
Variational considerations in the study of carrier transport in organic crystals

Paul E. Parris1,2 and V. M. Kenkre1
1Consortium of the Americas for Interdisciplinary Science and Department of Physics and Astronomy, University of New Mexico,

Albuquerque, New Mexico 87131, USA
2Department of Physics, University of Missouri-Rolla, Rolla, Missouri 65409, USA

(Received 9 March 2004; published 31 August 2004)

A variational approach is used to investigate consequences of electron-phonon interactions between a charge
carrier and multiple(specifically two) phonon branches. Phase diagrams are obtained and the nature of the
transition from undressed to dressed phases of the carrier is studied with their help. No sharp transition
between singly dressed and doubly dressed phases occurs. The effective carrier bandwidth, reduced by strong
coupling to the high-frequency branch is found to be stable with respect to small to intermediate values of
additional coupling to the low-frequency branch. This finding lends support to transport calculations based on
the idea that carriers in a polaron band are dressed by one phonon mode and scattered by another.
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I. INTRODUCTION

Despite intense investigations carried out by a number of
researchers over the years,1–12 several questions concerning
charge carrier transport in organic crystals have remained
unanswered. Some of them concern general issues while oth-
ers deal with specific materials. An example of the latter,
generally considered solved in the literature,13–15 is the na-
ture of the charge carrier in the particular aromatic hydrocar-
bon crystal naphthalene. Initial debates regarding the possi-
bility of a band-to-hopping transition in this system16

evolved into questions about the degree to which charge
transport was polaronic, i.e., clothed by the vibrational
modes of the crystal. An extensive study9,10 carried out a
couple of decades ago led to the conclusion10,13 that charge
carriers in naphthalene are indeed polaronic, and that the
temperature dependence of the vibrationally narrowed band
plays an important role in determining the corresponding
temperature dependence of the mobilities. Similar questions
have been raised15,17 about the nature of carriers in specific
disordered materials. Recently, studies have led to the con-
clusion that carriers are also polaronic18 in those disordered
materials.

The purpose of the present paper is an investigation of a
general rather than such a material-specific issue. We have
recently constructed19 a detailed theory of transport of a car-
rier which is dressed by phonons of one branch while being
scattered by phonons of another branch. The present investi-
gation addresses the issue of to what extent such a picture
can be justified. We study here what happens when a carrier
interacts strongly with more than one phonon branch in such
a way that, by itself, one branch interaction would lead to
carrier dressing(polaronic transport of the carrier), while the
other, by itself, would lead to mere scattering(free carrier
transport).20 We use a variational approach.

Common to most of the previous variational treat-
ments1–4,6,8 is the finding that two qualitatively different
kinds of variational solution may result, depending upon the
magnitude of the parameters of interest. These para-
meters include the bare intersite transfer matrix elementV0,
the dimensionless carrier-phonon coupling constantg, the
phonon frequency(equivalently energy21) v, and the tem-

peratureT. For small couplingg!1 and large bandwidths
V0.v, variational solutions predict weakly dressed, essen-
tially free, carrier states with an effective intersite matrix
elementVeff<V0 that is, to lowest order, insensitive to the
magnitude ofg andv. By contrast, for large couplingg and
small V0,v, variational treatments predict the existence of
strongly narrowed polaron states with an effective intersite
matrix element that is fully dressed, or very nearly so

Veff < V0expf− g2cothsbv/2dg. s1d

In some of these treatments, asg is increased at fixedv ,V0,
andT, a transition is predicted to occur.2 What this means is
that, at a critical couplingg, the effective matrix elementVeff
is predicted to collapse from its bare valueV0 to the strongly
reduced value associated with the vibrationally narrowed po-
laron bandwidth. The existence(and sharpness) of such a
transition has been a subject of some debate. Conventional
wisdom based upon the adiabatic approximation is that in
one dimension, all polaron states should have a finite radius,
but that in dimensions greater than one a sharp transition
exists between free and self-trapped states. Extensive recent
studies by the authors of Ref. 4, suggest, however, that the
zero temperature “self-trapping transition” in all dimensions
is actually a smooth, but possibly rapid, crossover from large
polaron states at low coupling to small polaron states at large
coupling. In other treatments, it has been argued8 that in
higher dimensions there exists an extended regime where
both kinds of states can coexist, with smoothly varying free
energy differences and populations in each, in which the two
states exchange majority/minority status in the neighborhood
of the “transition.” We will follow the standard practice in
the literature and use the term “transition” to refer to the
crossover between these characteristically different regimes.

In the present paper, we consider a carrier in three dimen-
sions interacting with two narrow-bandwidth optical phonon
branches of mean frequenciesv1 andv2 via respective cou-
pling constantsg1.1 andg2,g1. For the sake of simplicity,
both phonon bandwidths are assumed to be zero(Einstein
oscillators.) Even within this highly simplified model, inter-
esting questions arise regarding the interplay of the two pho-
non modes, and the kinds of bare-dressed transitions that can
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occur as the coupling constantsg1 and g2 are varied. Do
regimes exist in whichg1 and g2 are individually not large
enough to produce a narrowed band, but do so in combina-
tion? Our studies, which are carried out through a straight-
forward generalization of the temperature dependent varia-
tional treatment of Yarkony and Silbey,2 indeed confirm the
existence of such a regime. Ifg1 is large enough to narrow
the band, andg2 is not, is the variationally determined band-
width associated withg1 stable with respect to changes in
g2? Specifically, will a collapse occur to a doubly narrowed
regime only afterg2 increases to a critical value, or will the
addition of a small additional couplingg2 to an already nar-
rowed band lead to further reduction in bandwidth as a func-
tion of g2? Our studies suggest that what actually obtains lies
at the border of these two possibilities:Veff is indeed stable
with respect toinfinitesimalincreases ing2, in the sense that

U ] Veffsg1,g2d
] g2

U
g2=0

= 0,

but, as a consequence, there are only two regions in theg1-
g2 phase diagram: undressed and dressed. Except along the
axes where eitherg1 or g2 vanish, there donot appear to exist
separate “singly dressed” and “doubly dressed” regions.
Thus, our results lend support to the idea19 that carriers may
be dressed by strong interactions with phonons of one mode
while being merely scattered by another, provided that the
coupling constant associated with the scattering mode is suf-
ficiently small to be treated perturbatively. The variational
treatment that we employ to explore these issues is intended
to provide a qualitative indication of the crossover behavior
that occurs, and of the different regimes that can exist in the
model. Sophisticated, numerically intensive treatments such
as those of Refs. 4 and 5 can always be used for obtaining
details and quantitative predictions. The simpler treatment
that we present here provides clearer insight and allows for a
straightforward investigation oftemperaturedependent pro-
perites of the polaronic band narrowing that have not, as of
yet, been accessible through zero temperature calculations of
polaron eigenfunctions.

II. VARIATIONAL TREATMENT FOR MULTIPLE
BRANCHES OF EINSTEIN OSCILLATORS

The standard electron-phonon HamiltonianH=Hel+Hph
+Hel-ph describes an electron moving among the sites of a
lattice of N sites. Here

Hel = o
km,nl

Vmnam
+an,

describes the bare electron transport, while

Hph = o
q,a

vq,abq,a
+ bq,a, s2d

Hel-ph= N−1/2o
m,q,a

gq,avq,aeiqmam
+amsbq,a + b−q,a

+ d s3d

describe the multiple phonon branches with which the charge
carrier interacts. In these expressions,am

+ creates a carrier at

crystal sitem, bq,a
+ creates a phonon of wave vectorq and

frequencyvq,a in brancha, them sum is over nearest neigh-
bors(for simplicity), and translational invariance requires the
coupling constants to satisfy the conditiongq,a=g−q,a

* . We
ignore spin and work in the subspace containing one particle
(carrier).

Following the basic procedure of Yarkony and Silbey,2 we
apply toH a partial polaron dressing transformation

U = expF− N−1/2o
a,q,m

fq,avq,aeiqmNmsbq,a − b−q,a
+ dG s4d

involving a set of phonon displacement parametersfq,a
= f−q,a

* , leaving the transformed Hamiltonian

H̃ = Hph + o
km,nl

Vmnum
+unam

+an + N−1o
q

vq,asfq,a − 2gq,adf−q,a

+ N−1/2o
q

vq,aNmsgq,a − fq,adeiqmsbq,a − b−q,a
+ d s5d

expressed in terms of the original electronic and oscillator
operators, withHph as given in Eq.(2). In this last equation,
the operators

um = expFN−1/2o
a,q

fq,aeiqmsbq,a − b−q,a
+ dG s6d

take into account the motion of the phonon cloud that moves
along with the carrier. The goal of the variational calculation
is to optimize the parametersfq,a, in order to find the best
zeroth order description of the system. This is done by mini-

mizing the Bogulubov boundAB=−b−1ln Trfe−bH̃0g.A

=−b−1ln Trfe−bH̃g for the free energyA of the system evalu-
ated at temperatureT=skBbd−1, in which kB is Boltzmann’s

constant, andH0=kĤl=Zph
−1TrfĤe−bHphg is the thermal aver-

age of Ĥ=kĤl+sĤ−kĤld taken with respect to the phonon
part of the Hamiltonian. Our generalization of this
procedure to treat the case of multiple phonon branches
and a three-dimensional isotropic electronic band inter-
acting locally sgq,a=gad with dispersionless oscillators
svq,a=vad, results in

fq,a = gaH1 +
1

2F2buṼuI1s2buṼud

I0s2buṼud
GFcothsbva/2d

bva/2
GSsqdJ−1

s7d

= gaf1 + 1
2lsṽdmsṽadSsqdg−1. s8d

This condition2 allows us to determine the values of the
variational parametersfq,a for which AB is a local extremum.
Here Insxd is the modified Bessel function of ordern,

Ṽ = V expF−
1

3No
a,q

ufq,au2cothsbva/2dSsqdG s9d

is the thermally averaged matrix element for motion associ-
ated with the unitary transformation(4), Ssqd=og=1

3 s1
−cosqgd is a structure factor associated with the nearest-
neighbor lattice, andqg is the component of the three-
dimensional wave vectorq along crystal axisg. In Eq. (8)
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we have introduced the dimensionless quantities

ṽ = bṼ, ṽa = bva s10d

and the functions lsxd=2xI1s2xd / I0s2xd, and msxd
=2 cothsx/2d /x. In our analysis, we do not assume in ad-
vance that thevariational parameters fq,a are independent of
q. Equation(8) is only an implicit equation for determining
the fq,a, since the right hand side depends on the quantityṽ,
which itself depends upon the values ofall of the fq,a
through Eqs.(10) and(9). Introducingv0=bV0, however, we
can use these equations to combine all of the Eq.(7) into a
single implicit equation for the reduced matrix element

ṽ = bV0expF−
1

3No
a,q

ufq,au2cothsbva/2dSsqdG
= v0expF− o

a

ga
2 cothsbva/2dSasṽdG , s11d

where

Sasṽd =
1

3No
q

ufq,a/gau2Ssqd

=
1

3
E d3q

s2pd3

Ssqd

F1 +
1

2
lsṽdmsṽadSsqdG2 . s12d

In the last term of Eq.(12), we have taken the continuum
limit in q space, and used the formal expression forfq,a from
Eq. (8). When Eq.(12) is inserted into Eq.(11), the latter
becomes a closed expression for determining the stationary
value ṽ. In practice, using numerical integration to evaluate
Eq. (12), it is straightforward to search numerically for the
value of ṽ betweenv0, and ṽfull given by

ṽfull = v0 expF− o
a

ga
2 cothsbva/2dG . s13d

Equation(11) determines the values ofṽ for which the free
energy bound is stationary, not necessarily a minimum. Ac-
cordingly, once the valueṽ satisfying Eq.(11) is found for a
given set of parametershga ,va ,V0,Tj, the relevant parts of
its free energy bound2

bAB
se-phd = − 3 lnI0s2ṽd + N−1o

a,q
bvaufq,au2

− 2N−1o
a,q

bvagq,af−q,a s14d

must be compared with the corresponding expressions

bAB
s0d = − 3 ln I0s2v0d s15d

and

bAB
sfull d = − 3 ln I0s2ṽd − o

a

ga
2va s16d

for the “end points,” corresponding in Eq.(15) to the un-
coupled systemsfq,a=0,ṽ=v0d, and in Eq.(16) to the fully
coupled systemsfq,a=ga , ṽ= ṽfulld. Of these three possibili-
ties, the one with the lowest value for the free-energy bound

is identified with the effective matrix elementVeff= ṽkBT.
Substituting from Eq.(8) into Eq.(14), for the parameters

fq,a satisfying the extremum condition, the relevant part of
the free energy bound reduces to the expression

bAB
se-phd = − 3 ln I0s2ṽd + o

a

fBasṽd − 2Casṽdg. s17d

Here

Basṽd =E d3q

s2pd3

ga
2ṽa

F1 +
1

2
lsṽdmsṽadSsqdG2 , s18d

Casṽd =E d3q

s2pd3

ga
2ṽa

F1 +
1

2
lsṽdmsṽadSsqdG s19d

are integrals that must also be performed numerically for
each value ofṽ satisfying Eq.(11). Note that Eq.(14) for the
free energy bound clearly reduces to Eq.(15) for the un-
dressed systemsfq,a=0d, and to Eq.(16) for the fully dressed
systemsfq,a=gad, facilitating the comparison that must be
made for each value ofṽ.

III. NUMERICAL RESULTS

We have implemented the above variational procedure nu-
merically for a system with only two phonon branches, and
explored a considerable range of parameter space associated
with g1, g2, v1, v2, V0, andT. Typical results are displayed
in Fig. 1. The effective carrier bandwidth is plotted relative
to its bare value as a function ofT, measured in units of
V0/kB. The strongly coupled branch has a high frequency
v1=4V0 (corresponding to 1/3 of the bare carrier bandwidth
12V0d and large coupling constantg1=2. The weaker cou-
pling is to the lower frequency branchv2=V0/5, with cou-

FIG. 1. Plot ofVeff /V0, the effective carrier bandwidth relative
to its bare value, as a function of the temperatureT, measured in
units of V0/kB. The strongly coupled high-frequency branch has
v1=4V0 andg1=2. The weakly coupled low-frequency branch has
v2=V0/5 andg2=0.5. We show the bandwidth reduction that oc-
curs when each branch is coupled alone to the carrier, as well as in
combination.
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pling constantg2=0.5. For contrast we show on the same
plot the bandwidth reduction that would obtain if each were
coupled alone to the carrier. One can observe that the lower
frequency branch does not result in a bandwidth reduction
until temperatures become much higher than those occuring
in Fig. 1, and so corresponds to the horizontal lineVeff /V
=1. As in earlier treatments that considered coupling to a
single branch, the existence of a lowT region where the band
is not narrowed, and a collapse at higher temperatures to a
reducedT-dependent bandwidth are evident here. As might
be expected, the inclusion of an additional branchv2 to the
already strongly coupled high frequency branchv1 causes a
shift of the transition point to lowerT, and an increased
reduction of the bandwidth, due to the combined coupling of
the two branches.

Systematical exploration of the phase space produces con-
tour plots of the bandwidth reduction for a two-mode system.
Such a plot is displayed in Fig. 2 forkBT=V0. In these plots
we have taken oscillator modes with frequenciesv1=3V0
=3v2, the thinner curved lines in the diagram are contours of
constantVeff, and the attached labels indicate the associated
values of log10sVeff /V0d.

In Fig. 2 we see that, when both coupling constants are
sufficiently small, there is a region where the effective matrix
element is equal to its undressed value. As one moves along
either axis there comes a critical value of the associated cou-
pling constant where the effective matrix element collapses
to a reduced value, narrowed by the single phonon branch
appropriate to that axis. The thick black line is the phase
boundary between the undressed phase near the origin, and
the dressed phase, in which aT-dependent, reduced band-
width would obtain. The region lying outside of the phase
boundary, but within the rectangle shown, denotes a region
of parameter space where the coupling to each individual
oscillator is not strong enough to reduce the band on its own.
Reduction in this region occurs as a result of the combined
action of the oscillators on the carrier.

We note three additional interesting features associated
with this phase diagram. First, the value of the reduced band-
width just outside the phase boundary is not constant along
the boundary, insofar as it intersects contour lines associated
with different values ofVeff. This is perhaps not surprising,
since the reduction has to agree with the values that occur
when each oscillators is coupled alone, i.e., along the differ-
ent axes. Second, the contour lines intersect theg1 and g2
axes at right angles. This implies the condition

U ] Veffsg1,g2d
] g2

U
g2=0

= 0, s20d

mentioned in Sec. I, and points out the fact that the band-
width reduction produced by one branch is stable with re-
spect to the addition of an infinitesimal component associ-
ated with other branches. In the limit in which the collapse
occurs to a fully dressed band, this follows directly from Eq.
(13), which implies that

] Veffsg1,g2d
] g2

= − g2 cothsbv2dVeff → 0 as g2 → 0.

s21d

In the oligoacenes, recent electronic structure calculations22

suggest a room temperature bare bandwidth of order
600 meV or larger. Such a value is more than 20 timeskBT.
Thus, to investigate the issue of the stability of thereduced
bandwidth with respect to finite but small changes in the
amount of additional couplingg2, we present Fig. 3. We plot
here the effective matrix elementVeff /V0 for a system in
which the bare matrix elementV0=10 kBT, as a function of
the strengthg2, which is the more weakly coupled mode. The
plot is parametric in the coupling constantg1 of the more
strongly coupled mode. We have assumedv1/V0=6, and
v2/V0=1/10, and have taken the values ofg2 out from zero
to intermediate valuesg2=0.5. Thus, in the absence of the
high-frequency mode, the coupling would be associated with
significant scattering, but not significant dressing of the car-

FIG. 2. Contour plot ofVeff /V0, the effective carrier bandwidth
for a two-branch system, as a function of the coupling strengthsg1

andg2, with optical frequenciesv1=3V0=3v2, andV0=kBT. Thick
curved line indicates the phase boundary between the undressed and
dressed phases, as labeled. Thinner curved lines in the dressed
phase are contours of constantVeff, with attached labels indicating
associated values of log10sVeff /V0d.

FIG. 3. Effective carrier bandwidthVeff /V0with V0=10kBT, v1

=6V0, andv2=V0/10, as a function of the coupling strengthg2 of
the lower-frequency branch, for different values of the strengthg1

of the high-frequency branch, showing the relative insensitivity of
Veff to the additional coupling for small to intermediate values ofg2.
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rier. The plot shows that the value ofVeff remains nearly
constant with respect to increases ing2 in this range. We also
note that for the parameters shown,Veff /kBT is actually less
than or of the order of unity.

The third feature to be noticed in the phase diagram that
we have obtained in Fig. 2 is the elliptical shape of the struc-
tures, i.e., the contour lines and phase boundary itself. The
shape suggests that more appropriate variables for character-
izing the behavior of the system are not the coupling con-
stantsg1 andg2, but the contributions to the polaron binding
energy

2Eb = o
a

ga
2va = g1

2v1 + g2
2v2 = l1 + l2 s22d

associated with the fully dressed phase, i.e., the coordinates
la=ga

2va. Therefore, we reexpress the phase diagram of Fig.
2 as a plot in thel1−l2 plane(see Fig. 4). In terms of these
new coordinates, the phase boundary now appears as a dark
straight line, and the contours as lighter straight lines. The
contours are separated by fixed amounts equally spaced on
the plane. This indicates that if the quantity

log10Ṽeffsl1,l2d /V0 is plotted as a three-dimensional surface
above thel1−l2 plane, it would appear as a triangular mesa
near the origin, which falls off onto a tilted plane outside the
phase boundary. This planar structure obtains, strictly speak-
ing, only in the fully coupled regime. However, our numeri-
cal studies indicate that, even whenveff arises from partial-
polaron clothing, the bandwidth reduction does not differ by
more than a few percent from that of the fully dressed sys-
tem.

Hence, to reconstruct the phase plot for any combination
of v1,v2, at fixed T, it is only necessary to findfor each
mode independentlythe critical valuesla

scd=gc
2v where the

collapse first occurs with increasingg, and the valueṽc of
the bandwidth reduction at the point of collapse for that
mode. These values uniquely determine the phase boundary
[which lies along the linel2=l2

scd+l1
scdl1/l2

scd]. The corre-

sponding planes then follow from the form of the reduced
bandwidth for the fully dressed system. To facilitate con-
struction of the phase diagram for this two-mode model, we
present in Fig. 5 the critical valuesla

scd=gc
2v as a function of

kBT/V0 for a wide range ofva associated with a single op-
tical mode coupled to the carrier. In Fig. 5, we indicate with
solid (dashed) lines those systems which collapse to a fully
(partially) dressed polaron band. We see that higher-
frequency modes generally have a higher critical value of
lscd, (although not necessarily a higher value ofgc, which is
a non-monotonic function ofv at fixedT). We also note that
the curves seem to approach a limiting curve for smallv /V0,
and that all curves appear to approach a high-T form that
decreases as 1/T at higher temperatures.

The high temperature behavior can be understood from a
relatively simple argument. For the fully dressed one-mode
system, we see from Eq.(13) that the reduced matrix ele-
ment takes the form

ṽfull = v0 expf− g0
2cothsbv/2dg s23d

and, through Eq.(16) is associated with a free energy

bAB
sfull d = − 3 ln I0s2ṽfulld − g0

2bv. s24d

At high temperatures,v0, ṽfull →0. In this limit we can re-
place the Bessel function by its series expansionI0sxd,1
+x2/4, giving

bAB
sfull d , − 3 lns1 + ṽ2d − g0

2bv , − 3ṽ2 − g0
2bv s25d

which is to be compared to the bare free energy bound

bAB
s0d = , 3 ln I0s2v0d , − 3v0

2. s26d

But in this limit ṽ2 is small compared tov0
2, and so the value

of g0 for which the fully coupled and the bare system have
equivalent free energy bounds is given to a good approxima-
tion by the condition 3v0

2=g0
2bv, or

gc
2 v

V0
,

3V0

kBT
. s27d

This shows clearly the 1/T decrease. In Fig. 5, the straight
dashed line on the right corresponds to the Eq.(27). Al-

FIG. 4. Contour plot ofVeff /V0 as a function of thesquare of the
coupling constants, specifically as a function ofg1

2v1/V0 and
g2

2v2/V0, for the same parameters as in Fig. 2. As can be observed,
in terms of these new variables the phase boundaries and contours
of constantVeff /V0 reduce to straight lines.

FIG. 5. Critical value of the square of the couplinggc
2v2/V0 at

which bandwidth reduction first occurs for a single branch system
as a function of temperatureT, measured in units ofV0/kB.
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though the functional dependence onT can be expected for
all curves at high enough temperatures, the numerical pref-
actors in Eq.(27) should be strictly valid only for tempera-
tures such thatgc

2v /kBT is small(since we are setting it equal
to v0=V0/kBT which has already been assumed small), and
thus is expected to be satisfied best for smallv /V0. Indeed
for small v, the critical value ofgc

2v /kBT will be indepen-
dent of v, which is the behavior that we see in the high
temperature regime forv /V0,1.

IV. DISCUSSION

In summary, we have investigated properties of a carrier
moving through a three-dimensional isotropic band in inter-
action with two separate branches of optical phonons. The
procedure we have used for the investigation is a generaliza-
tion of a variational approach2 originally employed for exci-
tons in molecular crystals and subsequently extended in vari-
ous contexts3. Using our procedure, we have produced phase
diagrams showing regions of parameter space where cou-

pling to both phonon branches leads to significant dressing of
the carrier. In the parameter regimes that we have explored,
we have noted the absence of a sharp transition between a
singly dressed and doubly dressed polaronic phase. Our in-
vestigations indicate that, when one high frequency branch is
coupled to the carrier with an intermediate to strong coupling
strengthg1, the effective bandwidth, already reduced by this
coupling, is stable with respect to small to intermediate val-
ues of the couplingg2 associated with additional low fre-
quency optical phonon branches. Thus, our present study
lends support to the basic picture of a carrier moving through
a narrowed polaron band being scattered by its interaction
with additional weakly coupled phonon branches, that under-
lies our recent calculations19 of the temperature dependence
of injected charge carrier transport in the oligoacenes.

ACKNOWLEDGMENTS

This work was supported in part by the National Science
Foundation under Grant Nos. DMR-0097204, DMR-
0097210, and INT-0336343.

1Y. Toyozawa, inInternational Conference on Luminescence, ed-
ited by S. Shionaya and S. Nagakura,Proc. Int. Conf., Tokyo,
Japan, 1–5 September 1975(North-Holland, Amsterdam, 1976);
Y. Toyozawa, J. Lumin.12/13, 13 (1976); R. E. Merrifield, J.
Chem. Phys.40, 445 (1964).

2D. Yarkony and R. Silbey, J. Chem. Phys.65, 1042(1976); 67,
5818 (1977).

3R. Silbey and R. A. Harris, J. Chem. Phys.80, 2615(1984); R.
A. Harris and R. Silbey,ibid. 83, 1069(1985); P. E. Parris and
R. Silbey,ibid. 83, 5619(1985).

4Y. Zhao, D. W. Brown, and K. Lindenberg, J. Chem. Phys.106,
2728 (1997); D. W. Brown, K. Lindenberg, and Y. Zhao,ibid.
107, 3179(1997); A. H. Romero, D. W. Brown, and K. Linden-
berg, ibid. 109, 6540 (1998); Phys. Rev. B59, 13 728(1999);
60, 4618 (1999); 60, 14 080 (1999); K. Lindenberg, D. W.
Brown, and A. H. Romero, inPolaron Weights and Measures,
Condensed Matter Theories Vol. 16, edited by S. Hernandez
(Nova Science, New York, 2001), pp. 81–91.

5P. E. Kornilovitch, Phys. Rev. Lett.81, 5382(1998).
6P. O. J. Scherer, E. W. Knapp, and S. F. Fischer, Chem. Phys.

Lett. 106, 191 (1984).
7R. Silbey and R. W. Munn, J. Chem. Phys.72, 2763(1980).
8D. Emin, Adv. Phys.22, 57 (1973); 25, 305 (1975).
9J. D. Andersen, C. B. Duke, and V. M. Kenkre, Phys. Rev. Lett.

51, 2202(1983); J. D. Andersen, C. B. Duke, and V. M. Kenkre,
Chem. Phys. Lett.110, 504 (1984).

10V. M. Kenkre, J. D. Andersen, D. H. Dunlap, and C. B. Duke,
Phys. Rev. Lett.62, 1165(1989).

11V. M. Kenkre, Phys. Lett. A305, 443 (2002); L. Giuggioli, J. D.

Andersen and V. M. Kenkre, Phys. Rev. B67, 045110(2003).
12Y. C. Cheng, R. J. Silbey, D. A. da Silva Filho, J. Ph. Calbert, J.

Cornil, and J. L. Bredas, J. Chem. Phys.118, 3764(2003).
13M. A. Pope and C. Swenberg,Electronic Processes in Organic

Crystals and Polymers(Oxford, New York, 1999).
14E. A. Silinsh and V. Capek,Organic Molecular Crystals: Inter-

action, Localization, and Transport Phenomena(AIP, New
York, 1994).

15V. M. Kenkre and D. H. Dunlap, Philos. Mag. B65, 831 (1992);
D. H. Dunlap and V. M. Kenkre, Chem. Phys.178, 67 (1993).

16L. B. Schein, C. B. Duke, and A. R. McGhie, Phys. Rev. Lett.40,
197 (1978); see also C. B. Duke, L. B. Schein, Phys. Today33,
42 (1980).

17L. B. Schein, Philos. Mag. B65, 795 (1992); L. B. Schein, D.
Glatz, and J. C. Scott, Phys. Rev. Lett.65, 472 (1990); L. T.
Pautmeier, J. C. Scott, and L. B. Schein, Chem. Phys. Lett.197,
568 (1992).

18P. E. Parris, V. M. Kenkre, and D. H. Dunlap, Phys. Rev. Lett.87,
126601(2001).

19V. M. Kenkre, P. E. Parris, L. Giuggioli, and J. D. Andersen
(unpublished).

20Interactions of a carrier with two phonon branches have served as
the underlying idea behind transport calculations as in Refs. 11
and 19 and have also been mentioned independently by the au-
thors of Ref. 12.

21For notational convenience we put"=1;whereverv appears in
this paper, it should be read as"v.

22J. L. Bredas, D. Beljonne, J. Cornil, J. Ph. Calbert, Z. Shuai, and
R. Silbey, Synth. Met.125, 107 (2001).

P. E. PARRIS AND V. M. KENKRE PHYSICAL REVIEW B70, 064304(2004)

064304-6


