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Motivated by the intriguing properties of the vanadium spin tube Na2V3O7, we show that an effective
spin-chirality model similar to that of standard Heisenberg odd-leggedS= 1

2 spin tubes can be derived for
frustrated inter-ring couplings, but with a spin-chirality coupling constanta that can be arbitrarily small. Using
density matrix renormalization group and analytical arguments, we show that, while spontaneous dimerization
is always present, solitons becomeboundinto low-lying singlets asa is reduced. Experimental implications for
strongly frustrated tubes are discussed.
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Spin ladders, systems which consist of a finite number of
coupled chains, have attracted considerable attention
recently.1 Spin-12 ladders with an even number of legs are
expected to have a spin gap, while ladders with an odd num-
ber of legs behave like spin chains at low energy. Both pre-
dictions have been largely confirmed experimentally. Here
we have taken the ladders to have open boundary conditions
in the rung direction, which is the most natural definition. In
comparison, spin ladders with periodic boundary conditions
in the rung direction(see Fig. 1), often referred to as spin
tubes, have received much less attention, mostly because the
prospect for experimental realizations was remote. Nonethe-
less, it was noticed early on that spin tubes with an odd
number of legs are not expected to behave in the same way
as their ladder counterparts. The crucial observation is that
the ground state of a ring with an odd number of sites is not
just twofold degenerate, as for a rung in an odd-leg ladder,
but is fourfold degenerate: In addition to the Kramers degen-
eracy of the spin-12 ground state, there is a degeneracy due to
the two possible signs of the ground-state momentum, lead-
ing to an extra degree of freedom on top of the total spin,
often called the chirality by extension of the case of a tri-
angle. As a consequence, a standardL-leg spin tube[Fig.
1(a)], defined by the Hamiltonian

H = J o
r,l=1

N,L

sr,l · sr,l+1 + J8 o
r,l=1

N−1,L

sr,l · sr+1,l ,

wheresr,l is a spin-12 operator on ringr and legl, can be
described in the strong-ring limit(J8!J) by an effective
model, valid to first order in the inter-ring couplingJ8,2–5

defined by the Hamiltonian

Heff = Ko
r=1

N−1

Sr ·Sr+1f1 + astr
+tr+1

− + H.c.dg. s1d

Here Sr are the usual spin-1
2 operators which describe the

total spin of ring r, while tr are pseudo-spin-1
2 operators

acting on the chirality. The parameters of the model are an
overall coupling constantK=J8 /L and a parametera that

measures the strength of the coupling between spin and
chirality. For ordinary spin tubes, this coupling is always
strong:a is equal to 4 for three-leg spin tubes and increases
with the number of legs.4,5 Using bosonization arguments,3

Schulz predicted that the ground state should be spontane-
ously dimerized and the spectrum gapped in all sectors, a
prediction supported by further numerical and analytical
work.4–6 In addition, the excitations have been argued to be
unbound solitons and the gap is always a significant fraction
of J8. All of this remarkable physics still awaits an experi-
mental realization.

In this context, the recent synthesis of Na2V3O7,
7 whose

structure may be regarded as a spin-1
2 nine-leg spin tube, has

opened up new perspectives. However, the properties re-
ported so far8 do not match the properties predicted for stan-
dard odd-legged spin tubes. In particular, no spin gap could
be detected in zero external field. This might not be too
suprising, however: although the overall topology of

FIG. 1. Two models for Na2V3O7. (a) Nonfrustrated, nine-leg
spin tube.(b) Frustrated, three-leg spin tube.
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Na2V3O7 is indeed that of a nine-leg spin tube, the actual
geometry is quite different from that of Fig. 1(a). Although
ab-initio calculations have not yet reached a consensus,9,10 it
is likely that the inter-ring coupling exhibits some kind of
frustration. Since the tubes in Na2V3O7 only have aC3-axis,
a frustrated model of the type of Fig. 1(b) might be more
appropriate.

In this Communication, we use extensive density matrix
renormalization group(DMRG) simulations11 supported by
several analytical arguments to show that inter-ring frustra-
tion can have dramatic consequences for the properties of
odd-legged spin tubes. In particular, we show that it can
reduce the spin gap and bind solitons in low-lying singlets.
This picture might resolve some of the puzzles of Na2V3O7.

Our starting point is to notice that, as long as the inter-
ring coupling does not break the rotational symmetry of the
tube, the effective Hamiltonian is still given by Eq.(1), but
with a parametera that can take on arbitrarily small values if
frustration is allowed. For instance, for the three-leg spin
tube of Fig. 1(b), K=sJ8+2J9d /3 and a=4uJ8−J9 u / sJ8
+2J9d, leading toa=2 if each site is coupled to two neigh-
bors (i.e., J8=0),12 and toa=0 if each site is coupled to all
sites of neighboring rings(J8=J9).

Therefore, we concentrate on the model of Eq.(1) with
K=1 and consider all values ofaù0 in the following. In a
previous DMRG study of the effective model(1), Kawano
and Takahashi4 reported the finite-size scaling of the spin gap
for the triangular tube witha=4. Using White’s DMRG
algorithm11 as well, we extend their numerical analysis to the
range 0øaø20. For this purpose, we classify the lowest-
lying excitations according to the quantum numbersfSz,tzg
and study the sectors[0,0], [0,1], [1,0], and [1,1] for open
chains with up toN=200 sites. From an analysis of the trun-
cation dependence of the gaps, we find that convergence is
reached by keeping 250 states and thus perform the calcula-
tions up to that limit within six finite-system sweeps. The
sum of the discarded density-matrix eigenvalues is smaller
than 10−5 in all cases.

Abovea.1.4, a range that includes all nonfrustrated spin
tubes, we found that a gap is indeed present, in agreement
with Kawano and Takahashi’s analysis of the casea=4, but
interestingly enough, we find that the first excitation appears
in all sectors. In other words, spin and chirality gaps are
equal abovea.1.4.

The situation changes dramatically upon reducinga. Be-
low a.1.4, the first excitation is no longer degenerate but
appears only in the sectorfSz=0,tz=1g. The first excitation
is thus a chirality excitation, and the spin gapDS and the
chirality gapDt are no longer equal. To examine this point
further, we have performed a systematic analysis fora,1.4
in all sectors[0,0], [0,1], [1,0], and [1,1], including careful
finite-size scaling. The first excitation is always in the sector
fSz=0,tz=1g and is nondegenerate. Belowa.0.5, the sec-
ond excitation is also nondegenerate and appears in the sec-
tor [0,0]. In this parameter range, the first excitation that has
a nonzero spin quantum number is the third excited state.
This excitation manifests itself in all sectors. By following
this excitation asa is increased, one can determine that it
becomes the second excitation ata.0.5, and then the first
excitation ata.1.4.

The gaps corresponding to these excitations are plotted in
Fig. 2. In extracting the gaps, some care had to be taken
regarding finite-size effects. The results were fitted with
polynomials in 1/N, whereN is the length of the tube. Good
fits could be obtained with third-order polynomials. The ex-
trapolated values lie between those obtained with quadratic
and quartic polynomials. The differences between these fits
were used to define the error bars shown in the inset of Fig.
2.

That these gaps correspond to very different excitations is
confirmed by theira dependences. As shown in the inset, the
results foraø0.1 can be fitted with power laws of the form
D~ab with exponents b=1.54±0.06, 1.36±0.07, and
1.11±0.12 for the singlet excitations in the sectors[0,1],
[0,0], and for the first spin excitation, respectively. These
exponents are consistent with the simple fractionsb=3/2,
4/3, and 1. The large error bar and the value significantly
larger thanb=1 for the spin excitation is very probably a
finite-size effect. Since the spin gap follows a linear finite-
size scaling for spin tubes with up to 200 rings whena is
very small, the extrapolations underestimate the gap, result-
ing in an exponent larger than the actual one.

The nature of the excitations can be further explored by
examining the nearest-neighbor expectation values of the
spin and pseudo-spin interactionskSi ·Si+1l and kti

+ti+1
−

+H.c.l. In Fig. 3 these quantities are shown for the lowest-
lying states in the importantfSz,tzg sectors. The spin and
chirality degrees of freedom alternate synchronously. As ex-
pected, the ground state, shown in Fig. 3(a), is uniformly
dimerized in both the spin and the chirality channels.

Excitations in a dimerized spin chain can be described in
terms of solitons, which can be viewed as domain walls be-
tween two dimer coverings.13–15 In a chain with an even
number of sites, solitons always appear in pairs, which can
either be bound or unbound. The bound states can also be
interpreted as excited bonds, i.e., as spin-triplet states in a
background of dimers, and would therefore leave the dimer
pattern unchanged. In an open chain, a bound soliton state is
located with maximum probability at the center of the sys-
tem, whereas its unbound counterpart tries to maximize both
the distance between the solitons and the distance to the ends
of the chain.

The nearest-neighbor expectation values of excited states

FIG. 2. Extrapolated excitation gaps in the fourfSz,tzg sectors
as a function ofa. Inset: Power-law fits of the smalla results.
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in the sectors[Sz=0, tz=0] and[0, 1] for a=0.1 are shown in
Figs. 3(b) and 3(c). The unaltered dimer patterns and the
constrictions at the center of the chain indicate the presence
of bound soliton states. The very pronounced constriction in
Fig. 3(b) suggests that the excitation in the ground state sec-
tor is close to unbinding, which we find to occur in the pa-
rameter range 0.5,a,0.6. For larger values ofa, all ex-
pectation values have a structure similar to that shown in Fig.
3(d), representing the lowest-lying spin excitation. Here one
can clearly identify two domain walls at around1

3 and 2
3 of

the chain length, suggesting the presence of two unbound
solitons.

We have checked that these features are independent of
the chain length by studying systems of up to 200 sites. From
a complete analysis of the expectation values throughout the
whole range ofa, we conclude that lowest-lying bound
states only exist in the sectors[Sz=0, tz=0] and [0, 1], for
which the unbinding can be observed at 0.5,a,0.6 and
1.3,a,1.4, respectively. The lowest-lying pure spin and
combined spin-chirality excitations are always unbound and
are therefore degenerate in the thermodynamic limit.

Interestingly, the same hierarchy of states for the bound
and unbound soliton excitations as a function ofa can be
obtained analytically by the variational approach of Wang6

for the model that includes a next-nearest-neighbor coupling
along the legs with relative strengthb=0.5.16 Since it was
shown by Kawano and Takahashi4 that Wang’s model re-
mains in the same phase as the additional interactionb is
turned off fora=4, we conjecture that the two models are in
the same phase over the whole range ofa. In the same spirit,
we note that the effective Hamiltonian of Eq.(1) can also be
seen as a special case of the recently investigated spin-orbital
models,17–20 with great similarities in the roles of chirality
and orbital degrees of freedom.

Next, we show that the scaling of the chirality gapDt

~a3/2 can be recovered by a simple mean-field decoupling of
the interaction termsSr ·Sr+1tr

±tr+1
7 into

kSr ·Sr+1ltr
±tr+1

7 + Sr ·Sr+1ktr
±tr+1

7 l − kSr ·Sr+1lktr
±tr+1

7 l.

Since, according to our numerical results, the ground state is
spontaneously dimerized, we look for a dimerized solution
by starting with alternating expectation valueskSr ·Sr+1l
=CS−s−1drdS and ktr

+tr+1
− +tr

−tr+1
+ l=Ct−s−1drdt, where dS/t

is the alternation parameter in the corresponding channel.
The mean-field Hamiltonian then describes Heisenberg and
XY chains with alternating bond strengths. Now, for Heisen-
berg andXY chains with alternating exchangeJf1+s−1dreg,
the scalings of the gap and of the alternation parameters as a
function of e are well known.21–24 Up to logarithmic correc-
tions, they are given byDS~Jsed2/3, dS~e1/3, Dt~Je, and
dt~e. The mean-field decoupling then leads to aJ of order
one ande~adt for the spin part, and toJ~a ande~dS for
the chirality. Self-consistency then requires thatdS,dt~a1/2

and Dt~a3/2. This last scaling is in very good agreement
with our DMRG result for the chirality gap, for which no
logarithmic correction could be extracted within our numeri-
cal accuracy. As a further check, we have also extracteddS
anddt as a function ofa. They are not strictly proportional,
but we believe this is due to logarithmic corrections. Indeed,
the ground-state energy for smalla reads

eef f
MF = AadS

2s1 + B ln dSd + Csadtd4/3sln Dadtd−1 − adSdt

+ const. s2d

A, B, C, andD are constants25 independent ofa. The alter-
nation parametersd minimizing the ground-state energy
obey the relationdt~dSslog dS+constd, leading to a very
good fit of our numerical results(not shown).

In order to illustrate the influence of the chirality degrees
of freedom, we have calculated the specific heat densityc as
a function of temperature using exact diagonalization of
small systems. We have used weighted means between sys-
tems with an even and odd number of sites26 to extrapolate
the curves to the bulk limit. Extrapolations for systems with

FIG. 3. Nearest-neighbor expectation values
of spin and chirality along a chain with 50 sites in
the sectorsfSz=0,tz=0g, [0, 1] and [1, 0] for a
=0.1. The ground state(a) is dimerized. The un-
altered dimer patterns and the constrictions at the
center of the chain in(b) and (c) indicate bound
soliton states, whereas the two domain walls in
(d) suggest the presence of two unbound solitons.
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up to eight sites and two particular values ofa are shown in
Fig. 4. The double-peak structure for smalla is due to the
well-separated low-lying chirality excitations. The distinct
low-temperature peak progressively disappears as the chiral-
ity excitations get closer to the spin excitations and is com-
pletely absent ata<1. We also note that these low-lying
chirality excitations, which are singlets, should be detectable

in Raman spectroscopy. Both predictions are expected to ap-
ply to Na2V3O7 if the absence of any detectable zero-field
spin gap in that compound is indeed a consequence of frus-
tration.

In conclusion, we have shown that the low-energy prop-
erties of odd-legged spin tubes change dramatically if the
coupling between spin and chirality degrees of freedom is
reduced, as would be the case for frustrated spin tubes. While
our results confirm that excitations in nonfrustrated or
weakly frustrated spin tubes are unbound solitons, they show
that solitons are bound into singlet bound states if the cou-
pling between spin and chirality is sufficiently reduced by
frustration. As a consequence, spin and chirality gaps are no
longer equal, and the low-lying chirality excitations, which
lie below the spin gap, are expected to lead to a number of
interesting consequences, such as an additional low-
temperature peak in the specific heat. We hope that these
conclusions will encourage further experimental investiga-
tions of Na2V3O7 and of other odd-legged spin tubes.12
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FIG. 4. Specific heat per site as a function of the temperatureT
for a=0.2 and 1.0 calculated by exact diagonalization of systems
with up to eight sites.
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