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We study the properties of superconducting electrical circuits, realizing cavity quantum electrodynamics. In
particular we explore the limit of strong coupling, low dissipation, and elevated temperatures relevant for
current and future experiments. We concentrate on the cavity susceptibility as it can be directly experimentally
addressed, i.e., as the impedance or the reflection coefficient of the cavity. To this end we investigate the
dissipative Jaynes-Cummings model in the strong coupling regime at high temperatures. The dynamics is
investigated within the Bloch-Redfield formalism. At low temperatures, when only the few lowest levels are
occupied, the susceptibility can be presented as a sum of contributions from independent level-to-level tran-
sitions. This corresponds to the secular(random phase) approximation in the Bloch-Redfield formalism. At
temperatures comparable to and higher than the oscillator frequency, many transitions become important and a
multiple-peak structure appears. We show that in this regime the secular approximation breaks down, as soon
as the peaks start to overlap. In other words, the susceptibility is no longer a sum of contributions from
independent transitions. We treat the dynamics of the system numerically by exact diagonalization of the
Hamiltonian of the qubit plus up to 200 states of the oscillator. We compare the results obtained with and
without the secular approximation and find a qualitative discrepancy already at moderate temperatures.
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I. INTRODUCTION

There is, currently, a substantial activity in the research
into the physics of Josephson qubits. In particular many
groups1–5 became interested in studying the systems com-
posed of Josephson qubits and harmonic oscillators, e.g., mi-
crowave cavities, mechanical resonators, etc. Thus the field
starts to resemble quantum optics where atoms in cavities
have been investigated for many years. On one hand there
are many results which can be simply “translated” from the
“language” of quantum optics to the “language” of solid state
physics. On the other hand there are specific properties of the
solid state devices that might require further research.

In this paper we study the dynamics of a two-level system
(qubit) and a cavity at resonance. In quantum optics this
regime is the most studied and interesting one. The corre-
sponding Jaynes-Cummings model(for a review see Ref. 6)
has been widely investigated in the literature. Experimen-
tally, however, the strong coupling regime is difficult to
achieve and it is also a challenge to keep the atom in the
cavity for a long time. In optical cavities the strong coupling
regime was achieved only a decade ago.7 Rydberg atoms in
superconducting cavities8 provide the strong coupling regime
and one can even perform quantum gates during the time of
flight of the atom through the cavity.

In solid state devices, e.g., a Josephson qubit resonantly
coupled to a damped strip-line superconducting cavity,2 the
“atom” is permanently placed in the cavity. This should sim-
plify the time constraints. Also, the strong coupling limit
seems to be possible. Thus these circuits constitute very
promising setups for exploring the strong coupling limit of
cavity quantum electrodynamics(QED). Compared to opti-
cal cavities, one of the differences is the finite temperature of
solid state devices. Moreover, even if the nominal tempera-

ture of the refrigerator is much lower than the cavity’s energy
splitting, the hot photons can arrive via the leads connecting
to the controlling circuits. Thus the elevated temperature re-
gime is of substantial interest. We are aware of only one
paper addressing the finite temperature case, namely, Ref. 9.
In this paper we expand the domain of parameters as com-
pared with Ref. 9. Namely, we consider the case when both
the qubit’s and the cavity’s dissipative rates are much smaller
than the cavity-qubit coupling(Rabi-frequency) and both the
cavity and the qubit are coupled to the finite temperature
baths. Moreover we focus on the correlation functions of the
cavity, e.g., cavity susceptibility. In solid state systems this
quantity is particular convenient to measure as it is related to
the impedance of the strip-line cavity. The temperature-
dependence of this impedance constitutes a direct tool for
probing the number of photons in the cavity.

At low temperatures the dynamics is very simple. Only a
few states are occupied and the susceptibility may be pre-
sented as a sum of Lorentzians, corresponding to a few tran-
sitions allowed from these states. E.g., at zero temperature
only two transitions are relevant and the resonant peak of the
uncoupled cavity is Rabi split by the qubit to two peaks. At
high temperatures the frequencies of different allowed tran-
sitions are densely packed near the oscillator’s frequency.
This situation is called Liouvillian degeneracy as, formally,
different modes of the Liouville evolution operator are al-
most degenerate.10 We show that the secular approximation,
widely used within the Bloch-Redfield formalism, fails due
to the Liouvillian degeneracy. The insufficiency of the secu-
lar approximation was already noticed in, e.g., Ref. 11. In
this situation one has to take more elements of the Redfield
tensor into account than required by the secular approxima-
tion. On the other hand the optical master equation takes all
the necessary elements into account and thus produces cor-
rect results.
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II. EXPERIMENTAL MOTIVATION

We follow the recent proposal, presented in Ref. 2, in
which a superconducting charge qubit, coupled capacita-
tively to a cavity formed in a coplanar waveguide, is shown
to be a favorable system for reaching the strong coupling
regime of cavity QED. Typical parameters are cavity
resonance/atom transition frequency ofv0/2p=10 GHz, a
vacuum Rabi-frequency ofg/2p=100 MHz, a cavity life-
time of 1/k=160 ns(quality factorQ=v0/k=104), and an
atom lifetime 1/g=2 ms. The system is measured by detect-
ing absorption and phase shift of microwaves sent through
the waveguide. In this paper we calculate the linear response
absorption of the system. Motivated by the experimental pa-
rameters we focus on the regime of strong coupling
sk ,g!gd, and also assume that cavity dissipation dominates
over atom dissipationsg,kd. We note that the photon tem-
perature in the cavity may be much higher than the base
temperature of the cryostat, due to coupling to room tem-
perature sources through the waveguide. By measuring the
absorption spectra one may determine the photon tempera-
ture of the cavity.

III. JAYNES-CUMMINGS MODEL

Assuming the qubit to be at the degeneracy point,2,12 and
for the moment neglecting dissipation, we arrive at the
Jaynes-Cummings model, described by the following Hamil-
tonian:

HJC = − 1
2vqbsz + vosca

†a + g
2sxsa + a†d, s1d

wheres operates on atom/qubit whilea,a† are ladder opera-
tors of the cavity/oscillator. We consider the resonant regime
when vosc=vqb=v0. The system’s spectrum forg!v0 is
shown in Fig. 1. It is obtained by first, analyzing the spec-
trum for g=0 (left side) and, then, lifting the degeneracies by
the couplingg (right side). Assumingg!v0 we can take into
account the coupling term only when it lifts the degeneracies
in the spectrum. The ground state of the uncoupled system is
ugl= u↑ ,0l, which is nondegenerate. All other states are dou-
bly degenerate, i.e., the statesu↑ ,nl and u↓ ,n−1l form de-

generate doublets for eachnù1. Every such doublet is split
by the interaction. We can thus define the “bonding” and the
“antibonding” statesub/a,nl;2−1/2su↑ ,nl± u↓ ,n−1ld. The
energies of these states areEb/a,n=nv07Îng/2.

IV. OSCILLATOR/CAVITY IMPEDANCE

In ordinary cavity QED the atom susceptibility is usually
probed. For the qubit-oscillator system the susceptibility of
the oscillator(cavity) is the most easily measured quantity. It
is defined as

xstd = iustdkfqstd,qs0dg−l, s2d

where q;a†+a. The Fourier transform is xsvd
=x8svd+ ix9svd=edtxstdeivt. The imaginary part of the sus-
ceptibility is proportional to the dissipative real part of the
impedance, i.e.,x9svd~ReZsvd. For a closed system with
quantum levelsuil, with stationary occupation probabilities
ri, it can be presented as

x9svd = po
i,f

riuki uquflu2fdsv − v f id − dsv + v f idg, s3d

where v f i ;sEf −Eid /". Thus it is a series of delta-peaks,
corresponding to the allowed transitions.

At T=0 only the ground state is occupied and the two
allowed transitions have frequenciesvg;b,1=v0−g/2 and
vg;a,1=v0+g/2 and the matrix elementsukguqub,1lu
= ukguqua,1lu=1/Î2. Thus the uncoupled oscillator’s peak at
v=v0 is split as shown in Fig. 2. This is called Rabi-
splitting.

At T.0 higher energy states are occupied. The transitions
are allowed only between neighboring doublets. There are
two classes of allowed transitions. The “bonding-bonding” or
“antibonding-antibonding” transitions correspond to the tran-
sition frequencies

vb,n−1;b,n = v0 −
g

2
sÎn − În − 1d, s4d

FIG. 1. Spectrum of the Jaynes-Cummings
model at resonance.
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va,n−1;a,n = v0 +
g

2
sÎn − În − 1d, s5d

with the matrix elements

ukb,n − 1uqub,nlu = uka,n − 1uqua,nlu =
1

2
sÎn + În − 1d.

s6d

They form the first class of transitions which all are posi-
tioned inside of the zero temperature Rabi-splitting. Analo-
gously, the “bonding-antibonding” transitions with frequen-
cies

vb,n−1;a,n = v0 +
g

2
sÎn + În − 1d, s7d

va,n−1;b,n = v0 −
g

2
sÎn + În − 1d, s8d

and matrix elements

ukb,n − 1uqua,nlu = uka,n − 1uqub,nlu =
1

2
sÎn − În − 1d s9d

are all positioned outside the Rabi-splitting. Both classes of
transitions are shown in Fig. 3.

V. CAVITY DISSIPATION

Due to the dissipation the delta functions should be wid-
ened to Lorentzians. At zero temperature the widths of the

peaks are estimated asdv=v0/ s2Qd (the factor 2 is due to
the reduced matrix element for each transition as compared
to the original oscillator’s transition).

The problem is getting the line-shape at finite(relatively
high) temperatures and high values ofQ. Indeed, when tem-
perature becomes of orderv0 more transitions become avail-
able. To estimate the heights of the peaks we note that the
occupation probabilities of the doublets are estimated asrn
<Z exps−nv0/Td. The matrix elements for the “bonding-
bonding” or “antibonding-antibonding” transitions grow as
~În, while those for “bonding-antibonding” transitions de-
cay as~1/În. Thus we obtain a “Poisson” distribution for
the “bonding-bonding” or “antibonding-antibonding” peaks’
heights with the maximum atn<T/v0. The heights of the
“bonding-antibonding” peaks decay withn. Therefore the
highest peaks are situated atv<v0±Îv0/Tg/4.

The spacing between the dominant peakss,g/2Îv0/Td
thus decreases with temperature, while their width
s,2T2/Qv0d increases with temperature. Around the cross-
over temperatureTc=v0sgQ/4v0d2/5 the peaks start to over-
lap.

Thus, as the temperature grows, we have a transition from
a quite “unharmonic” spectrum without Liouvillian symme-
try, where all transition frequencies are different, to a spec-
trum which resembles that of two uncoupled linear oscilla-
tors, see Fig. 4. The widths of the peaks in these two cases
behave qualitatively different. In the first(unharmonic) case
the widths grow with temperature, while in the second(har-
monic oscillator) case they do not.

VI. QUBIT/ATOM DISSIPATION

The qubit/atom is also subjected to dissipation, which will
add to the peak widths in the susceptibility. At the degen-

FIG. 2. Transitions(left) resulting in a Rabi splitting of the
cavity susceptibility(right), at T=0.

FIG. 3. Transitions(left) and cavity susceptibility(right) at
T.0. The central(blue) arrows correspond to “bonding-bonding”
and “antibonding-antibonding” transitions, giving rise to the central
two peaks in the spectrum. The outer(blue-green) arrows corre-
spond to “bonding-antibonding” transitions, giving the outer two
peaks in the spectrum.

FIG. 4. At high temperaturesT@v0 the “bonding” (blue) and
“antibonding” (red) states form two almost equidistant spectrums.
The nonharmonicity decreases asÎn+1−În<1/2În for largen.
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eracy point of the qubit the longitudinal noise(coupled tosz)
is suppressed to first order.12 The transverse noise(coupled
to sx) will induce transitions in the qubit, characterized by
the rate 1/g. In terms of the Jaynes-Cummings eigenstates
the qubit dissipation cause similar transitions as the cavity
dissipation. A major difference is that the matrix elements for
these transitions are independent of the oscillator staten.
Thus, as long as the two sources of dissipation are of the
same order of magnitude, the high temperature susceptibility
will be determined by the cavity dissipation.

VII. BLOCH-REDFIELD FORMALISM

We model the cavity/atom dissipation by coupling an ob-
servableX/Y of a thermal bath to theq/sx-coordinate of the
cavity/atom

H = HJC + qX+ sxY + Hbath
X + Hbath

Y . s10d

One popular choice of a bath is the harmonic oscillator
one.13,14 In this caseHbath=oivibi

†bi and X=oilisbi +bi
†d.

However, as we are assuming weak dissipation and doing the
lowest order calculation, the precise nature of the bath is
unimportant and only the bath correlatorkXstdXs0dl matters.

The Bloch-Redfield equation15,16 is a kinetic equation for
the reduced(qubit1cavity) density matrix

ṙmnstd + ivmnrmnstd = o
m8,n8

Rmnm8n8rm8n8std, s11d

where the Bloch-Redfield tensor is given by

Rmnm8n8 = lm8mnn8 + ln8nmm8
* − o

k

dmm8lnkkn8 + dnn8lmkkm8
* ,

s12d

and

lm8mnn8 = km8uqumlknuqun8lLXsvnn8d

+ km8usxumlknusxun8lLYsvnn8d, s13d

whereLXsvd is the Laplace transform of the cavity bath cor-
relator

LXsvd =E
0

`

dte−ivtkXstdXs0dl. s14d

Introducing the Fourier image of the unsymmetrized cor-
relator kXn

2l;edtkXstdXleint, we obtain

LXsvd = − i E dn

2p

kXn
2l

n + v − i0
. s15d

Thus for the real part ofLX which determines the transition
rates we obtain ReLXsvd=s1/2dkXn=−v

2 l. The imaginary part
of LX is responsible for the energy shifts(Lamb shift). LYsvd
of the qubit bath is defined and treated analogously.

Considering a high quality cavitysQ@1d, and low qubit
dissipationsg!v0d, we limit ourselves to single photon ex-
change with the baths. The possible transition energies in Eq.
(13) are vnn8= ±v0+Osgd, [see Eqs.(4)–(9)]. Furthermore

we assume that the baths have no structure on the scale
of the qubit-oscillator couplingg, leaving only one relevant
parameter for relaxation kXv0

2 l=k / s1−e−v0/Tkd, kYv0

2 l
=g / s1−e−v0/Tgd, and one for excitationkX−v0

2 l=e−v0/TkkXv0

2 l,
kY−v0

2 l=e−v0/TgkYv0

2 l, for each bath.

A. Secular approximation

Looking for the slow dynamics of our system, on the
time-scale given by the dissipations1/k ,1 /gd, we rewrite
Eq. (11) in the rotating frame

ṙ̃mnstd = o
m8,n8

Rmnm8n8r̃m8n8stde
isvmn−vm8n8dt, s16d

wherer̃mnstd=rmnstdeivmnt evolves slowly in time.
When there are no Liouvillian degeneracies the phase

svmn−vm8n8dt in the above expression rotates with a fre-
quency of the order ofv0@k ,g, except whenm=m8 and
n=n8, or m=m8 and n=n8. The secularapproximation is a
random-phase type of approximation, keepingonly the cor-
responding elements of Redfield tensorRmnmnandRmmnn.

Within the secular approximation the Bloch-Redfield
equation separates into a master equation governing the oc-
cupation numbers:rnnstd=Rnnmmrmmstd, and a simple expo-
nential decay of all off-diagonal elements of the density ma-
trix: rmnstd=rmns0des−ivmn+Rmnmndt. In the susceptibility we
find that the weights of the peaks are given by the steady-
state occupation numbers, determined by the transition rates
sRnnmmd, while the peak widths are given by the dephasing
ratessRmnmnd.

B. Liouvillian degeneracy

When difference between two transition frequenciesvmn
−vm8,n8 (mÞm8 andnÞn8) becomes smaller than the tran-
sitions’ widths~sk ,gd the peaks start to overlap. In this case
there is no justification for the secular approximation, and
more elements of the Redfield tensor must be retained.

In the lowest order(single-photon transitions) the allowed
transition (photon) frequencies are ±v0+Osgd, giving two
possible values foruvmn−vm8n8u=h0,2v0j+Osgd. Looking
for slow dynamics we neglect the elementsRmnm8n8 corre-
sponding to the Liouvillian modes withuvmn−vm8n8u
=2v0+Osgd. This is equivalent to a rotating-wave-
approximation in the coupling to the bath. We keep, how-
ever, the elementsRmnm8n8 corresponding to the Liouvillian
modes withuvmn−vm8n8u=Osgd. That is, grouping the ele-
ments of the density matrixrmn according to the energy dif-
ferenceEm−En=Mv0+Osgd, we now couple only the ele-
ments with similarM, but leave the elements with different
M uncoupled. We also note that the Bloch-Redfield equation
with this choice of the elementsRmnm8n8 is equivalent to the
“Quantum Optics” master equation

ṙ = − ifHJC,rg + kNks2a†ra − aa†r − raa†d + ksNk + 1d

3s2ara† − a†ar − ra†ad + gNgs2s+rs− − s−s+r

− rs−s+d + ksNg + 1ds2s−rs+ − s+s−r − rs+s−d,

s17d
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FIG. 5. Cavity absorption close to the resonance frequencyv0,
for different temperatures. The paramters are taken from Ref. 2 i.e.,
qubit-cavity couplingg=0.01v0, cavity quality factorQ=104, and
qubit dissipationg=0.08k.

FIG. 6. As in Fig. 5 but with improved quality factor of the
cavity Q=105 (implies g=0.8k).
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whereNk/g=1/sev0/Tk/g−1d are the average occupation num-
bers of each bath at frequencyv0.

VIII. NUMERICAL APPROACH

In our numerical studies we take into account the lowest
N states of the harmonic oscillator, and then check for con-
vergence by increasingN. We work in the eigenbasis of the
Jaynes-Cummings Hamiltonian[Eq. (1)], which we obtain
by numerical diagonalization.

We then rewrite the Bloch-Redfield equation[Eq. (11)] in
a matrix form, i.e.,

ṙfmngstd + ivfmngfmngrfmngstd = o
fm8n8g

Rfmngfm8n8grfm8n8gstd,

s18d

wherer̂std=rfmngstd now is a column vector of lengths2Nd2

and R̂=Rfmngfm8n8g is a matrix of sizes2Nd23 s2Nd2, and
v̂=vfmngfmng is a diagonal matrix of the same size. The solu-
tion can then be written

r̂std = es−iv̂+R̂dt · r̂s0d, s19d

which we evaluate by exact diagonalization of −iv̂+R̂,
which is the bottleneck of the calculation since the size of
this matrix grows withN4.

Fortunately the property of the Redfield tensor to couple
only elements of the density matrixrmn with similar energy

difference Em−En<Mv0, makes the matrix R̂ block-
diagonal. The size of each block is only 4N34N, which
makes the problem tractable up to hundreds of states in the
cavity.

A. Cavity susceptibility

The cavity susceptibility is defined as

xsvd = iE
0

`

eivtkqstdqs0d − qs0dqstdldt, s20d

where the system is in its steady-state att=0. In our case the
steady state density matrix is diagonal with occupation num-
bers, determined by the temperatures of the baths, on the
diagonalsrsteadyd.

Using the quantum fluctuation regression theorem we find

kqstdqs0dl = Trhq · mstdj, s21d

where mstd is the solution to the Bloch-Redfield equation
with initial condition ms0d=q·rsteady.

Using the solution in Eq.(19) we can perform the Laplace
transform in Eq.(20) analytically. We now note that the main
contribution to the susceptibility aroundv<v0, which is the

main topic of this paper, comes from the block ofR̂ connect-
ing elementsrmn with energy differenceEm−En<v0. Thus
we only need to diagonalize this single block of size
4N34N to obtain the susceptibility.

IX. NUMERICAL RESULTS

The numerical results in Figs. 5 and 6 show the typical
behavior of a Rabi-splitted peak at zero temperature, the ap-
pearance of a broadened multiple peak structure at interme-
diate temperatures, and the merge of the peaks into a single
sharp peak at high temperatures. The parameters used in Fig.
5 are taken from Ref. 2:g=0.01v0, andQ=104, g=0.08k.
We assume the same temperature in both baths. The dash-
dotted(red) line corresponds to the secular approximation.

If a higher quality cavity can be achieved, more peaks
will be seen before they merge. This is shown in Fig. 6,
whereQ=105, and with unchanged qubit dissipation(implies
g=0.8k).

X. CONCLUSIONS

In this paper we have studied the regime of cavity QED
relevant for the Josephson qubits in superconducting cavi-
ties. Namely, we considered the strong coupling regime
when the Rabi splitting is much bigger than the inverse life
times of the qubit and the cavity, but the temperature is high.
This regime may be realized due to the hot photons penetrat-
ing the cavity from the manipulating circuits. We have cal-
culated the susceptibility of the cavity and found that it is
very sensitive to the temperature. Thus this quantity might be
used for temperature measurements. On the formal, theoret-
ical side we noticed that the secular approximation widely
used in the applications of the Bloch-Redfield formalism is
insufficient when Liouvillian degeneracies are present. We
compared solutions found with and without the secular ap-
proximation and showed qualitative difference between the
two at elevated temperatures.
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