PHYSICAL REVIEW B 70, 054521(2004)
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We study the properties of superconducting electrical circuits, realizing cavity quantum electrodynamics. In
particular we explore the limit of strong coupling, low dissipation, and elevated temperatures relevant for
current and future experiments. We concentrate on the cavity susceptibility as it can be directly experimentally
addressed, i.e., as the impedance or the reflection coefficient of the cavity. To this end we investigate the
dissipative Jaynes-Cummings model in the strong coupling regime at high temperatures. The dynamics is
investigated within the Bloch-Redfield formalism. At low temperatures, when only the few lowest levels are
occupied, the susceptibility can be presented as a sum of contributions from independent level-to-level tran-
sitions. This corresponds to the seculemndom phaseapproximation in the Bloch-Redfield formalism. At
temperatures comparable to and higher than the oscillator frequency, many transitions become important and a
multiple-peak structure appears. We show that in this regime the secular approximation breaks down, as soon
as the peaks start to overlap. In other words, the susceptibility is no longer a sum of contributions from
independent transitions. We treat the dynamics of the system numerically by exact diagonalization of the
Hamiltonian of the qubit plus up to 200 states of the oscillator. We compare the results obtained with and
without the secular approximation and find a qualitative discrepancy already at moderate temperatures.
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[. INTRODUCTION ture of the refrigerator is much lower than the cavity's energy

splitting, the hot photons can arrive via the leads connecting

There is, currently, a substantial activity in the researcho the controlling circuits. Thus the elevated temperature re-
into the physics of Josephson qubits. In particular manygime is of substantial interest. We are aware of only one
groups— became interested in studying the systems compaper addressing the finite temperature case, namely, Ref. 9.
posed of Josephson qubits and harmonic oscillators, e.g., miA this paper we expand the domain of parameters as com-
crowave cavities, mechanical resonators, etc. Thus the fielgared with Ref. 9. Namely, we consider the case when both
starts to resemble quantum optics where atoms in cavitiele qubit's and the cavity’s dissipative rates are much smaller

have been investigated for many years. On one hand thetBan the cavity-qubit couplingRabi-frequencyand both the

are many results which can be simply “translated” from thecavity and the qubit are coupled to the finite temperature
“language” of quantum optics to the “language” of solid statePaths. Moreover we focus on the correlation functions of the

physics. On the other hand there are specific properties of tHeVily: €., cavity susceptibility. In solid state systems this
solid state devices that might require further research. quantity is particular convenient to measure as it is related to

: : - he impedance of the strip-line cavity. The temperature-
In this paper we study the dynamics of a two-level SyStemtdependence of this impedance constitutes a direct tool for

e oo st s . PSS, abing e nmber ofpholons n e cauty”

; ) . j At low temperatures the dynamics is very simple. Only a
sponding Jaynes—pumm_mgs mpcjﬁdr areview see Ref..)6 few states are occupied and the susceptibility may be pre-
has been widely investigated in 'the I|te.ratur§a. Experimenzganied as a sum of Lorentzians, corresponding to a few tran-
tally, however, the strong coupling regime is difficult t0 gjtions allowed from these states. E.g., at zero temperature
achieve and it is also a challenge to keep the atom in thgp|y two transitions are relevant and the resonant peak of the
cavity for a long time. In optical cavities the strong coupling yncoupled cavity is Rabi split by the qubit to two peaks. At
regime was achieved only a decade &dRydberg atoms in  high temperatures the frequencies of different allowed tran-
superconducting cavitiéprovide the strong coupling regime sitions are densely packed near the oscillator’s frequency.
and one can even perform quantum gates during the time dfhis situation is called Liouvillian degeneracy as, formally,
flight of the atom through the cavity. different modes of the Liouville evolution operator are al-

In solid state devices, e.g., a Josephson qubit resonantiyost degeneraté.We show that the secular approximation,
coupled to a damped strip-line superconducting cavitye ~ widely used within the Bloch-Redfield formalism, fails due
“atom” is permanently placed in the cavity. This should sim-to the Liouvillian degeneracy. The insufficiency of the secu-
plify the time constraints. Also, the strong coupling limit lar approximation was already noticed in, e.g., Ref. 11. In
seems to be possible. Thus these circuits constitute veris situation one has to take more elements of the Redfield
promising setups for exploring the strong coupling limit of tensor into account than required by the secular approxima-
cavity quantum electrodynami¢®QED). Compared to opti- tion. On the other hand the optical master equation takes all
cal cavities, one of the differences is the finite temperature othe necessary elements into account and thus produces cor-
solid state devices. Moreover, even if the nominal temperarect results.
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[l. EXPERIMENTAL MOTIVATION generate doublets for eact= 1. Every such doublet is split

. ._by the interaction. We can thus define the “bonding” and the
We follow the recent proposal, presented in Ref. 2, 'n“antibonding” states|b/a,ny=2"Y2(|1 ,ny+|| ,n-1)). The

which a superconducting charge qubit, coupled capacita- . fth tates de. = 2 a2
tively to a cavity formed in a coplanar waveguide, is shown®N€rgies o these states aig, ,=nwo + Vng/ 2.
to be a favorable system for reaching the strong coupling

regime of cavity QED. Typical parameters are cavity IV. OSCILLATOR/CAVITY IMPEDANCE
resonance/atom transition frequency @f/27=10 GHz, a . ) o
vacuum Rabi-frequency of/27=100 MHz, a cavity life- In ordinary cavity QED the atom susceptibility is usually

time of 1/k=160 ns(quality factorQ=wy/x=10%, and an Probed. For the qubit-oscillator system the susceptibility of
atom lifetime 1/=2 us. The system is measured by detect-_the o;cﬂlator(cavny) is the most easily measured quantity. It
ing absorption and phase shift of microwaves sent througf® defined as

the waveguide. In this paper we calculate the linear response )

absorption of the system. Motivated by the experimental pa- x(® =i6t){a(t),a(0)]-), (2)
rameters we focus on the regime of strong couplin

=gt i i
(k,y<<g), and also assume that cavity dissipation dominate here g=a'+a. The Fourier transform is y(w)

=x'(w)+ix"(w)=[dty(t)€“. The imaginary part of the sus-
8eptibi|ity is proportional to the dissipative real part of the

temperature of the cryostat, due to coupling to room tem!MPedance, i..x"(w)=ReZ(w). For a closed system with
antum levelgi), with stationary occupation probabilities

perature sources through the waveguide. By measuring tH&3

absorption spectra one may determine the photon temperu It can be presented as

ture of the cavity.

X'(@) =72 pGld D0 - wp) - S+ o],  (3)
if

1. JAYNES-CUMMINGS MODEL

Assuming the qubit to be at the degeneracy pditand ~ Where oy = (E;~E;)/#. Thus it is a series of delta-peaks,
for the moment neglecting dissipation, we arrive at thecorresponding to the allowed transitions.

Jaynes-Cummings model, described by the following Hamil- At T=0 only the ground state is occupied and the two
tonian: allowed transitions have frequencies;,,=wy—g/2 and

. ) ) wga1=wo+g/2 and the matrix elements(g|q|b,1)|
Hic= - 3000, + wgs@'a+ Joy(a+a), (1) ={g|g|a,1)|=1/y2. Thus the uncoupled oscillator's peak at

whereo operates on atom/qubit whig a' are ladder opera- @=®o i Split as shown in Fig. 2. This is called Rabi-

tors of the cavity/oscillator. We consider the resonant regim&P/itting.

When wos= o=, The system’s spectrum fog<wy is At T>0 higher energy states are occupied. The transitions
shown in Fig. 1. It is obtained by first, analyzing the spec-ar€ allowed only between neighboring doublets. There are
trum for g=0 (left side) and, then, lifting the degeneracies by WO classes of allowed transitions. The “bonding-bonding” or

the couplingg (right side. Assumingg < w, we can take into “antibonding-antibonding” transitions correspond to the tran-

account the coupling term only when it lifts the degeneracie$ition frequencies

in the spectrum. The ground state of the uncoupled system is
|g)=|1,0), which is nondegenerate. All other states are dou- o, 9 h=vn-1 4
bly degenerate, i.e., the statigs,n) and|| ,n-1) form de- @b = @0 2(\ vn-1), @
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FIG. 2. Transitions(left) resulting in a Rabi splitting of the - —[— — — —]- — -
cavity susceptibility(right), at T=0.

b
Wan-1an= @o+ g(\m ~Vn-1), (5) ¢A I | an— 1>

with the matrix elements -

Kb,n = Liglb,n)| =[(a,n - 1lgla,n)| = \n+\n n-1).

© FIG. 4. At high temperature$> w, the “bonding” (blue) and
They form the first class of transitions which all are posi-“antibonding” (red) states form two almost equidistant spectrums.
tioned inside of the zero temperature Rabi-splitting. Analo-The nonharmonicity decreases @s+1—yn~ 1/2yn for largen.
gously, the “bonding-antibonding” transitions with frequen-

cies peaks are estimated @=w,/(2Q) (the factor 2 is due to
g - —— the reduced matrix element for each transition as compared
Wpn-1an= Wo E(V'n +yn-1), (7)  to the original oscillator’s transition
The problem is getting the line-shape at finjtelatively
high) temperatures and high values@f Indeed, when tem-
Oan-1bn= 00— 9(\,'ﬁ+ Vn-1), (8)  Pperature becomes of ordep more transitions become avail-
able. To estimate the heights of the peaks we note that the
occupation probabilities of the doublets are estimategd,as
~Zexp(—nwy/T). The matrix elements for the “bonding-
bor_lding” or “antibonding-antibonding” transitions grow as
«yn, while those for “bonding-antibonding” transitions de-
cay as«1/yn. Thus we obtain a “Poisson” distribution for
are all pOSitiOHEd outside the Rabi-splitting. Both classes the “bondmg bondmg" or “an“bondmg ant|bonding” peaks’
transitions are shown in Fig. 3. heights with the maximum ai=T/w,. The heights of the
“bonding-antibonding” peaks decay with. Therefore the
V. CAVITY DISSIPATION highest peaks are situated @t wy* \wy/ Tg/4.
Due to the dissipation the delta functions should be wid- The spacing between the dominant peéksy/2\w,/T)
ened to Lorentzians. At zero temperature the widths of thehus decreases with temperature, while their width
(~2T?/Quy) increases with temperature. Around the cross-
Im[x] over temperatur@ .= wo(gQ/4w,)?'® the peaks start to over-
Voo [____!‘__“__ lap.

‘ ‘ Thus, as the temperature grows, we have a transition from

and matrix elements

b.n = 1lgla,m|=

1 ”_
=2(n=\n-1) (9

a quite “unharmonic” spectrum without Liouvillian symme-

try, where all transition frequencies are different, to a spec-

\/n-tg i_ R trum which resembles that of two uncoupled linear oscilla-
tors, see Fig. 4. The widths of the peaks in these two cases

T~o, o, behave qualitatively different. In the fireinharmonig¢ case

the widths grow with temperature, while in the secahdr-

FIG. 3. Transitions(left) and cavity susceptibilitright) at monic oscillatoy case they do not.
T>0. The centralblue) arrows correspond to “bonding-bonding”

and “antibonding-antibonding” transitions, giving rise to the central VI. QUBIT/ATOM DISSIPATION

two peaks in the spectrum. The out@gue-green arrows corre-

spond to “bonding-antibonding” transitions, giving the outer two  The qubit/atom is also subjected to dissipation, which will
peaks in the spectrum. add to the peak widths in the susceptibility. At the degen-
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eracy point of the qubit the longitudinal noiemupled too,)  we assume that the baths have no structure on the scale

is suppressed to first ordErThe transverse nois@oupled  of the qubit-oscillator coupling, leaving only one relevant

to o) will induce transitions in the qubit, characterized by parameter for relaxation (X2 Y=«/(1-e™*0Tx), (Y2 )

the rate 14. In terms of the Jaynes-Cummings eigenstates y/(1-e 0T, and one for exc?tatio,(]xgw ):e—wo/TK<xio>,

the _qub_lt d|5$|paf[|on cause sw_mlar transitions as the cavangw y=e0T«(Y2 ), for each bath. 0 0

dissipation. A major difference is that the matrix elements for 0 0

these transitions are independent of the oscillator state

Thus, as long as the two sources of dissipation are of the

same order of magnitude, the high temperature susceptibility Looking for the slow dynamics of our system, on the

will be determined by the cavity dissipation. time-scale given by the dissipatidil/«,1/y), we rewrite
Eq. (12) in the rotating frame

A. Secular approximation

VII. BLOCH-REDFIELD FORMALISM B0 = > Rotn Py (DE@memnt - (16)

m’,n’

We model the cavity/atom dissipation by coupling an ob- _
servableX/Y of a thermal bath to thg/ o,-coordinate of the ~ wherep,(t) =pmr(t)€“m* evolves slowly in time.
cavity/atom When there are no Liouvillian degeneracies the phase
_ X v (wmn— o)t in the above expression rotates with a fre-
H=Hyc* qX+ oY + Hpan+ Hpatn (10 quency of the order oftvy> k,7y, except wherm=m’' and
One popular choice of a bath is the harmonic oscillato=n’, or m=m’ andn=n’. The secularapproximation is a
one!® In this caseHpy=2iwb/b and X=3\(bj+b/). ~ random-phase type of approximation, keepardy the cor-
However, as we are assuming weak dissipation and doing tH&sPonding elements of Redfield ten$df,m,andRpmnn
lowest order calculation, the precise nature of the bath is Within the secular approximation the Bloch-Redfield
unimportant and only the bath correlatot(t)X(0)) matters. ~ €duation separates into a master equation governing the oc-
The Bloch-Redfield equatidhl®is a kinetic equation for CUPation NUMDErspyy(t) =Ronmupma(t), and a simple expo-
the reducedqubit+cavity) density matrix nential decay of all off-diagonal elements of the density ma-
trixX:  pmn(t) = pmn(0)€T emitRmnmdt |n the susceptibility we
P + 1 O = 2 Royontn P (1), (11  find that the weights of the peaks are given by the steady-

m' n’ state occupation numbers, determined by the transition rates
, while th k width i by the dephasi
where the Bloch-Redfield tensor is given by (Ronmnd, while the peak widths are given by the dephasing
rates(Rynmn-

* *
Rmnntn = Aevmnrt + Ay = Ek“ Ot Akt * O Mgt B. Liouvillian degeneracy

(12) When difference between two transition frequenaigg,
—wn v (M#FmM andn#n’) becomes smaller than the tran-
and sitions’ widths=(x, y) the peaks start to overlap. In this case
— / there is no justification for the secular approximation, and
Mmart = (M [QIm)nlgln’)Lx(onn) more elements of the Redfield tensor must be retained.
+(m' o m)(n| oy N )y @) » (13 In the lowest orde¢single-photon transitionghe allowed
transition (photorn) frequencies are dy+0(g), giving two
possible values foftwy,—wmn|={0,2we}+0(g). Looking
for slow dynamics we neglect the elemes,.1, corre-
o sponding to the Liouvilian modes withwmn—om |
Ly(w) = f dte“{X(t)X(0)). (14)  =2wy+0O(g). This is equivalent to a rotating-wave-
0 approximation in the coupling to the bath. We keep, how-
Introducing the Fourier image of the unsymmetrized cor-€ver, the element&,y, corresponding to the Liouvillian

wherelLy(w) is the Laplace transform of the cavity bath cor-
relator

relator (X2) = [dt(X(t)X)&"™, we obtain modes with|wm,—wmyn|=0(g). That is, grouping the ele-
ments of the density matrix,,, according to the energy dif-

[ dv (X3 ferenceE,,—E,=Mwy+0O(g), we now couple only the ele-

L(w) =~ 2 v+ w—i0 (15 ments with similarM, but leave the elements with different

) ) N M uncoupled. We also note that the Bloch-Redfield equation
Thus for the real part ofx which determines the transition \yith this choice of the elemen®, iS equivalent to the
rates we obtain Rex(w)=(1/2)(X’__ ). The imaginary part “Quantum Optics” master equation
of Ly is responsible for the energy shiftsamb shify. Ly(w)

of the qubit bath is defined and treated analogously. p==i[Hyc.p] + kN (2a'pa~aa'p - paa’) + (N, + 1)

. Cpnsjdering a high q_uqlity cavityQ> 1),.and low qubit X (2apal - a'ap - pa'a) + W, (20 po™ - 07" p
dissipation(y< wg), we limit ourselves to single photon ex- . L. .
change with the baths. The possible transition energies in Eq. —po o) + k(N +1)(207po" — 00" p—poo7),
(13) are w,y =t wy+0(g), [see Eqs(4)—«9)]. Furthermore (17
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FIG. 5. Cavity absorption close to the resonance frequengy FIG. 6. As in Fig. 5 but with improved quality factor of the
for different temperatures. The paramters are taken from Ref. 2 i.egavity Q=10 (implies y=0.8x).
qubit-cavity couplingg=0.01w,, cavity quality factorQ=10%, and
qubit dissipationy=0.08.
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whereNK,,/zll(ewO’TK/v— 1) are the average occupation num-  Using the solution in Eq.19) we can perform the Laplace
bers of each bath at frequenay. transform in Eq(20) analytically. We now note that the main
contribution to the susceptibility arouna~ wq, which is the
main topic of this paper, comes from the blockR€onnect-

In our numerical studies we take into account the lowestnd elementspy,, with energy differencéEy,—Ey~ wo. Thus:
N states of the harmonic oscillator, and then check for conwe only need to diagonalize this single block of size
vergence by increasiny. We work in the eigenbasis of the 4N 4N to obtain the susceptibility.
Jaynes-Cummings Hamiltonigieq. (1)], which we obtain IX. NUMERICAL RESULTS
by numerical diagonalization.

VIIl. NUMERICAL APPROACH

We then rewrite the Bloch-Redfield equatififg. (11)] in The numerical results in Figs. 5 and 6 show the typical
a matrix form, i.e., behavior of a Rabi-splitted peak at zero temperature, the ap-
. pearance of a broadened multiple peak structure at interme-
P + i 0marmaPrmi® = 2 R o ®), diate temperatures, and the merge of the peaks into a single
[m'n’] sharp peak at high temperatures. The parameters used in Fig.

(18) 5 are taken from Ref. 23=0.01w,, andQ=10*, y=0.08.
We assume the same temperature in both baths. The dash-

wherep(t) = pm(t) now is a column vector of lengt2N)? dotted(red) line corresponds to the secular approximation.

and &:R[mn][m,n,] is a matrix of size(2N)2x (2N)2, and _If a higher quality cavity can be gchieved, more peaks
&= ommn 1S @ diagonal matrix of the same size. The solu-Will be seen before they merge. This is shown in Fig. 6,

tion can then be written whereQ= 10, and with unchanged qubit dissipatiGmplies

) v=0.8k).
PO =R 5(0), (19 X. CONCLUSIONS

which we evaluate by exact diagonalization ofw+R, In this paper we have studied the regime of cavity QED

which is the bottleneck of the calculation since the size Ofre|evant for the Josephson qubr[s in Superconducting cavi-
this matrix grows withN*. ties. Namely, we considered the strong coupling regime

Fortunately the property of the Redfield tensor to coupleyhen the Rabi splitting is much bigger than the inverse life
only elements of the density matrpt,, with similar energy  times of the qubit and the cavity, but the temperature is high.
difference E,—E,=~Mwy, makes the matrixR block-  This regime may be realized due to the hot photons penetrat-
diagonal. The size of each block is onlN% 4N, which  ing the cavity from the manipulating circuits. We have cal-
makes the problem tractable up to hundreds of states in theulated the susceptibility of the cavity and found that it is
cavity. very sensitive to the temperature. Thus this quantity might be

used for temperature measurements. On the formal, theoret-
A. Cavity susceptibility ical side we noticed that the secular approximation widely
The cavity susceptibility is defined as used in the applications of the Bloch-Redfield formalism is
. insufficient when Liouvillian degeneracies are present. We
. iw compared solutions found with and without the secular ap-
)= 'J ¢“Xa(®q(0) -~ a(0)a(v)dt, (20 proximation and showed qualitative difference between the

two at elevated temperatures.
where the system is in its steady-staté=a. In our case the
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