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We present self-consistent calculations of the electronic density of states of disordered copper-palladium and
silver-palladium alloys using the polymorphous coherent-potential approximation and the Korringa-Kohn-
Rostoker coherent-potential approximation. We find that the agreement between the theoretical partial density
of states of palladiumd bands in copper-rich copper-palladium alloys and experiment is significantly improved
when the polymorphous coherent-potential approximation is used. The densities of states of silver-palladium
alloys calculated with the two versions of the coherent-potential approximation are identical and agree with
experiment. This indicates that the improved treatment of Coulomb effects in the polymorphous coherent-
potential approximation is necessary only for alloys such as copper palladium that have considerable charge
transfer.
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I. INTRODUCTION

Calculations of the electronic density of states(DOS) for
disordered copper-palladium(Cu-Pd) alloys using the
Korringa-Kohn-Rostoker(KKR) coherent-potential approxi-
mation (CPA)1,2 are not in agreement with the experimental
data. This is in contrast with the excellent predictions made
by the KKR-CPA calculations on silver palladium(Ag-Pd)
alloys.3 In this paper we present self-consistent polymor-
phous coherent-potential approximation(PCPA) calculations
of the DOS in Cu-Pd and Ag-Pd alloys, and compare the
results with KKR-CPA calculations on the same alloys and
with experiment.

Discrepancies between the Cu-Pd DOS calculated with
KKR-CPA and that measured using ultraviolet photoemis-
sion spectroscopy(UPS)4 were attributed to shortcomings of
the theory, particularly to the placement of the atoms on the
sites of the ideal Bravais lattice in the KKR-CPA model.
Later photoemission spectroscopy measurements using syn-
chrotron radiation took advantage of the Cooper minimum in
the Pd 4d photoelectron cross section to separate the spectra
into the contributions from the Pd and Cu atoms in the alloy.5

These measurements show that the partial spectral weight
(PSW) for Cu agrees with the Cu DOS calculated with the
KKR-CPA, but the calculations overestimate the number of
states observed in the lower-energy range of the Pd PSW.
Several possible interpretations were offered for this discrep-
ancy, but the one emphasized in later experimental studies is
the effect of atomic displacements from the sites of the Bra-
vais lattice.6 It was shown that agreement with experiment
could be obtained with KKR-CPA calculations that are not
charge self-consistent by the simple expedient of shifting one
of the potentials.7 Other non-self-consistent KKR-CPA cal-
culations improved the agreement by including atomic dis-
placements in an approximate way.8

More recently, XPS and UPS studies of the electronic
structure of Cu-Pd have been carried out using synchrotron

radiation.9 As in the previous studies, the Pd PSW’s in the
soft x-ray regime seem very different from the predictions of
the KKR-CPA, but a more careful analysis demonstrates that
the main reason for this discrepancy is not the failure of the
theory but the result of strong matrix-element effects that
obscure the accurate determination of the Pd DOS in the
bonding state region. The improvement in the agreement be-
tween the experimental results and the KKR-CPA calcula-
tions is dramatic, but there is still a discrepancy that we show
in this paper can be reduced even further by using the PCPA
rather than the KKR-CPA.

A short description of the major differences between the
KKR-CPA and the PCPA is presented in Sec. II. In Sec. III,
we give some of the details of the KKR-CPA and PCPA
calculations for the DOS of Cu-Pd and Ag-Pd disordered
alloys. We discuss the implications of these calculations in
Sec. IV.

II. THE KKR-CPA AND THE PCPA

Theories for the electronic states of alloys make use of the
density functional theory(DFT) and local density approxi-
mation(LDA ),10 which subsumes the many-electron interac-
tions into a one-electron potential. For the special case of
substitutional solid-solution metallic alloys, which are the
subject of this paper, it is normally assumed that the atoms in
an alloy with the compositionAcBs1−cd reside on the sites of
a periodic Bravais lattice. The probability for anA atom
being found on a specific site isc, and the probability for the
B atom being there 1−c. The Wigner-Seitz cellsVi centered
on the lattice pointsRi all have the same size and shape.

This model of an alloy can be solved exactly if the crystal
is divided into supercells that containN atoms and are peri-
odically reproduced to fill all space. The computer time re-
quired for a calculation of the electronic states for such a
supercell normally increases asN3, but sophisticated tech-
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niques for which the time increases asN have been devel-
oped. An order-N method that is particularly well adapted for
calculations on transition-metal alloys is called the locally
self-consistent multiple scattering method(LSMS).11 In the
LSMS calculations that have been done to date,12 the one-
electron potential is forced into the muffin-tin form and the
supercell contains no more than 1024 atoms, restrictions that
can be removed now that the computational technology has
evolved. Neither of these restrictions affects the conclusions
that will be quoted here, which have been independently
confirmed by other order-N calculations.13

The net charge associated with the sitei in the alloy is the
difference between the integral of the electronic charge den-
sity rsr d over the Wigner-Seitz cellVi and the nuclear charge
Zi

qi =E
Vi

rsr ddr − Zi s1d

The order-N calculations show that everyqi is different, al-
though the charges associated withA atoms tend to be dis-
tributed around an average

qA = o
i,A

NA

qi , s2d

and theqi on B sites are distributed around

qB = o
i,B

NB

qi . s3d

A model that reflects the correct distribution of charges in the
alloy is called polymorphous. The KKR-CPA, along with
other approximate theories for the electronic states in alloys,
assumes an isomorphous model in which all of theqi asso-
ciated with A sites are exactly equal toqA, while all of those
associated withB sites areqB.

The Madelung potential at sitei in the supercell is

Vi = o
jÞi

N

Msur i − r judqj . s4d

whereMsur i −r jud is the Madelung matrix.14 It has the effect
of including the contributions from all the charges in the
periodically reproduced supercells and approaches

Msur i − r iud → 1

ur i − r iu

as the size of the supercell approaches infinity. It has been
pointed out that the only theoretically consistent choice for
the Madelung potentials in an isomorphous model of an alloy
is zero,15 which means that the Coulomb energy

UC = o
i=1

N

qiVi s5d

is zero in this model. Efforts have been made to include the
Coulomb energy in an isomorphous CPA, but the difficulties
are demonstrated by the fact that the critical parameter in the

resulting CPA must be evaluated by order-N calculations that
are not part of the theory.16

In the KKR-CPA, the effective scattering matrixtc is de-
fined by the requirement that anA atom or aB atom embed-
ded in a lattice with the effective scattering matrix on every
other site gives no scattering on the average. A scattering
path matrix sums all of the scattering events that take an
electron from the central site, called 0, through all of the
other sites and back to the central site. The scattering path
matrix istc

A,00 when there is anA atom on the central site and
tc on all the others. If there is aB atom on the central site, it
is calledtc

B,00. The equation that definestc is then

cAtc
A,00+ cBtc

B,00= tc
00 s6d

wheretc
00 is the scattering path matrix for a lattice withtc on

every site.
The PCPA is a single-site approximation in the same

sense as all CPA’s, but it builds in the fact that everyqi is
unique and the Madelung potentials are given by Eq.(4). In
order to calculate the Madelung potentials correctly, it is nec-
essary to use a supercell that is periodically reproduced to fill
all space and the Madelung matrices. There is a different
potentialnisr d for each of theN sites in the supercell, which
includes the Madelung potential, and a corresponding scat-
tering matrixt i. The scattering path for a system witht i on
the central site andtc on all other sites ist c

i,00. The equation
that defines the effective scattering matrixtc in the PCPA is

1

N
o
i=1

N

tc
i,00= tc

00. s7d

Conceptually, the PCPA is similar to an order-N method
known as the locally self-consistent Green’s function
method.17

The fact that the PCPA requires a supercell and a different
self-consistent potential for each site makes the calculations
more arduous than the KKR-CPA, but that is offset by the
advantage that it treats the Coulomb effects as well as they
can be within the single-site approximation. It might be
thought that using a specific supercell for a PCPA calculation
implies that the effective scattering matrixtc is not unique.
This question has been treated theoretically,18 and the follow-
ing calculations demonstrate numerically that the PCPAtc is
indeed unique.

III. CALCULATIONS AND RESULTS

Metallic Cu, Pd, and Ag all have the face-centered cubic
(fcc) structure, and all of their alloys have that Bravais lat-
tice. The fcc lattice is made up of four interpenetrating
simple cubic lattices, so a cubic supercell with four lattice
constants on an edge contains 256 atoms. This is the super-
cell that is used for most of the PCPA calculations described
here. The atoms are distributed on the sites of the fcc Bravais
lattice with a random number generator, although other ran-
domly controlled steps are required to achieve the desired
concentrations. A fully relativistic version of the DFT-LDA is
employed. There are two self-consistency steps in a CPA
calculation, the equations for the one-electron potentials
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nisr d are solved self-consistently as is Eq.(7) for the effec-
tive scattering matrixtc. The convergence of the calculations
is rapid on a massively parallel supercomputer.

Figure 1 displays the Pd DOS in a Cu0.75Pd0.25 alloy cal-
culated with the PCPA and the KKR-CPA. The difference
is obvious and significant. We have calculated the DOS
for Cu0.05Pd0.95, Cu0.25Pd0.75, Cu0.40Pd0.60, Cu0.50Pd0.50,
Cu0.75Pd0.25, Cu0.80Pd0.20, and Cu0.95Pd0.05. From these calcu-
lations we observe that the difference between Pd DOS cal-
culated with the KKR-CPA and the PCPA increases with in-
creasing Cu concentration, so the difference between the two
calculations for Cu0.95Pd0.05 is larger than that shown in Fig.
1. The Cu DOS calculated with the KKR-CPA and the PCPA
is shown in Fig. 2. The difference is discernible in the cal-
culations, but too small to be seen in an experiment.

Since the KKR-CPA applies to an infinitely large perfectly
disordered lattice while PCPA calculations require anN atom
supercell, the latter calculations need to be tested for conver-
gence inN. A test was made by increasing the size of the
supercell from 256 to 512 atoms for a Cu0.95Pd0.05 alloy. The
root mean square difference between the DOS obtained from
the two calculations is 0.00533 on a scale that runs from 0.0
to 35.0 states per atom. Another concern is that the results of
a PCPA calculation might not be unique because there are
many random distributions ofA and B atoms with a fixed
concentration on 256 sites. Uniqueness was checked by re-
peating the PCPA calculations with three different seeds for
the random number generator. Each seed leads to a com-
pletely different arrangement of the atoms in the supercell,
although they are all random and have the same composition
Cu0.95Pd0.05. The root mean square difference between the
DOS obtained using the second and first seed is 0.049 while
the difference between those using the first and third seed is
0.104.

The degree of disorder in a binary alloy is measured by
the Warren-Cowley short-range order coefficientsasid which
should be zero for every nearest-neighbor shelli in the ide-
ally disordered structure. This cannot be achieved for a su-
percell with the atoms distributed randomly because, from
probability theory, theasid should have a normal distribution
about the mean 0 with a standard deviationssid=1/ÎNnNN

i ,
wherenNN

i is the number of atoms in theith nearest-neighbor
shell. It has been suggested that a better choice of the super-
cell would be to force the Warren-Cowley short-range order
parameters for the first few nearest-neighbor shells to be
zero.16 This is an easy thing to do technically, and we calcu-
lated the DOS for a Cu0.95Pd0.05 alloy with the Warren-
Cowley parameters for the first six shells set equal to zero.
The root mean square difference between that DOS and the
one for a random supercell is 0.0997, which is insignificant
on a scale that ranges from 0.0 to 35.0.

The DOS from the different calculations for Cu0.95Pd0.05
alloys described in the two preceding paragraphs are all plot-
ted in Fig. 3. As anticipated from the small values of the root
mean square deviations, the lines all fall on top of one an-
other. This is a graphic demonstration of the mathematical
proofs in Ref. 18.

FIG. 1. The Pd density of states for Cu0.75Pd0.25 alloys calcu-
lated with the CPA and PCPA and plotted as a function of energy
with respect to the Fermi energy. The DFT-LDA calculations are
fully relativistic for both cases. The supercell used in the PCPA
calculations has 256 Cu and Pd atoms randomly distributed on the
lattice sites using a random number generator. The dotted line
shows the KKR-CPA results and the continuous line shows the
PCPA.

FIG. 2. The Cu density of states for Cu0.75Pd0.25 alloys calcu-
lated with the CPA and PCPA and plotted as a function of energy
with respect to the Fermi energy. The DFT-LDA calculations are the
same as in Fig. 1. The dotted line shows the KKR-CPA results and
the continuous line shows the PCPA.

FIG. 3. The densities of states of a Cu0.95Pd0.05 alloy using the
various PCPA calculations described in Sec. III.
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The Ag DOS and Pd DOS in Ag0.05Pd0.95, Ag0.25Pd0.75,
Ag0.40Pd0.60, Ag0.50Pd0.50, Ag0.75Pd0.25, Ag0.80Pd0.20, and
Ag0.95Pd0.05 were calculated. A typical example, Ag0.25Pd0.75,
is shown in Fig. 4. It is clear that the corrections to the
KKR-CPA theory obtained with the PCPA are unimportant
for this case.

IV. CONCLUSIONS

The PCPA calculations show that the Ag atoms in
Ag0.75Pd0.25 have an average charge of −0.03168 electron
chargessed, while the average charge on the Pd atoms is
0.09505e. This is a relatively small charge transfer, and the
KKR-CPA calculations predict a charge of −0.02482e on the
Ag atoms and 0.074449e on the Pd atoms, which is almost
the same. Thus, the improvement in the treatment of the
Coulomb energy with the PCPA is not important for Ag-Pd
alloys, and that is the reason that the densities of states pre-
dicted by the two theories are identical.

The PCPA calculations show that the Cu atoms in
Cu0.75Pd0.25 have an average charge of 0.0588e, while the
average charge on the Pd atoms is −0.1764e, a sizable charge
transfer. They give the same charge transfer as the first-
principles LSMS calculations.15 The KKR-CPA predicts
0.02505e for Cu and −0.07514e for Pd, a significant error. It
is thus not surprising that the densities of states predicted by
the two theories are different.

In Fig. 5 we reproduce the Pd partial spectral weight for
Cu0.75Pd0.25 from XPS and UPS measurements using the data
from Fig. 7 of Ref. 9. The authors used spectra athn
=40.8 eV, where the Pd cross section is stronger, and those
at hn=130.0 eV, where the Cooper minimum of Pd occurs,
to separate the Cu and Pd PSW’s. They calculated a Pd DOS
to compare with their experimental PSW using the KKR-
CPA DOS from Ref. 2. They modified it by including the
matrix-element and lifetime effects as well as instrumental

broadening. The major assumption in their analysis is that
the matrix-element effects in alloys are the same as those in
pure metals.19 Their modified Pd DOS is also shown in Fig.
5. It can be seen that, although the overall agreement is quite
good, the experimental PSW is still smaller than the one they
calculated in the lower-energy region.

The KKR-CPA DOS used in the calculations shown in
Fig. 5 is the same as the one we calculate and show in Fig. 1.
We cannot make the corrections used in Ref. 9 on our calcu-
lations because they require experimental data that is not
available to us, but the effect of those corrections can be
estimated because they simply scale the data. It can be seen
from Fig. 1 that the Pd DOS obtained using the PCPA is
reduced relative to the one obtained with the KKR-CPA in
such a way that the agreement between the theory and results
of the XPS and UPS measurements shown in Fig. 5 is sig-
nificantly improved.

The observation that the inclusion of matrix-element, life-
time, and instrumental broadening effects makes it possible
to explain the experimental PSW without invoking the effect
of atomic displacements is a major conclusion of Refs. 9 and
19. The contribution of the present work is to show that the
addition of Coulomb effects to the CPA calculations leads to
even better agreement with experiment. The question of the
magnitude of the atomic displacements in metallic alloys and
their importance in explaining the properties of alloys is thus
still open. There are few direct measurements of atomic dis-
placements in concentrated alloys. An experimental study us-
ing extended x-ray absorption fine structure(EXAFS) mea-
surements to study atomic displacements in Cu-Au alloys20

is frequently quoted. The most reliable experimental mea-
surements of atomic displacements are made with high-
intensity high-resolution x rays from a synchrotron source.
The best of these is a study of Fe-Ni alloys,21 and it is im-
possible to judge the effects of magnetism on these data.
Theoretical efforts to explain the Cu-Au data lead to contra-
dictory conclusions.22,23Part of the difficulty is that all of the
DFT-LDA calculations suffer from the fact that they predict a
bond length for copper atoms in pure copper that is smaller
than the experimental value. The generalized gradient ap-
proximation gives a better bond length for copper, but it
predicts a bond length for gold in pure gold that is too

FIG. 4. The Ag and Pd partial densities of states ofAg0.75Pd0.25

alloy from CPA and PCPA calculations. The DFT-LDA calculations
are fully relativistic for both cases. The supercell used in the PCPA
calculations has 256 Ag and Pd atoms randomly distributed on the
lattice sites using a random number generator. The KKR-CPA re-
sults are shown by the dotted line and the PCPA results with a solid
line.

FIG. 5. Comparison of the Pd partial spectral weight(dots) with
the calculated spectral weight for Cu0.75Pd0.25 using the KKR-CPA
DOS from Ref. 2. Matrix-element effects and lifetime as well as
instrumental broadening effects are included. The data and calcula-
tions are from Fig. 7 of Ref. 9.
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large.24 There is a need for more experimental and theoretical
studies to resolve this tantalizing question.
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