraces of constant
magnetization appear as shown in some real systems exhib-
iting mixed magnetism;19 (b) as f gets very largesf =6.0d
two sectors tend to prevail, with the central pointsB<0.0d
tending to close; and(c) for even higher values off the
closing effect continues, but there is always a remnant mag-
netization producing tiny steps in the central sector(this ef-
fect will be discussed in more detail in the next paragraph).
Sixth, the magnitude of the renormalized coercive field in-
creases for lowf values, reaches a maximum, and then tends
to diminish; such a strange behavior will be discussed below.
Seventh, the area within the loop increases withf indicating
that larger energy is required to overturn all spins, thus fa-
voring a spin-glass phase.4,5 Eighth, asT first increases(not
shown here) rounding effects appear on the steps of constant
magnetization; for higherT steps slowly disappear leading to
the usual inclinedS-like shape hysteresis loops, which even-
tually closes for high enoughT values.4,5

Let us now discuss remnant magnetizationmsB=0d in a
more detailed way using the notation introduced in Eq.(4).
As B comes down from saturation, magnetizationmsB.0,
−1,T, fd decreases upon loweringB. Remnant magnetization
is then defined asms0,−1,T, fd. In Fig. 4 we present the
remnant magnetization as a function off, for several differ-
ent values ofT. Remnant magnetization decreases withT, as

can be expected. However, Fig. 4 also shows the stabilization
role played byf, tending to reverse the effect of increasingT
to some extent. This is due to the remanence of magnetiza-
tion in the “horizontal” chains, as the frustration tends to
accumulate on the weak “vertical” bonds.

Coercive fieldBc is defined as the value of the field such
that msB=−Bc,−1,T, fd=0. In Fig. 5 we present the varia-
tion of the magnitude of the coercive field as function ofT
and f. In general termsBc decreases withT, as can be antici-
pated. However, for low-anisotropy valuessf ,2d an unex-
pected behavior is observed in the sense that asT increases
from zero, Bc first increases before following the general
trend of monotonous decrease for higherT values. The rea-
son for this is that temperature induces the presence of a few
random local weak fields, producing rounding effects in the
hysteresis curves asT slightly increases. For higher values of
T local fields are completely overcome, yielding basically
free spins not leading to net magnetization. On the other
hand, asf increases “horizontal” interactions become domi-
nant, leading to rigid sectors of the lattice and making it
harder for the external field to overturn solidary spins. This
explains the increase ofBc as f increases.

To check the soundness of previous results based on the
shape of the hysteresis curves corresponding to size 12

FIG. 3. Low-temperature average hysteresis curves over 500
samples 12312 at four different anisotropy factorsf andx=0.5, as
functions of the renormalized fieldB*. The different anisotropic
factors correspond to the following cases: isotropicf =1.0, slightly
anisotropicf =1.5, anisotropicf =3.0, and highly anisotropicf =6.

FIG. 4. Remnant magnetization as functions of anisotropy factor
f and temperatureT for x=0.5. The expected decrease of this mag-
nitude with temperature tends to be somewhat compensated by
large anisotropic factors.

FIG. 5. Coercive field as a function of anisotropyf factor and
temperatureT for x=0.5. This characteristic parameter decerases
with temperature in the long run, but it presents some fluctuations
for small values off.
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312, let us study the variation of the area under the hyster-
esis curveskAsT, fdl as a function ofL, which defines the
size of systemsL3L. Calculations are done atT=0.1 and for
an anisotropic factorf =3.0. The area under the curve de-
pends essentially on both remnant magnetization and coer-
cive field, which is then an accurate measure for the charac-
teristics of the hysteresis behavior. In Fig. 6 we plot
kAs0.1,3.0dl vs the reciprocal value of the system sizes1/Nd
being N=L3L for 500 samples andL=4, 6, 8, 10, 12, 14,
and 16. As it can be seen, size effects cease to be important
for 1/N,0.0156sL.8d, which justifies our choice ofN
=12312 in the present analysis. This is enough for the pur-
pose of checking the stability of the results reported here,
and we do not attempt a finite-size scaling analysis to ex-
trapolate values towards the thermodynamic limit. On the
other hand, using systems of sizes larger than 12312 will
need larger computer times without altering the main conclu-
sions reached here.

Let us now turn our attention to the case of the variablex,
which we present for the case off =3.0 based on 500
samples 12312 in Fig. 7. In the lower part of this figure we
present results for the mostly AF samples, namely,x=0.0,
0.2, and 0.5. In the upper part we report cases for the mostly
F samples, namely,x=0.5, 0.8, and 1.0(Casex=0.5, spin-
glass like, is repeated for comparison purposes). T is always
0.0001.

For x=1.0, a typical hysteresis loop for a ferromagnet is
obtained, namely, one single loop with a rectangular shape.
At x=0.8, some frustration is present in the system, so mag-
netization jumps occur at fixed values ofB*. At x=0.5, we
recover the curve labeledf =3.0 in Fig. 3, which is included
here to facilitate crossed analysis. Atx=0.2, height of the
steps decreases notoriously with a tendency of making the
loop horizontal and closing it. Atx=0.0, the loop is more
horizontal and almost closed; however, it does not close at
very low T due to the presence of different AF domains in
the sample which are impossible to overturn at very lowT.

It is very encouraging to compare curves for
0.70,c,0.95 (only x=0.8 is shown in Fig. 7) to Fig. 1 of
Ref. 19 and realize that there are some general similarities,
such as vertical jumps and terraces. There are also some
differences(such as increases of magnetization at fields dif-
ferent from those where magnetization decreases) that are
not accounted for by our simple model.

IV. CONCLUSIONS

The inclusion of anisotropy into the Edwards-Anderson
model produces a large variety of hysteresis loops, which
resemble several characteristics of measured hysteresis loops
on different real systems.

Concluding remarks will be presented in an increasing
order of the role of the anisotropy, beginning with the isotro-
pic case. Thus forf =1.0, we can mention three main fea-
tures. The VC can go outside the main loop as reported in
frustrated systems.8 These systems present a complex con-
figuration space, with many local energy minima leading to
several possible paths for hysteresis loops. This is indeed
found experimentally19 and it is also simulated by our MC
calculations, as discussed in Fig. 2 above. Another character-
istic of some frustrated systems is the presence of sectors in
the hysteresis with the tendency of closing at the centersB
<0d;8,9 this is a feature always reproduced by our simula-
tions due to the discrete nature of the ±J Ising Hamiltonian
of the Edwards-Anderson model.

The first consequence of introducing anisotropic interac-
tions (as can be seen from Fig. 3 above) is the surge of
several possible steps or terraces of constant magnetization at
low T. This feature is also shown by several systems, in
particular by alloys of FexMg1−xCl2, where there are compet-
ing interactions of different strengths.19

FIG. 6. Area under the hysteresis curves as a function of 1/N
with N=L3L for differentL values(4, 6, 8, 10, 12, 14, and 16) for
T=0.1, f =3.0, andx=0.5.

FIG. 7. Average hysteresis curves for 500 samples 12312 at
f =3.0 for different concentrations of ferromagnetic bondsx. In the
lower part we include the mostly AF casessxø0.5d, whereas in the
upper part we present results for the mostly F casessxù0.5d.
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Anisotropic interactions induce large remnant magnetiza-
tion as well as large values for coercive field. This is due to
the partial removal of the itinerant frustration that is present
in the isotropic case. The overall consequence of this is a
larger hysteresis loop for the anisotropic case, meaning a
larger energy dissipated in the hysteresis cycle. Therefore,
upon increasingf the spin-glass phase is favored.

When temperature is increased, simulations predict a
quick decrease of both remnant magnetization and coercive
field, as reported for some real systems with competing in-
teractions, such as AuFe alloys.11

A great variety of systems can be mimicked when the
relative concentration between F and AF interactions is var-
ied. This makes present treatment appropriate for gaining

some understanding in cases where several magnetic phases
can coexist in the same material, as is the case of the doped
perovskites for example.20 However, modeling such complex
real systems would require a more complete Hamiltonian
than the one used in the present analysis.
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