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A microscopic model of the molecular magnets\s used to study mechanisms for the adiabatic change of
the magnetization in time-dependent magnetic fields. The effects of the Dzyaloshinskii-Moriya interaction, the
most plausible source for the energy-level repulsions that lead to adiabatic changes of the magnetization, are
studied in detail. We find that the energy-level repulsions that result from this interaction exhibit a strong
dependence on the direction of the applied field. We also discuss the role of magnetic anisotropy in the
molecule Mn,-acetate.
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I. INTRODUCTION As the DM interaction has a vector character and is an-

Recently, magnetic molecules such as;Mer Vs have isotropic, the dynamics of the magnetization is expected to
attracted a lot of interest. These nanomagnets are often us€§Pend on the direction of the magnetic field. First we study
to study explicit real-time quantum dynamics, e.g., tunnelingthe characteristic properties of the DM interaction for a sim-
of the magnetization and quantufde)coherencé:22As a  Pplified model of \j5, namely, three spins on a triangle. Then
result of the very weak intermolecular interactions, experi-we confirm the properties found in the three-spin model by
ments can directly probe the magnetization dynamics of théull diagonalization of the 15-spin model of;¥ In order to
individual molecules. In particular, the adiabatic change oforidge the energy scales involveelg., from 800 K, a typical
the magnetization at low temperature is governed by the diggnergy scale for the interaction between individual magnetic
crete energy-level structufé:?’ ions, to about 17 K, a typical energy scale for energy-level

The adiabatic change of the magnetization requires somsgplittings, the calculation of the energy levels of the many-
interactions that yield energy-level repulsions, i.e., interacspin Hamiltonian has to be very accurate. We have tested
tions that do not commute with the magnetization. Thevarious standard algorithms to compute the low-lying states.
Dzyaloshinskii-Moriya(DM) interaction is the most likely For systems that are too large to be solved by full exact
candidate for such an interactiéh?®2°In the case of aniso- diagonalizationsuch as the 15-spin¥ mode), we use the
tropic high-spin molecules such as Mrand Fg, simplified  Lanczos method with full orthogonalizatighFO), a Cheby-
anisotropic single-spin models for a specific spin multipletshev polynomial projectofCPP method, and a power
can approximately reproduce the gaps of the level repulsiongnethod with additional subspace diagonalization. These al-
However, the case of M is more complicated becausgs/ gorithms can solve the rather large eigenvalue problems with
has half-odd-integer spin and the time-reversal symmetry ersufficient accuracy. The consistency of the data obtained by
forces at least a twofold degeneracy of the energy levels alifferent methods gives extra confidence in the numerical
zero field. results.

The possibility that the DM interaction might be the main  The magnetic properties of molecules such as jvare
mechanism for the adiabatic change for the magnetization iaften studied by considering a simplified model for the mag-
V5 has been explored in earlier wéP®but the dependence netic energy levels for a specific spin multiplet, e $,10.
of the energy-level scheme on the direction of the magnetitiowever, for these and other, similar, magnetic molecules
field was not considered. In this paper we further elaboratéhat consist of several magnetic momefits the case of
on this issue and demonstrate that the effect of the DM inMny,, eight Mr** (S=2) and four Mit* (S=3/2)], the reduc-
teraction on the magnetization dynamics strongly depends otion of the many-body Hamiltonian to an effective Hamil-
the direction of the applied magnetic field. This directionaltonian for a specific spin multiplet is nontrivial. Magnetic
dependence has not been observed in experiments;an Vanisotropy, a result of the geometrical arrangement of the
Therefore the DM interaction generally does not explain whymagnetic ions within a molecule of low symmetry, mixes
the magnetization changes as the magnetic field is swept. states of different total spin and enforces a treatment of the

It has been pointed out that the DM interaction is accom{ull Hilbert space of the system. For Ny the dominant
panied by a higher-order correction term that restores theontribution to the magnetic mixing due to spin-orbit inter-
SU(2) symmetry?1-34n this paper, we focus on the effects actions is also given by the DM interactiéh® In principle,
of the DM interaction and leave the inclusion of the higher-this type of interaction can change energy-level crossings
order term for future study. As another source of level repulinto energy-level repulsions. The presence of the latter is
sion, we might consider the hyperfine interaction with theessential to explain the adiabatic changes of the magnetiza-
nuclear spin. The effects of the hyperfine interaction havdion at the resonant field$-2” Thus, a minimal magnetic
already been discussed in Ref. 52. model Hamiltonian should conta{strong Heisenberg inter-
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actions, DM interactions, and a coupling to the applied mag-
netic field11-28-30.37-4Fxperiments on My, suggest that the
energy gaps related to the transition from a state with mag-
netizationM =-10 to a state with magnetizatiol <4 are
of the order of 10° K.*3 Such gaps are too small to detect
with standard precision13-14 digit3 calculations, and
therefore in this paper we present only the global energy-
level diagram obtained from microscopic model calculations.
The paper is organized as follows. In Sec. Il we analyze a
reduced three-spin model wis symmetry for the \{s mol-
ecule. Results for the energy-level schemes for a 15-spin
model of the {5 are presented in Sec. Ill. In Sec. IV we
discuss the effects of anisotropic terms and the cases with
less symmetry. In Sec. V, we report results for Mrin Sec.
VI we give our conclusions. In Appendixes A and B, we
briefly discuss some analytical solutions and the numerical
algorithms that we use to compute the energy levels, respec-
tively.
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Il. TRIANGLE MODEL WITH C; SYMMETRY

The V;5 molecule hasC; symmetry but is not invariant
for mirror reflection about the triangle plane. Therefore we
take as a simplified model for the;yYmolecule, a system of hT]
three spins on a triangle witG; symmetry only. We choose
the z axis to lie along the axis o€; symmetry. The Hamil-
tonian is given by

o
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FIG. 1. (Color onling Energy levels of Hamiltoniaril) for J
=-2.5K,D,=Dy=D,=0.25 K. At each value dfi the slope of each
level gives the corresponding value of the projection of the total

3 magnetization on the magnetic field axis. Top: Applied magnetic
H=- 2 Jiis1S - S+ E D; J. IS % S,-] -h- (E 3), field h parallel to thez axis. Bottom: Applied magnetic field along
i=1 G i the x axis.

1)
the applied field is parallel to the axis and the conditions

where J; ,=J, 3=J;1=J denotes the exchange interaction ;) 4nq(3) hold. Then the Hamiltoniart) is block diagonal,
andh represents the applied magnetic field. In general Wepe matrix containing four blocks of 22 matrices. The
can choose any direction of the DM vecy; unless there %

) o eight-dimensional Hilbert space separates into four two-
is some additional symmetry. In the present case, because fmensional spaces:
the C; symmetry, thez component of the DM vectors must

all be equal, i.e., {13/2,3/2,|a)},  {[3/2,1/2,[a)},
Di,=D33=D3,=D,. (2

If the system has mirror reflection symmetry about the tri- U3/2,172.0)}, ~ {[3/2,3/2)|0)}, )
angle plane theiD,=0. Thex andy components of the DM  \yhere the statéS, M) denotes an eigenstate of the Heisen-

vector, Df; and DY;, must obey the relation berg model with total spirs and magnetizatioM. The ex-
1 3 pressions for the orthonormal stafe and |b) are given in
( )53) 2 % /b Appendix A The statda) (|b)) denptes the stat@) (|b)).
: — ( X>1 with all spins reversed. From E@) it follows that there is
D%,s \_3 B 1 Dy no mixing among the four levels witB=+1/2, andthere-
2 2 fore they simply cross each other. From the analytical solu-
tion it is also easy to see that there are no energy-level re-
1 \E pulsions ah=0. Furthermore, one can show analytically that
« -= —— it is impossible to change the magnetization from -3/2 to
( 3,1> — _2 2 (Dx> &) +3/2 by (adiabatically reversing the external field along the
DY, V3 1 |\Dy/’ z axis?8
o ) In the top panel of Fig. 1 we show the energy levels as a

function of the strengtih of the applied magnetic field for
whereD,=D7 , andD,=DJ ,. the caseD,=D,=D,. The field is aligned along theaxis. It
In Appendix A we give the analytic expressions for theis evident that there is no level mixing lat 0. It is important
eigenvalues and eigenvectors of mo@#l in the case that to note that the small energy difference between the first
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FIG. 2. (Color onling Top: Energy levels of Hamiltoniafl) for
J=-2.5 K, Dy=D,=D,=0.25 K, and the applied magnetic field
=h(1,0,1/+2 tilted by 45° with respect to the axis. Bottom:
Detailed view of theh dependence of the four lowest energy levels.
At each value oh the slope of each level gives the corresponding
value of the projection of the total magnetization on the magnetic
field axis.

FIG. 3. Schematic diagram of the magnetic interactions in

excited state and the degenerate ground states @tis not ~ model(1) of the V5 molecule.

the minimum energy difference of the avoided level crossing

(nearh=0). Therefore, ah=0 there is no adiabatic change of tion. In this case, the gap opens symmetrically with respect

the magnetization. On the other hand, if we apply the magto the applied fiel#2 However, Ref. 22 did not address the

netization along thex direction (i.e., perpendicular to the dependence on the direction of the magnetic field. In the next

symmetry axis of the triang)ethen two of the states become section we repeat the analysis of this dependence for a 15-

degenerate. We find two nearly degenerate avoided levelpin model of the Vs molecule.

crossings, as shown in the bottom panel of Fig. 1. As an

intermediate case, in Fig. 2 we show the energy-level dia-

gram for the case that the magnetic field is tilted by 45° with 11I. 15-SPIN MODEL FOR THE VANADIUM COMPLEX

respect to thez axis [h=h(1,0,1/v2]. Then, there is a Vis

simple crossing at zero field and an avoided level crossing

between the levels oM=x1/2 at afinite magnetic field.

Indeed, a closer look at the level diagrasee the bottom In Fig. 3, we show the schematic diagram of the dominant

panel in Fig. 2 reveals that the minimum energy difference magnetic(Heisenbery interactions in the 15-spin model of

between the two pairs of levels does not occur at zero fielthe V;5 molecule (K¢[V1£As;0,5(H,0)]- 8H,0). The mag-

but at h=0.35 T. This implies that the Landau-Zener- netic structure consists of two hexagons with §x1/2

Stiickelberg transition from th&/2,-1/2 to the|1/2,1/2  spins each, enclosing a triangle with thi®e1/2 spins. All

level does not take place At=0 but ath=0.35 T. In con- dominant Heisenberg interactions are antiferromagnetic. The

clusion, the position and the energy splitting of the avoideddimension of the Hilbert space of this model i$232 768.

level crossing that is responsible for the adiabatic chang&he minimal Hamiltonian is given by expressi@l) with 15

depend on the direction of the field. instead of three spirt&:282%49The Heisenberg interactions
The numerical results discussed above have been obtaindg, in Eq. (1) between the vanadium atoms are defined ac-

for D,=Dy=D,. In Ref. 22 the DM vector is taken parallel to cording to Fig. 3. For simplicity, we assume tHat;=0 ex-

they axis at all the bonds and the field is applied alongzhe cept for bonds for which the Heisenberg exchange constant

axis. For the present model, this case corresponds to the caisethe largest(i.e., equal t0J).2%4% Rotations of 2r/3 and

with only D, (D,=D,=0) and a field applied in th& direc-  4x/3 around the axis perpendicular to and passing through

A. Spin interactions in V5
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the center of the hexagons leave thg, Yomplex invariant. DY, ;,=-14.641 K, D}, ,,=54.641 K, D7, ;=40 K, D}, 3
This enforces the constrain{®) and (3) on the values of =-40K, Dj,,;57=-40K, D3i,;740K, and Dij,;s
D; ;2930 =54.641 K,DY, ;=-14.641 K,D%, ;=40 K. For this choice
of model parameters, the eight lowest energies of the V
model (1) for two values of the applied magnetic fie{t
B. Energy-level diagrams =0 andh=4 T) along thez axis can be found in Table I.
In this Section, we will study the energy eigenva|ues forFrom Table | we see that for zero field the DM interaction

various sets of parameters of the Hamiltonian, ilg.and/or ~ Splits the doubly degenerate doubletsSs1/2 states into

Dj;, which have so far been proposed for the 15-spin modefwo doublets 0fS=1/2 states. The difference in energy be-
of V,.418:29.40 tween the doubly degenerate, first excited states and the two
First let us study the case of the model parameters givefPld degenerate ground states has a value of 0.0085 K. This
in Ref. 40, value is much smaller than the experimental estimate of
0.05 K22 but of the same order of magnitude as the value
J=-800K, J;=J=-544K, cited in Ref. 29. The next four higher levels as3/2
states. The energy-level splitting between 8w3/2 andS
J,=J'=-160K, J3=J,=J5=J5=0. (5) =1/2states is 4.1 K.

) ) Next, we study the parameter set of Ref. 29:
In the absence of DM interactions, our method reproduces

the energy gap between the ground state and the first excited J=-800K, J;=J=-225K,
state ath=0 to be a value of 4.124 78 K in agreement with
the result of Ref. 40. This value is in reasonable agreement J,=1'=-350K, J3=J,=J5=Js=0. (7)

with the experimental value of approximately 3.72KThis . .
energy gap causes a transition between the stat€s1/2 In the absence of DM interactions, the energy gap between
and|3/2,3/2 which takes place at~2.8 T (because 1 T the fourfold degenerate ground state and the first excited

corresponds to 1.343)Kin good agreement with the experi- state is 3.61 K, in full agreement with the result of Ref. 29.

mental value 2.8 T. Note that this value of the gap is fairly close to the experi-
Following Ref. 30, we now take for the DM interaction Mental value of 3.7 K2 Taking for the DM interactions
parameters X = DY, 15= 25 K,
’1(’2= D>1"2= Di’2= 40 K, (6)

34=Ds =Dy 1,=D}, 3=~ 125K,
which is approximately 5% of the largest Heisenberg cou- 347 TR0 IO 123

pling. Using the rotational symmetry of the hexagon it fol- V MY — Y —nY  —
lows from Eq.(3) that D3 ,=14.641 K, D} ,=-54.641 K, D34~ Ds6= ~D10117 P1215= - 215K, ®
D3,=40 K and Dgs=-54.641 K, D¥=14.641 K, D  our calculation for the splitting between the two doubly de-
=40 K. If the two hexagons are not equivalent we cannoigenerateS=1/2 levels yields 0.0037 K, about a factor of 2
reduce the number of free parameters by using a symmetigrger than the value cited in Ref. 29. For the energy splitting
argument(see below. However, for simplicity, we may as- between theS=1/2 andS=3/2 levels we obtain 3.616 K
sume that théx,y) positions of the spins on the lower hexa- instead of the value 3.618 K given in Ref. 29. These differ-
gons differ from those on the upper hexagon by a rotatiorences seem to suggest that a perturbation apptdémhthe
about /3. This yields for the remaining model parametersDM interaction may not be sufficiently accurate for quanti-
tative purpose$?

TABLE I. The eight lowest eigenvalue&; and total sping of ‘Finally, we study a parameter set obtained from a first-
the corresponding eigenstates of thgs Yhodel (1) with model pa-  Principles calculatiot?
rameters taken from Ref. 40 for two values of the external applied J=-809K. J =-120 K

field h parallel to thez axis. The values of the DM vectors are given

in the text. The distance betwe&nand the exact eigenvalue closest . _ _ _
to E; is Aj=(¢| (H-E)?| gp2< 10 fori=1,...,7. J'=120K,J;=-30K, J,=-122 K, J3=-3 K,

E;i (h=0) Sh=0 E(h=4T) S(h=4T) Jy=-11K, Js=-3K, J=-2K 9)

-3679.53623744 051 -3683.51181131 150 (see Table Iin Ref. 18 This set yields an energy gap of
_3679.53623744 051  —3682.21997451 051 4.915 K, as given in Ref. 18. Adding a DM interaction with

the parameterg8) does not significantly change the energy
-3679.52777009 0.51 —-3682.18488706 0.53 gap between the singlet and triplet states.
-3679.52777009 051  -3678.11784886  1.50 In Fig. 4 we show the results for the &) and the DM
—-3675.42943612 150  -3676.84225573 0.52  interaction parameters a®). For the energy gap at zero
-3675.42943612 1.50 -3676.83951808 0.51 field, we find 3.7 K(instead of 4.1 K for the’s of Ref. 40,
-3675.42325141 1.50 -3672.74011178 1.50 in good agreement with the experimental estimate of 3% K.

—3675.42325141 150  —-3667.37940477 1.50 The results for the zero-field energy gap suggest that there
are many different sets of model parameters that approxi-

~N o o~ w NN O
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FIG. 4. (Color onling Top: The eight lowest energy levels of \\\.\
V15 model (1) with model parameters taken from Ref. 29 as a 365825 i
function of the applied magnetic fiekl parallel to thez axis. The -3659.26 ) ) ) . . . ) . L]

values of the DM vector are given in the text. Bottom: Detailed
view of the four lowest energy levels ht=0.

0 0.005 0.01 0.015 0.02 0.025 0.03 0.035 0.04 0.045 0.05
h([T]

mately reproduce the experimental gap between the singlet FIG. 5. (Color onling Same as the right panel in Fig. 4 except
and triplet states. However, as we show below, the energghat the applied magnetic fielt=h(1,0,1)/2 is tilted by 45° with
gap at zero field does not necessarily correspond to the gapspect to the axis (top) andh is along thex axis (bottom).

of a level repulsion that is required for an adiabatic change of

the magnetization. . - {(1.2, (3.4, (5,0} into {(14,15, (10,11, (12,13}. If
We now study the energy-level diagram as a function OfWe place they axis along the line through V atom number 7

the directiqn of the magneti_c ﬁe.ld' As shown in the bOttomand through the middle of the line connecting V atoms 8 and
panel of Fig. 4, when the field is parallel to the symmetryg ond if we takeD, ,=(D,,D,,D,) as the reference DM
axis the energy levels d¥1=+1/2 simply cross, just as in : oY

the case of the top panel of Fig. 1. In Fig. 5, we presen%’eCtor’ the other DM vectors are given by
results for the cases where the angle between the applied

— P2 —
field and thez axis is 45° and 90°, respectively. Clearly, we D34=RDya Dse=RDi2,
find the same type of dependence of the energy levels on the
angle of the field as in the case of the three-spin mosks Dy415= XDy 5 Dig11= RXD; 5,

bottom panel of Fig. 2 and bottom panel of Fig. 1, respec-
tively). Exactly the same qualitative features are obtained for
the other sets of parametdi®d and(9) (results not shown

Up to now, we used DM vectors that satisfy the rotational
symmetry of a hexagon, and we took the same DM vectorsiere R denotes a rotation of the hexagons around 2 in
for the other hexagon for simplici). However, if there is the plane of the hexagons. The energy-level diagrams for the
some symmetry that connects the upper and lower hexagonset(5) and(6), with the additional constraint imposed by the
we have a relation between the DM vectors on both hexaabove symmetry, are qualitatively similar to those obtained
gons. In concert with the relations between the exchanga Figs. 4 and Yresults not shown
couplings, let us assume that the upper and lower hexagons Summarizing, as in the case of the three-spin model, all
are related to each other by a 180° rotation around a vectayur results for the 15-spin ¥ model clearly demonstrate
that passes through V atom numbeisge Fig. 3 and the that the mixing of levels strongly depends on the direction of
middle of the line connecting the two other V atoms of thethe magnetic field. It seems therefore that this dependence is
triangle. This symmetry operatioX transforms the sites a generic feature of the DM interaction.

D12 13= R?XD ». (10
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FIG. 6. (Color onling Energy-level diagram of the Hamiltonian
(1) of a distorted triangle with model parameteig,=-2.5 K,
J3=-2.0K, J3,;=-3.0 K, gnd D,=Dy=D,=25 K. The applied
magnetic fielch=h(1,0,1)/\2 is tilted by 45° with respect to the
axis.

IV. EFFECTS OF LOWER SYMMETRY

PHYSICAL REVIEW B 70, 064401(2004)

energy-level diagrams are qualitatively similar to those of the
undistorted triangl€see Figs. 1 and)2that is, crossings at
h=0 and level repulsions close =0 but not ath=0. How-
ever, in the case of an undistorted triangle with anisotropic,
antiferromagnetic exchange interactio@is., different for
the x,y, and z components of the spipsand D,=D,=D,
=0.25 K, the energy-level diagrams are qualitatively similar
to the ones of the undistorted trianglesults not shown

V. MANGANESE COMPLEX: Mn 4,

The four inner MA* ions in the Mn, molecule
[Mn15(CH3C0O0)1¢(H,0)40;,- 2CHCOOH - 4H0],  have
spin S=3/2. Theother eight MA* ions have spir8=2. The
dimension of the Hilbert space of this system §x&°®
=10%. If the total magnetization is a conserved quantity, it
can be used to block-diagonalize the Hamiltonian, allowing a
numerical study of models of this siZ&*> However, to
study the adiabatic change of magnetization, we have to take
into account all the states, and the dimension of the matrix

We now discuss the effects of distortion of the trianglebecomes prohibitively large. Thus we need to simplify the
and anisotropic exchange interactions in the triangle modehodel in order to reduce the dimension. A drastic reduction

of V45 on the energy-level diagram fér=0. When the tri-
angle is distortedJ; ,# J, 3# J3 1 # J; o) the degeneracy of
the two doublets ah=0 is lifted, even ifD,=D,=D,=0. In
Figs. 6 and 7 we show data fd; ,=-2.5 K, J, 3=-2.0 K,
and J;,=-3.0 K andD,=D,=D,=0.25 K for the applied
magnetic fieldh=h(1,0,1)/2 tilted by 45° with respect to
the z axis, and for field directions parallel to ttzeaxis and
along thex axis. Unless the field is parallel to tlzeaxis, the

10
8 L
6 L
4 L
E‘ 2 p
W ool
oL
.4 L
.6 L
0 05 1 15 2 25 3 35 4
h[T]
10
8 L
6 L
4t
z 2
w oo
ot
4L
.6 +
-8

15 2 25 3 35 4
h(T]

of the number of spin states can be achieved by assuming
that the strong antiferromagnetic Heisenberg interacfion
between an inner ion and its outer neighbor allows the re-
placement of the magnetic moment of an inner ion by an
effective S=1/2 moment. The schematic diagram of this
simplified (but still complicategl modef” is shown in the top
panel of Fig. 8. The dimension of the Hilbert space of this
model is 2 X 5*=10" In the following we study this simpli-
fied model.

The Hamiltonian for the magnetic interactions of the sim-
plified Mn;, model can be written 8%

4 2
H:—J(E s) -J X
i=1 (.j)eB

4
S-S - K2 (Sh)?
i=1

8
+ 2 D [SXS]-2h-S, (12)
1

(i.j)eB i=

where the index £i<4 (5<i<8) refers toS=1/2(S=2)
spins and B denotes the set of pairsB
={(1,5,(1,8,(2,5,(2,6),(3,6),(3,7,(4,6),(4,8}. The
first two terms describe the isotropic Heisenberg exchange
between the spins. The third terfi{,) describes the single-
ion easy-axis anisotropy @=2 spins. The fourth term rep-
resents the antisymmetric DM interaction in MnThe vec-
tor D;; determines the DM interaction between tha S
=1/2 spin and thgth S=2 spin. The last term describes the
interaction of the spins with the external magnetic fiald
Note that the factogug is absorbed in our definition df.
Model (11) reproduces experimental data, such as the split-
ting of the neutron scattering peaks, the results of electron
paramagnetic resonance measurements, and the temperature
dependence of the magnetic susceptibfity.

The first three terms in the Hamiltonidhl) conserve the

FIG. 7. (Color onling Same as Fig. 6 except that the applied Z Component of the total spiM?=XY,. The DM interac-

magnetic fieldh is parallel to thez axis (top) and along thes axis
(bottom).

tion, on the other hand, mixes states with different total
spins. Hence, the DM interaction can change level crossings

064401-6
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-D, -D its). Clearly there are states with total spin eight, nine, and
ten within these 21 lowest eigenstates. Although the total
magnetization is not a good quantum number, we can label
the various eigenstates by théoalculateg magnetization.

The S=10 single-spin model for Mp

H=-D($H?-hS, (12)

whereD denotes the uniaxial anisotropy, is often used as a
starting point to interpret experimental resi§ifst>-1440The
energy levels of this model exhibit crossings at the resonant
fields h=+Dn for n=-10,...,10, in qualitative agreement
with our numerical resultsshown in the bottom panel of Fig.
8) for the microscopic modelll). A fit of the first eight level
crossings of model12) to the data of Fig. 8 yieldD
~0.74 K, in good agreement with experimehfs.The
Hamiltonian of the single-spin modél2) commutes with
the magnetizatior and therefore its energy diagram dis-
plays only level crossings, no level repulsions. Adding aniso-
tropy of the formC(S!+S*) to model(12) changes the esti-
mated value ofD and leads to level repulsions when the
magnetization changes by3446-4°

It is also of interest to compare the level splitting hat
=0 obtained by lowest-order degenerate perturbation theory
of model (12) with fourth-order anisotropy of the forrs;
+S' (Refs. 47, 50, and 51

~ C\™ 1 (S+m)!
Ay = 323( ) [(m2-D!J2(S-m)!’

16D
FIG. 8. Top: Schematic diagram of the magnetic interactions offor m even (AE,;;=0 for m odd) with the result of the
the simplified mode(11) of the Mn, molecule(Ref. 37. Black  microscopic model calculation based on model). In Eq.
circles,S=1/2; open circlesS=2. Also shown are the DM vectors (13) | denotes the perturbed eigenstates in increasing order of
(for i<j and D; j=-D;;). Bottom: (Color onling The 21 lowest energy andn is the magnetic quantum number of the unper-
energy levels of the My model(11) as a function of the applied tyrbed state4’ Using the valuesD=~0.69 K, C/D=5.7
magnetic fielch. Solid lines, eigenstates wit~ 10; dashed lines,  x 1075 obtained by fitting the single-spin model to experi-

eigenstates witts~9. The applied magnetic field is parallel to  ental datd7 the energy gap fom=6 is given by
the z axis. ’

E[K]

(13

: . , AE;3 1,=~ 0.000 22 K. 14
into level repulsions. Therefore, the presence of the DM in- 13.12 (14

teraction may be sufficient to explain the experimentally ob-Taking into account thatbecause of the presence $f9
served adiabatic changes of the magnetization. state$ the correspondin@=~ 10 levels of mode{11) are the

The fourfold rotational-reflection symmetr§s,) of the  14th and 15th lowest energy levels, Table Il shows that for
Mn1, molecule imposes some relations between the DM vech=0, AE,3,,=0.000 42 K. In view of the uncertainties on
tors. There are only three independent DM paraméfers: the estimates of the various model parameters, the difference
Dy,=D}g Dy=D}g andD,=D7, as indicated in Fig. 8. of only a factor of 2 is remarkably small. From this compari-
The parameters of the modéll) have been estimated by son, we may conclude that the DM interaction leads to en-
comparing experimental and theoretical data. In this papeergy gaps that are of the same order of magnitude as the gaps
we will use the parameter set B from Refs. 37 and 42: due to the fourth-order tern& +S* in the single-spin model.
=23.8 K,J'=79.2 K,K,=5.72 K,D,=22 K, D,=0, andD, In the bottom panel of Fig. 8 we show the results for the
=10 K. Although the amount of available data is not suffi-lowest 21 energy levels of the Myimodel as a function of
cient to fix all these parameters accurately, we expect that thdre applied magnetic field as obtained by LFO. The applied
general trends in the energy-level diagram will not changenagnetic field is parallel to the axis. In Fig. 8 solid
drastically if these parameters change relatively little. (dashedl lines represent eigenstates wish=10 (9) (within

In Table Il we present results for the energy and total spiran error of about 10% Also eigenstates witls~8 appear
of the 21 lowest states fdr=0 andh=5 T (in these calcu- for h>4 but these are not shown for clarity. For the {¥n
lations h is parallel to thez axis). The numerical results model, the DM induced energy splittings between the
obtained by full exact diagonalizatigbaPAck), the Lanczos ~10,M~-10 state and other states are less tharf KO
method with full orthogonalizatiorisee Appendix B and  Adding an extra transverse field by tilting tihefield by 5°
the Chebyshev-polynomial-based projector mettsme Ap-  with respect to thez axis does not change this conclusion
pendix B are the same to working precisigabout 13 dig-  (results not shown
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TABLE Il. The 21 lowest eigenvalues; and total spinS of the corresponding eigenstates of the Mn
model(11) for two values of the external applied fieldalong thez axis. The distance betwedh and the
exact eigenvalue closest B is A;={¢;|(H-E)?| ¢;))*?<10%for i=1,...,7. Note that foh=0 the levels
12, 13, 18, 19, and 20 belong to tBe=9 subspace and not to ti8=10 subspace.

i Ei (h=0) S (h=0) Ei(h=5T) S(h=5T)

0 —812.771882673675 9.72 —-878.203468556749 9.77
1 —812.771882673460 9.72 —-857.042137859145 9.78
2 —798.326618260922 9.72 —837.727273846391 9.76
3 —798.326618261122 9.72 -820.218084451590 9.73
4 —785.677644659194 9.70 -816.530388063144 8.82
5 —785.677644658983 9.70 -804.449056631056 9.69
6 —774.774953284432 9.68 -804.242954124067 8.77
7 —774.774953284294 9.68 -798.519706376890 8.82
8 —-765.549187817101 9.65 -790.336285910398 9.65
9 —765.549187333902 9.65 -788.717912654407 8.78
10 —757.919915510036 9.61 -782.037906282298 8.82
11 —757.919915509970 9.61 —-777.789121186874 9.60
12 —757.673722613912 8.77 —-774.222534072884 8.79
13 —757.673722613981 8.77 —-773.614730624955 8.80
14 —751.806498916496 9.57 —-766.993852023410 8.80
15 —751.806072514140 9.57 —-766.720405060281 9.55
16 —747.135398548595 9.54 —-760.807893152451 8.79
17 —747.135398548602 9.54 —-760.482768227423 8.12
18 —746.357522623039 8.77 —-757.060762637193 9.51
19 —746.357522623082 8.77 —754.700878489864 8.59
20 —745.778951523327 8.70 —753.310517350023 8.78

Finally, we added to mode€lll) the next-to-lowest order Mny,. In Sec. Il we discussed the properties of the level
relativistic correction to the local anisotropy that is compat-repulsions due to the DM interactions in thgs\6ystem. For

ible with the symmetry of the squa¥e the Mn;, system we expect to find similar behavior. How-
ever, we find that the energy differences at the crossing
H1=Ki[(S)2+ ()% + (S5)%+ (). (15) points are smaller than the 0K accuracy of our numerical

calculations. Therefore in this section we studied the main

Although we took a perhaps unrealistically large value offeatures of the energy-level diagram of Mnin principle, it
K; (K;=K,/2), we were unable to detect energy-level repul-is possible to leave th&=10 multiplet by sweeping the
sions up to theM=-10,M=3 transition (results not magnetic field but for Mg, the probabilities for these tran-
shown. On the other hand, in experimefits!? adiabatic ~ sitions are also smaller than the"#& accuracy of our nu-
changes of the magnetization have been observeth at merical calculations. Finally, there is the possibility that cou-
~34T(M,~-10—-M,=4) and h=39T(M,~-10 plings such as the hyperfine interaction also yield level
—M,=3) and the magnitude of the energy splittings is of repulsions with energy-level splittings that are significantly
the order of 10 nK3 The precision of the present calcula- larger than those generated by the DM interaction. We leave
tions is about 10 K. Thus, it is consistent that within the the study of these interesting topics for future research.
(very high resolution in théh field and the 13-digit precision
of the calculation, no information about the gap could be
extracted. The algorithms developed for the work presented
in this paper can be used for 33-digit calculations without We have studied the dependence of the energy-level dia-
modification. grams, with level repulsions due to the Dzyaloshinskii-

It has already been demonstrated that the many-spiMoriya interaction, on the direction of the applied magnetic
model (11) can reproduce neutron scattering data, highfield. We found that the dependence on the direction of the
frequency electron spin resonance, and the temperature deragnetic field seems to be generic, at least if the system has
pendence of the magnetic susceptibility of the ;Mn C;symmetry. Our numerical data suggest that the three-spin
system?” Our results for the energy-level diagram show fea-model reproduces the main features of the 15-spin model of
tures(for example, the presence 89 levels, see Fig.)8 Vs The presence of the Dzyaloshinskii-Moriya interaction
that are not accounted for by a single-s@n10 model for allows for adiabatic changes of the magnetization but, ac-

VI. DISCUSSION
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cording to our calculations, the value of the resonant field foffield is parallel to thex axis, the expressions themselves are
the|1/2,-1/2 to |1/2,1/2 transition changes with the di- rather long and not very illuminating. Therefore they are not
rection of the magnetic field. The Dzyaloshinskii-Moriya in- given here.
teraction not only lifts the degeneracy but, depending on the For a magnetic field parallel to theaxis, a straightfor-
direction of the field with respect to the symmetry axis, alsoward calculation shows that
shifts the resonant point away froh=0. )

The butterfly hysteresis loop observed in time-resolved H|3/2,3/2 = _M |3/2,3/3+3(DX—+'DL) |a),
magnetization measurements has been interpreted in terms of 4 4
a combination of a Landau-Zener-Stickelberg transition at

zero field and spin-phonon couplif?? Our results show 9[(J+2h,)2+ D2+ D2

that unless the field is applied in a special directigror y H? |3/2,3/2 = 16 = 1312,3/2
direction in this casg the adiabatic magnetization process is

no longer symmetric with respect to the field. The depen- 3(Dy + iDy)(\@DZ+ 4h,)
dence on the direction of the field should lead to observable B 8 ),

changes in the hysteresis loops. So far, only weak directional
dependence has been reported in experinféritherefore,

it seems that it is necessary to explore other mechanisms |3/2,1/2>=_3‘]+_2hz |3/2’1/2_W—X+Dﬁ @,
that yield energy-level repulsions such as hyperfine 4
interactions’?
(3J+2h,)%+ 3(D? + D?)
2 - X Yy
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The expressions fot{|3/2,-3/2,H?|3/2,-3/2,H|3/2,
-1/2), and’H?|3/2,-1/2 are obtained from EqgA2) and

Here we collect some analytical results of the solution of(A3) by changing the sign df, andD, and replacinda) by
the eigenvalue problem of Hamiltoniah). We consider only 1

APPENDIX A: DIAGONALIZATION OF MODEL (1)

the case of a magnetic field that is parallel to thaxis[h lby=—=[(1 —i\@) [T 1 1)
=(0,0,h)]. For a DM vector satisfying the condition(®) 2\3
and(3) the eight eigenvalues are given by +(1 +i\/§)|l T1y=2 111Dl (A4)
E o= \’EDZ“‘ 4h, + \/9DX2 +9D,%+ (\/éDZ_ 3J+2h,)? Note that(a|b)=0. From Eq.(A2) it follows that for the
0,17 4 ' external field parallel to the axis, modek1) does not allow

transitions from the state with all spins (gown) to the state
with two spins dowr(up). Therefore, if initially the system is

~ 3D, 4h,+ V9D,2 + 9D,% + (\3D, - 3] - 2h))?

E,s= in the state with all spins down, adiabatically sweeping the
’ 4 field from a large negative value to a large positive value will
not yield the final state with all spins up.
— —
_\3D,+ V3D,2+3D,2+ (3D, + 3] - 2h,)?
45 4 ’ APPENDIX B: NUMERICAL METHODS
= [ = 5 A theoretical description of quantum dynamical phenom-
_ V3D, v3D,“+3D,"+ (v3D, + 3] + 2h) ena in the Mp, and V;s nanomagnets requires detailed
6.7 4 ' knowledge of their energy-level schemes. Disregarding the

(A1) fascinating physics of the nanomagnets, the calculation of
the eigenvalues of their model Hamiltonians is a challenging
where D,=D} ,, Dy=DY ,, and D,=D7, Substituting the problem in its own right. First, théadiabati¢ quantum dy-
values of all model parameters, we recover the results olmamics of these systems is mainly determined by(tims)
tained by numerical diagonalization. Hey=0 there are four level repulsions. Therefore the calculation of the energy lev-
pairs of twofold degenerate levels. Although it is possible toels of these many-spin Hamiltonians has to be very accurate
find analytical expressions for the case that the magnetim order to bridge the energy scales involvezlg., from
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500 K to~101°K). Second, the level repulsions originate low-lying eigenstates ofl. Thus we can exploit the fact that
from the DM interactions which mix states with different projection onto thenumerically exagtsubspace of dimen-
magnetization. In principle, this prevents the use of the magsionk (k<n) built by the Lanczos vectors will yield increas-
netization as a vehicle to block-diagonalize the Hamiltoniaringly accurate estimates of the small@argesj eigenvalues
and effectively reduce the size of the matrices that have to band corresponding eigenvectorskamcreases.
diagonalized. If a level repulsion involves states of signifi- In practice, to compute th® lowest energy levels, the
cantly different magnetizatiote.g.,M?=-10 andM?=10) a  LFO procedure is carried out as follows.
perturbative calculation of the level splitting would require (1) Perform a Lanczos step according to the standard pro-
going to rather high ordefat least 2§, a cumbersome pro- cedure.
cedure. Therefore it is of interest to explore alternative routes (2) Use the modified Gramm-Schmidt procedure to or-
to direct but accurate, brute-force diagonalization of the fullthogonalize the new Lanczos vector with respect to all pre-
model Hamiltonian. vious one$35%4
As a nontrivial set of reference data, we used the eigen- (3) Compute the matrix elements of the tridiagonal ma-
values obtained by full diagonalizatioqusing standard trix.
LAPACK algorithmg of the 10 000< 10 000 matrix represent- (4) At regular intervals, diagonalize the tridiagonal ma-
ing model(11).#2 For one set of model parameters, such atrix, compute the approximate eigenvectors;, u;
calculation takes about 2h of CPU time on an Athlon=(¢,|H|¢;), and A?=(¢;|(H-w)?|¢;) fori=1,...,M, and
1.8 GHz, 1.5 Gbytes system. Clearly this is too slow if wecheck if all A; are smaller than a specified threshold. If so,
want to compute the energy-level diagram, in particular if weterminate the procedurghe exact eigenvalug closest to;
want to estimate the structure of the level splittings. At thesatisfiesu;— A <E; < u; +A,). If not, continue generating new
resonant fields we need the eigenvalues for many values @fanczos vectors, etc.
h. Furthermore, in the case of;ythis calculation would take
about 30 times longer and require about 15 Gbytes of
memory which, for present-day computers, is too much to be )
of practical use. As an alternative to the L_FO, we haye used a power
We have tested different standard algorithms to comput&1ethod®>* based on the matrix exponential™.5> Writing
the low-lying eigenvalues of large matrices. The standardhe random vectow (0) in terms of the(unknown eigenvec-

Lanczos methodincluding its conjugate gradient versipas  tors{¢;} of H, we find

2. Chebyshev polynomial projector method

well as the power meth&é®* either converge too slowly, _E H(E-Eq)
lack the accuracy to resolve ttigearly) degenerate eigen- V(1) = € ol ol W (0)) + €0y (1[(0))
values, on sometimes even completely fail to correctly repro- +e B8 (b | W (0)) + -+ ], (B1)

duce the low-lying part of the spectrum. This is not a sur- . . . .
prise. By consfruction these methods work well if the ground®"°Wing lim_o W (O)/[[W(t)[|« o if (ho| W(0))#0. In this
state is not degenerate and there is little guarantee that th&{iVe matrix-exponential version of the power method, con-
will work if there are(nearly) degenerate eigenvalugs®*|n ~ Vergence to the lowest eigenstate is exponential i
particular, the Lanczos procedure suffers from numerical inF1>Eo. L
stabilities due to the loss of orthogonalization of the Lanczos 1he case of degenerat&,=E,="--) or very close(E,
vectors3354 |t seems that model Hamiltonians for the nano- =E1~ ) eigenvalues can be solved rather easily by apply-
scale magnets provide a class(obmplex Hermitianeigen-  ing the projector to a subspace instead of a single vector, in
value problems that are hard to solve. combination with diagonalization ofe within this
Extensive tests led us to the conclusion that only thesubspacé® First we fix the dimensiork of the subspace by
Lanczos method with full orthogonalizati®¥** and the takingk equal to or larger than the desired number of distinct
Chebyshev-polynomial-based projector method discusse@igenvalues. The projection parametshould be as large as
below can solve these rather large and difficult eigenvalué’OSS'ble but nevertheless sufficiently small so that at least the
problems with sufficient accuracy. The former is significantlyfirst k terms survive one projection step. Then we generate a

faster than the latter but using both gives extra confidence ifiet of random initial vector®;(0) for i=1,...,k and set the
the results. projection countn to zero. We compute thke lowest eigen-

states by the following algoriths?.
(1) Perform a projection step  Wi[(n+1)t]
1. Lanczos method with full orthogonalization =eMy(nt) fori=1,... k.

In the LFO, each time a new Lanczos vector is generated (2) Compute  the kXxk  matrices. A=(¥i[(n
we explicitly orthogonalizgto working precisiopthis vector  * Dtl[€" [ ¥i[(n+ Dth=(Wi[(n+1)t][ ¥;(n))) and B=(¥i[(n
to all, not just to the two previous, Lanczos vecter&with  +Dt]|¥i[(n+1)t]). Note thatA is Hermitian andB is posi-
some minor modifications to restart the procedure when thégve definite.

Lanczos iteration terminates prematurely, aftesteps this (3) Determine the unitary transformatidd that solves
procedure transforms thex n matrix H into a tridiagonal the kXk generalized eigenvalue probleAx=ABx. Recall
matrix that is comparable in accuracy to the one obtainedhatk is small.

through Householder tridiagonalization but offers no (4) Compute W/[(n+1)t] :zg‘:lui,jqu [(n+1)t] for i
advantage®! In our case we are interested only in a few=1,... k.
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(5) Set¥i[(n+Dt]=¥/[(n+Dt] fori=1,... k. * _
(6) Computew; =(¥;[(n+1)t]|H|¥;[(n+1)t]) and check V(M) =| 1021 + 22 1D T(H) [ ¥(0). (B3)
if AZ=(W[(n+Dt]|(H-w)?|¥i[(n+1)t]) is smaller than a m=1
spgcmed thrgshold far=1,...,k. If yes, terminate the calcu- Here, | is the identity matrix and’m(ﬁ) is the matrix-valued
lation. If no, increase by 1 and repeat the procedure. chehyshev polynomial defined by the recursion relations
We calculatee ™ by using the Chebyshev polynomial _ _ _
expansion methoef—¢°First we compute an upper bouRd To(H)W(0) =W¥(0), T,(H)¥(0)=HW¥(0), (B4)

of the spectral radius df (i.e.,||H|| <R) by repeatedly using
the triangle inequalit§® From this point on we use the “nor-

malized” matrix H=(2H/R-1)/2. The eigenvalues of the Twl(ﬁ)\If(O)=2F|Tm(F|)\If(O)—Tm_1(F|)‘If(O), (B5)

Hermitian matrix H are real and lie in the interval for m=1. In practice we will sum only contributions with
[-1,1].°%5% Expanding the initial value¥(0) in the (un- m<M where M is chosen such that, for all
known) eigenvectorsp; of H (or H) we find m>M, [I(2)/1o(2)| is zero to machine precision. Then
it is not difficult to show that [e™/l1y(2)-I
-22M [14(2/15(2)]T(H)| is zero to machine precision too
B B [instead ofe™ we can equally well use™/I(2) as the
W(t) = eMP(0) = 2™ (0) = D eFh (| F(0)), projectof.
i . '| Using the downward recursion relation of the modified
(B2) Bessel functions, we can compeBessel functions to ma-
chine precision using of the order oK arithmetic
operation$1-62 A calculation of the first 20 000 modified
Bessel functions takes less than 1 s on a Pentium Il

_ . . . 600 MHz mobile processor, using 14-15 digit arithmetic.
wherez=~tR. We find the Chebyshev polynomial expansion Hence this part of a calculation is a negligible fraction of the

of W(y) by computing the Founel coefficients of the function total computational work for solving the eigenvalue problem.
05781 Alternatively, since ~%Ej<1, we can use the ex- Performing one projection step with' amounts to repeat-
pansion €5=1y(2) +23;_;Im(2)Tm(Ej) where I(2) is the edly using recursion(B5) to obtain T,,(B)¥(0) for k
modified Bessel function of integer orden (Ref. 61) to  =2,...,M, multiply the elements of this vector By(z), and
write Eq.(B2) as add all contributions.
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