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Though the existence of two-level systems(TLS) is widely accepted to explain low temperature anomalies
in the sound absorption, heat capacity, thermal conductivity and other quantities, an exact description of their
microscopic nature is still lacking. We performed computer simulations for a binary Lennard-Jones system,
using a newly developed algorithm to locate double-well potentials(DWP) and thus two-level systems on a
systematic basis. We show that the intrinsic limitations of computer simulations like finite time and finite size
problems do not hamper this analysis. We discuss how the DWP are embedded in the total potential energy
landscape. It turns out that most DWP are connected to the dynamics of the smaller particles and that these
DWP are rather localized. However, DWP related to the larger particles are more collective.
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I. INTRODUCTION

It is well known that most kinds of disordered solids show
anomalous behavior at very low temperatures as compared to
their crystalline counterparts. Many of the observed features
can be explained by the Standard Tunneling Model(STM)1,2

and its generalization which is the Soft-Potential Model.3–6

The basic idea of the STM is the existence of a broad distri-
bution of Two Level Systems(TLS). The TLS can couple to
strain and electric fields and therefore influence quantities
like the heat capacity, thermal conductivity, sound absorption
and dielectric response; see Ref. 7 for a review. The STM
predicts a linear dependence of the heat capacity on tempera-
ture and a quadratic dependence of the thermal conductivity
on temperature. The STM gives a good general agreement
with experimental results down to temperatures around
100 mK.

So far it has not been possible to derive a theory of the
glass transition or of the low-temperature anomalies from
first principles, i.e., from the Hamiltonian of the glassy sys-
tem. This means, that, except for the few cases where pos-
sible TLS have been successfully identified by means of
computer simulations,8,9 the STM and the recent develop-
ments, mentioned above, are almost purely phenomenologi-
cal. In particular researchers wanted to explain why the
nearly constant ratio of the density of TLS and their coupling
to phonons, if compared for very different glasses, is so
similar.10 Already one decade ago this has been interpreted
by Yu and Leggett11,12 and Coppersmith13 as an indication
that the observed TLS are highly collective excitations of
many underlying microscopic TLS, resulting from the inter-
action among TLS. In the meantime, however, it has been
shown that the interaction is only relevant in the mK
regime.14–16 An alternative scenario has been proposed by
Lubchenko and Wolynes.17 They consider the glass as a mo-
saic of frustrated domain walls, separating individual cells.
In their model the collective tunneling process finally in-
volvesOs102d molecules which only move a fractiondL /a of
a nearest-neighbor distance(sdL /ad2<0.01). Unfortunately,
the object of these theories, namely the TLS, are still some-

what obscure because experimentally it is very difficult to
characterize their microscopic nature.

Formally, a TLS corresponds to a pair of local minima, or
a double-well potential(DWP), on the potential energy land-
scape(PEL). The minima need to have an energy difference
less thankBT and a small distance in configuration space
because otherwise no tunneling would occur. One may won-
der whether computer simulations might help to elucidate the
relevant properties of TLS and thus to prove their existence.
Computer simulations are strongly limited in several direc-
tions: (a) Typically rather small systems have to be used to
analyze the PEL. This may give rise to significant finite size
effects;(b) due to finite simulation times the cooling process
is extremely fast so that the resulting glassy structure may be
vastly different as compared to the experimental situation.
This may strongly influence the properties of the TLS ob-
tained by computer simulations;(c) due to possible imper-
fections of the search algorithm to identify TLS one may
possibly miss a significant fraction of TLS.

In this contribution we will show that these problems are
not relevant for the problem of locating TLS and that it is
indeed possible to obtain detailed and unbiased information
about the nature of TLS. A particular challenge is the sys-
tematic search of TLS. Most of the early computer simula-
tions in this field18–22 did not attempt to systematically find
DWP. In this work we present computer simulations on a
model glass former(binary Lennard-Jones) to systematically
identify the TLS. A first step in this direction has been al-
ready published a decade ago.23–25At that time, however, it
was not possible to exclude that any of the above-mentioned
problems might hamper the analysis. With improved algo-
rithms and faster computers this has become possible nowa-
days. Furthermore the TLS are related to the properties of the
glass transition. Qualitatively, one may say that TLS probe
the PEL on a very local scale whereas for the understanding
of the glass transition much larger regions of the PEL are
relevant. Here we would like to mention that in recent years
computer simulations succeeded in extracting many impor-
tant features of the PEL of supercooled liquids.26–34

PHYSICAL REVIEW B 70, 064201(2004)

1098-0121/2004/70(6)/064201(8)/$22.50 ©2004 The American Physical Society70 064201-1



II. TECHNICAL

A. Computational details

As a model glass former we chose a binary mixture
Lennard-Jones system with 80% A-particles and 20%
B-particles(BMLJ).35–38 It is supposed to represent nickel-
phosphorous(80% 62Ni; 20% 31P)39 but with a 20% higher
particle density, this system was first used by Kob and
Anderson. The used potential is of the type

Vab = 4 ·eabfssab/rd12 − ssab/rd6g + sa + b · rd, s1d

with sAB=0.8sAA, sBB=0.88sAA, eAB=1.5eAA, eBB=0.5eAA,
mB=0.5mA. Periodic boundary conditions were used and the
linear functiona+b·r was added to ensure continuous ener-
gies and forces at the cutoffrc=1.8. The units of length,
mass and energy aresAA, mA, eAA, the time step within these
units was set to 0.01. The simulation cell was a cube with a
fixed edge length according to the number of particles and an
exact particle density ofD=1.2. Molecular dynamics(MD)
simulations, using the velocity Verlet algorithm, have been
used to generate independent configurations and as part of
the DWP location algorithm. For the case of Nickel-
Phosphorous the energy unit corresponds to 933.9 K andsAA
is 2.2 Å. We analyzedN=65, 2365, 130, 23130, 195, 260
particle systems. The 2365 and the 23130 systems denote
two noninteracting systems sharing one simulation box.

It is known for the same system that the dynamics above
the mode-coupling temperatureTc as well as structural prop-
erties like the pair correlation function are basically indepen-
dent of system size forNù65.29,38 Therefore one may hope
that even for the very small systems finite size effects for the
TLS can be neglected. It will turn out that this is indeed the
case.

B. Systematic location of TLS

We have developed a new algorithm for a systematic
search of TLS. Formally, the problem is to identify two
nearby local minima on the potential energy landscape(PEL)
of the system. In the first step a set of equilibrium configu-
rations is generated via MD simulations at constant tempera-
ture Tequil. Configurations at different times are taken and
used as starting configurations for subsequent minimization
via the Polak-Ribiere conjugate gradient algorithm, yielding
a corresponding set of local minimum energy structures, de-
notedinherentstructures.40 In the second step the goal is to
locate nearby minima for these inherent structures. To search
for these nearby minima we proceed as follows:(1) Reset all
particle velocities with random numbers according to a nor-
mal distribution at a fixed temperatureTsearch. (2) Perform a
fixed numberNsearchof MD steps in the NVE ensemble(con-
stant number of particles, constant volume and constant en-
ergy). (3) Minimize the resulting structure.(4) Accept the
new minimum if the distanced and the asymmetryD be-
tween both minima in configuration space(see below for an
exact definition) fulfill 0 <dmin,d,dmax and 0
<Dmin,D,Dmax, respectively. We introduced very small
minimum cutoffs, because minima cannot be distinguished
below numerical precision. For the choice of the cutoff-

values; see below.(5) Repeat this procedureM times for
different initial random numbers. The values ofTsearch and
Nsearch are chosen to give the largest number of nearby
minima per starting inherent structure.

In the final step the transition states for the generated pairs
of minima are located by a modified version of the nonlocal
ridge method.38 This algorithm is very robust to identify
first-order saddles between pairs of minima. In case that no
such saddle exists the new minimum is dismissed. In particu-
lar this may occur if the path to the second minimum in-
volves transitions of two(or more) independent TLS during
the Nsearch MD-steps. This is the standard situation for very
large systems. As a result we obtain for every starting mini-
mum a set of minima characterized by asymmetryD, dis-
tanced and barrier heightV. We explicitly checked that all
minima have 0 and all transitions states 1 negative eigenfre-
quency.

This algorithm is superior to the TLS-search algorithm,
used in previous works23,25 because no indirect assumptions
are made with respect to the number of particles participating
in a TLS-transition or with respect to the distanced.

Beyond the direct euclidian distanced between configu-
rations(or correspondingly the distancedi moved by particle
i), we use mass weighted distancesdmw between two con-
figurations:

dmw
2 srW1,rW2d = o

i

N

sdi,x
2 + di,y

2 + di,z
2 d ·

mi

m̄
. s2d

Furthermore one can define the mass weighted reaction path
approximation between two minima via

dmwrp= dmwsrW1,rWtrans.stated + dmwsrWtrans.state,rW2d, s3d

where rW1,rW2,rWtrans.state are the particle positions of the two
minima and the transition state.drp is defined similarly as
dmwrp, but without mass-weighting. The mass-weighted reac-
tion path is introduced because it enters the WKB-term to
calculate the tunneling matrix element. For comparison with
literature it is necessary to have also direct Euclidian dis-
tances. In the subsequent analysis we have attempted to em-
ploy for every type of analysis the appropriate distance. In
any event, due to the similarity of all definitions, none of our
results would change on a qualitative level if different dis-
tances had been used.

C. Double-well potentials vs TLS

As the ultimate goal one is looking for pairs of minima,
i.e. double-well potentials(DWP), in the high-dimensional
potential energy landscape withD /kB,1 K, corresponding
to 0.001 in LJ-units. They are expected to be relevant for the
low-temperature anomalies around 1 K and thus act as TLS.
Qualitatively, one would expect that many more DWP exist
with asymmetries of the order of the glass transition tem-
perature rather than 1 K. Restricting the search to DWP with
such a small asymmetry is somewhat problematic because
TLS are a very rare species and thus it is very difficult to find
them numerically. Therefore we use as a standard choice a
relatively large asymmetry ofDmax=0.5. From the resulting
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data set(6522 DWP forN=65, 2911 forN=130 and 428 for
N=260) we may easily analyze subsets of almost symmetric
DWP which are relevant for the low-temperature properties.
As shown in previous work also the range of very asymmet-
ric DWP contains important information about the properties
of TLS. In particular the choiceDmax/kB=20 K (0.02 in LJ-
units) is small enough as compared to the glass transition
temperature but large enough so that we get sufficient statis-
tics. We always choosedmwrp,max=0.8 for reasons mentioned
below. For the selection of the starting minima we choose
Tequil=0.5 which is slightly above the critical mode-coupling
temperature ofTc=0.45.35,38

III. RESULTS

A. Completeness of the search and finite size effects

From previous work it is known that the different param-
etersD, d, and V are strongly correlated. For example one
finds in agreement with intuition that DWP with smalld
typically have a rather small asymmetry. Thus one would
expect that most DWP which may act as TLS at low tem-
perature are restricted to some region ofd-values. Therefore
we have checked whether the DWP withD,0.02 indeed
display this restriction ind. For N=65 we have found 301
DWP in this range. The result is shown in Fig. 1. It turns out
that the d-distribution shows a peak aroundd=0.3 and
strongly decreases for largerd. ForN=130 we get very simi-
lar results. In addition to this the tunneling probability de-
creases exponentially withd and thus also the relevance of
TLS with large values ofd. Therefore the choice ofdmax
=0.8 is justified by the decreasing probability to find TLS
with small asymmetry and large distances and also by the
decreasing relevance for those TLS. In a next step we eluci-
date the quality of our search algorithm and check whether
our search of TLS is complete within our specified parameter
range. This property is essential to estimate the absolute
number of TLS from our simulations. For this purpose we
have analyzed how often the different minima around a start-
ing minimum, i.e., how often DWP, are found during the
M =400 search attempts per configuration. In case that most
DWP are only found once or twice it is very likely that many
minima are overseen. In contrast, if almost all DWP are
found quite frequently it is unlikely that many DWP are
missing. This conclusion is based on the assumption that the

finding probabilities of the DWP are continuous, i.e. there is
not a second class of invisible DWP, strictly separated from
the DWP found in our simulations. ForN=65 particles the
distribution of TLS counts is shown in Fig. 2 for bothDmax
=0.5 andDmax=0.02. Already for the first choice it turns out
that the distribution has its maximum at a count above 15
and the likeliness for lower counts decreases rapidly. Thus
most minima are indeed found with a high probability and
the search is therefore almost complete. For the DWP with
D,0.02 this effect is even more pronounced. This compari-
son also shows that DWP with smaller asymmetry are found
more easily than DWP with larger asymmetry. Furthermore
we analyzed whether for the system size ofN=65 finite size
effects are present. As already mentioned above, general fi-
nite size effects are absent for the dynamics aboveTc. It turns
out that all properties of DWP(partly presented in this work,
partly in a subsequent publication) were identical in the ob-
servedN-range between 65 and 260 within statistical noise.
There is, however, one exception. Within the parameter
range, specified above, we found on average 0.65 DWP per
starting minimum forN=65 and 0.94 DWP per starting mini-
mum for N=130. Naively one would have expected twice
the number of DWP forN=130. This means that on the
per-particle basis the number of TLS’ is roughly 30% too
small for N=130 as compared toN=65; see Table I for a
quick overview. This effect is even more pronounced forN
=260. Two reasons are possible: either we have found a sig-
nificant finite size effect(which may appear surprising be-
cause all properties of the TLS are identical) or this effect
may be caused by the algorithm.

FIG. 1. The histogram of the distribution of distances for all
DWP with D,0.02 (20 K for NiP). FIG. 2. The histogram of how often a nearby minimum was

found for the 65 particle system afterM =400 attempts per starting
minimum. The triangles correspond to data limited to participation
ratios above average(1/3 of all found) and are included here for
later use.

TABLE I. Summary of the found number of DWP for the used
asymmetry restrictions and particle numbers.

All DWP are restricted tod,0.8

N D Analyzed minima DWP DWP per particleM

65 ,0.5 10009 6522 0.01 400

130 ,0.5 3100 2911 0.0072 800

65 ,0.02 10009 628 0.00097 400

65 ,0.001 10009 43 6.3310−5 400
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To test the second possibility we performed simulations
with two noninteracting systems A and B sharing a box. For
determining minima the relative positions of the two inde-
pendent systems were preserved and the energies added. In
the combined system the absolute number of TLS is by con-
struction twice as high as in the elementary system. Interest-
ingly, using the same simulation parameters as above we also
observed a relative decrease of circa 30% when analyzing
the combined system 2.65. Thus it is very likely that the
apparent finite size effect, described above, is solely caused
by the algorithm. This effect can be rationalized. If a mini-
mum, corresponding to a TLS, is found in configuration A
with a probability of 0.9 per attempt and in configuration B
another TLS is found with a probability of 0.1 per attempt,
they change to 0.81=0.9·s1−0.1d and 0.01=0.1·s1−0.9d, re-
spectively, when both configurations are considered together
and if combined transitions are ignored(see above). This
effect gives rise to a sharp decrease in the probability to
detect elementary transitions for larger systems. Therefore
the best procedure is to analyze rather small systems which,
however, are large enough to be void of relevant finite size
effects. In analogy to our results in Ref. 38 the system size of
N=65 seems to be a very good compromise and, according
to Fig. 2, allows one to obtain the absolute number of TLS.

To proceed we counted the number of DWP with
D,0.02. It turns out that one DWP exists per 1000 particles,
i.e. 0.063 DWP per independent configurations divided byN.
For even smaller asymmetryD /kB,1 K s<0.001d we ob-
serve one DWP, i.e. TLS, per 15000 particles. Using the
density of NiP one ends up with 531047 J−1 m−3 TLS. Ac-
tually, the parameterP, which can be determined experimen-
tally and gives an experimental number of TLS, is roughly
smaller by one decade because the contribution of the indi-
vidual TLS are weighted by a factorD0

2/ sD0
2+D2d,1 where

D0 is the tunneling matrix element. More specifically we
obtainP<1.331046 J−1 m−3 (see Ref. 41) which is close to
the value of P<1.531046 J−1 m−3, obtained in Ref. 23.
Most of the remaining difference with, e.g.P=8
31044 J−1 m−3 for silicate can be directly explained by the
fact that most glasses have larger elementary units like the
SiO4 tetrahedra for silicate. This means that the number of
DWP per volume is even smaller, yielding an estimate very
close to the experimental value of silicate.

B. Embedding of TLS in the potential energy landscape

Now we discuss how the TLS are embedded into the over-
all PEL. As already discussed above, computer simulations
suffer from finite simulation times. As a consequence the
starting inherent structures will have a relatively high energy
as compared to inherent structures the system would have
reached if equilibration at lower temperatureTequil close to
the calorimetric glass transition were possible. In order to
elucidate this aspect closer we would briefly like to summa-
rize the previous results for this LJ-system.38 (1) Inherent
structure energies range between −304 and −287. The low-
energy cutoff, however, is not due to the bottom of the PEL.
Rather it indicates that the number of minima with even
lower energy is so small that they were not detected during

the simulations.(2) More strictly, the distribution of energies
follows the left part of a Gaussian distribution. This implies
that the number of states with higher energy is always expo-
nentially larger than the number of states with somewhat
lower energy.(3) It can be estimated that the bottom of the
potential energy landscape is around −306. This number can
be estimated from a determination of the total configura-
tional entropy.42,43 Thus even for very small cooling rates
energies would be larger than −306.(4) The dynamics
around and belowTc can be interpreted as jumps between
different traps, denoted metabasins. They contain a number
of individual inherent structures.

As our simulations cover a broad range of minimum en-
ergies we checked to which degree the properties of the
DWP depend on the energy of the starting inherent structure.
Figure 3 shows the dependence of the three DWP parameters
on this energy. Interestingly, the dependencies are rather
small. In particular there is no indication to believe that
DWP in the relevant low-temperature energy range between
−306 and −302 are very different. This is in agreement with
the observed independence of the inherent structure dynam-
ics observed by Vogelet al.33 Of course, on a strict quanti-
tative level minor variations should be taken into account.

Furthermore we analyzed whether the number of DWP
per starting configuration depends on its potential energy; see
Fig. 4. In order to work with a larger data set we have in-
cluded asymmetries up to 0.8. Furthermore we have ana-
lyzed the DWP for different subsets with respect to the dis-
tancedmwrp. It turns out that the dependence on energy is
very weak. Even in the most extreme casesdmwrp,0.8d the
number of DWP changes only by a factor of 2 when com-

FIG. 3. The dependence of the DWP parameters on the energy
of the starting minimum. The lines are a guide to the eye.

FIG. 4. The dependence of the number of DWP per starting
minimum on the energy of the starting minimum.
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paring different energies. This small variation nearly van-
ishes when restricting ourselves to DWP with small dis-
tances. In summary, we may conclude that on a local scale
the properties of the potential energy landscape do not de-
pend on the height in the landscape. Evidently this property
must break down when taking into account pairs of minima
with a larger spatial separation. Because the number of
minima for, e.g., energies around −295 is by a factor of 105

larger than the number of minima for energies around −300
(see Ref. 42) it is evident that for largerd many more pairs
of minima with similar energy can be found for −295 as
compared to −300.

In Fig. 5 we attempt to sketch the PEL of the LJ-system.
The most prominent features are the individual traps. In con-
trast, the DWP analyzed in this work correspond to the little
wiggles within the traps. Typical energy scales have been
given in the figure caption showing the separation of transi-
tions between adjacent inherent structures, already relevant
at low temperatures, and between traps, relevant above the
glass transition.

C. Microscopic nature of DWP

Furthermore we have studied the microscopic nature of
the DWP in great detail. One of the most elementary ques-
tions one may ask is how many particles are involved in the
translation between the two minima of a DWP? To establish
an accurate picture of the microscopic nature of the TLS we
analyzed the number and types of particles participating in
the transition from one minimum to the other. As a matter of
fact all particles move when going from one minimum to the
other. In Fig. 6 we show the distribution of distances moved
by the different particles during the transition between both
minima of a DWP. The distances are sorted according to
their actual size. The curvature for the last particles is caused
by the minimization of the distance of the two minima in a
finite system. The curves for different systems show only
small deviations for the particles which move a larger dis-
tance. It can be seen that the first particle, which moves the
biggest distance, moves much farther than the second par-
ticle if it is a B-particle(small); this is less pronounced if it is
an A-particle. As the particle which moves the biggest dis-
tance can usually be clearly distinguished from the other par-
ticles we denote it ascentral. With this definition we find
that in over 90% of all DWP the central particle is a
B-particle, although the concentration of B-particles is only

20%. DWP with central B-particles thus dominate DWP with
a central A-particle.

From these data one may define a participation ratio to
estimate the number of particles involved in the transition
between two minima. In the case thatn particles are moving
some fixed distance and the other particles do not participate
at all, one would obtain a participation ratio ofn. In the
present case, of course, one has a broad distribution and thus
different definitions of the participation ratio yield different
values, as shown in Table II. The value for the total system
varies between 2.1 and 9.5. Therefore it is more informative
to consider the total distribution of translations instead of a
single number; see Fig. 6. We note in passing that many
authors use the definitiond4/oi di

4 to characterize the partici-
pation ratio. Unfortunately, for this definition it is not pos-
sible to draw a distribution, sorted by particle displacement,
as shown in Fig. 6. Therefore we have used 1/kdmax

2 /d2l for
this purpose.

Finally, one may ask the question whether the participa-
tion ratio depends on the properties of the DWP. Most natu-
rally, one might think of a relation to the distance between
both minima because the distance directly appears in all defi-
nitions of the participation ratio. In Fig. 7 the dependence of
the participation ratio(second definition) on the distance is
shown. As expected for DWP with larger distances more
particles contribute to the translation. Actually, in previous
work (Ref. 44, p. 483) we have shown for a very similar
LJ-system that the slope might decrease for a larger distance;
still the participation ratio increases with distance.

D. Spatial distribution of DWP

In the STM it is assumed that the TLS are randomly dis-
tributed in space. To check this hypothesis we first calculate

FIG. 5. One dimensional sketch of the potential energy land-
scape. The asymmetryDDWP and the barrier height for the DWP
vary between 0 and 2Tc. The barrier height for the trapsVTrap on the
other hand varies between 1 and 20Tc.

FIG. 6. The contribution of each particle to the total transla-
tional motion in a DWP. The DWP with an A-particle as a central
particle (bottom) and a B-particle as a central particle(top) show
different behavior.

TABLE II. Partition ratios for different definitions and for A-
and B-particles as central particles. No mass-weighting has been
used for the distances.

Central particle 1/kdmax
2 /d2l kd2/dmax

2 l koi di /dmaxl kd4/oi di
4l

average 2.14 3.29 9.50 7.65

B 2.04 3.01 8.97 6.95

A 4.95 6.72 16.11 16.43
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the probability to find two DWP which have the same central
particle. We find that, for bothN=65 andN=130 an en-
hanced probability that a single particle is central for two
different DWP. To elucidate this aspect further we made a
simplified analysis for the 65 particle system. Instead of con-
sidering all pairs of central particles we considered only B
-B-pairs and only those pairs, which originate from configu-
rations with exactly two observed DWP. For independent
DWP one would expect that in 1/13=7.7% of all cases the
central particle is identical. Rather we founds17±2d%. Thus
there is indeed a significantly increased probability that two
DWP are spatially correlated, which can also be interpreted
as an increased probability for triple well potentials. We find
that when omitting DWP with the same central particle the
other DWP are randomly distributed in the system. This was
checked by computing the average distance of the remaining
central particles in cases where more than 1 DWP is present
in the system. It turns out that this distance is within statis-
tical uncertainty identical to the distance of randomly chosen
particles. The results for the 130 particles system show the
same behavior. We do not consider the observed phenomena
to be a severe deviation from the STM, because the abun-
dance of the triple well potentials is rather small.

IV. DISCUSSION AND SUMMARY

We have presented a new reliable algorithm to systemati-
cally locate DWP in a model glass former. It turned out that
the intrinsic limitations of computer simulations do not ham-
per the quality of our results. Thus we can indeed get infor-
mation about TLS, relevant for understanding the low-
temperature anomalies.

It turns out that the number of TLS, directly obtained
from our data, is compatible with the number of TLS ob-
served experimentally. This conclusion had been already
drawn from our previous work. This time, however, we can
exclude that possible systematic artifacts hamper our analy-
sis. Thus it is likely that TLS, responsible for the low-
temperature anomalies, result from elementary noninteract-
ing two-state systems rather than from collective excitations.

As a by-product of our simulation we realized that the
DWP are not randomly distributed in space. Rather there is a
strong tendency that two DWP are located at the same cen-
tral particle, i.e. form a triple well potential. This suggests

that some structural features of the glass favor the formation
of DWP. A possible candidate is the coordination sphere
around the central particle. To check whether these triple
well potentials are relevant at temperatures in the Kelvin
regime we also checked if the asymmetries of the two con-
nected double wells correlate. No such correlation could be
found for our set of triple well potentials. Therefore it is very
unlikely that all three minima have energies within a very
narrow energy range of a few Kelvin. Thus at low tempera-
tures nearly all triple well potentials will at best serve as
two-state TLS. This statistical argument as well as the fact
that the number of triple well potentials is rather small(about
1.3% of all DWP in the range of asymmetries and distances
used in our work) shows that the observed phenomena
mainly indicate structural features but are otherwise irrel-
evant for the low temperature anomalies.

The properties of the TLS reflect local properties of the
PEL. In connection with our previous work on global fea-
tures of the PEL it is possible to have a view on the PEL,
encompassing the transport dynamics above and the local
dynamics below the glass transition. It becomes evident that
the TLS are part of the individual traps in which the PEL can
be decomposed.

We would like to mention two discrepancies with other
work. One is the magnitude of the absolute movement of a
central B- or A-particle, which is found to be quite large:
dB,rp

2 =0.13 anddA,rp
2 =0.06 in LJ units. These values are

about an order of magnitude larger than the estimation given
by Lubchenko and Wolyness17 in their frustrated domain
wall model. The other discrepancy concerns the participation
ratios. The observed participation ratios, obtained from aver-
aging over all DWP, are much lower than those observed by
other groups investigating the PEL, namely by Oligschleger
and Schober in soft sphere glasses and LJ-systems31,32 or
Vogel et al.33 in the same system as used in this work. In
Refs. 31–33 the authors have analyzed the transitions be-
tween adjacent minima as resulting from a molecular dynam-
ics trajectory at a given temperature and found of the order
of 20 particles. Comparing this with our average value of
around 3 this seems to be a major difference, as already
stated by Oligschleger and Schober31 in relation to our ear-
lier work23 where similarly small values have been reported.
As shown in Fig. 2 this difference is not due to the fact that
our algorithm is not able to identify DWP with large partici-
pation ratios. For a closer discussion of this discrepancy one
has to take care of the actual definition, used to characterize
the participation ratio. In the reported work the two latter
definitions in Table II have been used. Thus the reported
values have to be compared to our participation ratios of
about 7–10. There is, however, still a remaining difference of
a factor of 2–3.

This difference can be rationalized by the different meth-
ods of locating inherent structures. In the present work we
have attempted to localize all inherent structures within a
certain distance to the original minimum. This approach was
motivated by the observation that DWP with small asymme-
tries typically correspond to nearby minima(see Fig. 1) so
that DWP with large distances between the minima are typi-
cally irrelevant for the understanding of the low-temperature
anomalies. As a direct consequence the typical distances be-

FIG. 7. The participation ratio does significantly dependent on
the distance of the configurations.
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tween the minima are significantly smaller found by the
present method as compared to the results reported in Refs.
31–33 which allude more to the properties of the glass tran-
sition. This can be quantified via the configurational distance
dC=oi sdi,x

2 +di,y
2 +di,z

2 d0.5. Comparing our value with the
value reported in Ref. 33 we find a difference of a factor of
three.

Following the results, reported in Fig. 7, this difference
directly translates into differences of the participation ratio.
Extrapolating the data shown in Fig. 7 to distances around
unity one ends up with an increase of the participation ratio
by a factor of 2–3 which is exactly the factor, which was
missing above. Thus our present results are fully consistent
with the results discussed in previous work. We just mention
in passing that the situation may be even more complicated
since the DWP, obtained by Schoberet al. and Vogelet al.,
have been obtained from MD trajectories. Thus there exists
an implicit weighting by the probability to find these DWP.
In contrast, in our approach a systematic determination of all
DWP within a specific parameter range has been conducted.
This may hamper the comparison of DWP, obtained by the
two different methods, even further.

Having in mind the dominance of the small B-particles in
the transition between two minima it becomes obvious that
the first two definitions of the participation ratio better reflect
the dominance of the single-particle character of DWP tran-
sitions. Thus we feel it is more intuitive to speak of 3 rather
than of 7–10 particles which dominate the translation be-
tween DWP relevant for the low-temperature anomalies. In
any event, from a theoretical point of view it it is the whole

distribution in Fig. 6 which fully characterizes the nature of
the translational dynamics between minima in the low-
temperature regime.

Our results imply that experimental findings for materials
with a smaller minority components(like the analyzed LJ-
system) should be dominated by B-type TLS. More gener-
ally, one can ask whether the results obtained for our LJ-
system are also relevant for other systems. Actually, we
already saw that the DWP with central A-particles involve
more cooperative processes. Our preliminary results for
silica indicate that the participation ratios are similar to those
of the A-particles. In general one might speculate that for
TLS, which mainly contain very similar molecules, the tran-
sition is more collective(like in pure silica) and behave like
the A-particles in the present case, while for TLS consisting
of small molecules in a matrix the transition is similar to the
more localized process, as seen for the B-particles.

Now after validating the methods the next step is to get a
closer insight into the microscopic properties of the DWP
and to perform a direct comparison with experiments on the
low-temperature anomalies. Work along this line will be pub-
lished elsewhere.
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