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We use a variational approach to gain insight into the strongly correlatedd-wave superconducting state of
the highTc cuprates atT=0. We show that strong correlations lead to qualitatively different trends in pairing
and phase coherence: the pairing scale decreases monotonically with hole doping while the superconducting
order parameter shows a nonmonotonic dome. We obtain detailed results for the doping dependence of a large
number of experimentally observable quantities, including the chemical potential, coherence length, momen-
tum distribution, nodal quasiparticle weight and dispersion, incoherent features in photoemission spectra,
optical spectral weight, and superfluid density. Most of our results are in remarkable quantitative agreement
with existing data and some of our predictions, first reported in Phys. Rev. Lett.87, 217002(2001), have been
recently verified.
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I. INTRODUCTION

In this paper our main goal is to understand the supercon-
ducting ground state and low energy excitations of the high
Tc cuprates, in particular, their doping dependence as they
evolve from a Fermi liquid state on the overdoped side to-
wards a Mott insulator at half filling. Toward this end, we
examine in detail the properties of superconducting wave
functions in which double occupancy is strongly suppressed
by short-range Coulomb interactions.

In the past 17 years since the discovery of highTc super-
conductivity (SC) in the cuprates,1 a lot of theoretical effort
has gone into trying to understand SC as an instability from
a nonsuperconducting state. There are three possible routes
to such an attack and each has its own strengths and limita-
tions. First, one may approach the SC state from the over-
doped side, where the normal state is a well-understood
Fermi liquid. However, the diagrammatic methods used in
such an approach are not adequate for addressing the most
interesting underdoped region in the vicinity of the Mott in-
sulator. Second, one might hope to examine the SC instabil-
ity from the near-optimal normal state, except that this nor-
mal state is highly abnormal and the breakdown of Fermi-
liquid behavior remains one of the biggest open questions in
the field. The third approach is to enter the SC state as a
doping-driven instability from the Mott insulator. While this
approach has seen considerable theoretical progress, much of
the discussion is complicated by various broken symmetries
and competing instabilities in lightly doped Mott insulators.

Here we take a rather different approach, in which we do
not view superconductivity as an instability from any
non-SC state, but rather study the SC state in and of itself.
After all, the main reason for interest in the cuprates comes
from theirsuperconductivity, and not from other possible or-
ders, which may well exist in specific materials in limited
doping regimes. Thus, it is very important to theoretically
understand the SC state in all its details, particularly captur-
ing both the Bardeen-Cooper-Schrieffer(BCS)-like behavior
on the overdoped side and the non-BCS aspects, like the

large spectral gap but lowTc and superfluid density, on the
underdoped side. The resulting insights could also help in
characterizing the anomalous normal states which are ob-
tained upon destroying the SC order.

We choose to work within a two-dimensional, single-band
approach with strong local electron-electron interactions, de-
scribed by the largeU Hubbard model which was advocated
by Anderson2 for the cuprate superconductors. Our goal is to
see how much of the physics of the cuprates can be captured
within this framework. To the extent that this approach
proves inadequate, one may need to go beyond it and include
either long-range Coulomb interactions, additional bands, in-
terlayer effects, or even phonons. The success of our ap-
proach reported here suggest to us that, at least for the SC
state properties studied, one does not need to explicitly in-
clude these additional degrees of freedom.

The key technical challenge is to treat the effect of strong
correlations in a controlled manner. We have chosen to deal
with this using Gutzwiller wave functions and using the
variational Monte Carlo method to evaluate various expecta-
tion values building on pioneering work by several
authors.2–5

We now summarize our main results; this also serves as
an outline of the remainder of the paper. Some of these re-
sults were first reported in a Letter.6

(1) We introduce in Sec. IV our wave function which is a
fully projectedd-wave BCS state, in which all configurations
with doubly occupied sites are first eliminated, and the ef-
fects of the finite CoulombU are then built in via a canonical
transformation described in Sec. III.

(2) Using a variational calculation, we obtain in Sec. V B
the following T=0 phase diagram: a Fermi liquid metal for
hole concentrationsx.xc<0.35, a strongly correlated
d-wave SC for 0,x,xc, and a spin-liquid Mott insulator at
x=0.

(3) The pairing, as characterized by our variational param-
eter Dvarsxd, is a monotonically decreasing function of hole
doping x, largest atx=0 and vanishing beyondxc; see Fig.

PHYSICAL REVIEW B 70, 054504(2004)

1098-0121/2004/70(5)/054504(21)/$22.50 ©2004 The American Physical Society70 054504-1



1(a). In marked contrast, the SC order parameterFsxd shows
a nonmonotonic doping dependence; see Fig. 3(a).

(4) The nonmonotonic SC order parameter naturally gives
rise to the notion of optimal dopingx.0.2 at which super-
conductivity is the strongest. We explain in detail in Sec. V B
this nonmonotonic behavior and, in particular, how strong
correlations—and not a competing order—lead to a suppres-
sion of superconductivity asx→0 despite the presence of
strong pairing.

(5) We predict a nonmonotonic doping dependence for the
SC coherence length,jsc, which diverges both asx→0+ and
asx→xc

−, but is small, of order few lattice spacings at opti-
mal doping; see Fig. 3(b) and Sec. V C.

(6) We study the momentum distributionnskd and its dop-
ing dependence in Sec. VI, and find that the “Fermi surface”
derived fromnskd is consistent with angle-resolved photo-
emission spectroscopy(ARPES) experiments and very simi-
lar to the noninteracting band-theory result.

(7) Using the singularities of the moments of the elec-
tronic spectral function, we characterize in detail the low-
lying excitations of the SC state in Secs. VII and VIII. We
obtain the doping dependence of the coherent weightZ and
Fermi velocity vF of nodal quasiparticles(QP) and make
predictions for the nodal QP self-energy. Remarkably,Z van-
ishes asx→0, however,vF is essentially doping independent
and finite asx→0. Our predictions6 for the magnitudes and
doping dependence of the nodalZ andvF have been verified
by ARPES experiments as discussed in Sec. VIII.

(8) We demonstrate, using moments of the electronic
spectral function, that strong correlations lead to large inco-
herent spectral weight which is distributed over a large en-
ergy scale. Specifically, we relate our variational parameter
Dvarsxd to an incoherent energy scale atk =sp ,0d in Sec. IX.
This motivates us to compareDvar with the incoherentsp ,0d
“hump” scale in ARPES. As seen from Fig. 8, once we scale
Dvar to agree with the data at one doping value, we find
excellent agreement between the two for all doping levels.

(9) We compute in Sec. X the total optical spectral weight
Dtot and the low frequency optical spectral weight or Drude
weight Dlow; see Fig. 10(a). The Drude weight, which van-
ishes with underdoping, is in good quantitative agreement
with optics experiments.

(10) We predict that the Drude weightDlow,Z nodal QP
weight, in the entire SC regime, which could be tested by
comparing optics and ARPES experiments.

(11) We use the calculation ofDlow to obtain an upper
bound on the superfluid density, leading to the conclusion
that the superfluid density vanishes asx→0, consistent with
experiments. The underdoped regime thus has strong pairing
but very small phase stiffness leading to a pairing pseudogap
aboveTc.

It had not been realized that such a wealth of information
can be extracted from variational wave functions. Our work
permits useful comparison with, and predictions for, a vari-
ety of experiments. Further, as we will emphasize later in the
text, many qualitative features of our results in the under-
doped region, such as the incoherence in the spectral func-
tion and the doping dependence of quantities like the SC
order parameter, nodal QP weight, and Drude weight are

mainly the consequence of the projection, which imposes the
no double-occupancy constraint, rather than of other aspects
of the wave function or details of the Hamiltonian.

Three appendices contain technical details. Appendix A
describes the canonical transformation and its effect on vari-
ous operators used throughout the text. Appendix B contains
details about the Monte Carlo method used and various
checks on the program. Finally, Appendix C is a self con-
tained summary of the slave boson mean field theory calcu-
lations with which we compare our variational results
throughout the text.

II. COMPARISON WITH OTHER APPROACHES

In a field with a literature as large as the highTc super-
conductors it is important to try and make a clear comparison
of our approach and its results with those of other ap-
proaches. In this section we will briefly endeavor to do this.

First, a few remarks about the choice of Hamiltonian: as
indicated in the Introduction, we wish to explore strongly
correlated one band systems, since this is clearly a minimal
description of the cuprates. We have chosen to work with the
strong coupling Hubbard model and find that the results are
more reasonable than those for the tJ model as evidenced,
e.g., in the comparison of the momentum distributions of the
two models[see Fig. 6(a)] and well-known differences in
sum rules.7 These differences arise in part because in the tJ
model certaint2/U terms(superexchange) are retained while
others (three-site hops) discarded. More importantly, the
CoulombU is treated asymmetrically in the tJ model: it is
large but finite in the orderJ, t2/U term retained in the
Hamiltonian but set to infinity insofar as the upper cutoff and
other operators are concerned as discussed further in Sec. III.
However, these differences may well be matters of detail.

The more important point is that no variational calculation
can everprovethat the Hubbard or tJ model has a SC ground
state in some given doping and parameter range. While some
numerical studies hint at a SC ground state in the tJ model,8

such studies, which attempt to improve upon a variational
wave function, are naturally biased by the choice of their
starting state. More direct numerical attacks9–11 on these
models have been unable to provide unambiguous answers to
this question for both technical(fermion sign problem and
small system sizes) and physical(competition between vari-
ous ordered states at low doping) reasons.

The exact ground state very likely depends sensitively on
details of the Hamiltonian, for instance, presence of small
ring-exchange terms. We are thus less interested here in the
exact ground state of a particular microscopic Hamiltonian,
and more in the properties of strongly correlated supercon-
ducting wave functions. Motivated by our work,6 Laughlin12

has recently inverted the problem to find the Hamiltonian for
which a certain correlated SC wave function is the exact
ground state.

In any case, it is clear that one needs to study Hamilto-
nians like the Hubbard model in which the largest energy
scale is the on-site Coulomb correlation. The key question
then is how one treats this, or indeed any, strongly interacting
two-dimensional(2D) Hamiltonian. The two approaches ex-
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plored in detail in the literature are variational wave func-
tions and slave bosons. Variational Gutzwiller wave func-
tions were introduced in the first paper of Anderson2 and
extensively studied by the Zurich and Tokyo groups3–5,13–15

and others using both exact Monte Carlo methods and
Gutzwiller approximations. The primary focus of these stud-
ies was the ground state energetics of various competing
phases, and in factd-wave superconductivity was predicted
by an early variational calculation.4

Our work builds upon these earlier studies but goes be-
yond them in the following aspects.(1) We propose a wave
function in which we first fully project out doubly-occupied
sites and then back off fromU=` using a canonical trans-
formation. (2) We focusnot on the energy, which can cer-
tainly be further improved by additional short-range Jastrow
factors, but rather on various experimentally observable
quantities.(3) We exploit sum rules to write frequency mo-
ments of dynamical correlation functions as equal-time cor-
relators which can be calculated within our method.(4) We
exploit the singularities of moments to extract information
about the important low-lying excitations: the nodal quasi-
particles.(5) Through the study of moments, we also extract
information about incoherent features in electronic spectral
functions, which are an integral part of strongly correlated
systems and have not been studied much theoretically.

Throughout the text(and in Appendix C) we compare our
results with those obtained within slave boson method mean
field theory (SBMFT).16,17 The chief advantage of this ap-
proach is its simplicity but there are important questions
about its validity, especially the approximations of treating
the no-double occupancy constraint in an average manner.
The resulting answers for the overall phase diagram in the
doping-temperature plane are very suggestive.18,19 However,
there are major problems: the fluctuations about the mean
field, which are necessary to include in order to impose the
constraint reliably, are described by a strongly coupled gauge
theory over which one has no control, in general.20 In view
of this, the very language of spinons and holons, which are
the natural excitations at the mean field level, is suspect since
these are actually strongly coupled degrees of freedom rather
than forming a “quasiparticle” basis in which to solve the
problem. The same conclusion is also reached by comparing
SBMFT results with the corresponding results from our
variational calculation where the constraint is imposed ex-
actly; see Sec. VIII and Appendix C. In our approach we
always work in terms of the physical electron coordinates.

III. MODEL

A minimal model for strongly correlated electrons on a
lattice is the single-band Hubbard model defined by the
Hamiltonian

H = K + Hint = o
k,s

eskdcks
† cks + Uo

r
nr↑nr↓. s1d

The kinetic energyK is governed by the free electron dis-
persioneskd, andHint describes the local Coulomb repulsion
between electrons.nrs=crs

† crs is the electron number opera-
tor.

We writeK=−or ,r8,s trr 8crs
† cr8s in real space, and set the

hopping trr 8= t for nearest neighbors,trr 8=−t8 for next-
nearest neighbors andtrr 8=0 for other sr ,r 8d on a square
lattice. This leads to the dispersioneskd=−2tscoskx

+coskyd+4t8 coskx cosky. The need to include at8.0 term
in the dispersion is suggested by modeling of ARPES
data21,22 and electronic structure calculations.23

We will focus on the strong correlation regime of this
model, defined byU@ t ,t8 and low hole dopingx, where the
number density of electronsknl=1−x. Thus x=0 corre-
sponds to half filling, with one electron per site. To make
quantitative comparison with the cuprates, we choose repre-
sentative values:t=300 meV,t8= t /4, andU=12t. The val-
ues oft andt8 are obtained from band theory estimates;t sets
the scale of the bandwidth, while the choice of(the sign and
value of) t8 controls mainly the shape or topology of the
“Fermi surface” as shown later in Sec. VI. A nonzerot8 also
ensures that we break bipartite symmetry, which can be im-
portant for certain properties.24 The CoulombU=12t is cho-
sen such that the nearest-neighbor antiferromagnetic ex-
change couplingJ=4t2/U=100 meV, consistent with values
obtained from inelastic light scattering25 and neutron scatter-
ing experiments26,27 on the cuprates. There are no more ad-
justable parameters oncet, t8, andU are fixed.

The Hilbert space of the electrons described by the Hub-
bard model has four states at each site:u0l, u↑l, u↓l, andu↑↓l.
Many-body configurations can then be labeled by the total
number of doubly occupied sites in the latticeD=or nr↑nr↓.
In the largeU limit we focus on the low-energy subspace
with no doubly occupied sites:D=0. Towards this end we
use the canonical transformation, originally due to Kohn,28

and subsequently used in the derivation of the tJ model29

from the largeU Hubbard model. We discuss this transfor-
mation in some detail since it is used to define our variational
wave function as discussed in the next section, and it will
also be important in understanding the differences between
Hubbard and tJ results.

The unitary transformation28–30 expsiSd is defined so that

the transformed HamiltonianH̃;expsiSdH exps−iSd has no
matrix elements connecting sectors with different double oc-
cupancyD. For largeU, we can determineS perturbatively

in st /Ud, such that the off-diagonal matrix elements ofH̃
between differentD sectors are eliminated order by order in
st /Ud.

Following Ref. 30, we write the kinetic energy asK
=K0+K−1+K+1, whereKn acting on a state increasesD by
n. Thus,K0 conservesD, K−1 leads toD→D−1 andK+1
leads toD→D+1. Defining the hole number operatorhrs

=s1−nrsd and s̄=−s, we find

K0 = − o
r ,r8,s

trr 8fnr s̄crs
† cr8snr8s̄ + hr s̄crs

† cr8shr8s̄g,

K+1 = − o
r ,r8,s

trr 8nr s̄crs
† cr8shr8s̄,
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K−1 = − o
r ,r8,s

trr 8hr s̄crs
† cr8snr8s̄. s2d

The resulting transformation toOst /Ud2 is

iS; iSf1g + iSf2g =
1

U
sK+1 − K−1d +

1

U2sfK+1,K0g

+ fK−1,K0gd. s3d

Using the expression forS to Ost /Ud the transformed
Hamiltonian in the sector withD=0 is given by

H̃ = K0 − o
r ,r8,R,ss8

trR tRr8

U
shr s̄crs

† cRsnRs̄cRs8
† cr8s8hr8s̄8d.

s4d

Here we have retained all terms to ordert2/U. These are of
two kinds: (1) Exchange or interaction terms of the form
Sr ·Sr8 or nrnr8, where Sr

a= 1
2crs

† ts,s8
a crs8 with ta the Pauli

matricessa=x,y,zd. These terms arise whenr =r 8 in Eq. (4).
(2) Three-site hopping terms of the form
hr s̄crs

† cRsnRs̄cRs8
† cr8s8hr8s̄8, which arise whenr Þ r 8.

The tJ model may be obtained from the earlier model as

follows. (i) KeepU / t@1 but finite inH̃ leading to two-site
interaction terms ofOsJd but drop the three-site terms which
are alsoOsJd, whereJ;4t2/U, and(ii ) takeU / t→` in the
canonical transformation expsiSd for all operatorsother than
the Hamiltonian, so that these arenot transformed. Clearly,
these simplifications are not consistent for the Hubbard
model at anyU / t@1. However, we may view the tJ model,
derived in this manner, as an interesting model in its own
right, capturing some of the nontrivial strong correlation
physics of the large-U Hubbard model. With the constraint
on the Hilbert space,orsnrsø1 at eachr , the tJ model is
defined by the Hamiltonian

HtJ = − o
r ,r8,s

trr 8crs
† cr8s+

1

2o
rr 8

Jrr 8SSr ·Sr8 −
1

4
nrnr8D ,

s5d

whereJrr 8=4trr 8
2 /U.

We will compare later our results for the largeU Hubbard
model with the corresponding results for the tJ model in
order to understand the importance of the canonical transfor-
mation on various operators and of the inclusion of the three-

site terms inH̃. In addition we will also compare our varia-
tional results with SBMFT for the tJ model.

IV. THE VARIATIONAL WAVE FUNCTION

Our variational ansatz for the ground state of the highTc
superconductors is the Gutzwiller projected BCS wave func-
tion

uC0l = exps− iSdPuCBCSl. s6d

We now describe each of the three terms in this equation.
uCBCSl=sokwskdck↑

† c−k↓
† dN/2u0l is theN-electrond-wave BCS

wave function31 with wskd=vk /uk =Dk / fjk +Îjk
2+Dk

2g. The
two variational parametersmvar andDvar enter the pair wave
function wskd through jk =eskd−mvar and Dk =Dvarscoskx

−coskyd /2. Since the wave function is dimensionless, it is
important to realize that the actual variational parameters are
the dimensionlessuk andvk, or equivalently the dimension-

less quantities:m̃var=mvar/ t and D̃var=Dvar/ t.
The numerical calculations(whose details are described

in Appendix B) are done in real space. The wave function is
written as a Slater determinant of pairs

khr ij,hr 8 jjuCBCSl = Detiwsr i − r 8 jdi, s7d

where hr ij and hr 8 jj are the coordinates of the spin-up and
down electrons respectively, andwsr i −r 8 jd is the Fourier
transform ofwskd.

We focus on thed-wave state in part motivated by the
experimental evidence in the cuprates, but also because very
early variational calculations4,5 predicted that thed-wave SC
state is energetically the most favorable over a large range of
hole doping. It is also straightforward to see, at a mean field
level, that largeU Hubbard and tJ models should favor
d-wave superconductivity32 with superexchangeJ mediating
the pairing.

The effect of strong correlations comes in through the
Gutzwiller projection operatorP;Prs1−nr↑nr↓d which
eliminates all doubly occupied sites fromuCBCSl as would be
appropriate forU / t=`. We back off from infiniteU using
the unitary operator exps−iSd defined earlier, which builds in
the effects of double occupancy perturbatively in powers of
t /U without introducing any new variational parameters. For
the most part we will needS to Ost /Ud, so thatSf1g will
suffice. However, in some calculations, we will need to keep
the st /Ud2 corrections arising fromSf2g.

To understand the role of exps−iSd, note that for any op-
eratorQ:

kC0uQuC0l = kCBCSuPQ̃PuCBCSl, s8d

where Q̃;expsiSdQ exps−iSd. The fully projected wave
function PuCBCSl is an appropriate ansatz for the ground

state of the canonically transformed HamiltonianH̃ in the
sector withD=0. Thus, incorporating the exps−iSd factor in
the wave function is entirely equivalent to canonically trans-

forming all operatorsQ→Q̃=expsiSdQ exps−iSd. This has
important consequences, some of which were noted previ-
ously in Ref. 7, and which will be discussed in detail later.

We emphasize that our wave function Eq.(6) is not the
same as thepartially projected Gutzwiller wave function
Prf1−s1−gdnr↑nr↓guCBCSl with an additional variational pa-
rameter 0,g,1. Such partially projected states have re-
cently been reexamined by Laughlin and dubbed “gossamer
superconductors.”12 The advantage of such an approach is
that by exploiting the invertability of partial projectors one
can identify a Hamiltonian for which such a state is the exact
ground state. The differences between partial projection and
our approach are most apparent at half fillingsx=0d. As we
will show, our wave function Eq.(6) describes a Mott insu-
lator with a vanishing low energy optical(Drude) weight at
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x=0. In contrast, the partially projected Gutzwiller wave
function has nonzero Drude weight atx=0 and continues to
be superconducting at half filling.12

The inability ofpartially projectedstates to describe Mott
insulators at half filling and sum-rule problems for such
states are well known.35 As shown in Ref. 35 a calculation of
the optical conductivity based on partially projected states
leads to the (unphysical) result e0+

` dv Ressvd=0 even
though RessvdÞ0 for v.0 for Hubbard-like Hamiltonian.
The important property of the Hamiltonian used for this re-
sult is that the vector potential couples only to the kinetic
energy which is quadratic in the electron operators. It seems
likely that the “gossamer” Hamiltonian is not of this type and
may avoid the sum rule problem.

In this work we have preferred to use exps−iSdP, rather
than a partial projection, to build in the effects of a large but
finite U. This permits us to obtain a Mott insulator atx=0
and avoid the unphysical optical conductivity problem for
the Hubbard Hamiltonian.

A. Optimal variational parameters

The first step in any variational calculation is to minimize
the ground state energykHl;kC0uHuC0l / kC0uC0l at each
doping valuex. This determines the optimal values of the

(dimensionless) variational parametersD̃var andm̃var as func-
tions of the hole-dopingx. From now onkQl will denote the
expectation value of an operatorQ in the normalized, opti-
mal stateuC0l. For a two-dimensionalN-particle system the
required expectation values can be written as
2N-dimensional multiple integrals which are calculated using
standard Monte Carlo techniques,36 the technical details of
which are given in Appendix B.

The optimalD̃varsxd is plotted as a function of doping in
Fig. 1(a). We find that it is finite atx=0, and decreases
monotonically with increasingx, vanishing beyond a critical
x=xc<0.35. We will show in the next section that, in marked

contrast to simple BCS theory,D̃varsxd is not the SC order
parameter. Its relationship to the spectral gap will be clarified
in Sec. IX; for now it is simply a variational parameter that
characterizes pairing in the internal wave function.

For x.xc<0.35, D̃varsxd=0, there is no pairing and the
system has a Fermi liquid ground state, which is expected at
sufficiently large doping.37 At x=xc there is a transition to a
d-wave SC, with the superexchange interaction leading to
pairing. We have found numerically that the value ofxc is
weakly dependent onJ andt for a range of values around the
chosen ones. A similar result is also obtained from slave-
boson mean-field theory in Appendix C. A crude estimate for
xc may be obtained as follows. With increasing hole doping,
a given electron has fewer neighboring electrons to pair with,
leading to an effective interactionJeff=Js1−4xd, where the
factor of 4 is the coordination number on the 2D square
lattice. The vanishing ofJeff determinesxc=0.25, which is
both independent ofJ and in reasonable agreement with
variational estimatexc<0.35, given the crudeness of the ar-
gument.

The optimal value of the second variational parameter
m̃varsxd is plotted in Fig. 1(b). It is important to distinguish
this quantity from the chemical potential of the systemm
=]kHl /]N. As seen from Fig. 1(b), m̃sxd=m / t and m̃varsxd
have quite different magnitudes and doping dependences, in
marked contrast with simple BCS theory, where the two
would have been identical.

To understand the physical meaning ofm̃varsxd, we com-
pare it with m̃BCSsxd=mBCSsxd / t, the chemical potential for
the unprojectedBCS state with a gap ofDvar. mBCSsxd is
defined via the BCS number equationn=2okvk

2, with n=1
−x, jk =eskd−mBCS and Ek =Îjk

2+Dvar
2 . We find, quite re-

markably, that except for the immediate vicinity ofx=0, over
most of the doping rangem̃varsxd< m̃BCSsxd seen from Fig.
1(b).

V. VARIATIONAL PHASE DIAGRAM

To determine theT=0 phase diagram as a function of
doping within our variational approach we compute:(i) the
SC order parameter which allows us to delineate the SC re-
gime of the phase diagram,(ii ) the spin structure factor
which allows us to check for antiferromagnetic long-range
order, and(iii ) the low energy optical spectral weight which
allows us to determine whether the system is insulating or
conducting. Here we describe in detail the calculation of the
SC order parameter and only mention relevant results on the
spin structure factor and optical spectral weight, deferring a
detailed discussion of the latter to Sec. X. We then discuss
the three phases—resonating valence bond(RVB) Mott insu-
lator, d-wave SC, and Fermi liquid—and the transitions be-
tween them.

A. Superconducting order parameter

The SC correlation function is the two-particle reduced
density matrix defined byFa,bsr -r 8d=kBra

† Br8bl, where the
Bra

† ; 1
2scr↑

† cr+â↓
† −cr↓

† cr+â↑
† d creates a singlet on the bond

FIG. 1. (a) Doping dependence of the dimensionless variational

parameterD̃var (filled squares). (b) Doping dependence of the di-
mensionless variational parameterm̃varsxd (filled squares) and the
“BCS value” m̃BCSsxd (open triangles) defined in the text, both plot-
ted on the scale given on the left-handy axis. The physical chemical
potential(in units of t) m̃=m / t wherem=]kHl /]N (filled triangles)
is plotted on the right-handy-axis scale.
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sr ,r +âd. The SC order parameterF is defined in terms of
off-diagonal long-range order(ODLRO) in this correlation:
Fa,b→ ±F2 for large ur -r 8u. The 1(2) sign obtained for

â i s'd to b̂, indicating d-wave SC. In the more familiar
fixed-phase representation,F would correspond to
ukcr↑

† cr+â↓
† lu.

In Fig. 2 we plotFa,bsr -r 8d as a function ofur -r 8u for a
hole-dopingx<0.07. For simplicity, we show here the re-
sults for F calculated to zeroth order int /U, i.e., using
expsiSd=1. We have checked that the much more involved
calculation which keepst /U terms leads to only small quan-
titative changes in the results. We obtain the SC order param-
eter for various doping values and plotFsxd in Fig. 3(a). In

strong contrast to the variational “gap” parameterD̃var, which
was a monotonically decreasing function ofx [see Fig. 1(a)],
we find that the order parameterFsxd is nonmonotonic and
vanishes at bothx=xc<0.35 and atx=0. The vanishing of
Fs0d was first noted by Gros in Ref. 4.

B. Phase diagram

1. Fermi liquid „x.xc…

For large doping valuesx.xc<0.35,D̃var=0 implies that
there is no pairing andF=0 implies that there is no super-
conductivity. The ground state wave function forx.xc is
then a Landau Fermi liquid. This can be explicitly checked
from its momentum distribution which shows a sharp Fermi
surface with a finite jump discontinuity all around the Fermi
surface.

2. d-wave superconductor„0,x,xc…

As x decreases belowxc, a nonzeroD̃var indicates that
pairing develops and leads tod-wave superconducting order
characterized byF. The most striking result is the qualitative
difference between the doping dependence of the variational

D̃var and the SC order parameterF. Although D̃var increases
monotonically with underdoping(i.e., decreasingx), F
reaches a maximum nearx=0.2 and then goes down to zero
as x→0. We shall show later in Sec. X that the superfluid
stiffness also vanishes asx→0.

Whydoes the SC order parameterF vanish at half filling

even though the pairing amplitudeD̃varsx=0d is nonzero? We
give two arguments to understand how Mott physics(no-
double occupancy) leads to the loss of superconductivity as
x→0. First, projection leads to a fixed electron numbernr
=1 at each site whenx=0, thus implying large fluctuations in
the conjugate variable, the phase of the order parameter.
These quantum phase fluctuations destroy SC ODLRO lead-
ing to Fsx=0d=0.

Quite generally, we expect that the order parameterFsxd
should be proportional toD̃varsxd. However, an additionalx
dependence arises from projection. The correlation function
Fa,bsr −r 8d involves moving a pair of electrons on adjacent
sites to a distant pair of neighboring sites, which should both
be vacant in order to satisfy the no-double-occupancy con-
straint. Since the density of vacant sites(holes) ,x, the prob-
ability to find two holes impliesF,x2, leading to an addi-
tional factor ofF,x. Putting these two effects together we

get F,xD̃varsxd which agrees remarkably well with the cal-
culated nonmonotonicFsxd.

The dome inFsxd seen in Fig. 3(a) naturally leads to the
notion of optimal doping nearx=0.2 where SC correlations
are strongest. Based on ourT=0 calculation, we expect that
the transition temperatureTcsxd should correspondingly also
exhibit nonmonotonicx dependence, with a maximum at op-
timal doping. The SC dome is thus determined in our varia-
tional calculation by loss of pairing on the overdoped side as

D̃var vanishes beyondxc and by the loss of phase coherence

FIG. 2. Plot of the SC correlation functionFabsr -r 8d, with â

and b̂ either x̂ or ŷ calculated on a 152+1 system atx<0.07, with
r -r 8 alongx̂. The correlation function saturates to ±F2 as indicated
by the dotted line, and defines thed-wave order parameterF.

FIG. 3. Phase diagram obtained within our variational calcula-
tion is shown between panels(a) and (b). The phases are a spin-
liquid Mott insulator atx=0, a correlatedd-wave SC for 0,x,xc,
and a Fermi liquid metal forx.xc. (a) Doping dependence of the
d-wave order parameterFsxd showing a superconducting “dome”
with optimal doping aroundx.0.2.(b) Doping dependence of vari-
ous length scales: the “pair size”jpair= v̄F

0 /Dvar is shown as open
triangles; the average interhole separationx−1/2 is shown as a
dashed line; and the SC coherence lengthjscùminsx−1/2,jpaird.
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(as we will further substantiate later in Sec. X) due to Mott
physics atx=0.

We emphasize that we donot need to invoke any compet-
ing order parameter at smallx, to explain the loss of super-
conductivity at low doping. The high-energy Mott constraint
of no double-occupancy forces this on us, and competing
orders(such as antiferromagnetism or charge order) which
may emerge at low energy scales arenot the primary cause
for the loss of superconductivity at smallx.

We can also crudely estimate the “condensation energy”
by calculating the energy difference between the projected
SC ground state and the non-SC state defined by the pro-
jected Fermi gas. The verydefinitionof “the non-SC ground
state” is fraught with difficulty. However, we feel that the
projected Fermi gas state is a physically reasonable candidate
on (and only on) the overdoped side, i.e, for x*0.2.

Computing the ground state energy difference between
the projected SC and the projected Fermi gas, we find that it

is the antiferromagnetic(AFM) superexchange term inH̃
which drives the SC condensation energy. Our preliminary
estimate of the condensation energy at optimal dopingsx
=0.2d is 22±4 K per unit cell. Given the crudeness of the
estimate, particularly in the overestimate of the “normal
state” energy as discussed later, it is not surprising that this
result is much larger than the experimental value of order
1 K per CuO2 plaquette.39,40It should be emphasized that the
projected Fermi gas has no variational parameters at all and
therefore leads to a rather poor energy estimate even for
overdoping. We will discuss details of the condensation en-
ergy calculations elsewhere.41 The condensation energy rela-
tive to the staggered flux state in the optimal and underdoped
regime has been discussed in Ref. 42.

3. Mott insulator „x=0…

At half filling sx=0d F=0 implying that the undoped state
is nonsuperconducting. We will show below in Sec. X that its
low frequency integrated optical spectral weight vanishes
and thus it is an insulator.

A careful finite size scaling analysis of the spin structure
factor shows that thex=0 is a critical state exhibiting
algebraic decay of AFM spin correlations: kSr

zS0
zl

,s−1drx+ry/ ur u3/2. These results will be presented elsewhere41

along with detailed discussions of other competing order pa-
rameters at low doping.

The variational state atx=0 is an insulator made up of a

superposition of singlet pairs: sinceD̃varsx=0d is nonzero, the
function wsr −r 8d describes the singlet bonds in this state.
The Gutzwiller projection prevents this liquid of singlet pairs
from (super)conducting, and thex=0 state is a RVB(Ref. 2)
or spin-liquid Mott insulator.

The form of the wave function studied here apparently
does not have enough variational freedom to exhibit broken
spin-rotational or translational invariance to describe the
Néel AFM state which is known to be the experimental
ground state of the undoped cuprate materials and also be-
lieved to be the ground state of the 2D largeU Hubbard
model at half filling. We plan to study in the future the com-
petition between SC and AFM by adding more variational

freedom in our trial state, but our primary focus here is a
detailed characterization of the simplest description of a
strongly correlatedsuperconductingstate.

We should also note that the ground state energy of the
our spin-liquid state atx=0 is within few percent of the best
estimates. The best way to present this comparison to look at
the spin correlationg;kSr ·Sr8l between neighboring sites
r and r 8 at half filling. For our state we find
g=−0.313±0.002. For comparison, the best estimate
for the 2D nearest-neighbor Heisenberg model is
g=−0.3346±0.0001 from Green’s function Monte Carlo
calculations,43 while a classical Néel state hasg=−0.25. For
the nearest-neighbor hopping Hubbard model in the largeU
limit, the ground state energy per site isE0=2Jsg−1/4d at
half filling. Further neighbor hopping leads to additive cor-
rections of orderJ8 /J=st8 / td2=1/16 for ourchoice of pa-
rameters.

C. Phase transitions and correlation lengths

The variational wave function Eq.(6) describes the three
phases discussed earlier, and our approach also gives inter-
esting information about the quantum phase transitions be-
tween these phases. We find that there are diverging length
scales in the SC state as one approaches the Mott insulator at
x=0 and also the Fermi liquid metal beyondxc.

The internal pair wave functionwskd=vk /uk, or more cor-
rectly the related quantityvkuk, defines a pair-sizejpair
= v̄F

0 /Dvar, wherev̄F
0 is the bare average Fermi velocity. Pro-

jection is not expected to affect the pair-size much.jpair di-
verges atxc and decreases monotonically with decreasing
hole doping as the pairing becomes progressively stronger.
The pair size remains finite atx=0, where it defines the
range of singlet bonds in the RVB insulator, which is very
short, of the order of the lattice spacing. Note that in con-

verting the dimensionlessD̃var to an energy(needed to define
the pair size), we need to use the scale of eithert or J (which
we have chosen to be 300 and 100 meV, respectively). In
Sec. IX we will discuss this question in detail; here we sim-

ply choseDvar= tD̃var, since in any case we want to get a
lower bound on the coherence length.

A second important length scale is the average interhole
spacing 1/Îx. At shorter distances there are no holes, no SC
order can develop and the system effectively looks like the
x=0 insulator. The SC correlation lengthjsc must necessarily
satisfy jscùmaxsjpair,1 /Îxd. As shown in Fig. 3(b), this
bound implies thatjsc must diverge both in the insulating
limit x→0 and the metallic limitx→xc

−, but could be small
(few lattice spacings) near optimal doping.

The divergence ofjscsxd asx→0 could also be tested in
experiments designed to measure the conductivityssq ,vd in
underdoped SC’s, atnonzero momentumq. We expect sig-
nificantq dependence at lowv, with the conductivity rapidly
vanishing forq.jsc

−1 as insulating behavior is recovered. An-
other important question related to the proper definition of
the correlation length concerns the vortex core radius as
function of dopingx. This problem deserves careful study
using Gutzwiller wave functions, since theUs1d slave boson-
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gauge theory approach predicts that the vortex core size di-
verges as 1/Îx as x→0,20 while an SU(2) approach44 sug-
gests a stronger 1/x divergence.

It is clear that we must carefully distinguish between vari-
ous “coherence lengths,” which are the same in simple BCS
theory up to factors of order unity, but could be very differ-
ent in strongly correlated SCs. Only the result of a detailed
calculation can reveal which coherence length is relevant for
a particular experiment.

VI. MOMENTUM DISTRIBUTION

Next we study the momentum distributionnskd
=kcks

† cksl. This is calculated by computing the Fourier trans-
form of kGssr ,r 8dl;kcrs

† cr8sl. The details of the transformed

operatorG̃=expsiSdG exps−iSd to first order int /U are given
in Appendix A.

In Fig. 4 (left panel) we show grayscale plots ofnskd at
various doping values ranging from the insulating state atx
=0 to the overdoped SC atx=0.28. We see thatnskd has
considerable structure at all dopings includingx=0. These
results are qualitatively consistent with photoemission ex-
periments on the SC cuprates45,46 and related insulating
compounds.47

In a strict sense there is no meaning to a Fermi surface
(FS) at T=0 since the system is either SC or insulating(at
x=0) for 0øx,xc. Nevertheless it is interesting to note that
if one plots either the contour on whichnskd=1/2 (shown as
a dashed line in Fig. 4 or the contour on whichu¹knskdu is

maximum(not shown), both are very similar to thenoninter-
acting FS that would have been obtained from the free dis-
persioneskd. For this reason we call such contours the inter-
acting Fermi surface.48 These similarity between the
interacting and noninteracting FS is closely related to the
approximate equality ofmBCS and the variational parameter
mvar discussed in Sec. III B.

To further see the extent to which strong correlations af-
fect the momentum distribution, we compare thenskd ob-
tained from the projected wave functions in the left panel
with that obtained from simple BCS theory. The BCS result

nskd=vk
2 using optimal valuesD̃var andm̃var.mBCS/ t is plot-

ted in the right panel of Fig. 4. While projection leads to a
transfer of spectral weight[i.e.,nskd intensity] from the zone
center to the zone corners, the overall “topology” of the mo-
mentum distribution is not qualitatively changed.

For t8= t /4, the noninteracting FS and the interacting
“FS” both show a change in topology from a large hole-like
barrel centered atsp ,pd for smallx to an electron-like FS for
x*0.22. The precise value at which the topology changes
depends sensitively on the sign and value oft8. Such a to-
pology change has been clearly observed in ARPES data on
La2−xSrxCuO4 (LSCO)46 and less obviously in
Bi2Sr2CaCu2O8+d (BSCCO) where the topology change may
be happening at large overdoping.49

In later sections we will return to a detailed study ofnskd
along special directions in the Brillouin zone, where we will
see that strong correlations play a crucial role, even though
they appear to be not very important insofar as gross features
like the topology of the Fermi surface is concerned.

VII. SPECTRAL FUNCTION MOMENTS

A variational wave function approach is limited to the
calculation of equal-time correlations and thus interesting
dynamical information would, at first sight, seem to be out of
reach. We now show that this is not always true. First, the
frequency moments of dynamical correlations can always be
written as equal-time correlators, and this in itself can give
very useful information as we shall see in the following sec-
tions. Further, one can obtain much more detailed informa-
tion, when the moments, which are functions only ofk with
v integrated out, exhibit singularities ink. In the case of the
single-particle Green’s function, we show that the singulari-
ties of its moments atT=0 are completely governed by gap-
less quasiparticles, if they exist.

The one-particle spectral function is defined in terms of
the retarded Green function asAsk ,vd=−ImGsk ,v+ i0+d /p,
and has theT=0 spectral representation

Ask,vd = o
m

fukmucks
† u0lu2dsv + v0 − vmd + ukmucksu0lu2dsv

− v0 + vmdg. s9d

Here uml (and vm) are the eigenstates(and eigenvalues) of
sH−mNd with N the total number of particles and all ener-
gies are measured with respect tom.

One can consider moments of the full spectral function,50

but for our purposes it is much more useful to consider mo-

FIG. 4. Grayscale plots(black;1, white;0) of the momentum
distribution nskd at various dopingsx. The left panel shows the
results of the projected variational calculation. The dashed line
marks the contour on whichnskd=1/2, which closely resembles the
noninteracting Fermi surface. The right panel shows thenskd of the
unprojected BCS calculation at the corresponding doping value.
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ments of theoccupied partof spectral functionfsvdAsk ,vd,
where fsvd is the Fermi function. This is also the quantity
measured in ARPES experiments.51 At T=0, fsvd=Qs−vd
and only the second term in the spectral representation con-
tributes:Qs−vdAsk ,vd= ukmucksu0lu2dsv−v0+vmd.

The ,th moment of the occupied spectral function
M,skd;e−`

0 dvv,Ask ,vd can be expressed as a ground state
correlator following standard algebra. We will focus on the
first two moments in what follows. These are given by

M0skd =E
−`

0

dvAsk,vd = o
m

ukmucksu0lu2 = nskd,

M1skd =E
−`

0

dvvAsk,vd = o
m

sv0 − vmdukmucksu0lu2,

=kcks
† fcks,H − mNgl,

=kcks
† fcks,Hgl − mnskd. s10d

We next describe the characteristic singularities in these
moments arising from coherent QP excitations; the result for
the momentum distribution is very well known, but that for
the first moment seems not to have been appreciated before.
In the presence of gapless quasiparticles, the spectral func-
tion has the form

Ask,vd = Zdsv − j̃kd + Aincsk,vd, s11d

plotted schematically in Fig. 5. HereZ is the coherent QP

weight s0,Zø1d and j̃k =vFsk−kFd is the QP dispersion
with kF the Fermi wave vector andvF the Fermi velocity.
Aincsk ,vd is the smooth, incoherent part of the spectral func-
tion. It is then easy to see from Eq.(10) that

M0skd = nskd = Zus− j̃kd + . . .,

M1skd = Zj̃kus− j̃kd + . . ., s12d

where the terms omitted are the nonsingular contributions
from the incoherent piece.

It follows that, precisely atk=kF, M0skd has a jump dis-
continuity of Z and dM1skd /dk has a discontinuity ofZvF.
Thus, studying the moments ofQs−vdAsk ,vd allows us to
extractZ andvF from singular behavior ofM0skd andM1skd,
while kF can be determined from the location ink space
where this singularity occurs.

It is worth emphasizing what has been achieved. In
strongly correlated systems, interactions lead to a transfer of
spectral weight from coherent excitations to incoherent fea-
tures in the spectral function. The values ofM,skd are, in
general, dominated by these incoherent features(which we
will find to be very broad in the cases we examine), but
nevertheless their singularities are governed by the gapless
coherent part of the spectral function, if it exists. We exploit
these results below in our study of nodal quasiparticles in the
d-wave SC state.

VIII. NODAL QUASIPARTICLES

There is considerable evidence from ARPES52,54,55 and
transport experiments56–58 that there are sharp gapless QP
excitations in the low temperature superconducting state
along the nodal directions0,0d→ sp ,pd. These nodal exci-
tations then govern the low temperature properties in the SC
state. In this section we show that our SC wave function
supports sharp nodal quasiparticles and calculate various
properties such as their locationkFsxd, spectral weightZsxd,
and Fermi velocityvFsxd as a function of doping and com-
pare with existing experiments.

A. kF„x… and Z„x…

In Figs. 6(a) and 6(b) we plot the momentum distribution
(black squares) nskd along s0,0d→ sp ,pd for two different
doping levels. We see a clear jump discontinuity which im-
plies the existence of sharp, gapless nodal QPs.(Note that
such a discontinuity isnot observed along any other direction
in k space due to the existence of ad-wave SC gap.) We thus
determine the nodalkFsxd, the location of the discontinuity in
nskd, and the nodal QP weightZ from the magnitude of the
jump in nskd.59

We find that the nodalkFsxd has weak doping dependence
consistent with ARPES,45,46 and at optimal dopingkF
.0.69 Å−1, which is close to the ARPES value of
0.707 Å−1.60 As already noted while discussing Fig. 4,kF is
not much affected by interaction, and noninteracting(band
theory) estimates forkF are accurate.

In contrast, we find that interactions have a very strong
effect on coherence: the QP spectral weightZ is considerably
reduced from unity and the incoherent weights1−Zd is
spread out to high energies. We infer large incoherent line-
widths from the fact that, even at the zone centerk =s0,0d

FIG. 5. Schematic plot of the spectral function when gapless
quasiparticles are dispersing across the chemical potential,v=0,
with a quasiparticle weightZ and velocityvF. The solid(dashed)
lines indicate the occupied(unoccupied) part of the spectral
function.
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which is the “bottom of the band”nfk =s0,0dg<0.85 (for
x=0.05), implying that 15% of the spectral weight must have
spilled over to the unoccupied sidev.0. A second indicator
of large linewidths is the magnitude of the first moment dis-
cussed later.

The doping dependence of the nodal QP weightZsxd is
shown in Fig. 6(c). The most striking feature is the complete
loss of coherence asx→0, with Z,x as the insulator is
approached. We can understand the vanishing ofZsxd as x
→0 from the following argument. A jump discontinuity in
nskd leads to the following long distance behavior in its Fou-
rier transformGsr d=kcs

†sr dcss0dl: a power law decay with
periodkF

−1 oscillations and an overall amplitude ofZ. How-
ever, forGsr d to be nonzero atlarge r in a projected wave
function, we need to find a vacant site at a pointur u away
from the origin. This probability scales asx, the hole density,
and thusZ,x. Near half filling we expect thisx dependence
due to projection to dominate other sources ofx
dependence,61 in the same way as the discussion of the order
parameterFsxd (see Sec. V B) and we see whyZ,x for x
!1.

After our theoretical prediction6 of the nodal QPZsxd,
ARPES studies on LSCO62 have been used to systematically
extract the nodalZ as a function of Sr concentrationx. The
extractedZ’s are in arbitrary units, but the overall trend, and
particularly the vanishing ofZ asx→0, is roughly consistent
with our predictions. We should note however that under-
doped LSCO likely has a strong influence of charge and spin
ordering competing with the superconductivity. While this
physics is not explicitly built into our wave function, the
vanishing ofZ with underdoping is a general property of
projected states as discussed earlier.

We next contrast our results with those obtained for simi-
lar variational calculation on the tJ model, which gives in-
sight into the differences between the largeU Hubbard
(black squares) and tJ models[open symbols in Figs. 6(a)
and 6(b)]. The tJ model results, which set expsiSd=1 insofar
as the operatorcs

†sr dcss0d is concerned, lead to annskd
which is a nonmonotonic function ofk. This is somewhat

unusual, although not forbidden by any exact inequality or
sum rule. Further, the tJ modelnskd is a k-independent con-
stant equal to one half atx=0. However, we find that thet /U
corrections incorporated in the expsiSd factor in the Hubbard
model, which arise from mixing in states with double occu-
pancy into the ground state, lead to a nontrivial structure in
nskd at all x includingx=0 and also eliminate the nonmono-
tonic feature nearkF. At x=0 [see Eq.(B2) in Appendix B]
the t /U corrections arise from short-range antiferromagnetic
spin correlations. These correlations are expected to persist
even away from half filling although they get weaker with
increasingx.

Finally we compare our result forZsxd with that obtained
from SBMFT. In Fig. 6(c), we also plot the SBMFT result
Zsb=x and findZsxd.Zsbsxd, i.e., the SBMFT underestimates
the coherence of nodal QPs. To understand the significance
of this difference, we must look at the assumptions of SB-
MFT. (1) There is a full “spin-charge separation,” so that the
spinon and holon correlatorscompletelydecouple, i.e., fac-
torize. (2) There iscompleteBose condensation of the ho-
lons: ukblu2=x. (3) The spinon momentum distribution corre-
sponds to that of amean-field d-wave BCS SC with a jump
Zsp=1 along the nodal direction. With these assumptions, the
jump in nskd is just given byZsb= ukblu2Zsp=x. Conditions(2)
and (3) are definitely violated as one goes beyond the mean
field approximation. However, we then expectukblu2,x and
Zsp,1 both of which lead to afurther decreasein Zsb. Thus,
the observed inequalityZsxd.Zsbsxd implies that assumption
(1) must also be violated when the constraint is taken into
account by including gauge fluctuations around the SBMFT
saddle point. Inclusion of such gauge fluctuations would also
be necessary to obtain the incoherent part of the spectral
function. We thus conclude that the spinons and holons of
SBMFT must be strongly interacting and their correlator can-
not be factorized.

B. Nodal quasiparticle velocityvF„x…

The first momentM1skd of the occupied part ofAsk ,vd is
plotted in Fig. 7(a) as a function ofk long the zone diagonal
s0,0d→ sp ,pd. We note that, evenat kF, the momentM1skFd
lies significantly belowv=0: for x=0.18 it is 200 meV be-
low the chemical potential. This directly quantifies the large
incoherent linewidth alluded to earlier.

We have already established the existence of nodal quasi-
particles, so they must lead tosingular behaviorin M1skd
with a slope discontinuity ofZvF at kF. We can see this
clearly in Fig. 7(a) and use this to estimate the nodal Fermi
velocity vF, whose doping dependence is plotted in Fig. 7(b).
The large error bars on thevF estimate come from the errors
involved in extracting the slope discontinuity inM1skd.

First, we see thatvFsxd is reduced by almost a factor of 2
relative to its bare(band structure) valuevF

0 in the low dop-
ing regime of interest, which corresponds to a mass enhance-
ment due to interactions. At largexù0.5, deep in the Fermi
liquid regime, thevF obtained from the moment calculation
agrees with the bare velocity, which also serves as a non-
trivial check on our calculation.

FIG. 6. (a), (b) The momentum distribution,nskd, along the
nodal directions0,0d→ sp ,pd (black squares). The white squares
are results for the tJ model, and correspond to ignoringt /U correc-
tions in Eq.(A5). The nonmonotonic behavior ofnskd nearkF is
removed on includingOst /Ud terms. The discontinuity innskd at
k=kF signals gapless quasiparticles with a weightZ determined by
the magnitude of the jump.(c) Doping dependence ofZ compared
with Zsb=x from slave-boson mean-field theory.
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More remarkably, we see that the renormalizedvFsxd is
essentially doping independent in the SC part of the phase
diagram, and appears to remain finite asx→0. Thus, as one
approaches the insulator atx=0, the coherent QP weight van-
ishes likeZ,x, but the effective massm* remains finite.
This has important implications for the form of the nodal
quasiparticle self-energy which are discussed in detail later.
The value and the weak doping dependence of the nodal
Fermi velocity are both consistent with the ARPES
estimate52 of vF<1.5 eV Å in BSCCO. Very recently, our
prediction has been tested by ARPES experiments on
LSCO,63 where a remarkably doping independent(low en-
ergy) vF has been found.

It is also instructive to compare this result with the SB-
MFT result vF

sb [dashed line in Fig. 7(b)] obtained from the
spinon dispersion as discussed in Appendix C. We find that
vF

sb is much less thanvF and has considerable doping depen-
dence, even though SBMFT does predict a nonzerovF

sb as
x→0. Thus, not only do the nodal QPs have more coherence
than in SBMFT, they also propagate faster.

Another important nodal quasiparticle parameter is the
“gap velocity” v2;s1/kFd]Dsud /]uuu=p/4, which is the slope
of the SC energy gap at the node(u=p /4 in the first quad-
rant of the Brillouin zone). Together withkF andvF, v2 com-
pletely specifies the Dirac cone for the nodal QP dispersion:
Eskd=ÎsvFk'd2+sv2kid2, where k' skid are the deviations
from kF perpendicular(parallel) to the Fermi surface. In a
d-wave SC one expects the singular part ofAsk ,vdQs−vd to
be of the formZvk

2dfv+Eskdg near the node. Thus the sin-
gular part of the first momentM1skd is given by −ZfEskd
−vFk'g /2. For ki=0 (i.e., k along the zone diagonal) this
simply reproduces the slope discontinuity analyzed earlier.
However, setting k'=0, one finds M1skd=−Zv2ukiu /2
+smooth, so that crossing the node by moving along the
Fermi surface, one would see a slope discontinuity inM1skd
from which v2 may be estimated, in principle.

In practice, we are unable to extract this singularity from
our present calculations owing to two difficulties. First, one

requires a dense sampling ofk points lying on the Fermi
surface, which cannot be achieved for accessible system
sizes which are limited by the computational time. Second, it
is known from experiments58,60 that vF /v2@1 (around 15–
20); thus small errors in locating the Fermi surface would
mean that theM1skd would be dominated by effects ofvF.
Nevertheless, it would be very interesting to calculatev2 in
the future.

C. Nodal quasiparticle self-energy

The doping dependence of nodal QP spectral weightZsxd,
and Fermi velocityvFsxd obtained earlier, places strong con-
straints on the self-energySsk ,vd particularly near the SC to
insulator transition asx→0. For k along the zone diagonal
s0,0d→ sp ,pd the gap vanishes in ad-wave SC and ignoring
the off-diagonal self-energy we can simply write the Green
function asG−1sk ,vd=v−eskd−m−Ssk ,vd, whereS;S8
+S9. Standard arguments then lead to the results

Z = S1 −
]S8

]v
D−1

,

vF = ZSvF
0 +

]S8

]k
D , s13d

where the right-hand side is evaluated at the nodeskF ,v
=0d.

From Z,x→0 we conclude thatu]S8 /]vu diverges like
1/x asx→0. However, sincevF remains finite in this limit,
there must be a compensating divergence in thek depen-
dence of the self-energy with]S8 /]k,1/x. A similar situa-
tion is also realized in the slave-boson mean-field solution
discussed in Appendix C, even though it is quantitatively a
poor description of the results forZsxd and vFsxd. The first
example we are aware of where such compensating diver-
gences appeared is the normal Fermi liquid to insulator tran-
sition in the large-N solution of thetJ model.64

Note that the results obtained here are very different from
many other situations where the self energy has nontrivialv
dependence, but is essentiallyk independent. These include
examples as diverse as electron-phonon interaction, heavy
fermions65 (where the largem* or small vF is tied to a small
Z), and the Mott transition in dynamical mean field theory.66

IX. SPECTRAL FUNCTION ALONG „p ,0…\ „p ,p…

We now move away from the zone diagonal and examine
the neighborhood ofk =sp ,0d, where the anisotropicd-wave
SC gap is the largest. Our main aim is to see if we can learn
something the spectral gap and its doping dependence. The
information available from ground state correlation functions
is not sufficient to rigorously estimate the excitation gap, so
we proceed in two different ways using some guidance from
experiments. First, we convert our dimensionless variational

parameterD̃sxdvar to an energy scale and compare with ex-
periment, and second, we use the information available from
the momentsnskd andM1skd along sp ,0d to sp ,pd.

FIG. 7. (a) The first moment of the occupied part of the spectral
function M1skd along the zone diagonals0,0d→ sp ,pd showing
discontinuity ofZvF in its slope,dM1skd /dk, at k=kF. (b) Doping
dependence ofvF, extracted fromM1skd. The error bars here are
associated with fits toM1skd andnskd and errors inZ. Also shown
are the bare velocityvF

0 (dashed line) and the QP velocity within
slave-boson mean-field theory,vF

sb (dotted line). The experimental
QP velocity .1.5 eV Å from ARPES data(see Ref. 51) in near
optimal BSCCO, and experiments indicate that it is nearly doping
independent(see Ref. 53).
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As discussed earlier, the superexchange interaction scaleJ
leads to pairing, and in addition as one approaches the insu-
lator at x=0, J is the only scale in the problem. In view of
this it is natural to considerJD̃varsxd as the energy scale char-

acteristic of pairing. In Fig. 8 we plotaJD̃varsxd as function
of the hole dopingx wherea is a dimensionless number of
order unity. For the choicea=0.8 we find that we get very
good agreement with the experimentally measured values
and doping dependence of the energy gap as obtained from
ARPES.38

Next we use the spectral function momentsnskd and
M1skd to get further insights into the pairing scale. In the
presence of a gap there are no singularities in the moments
and, hence, we cannot directly hope to get information about
the coherent part of the spectral function, as we did near the
nodes. However, as argued later, we will use the moments to
determine a characteristic energy scale for the incoherent
part of the spectral function, which we are able to relate, on

the one hand, to the variational parameterD̃varsxd and, on the
other, to the experimentally observedsp ,0d hump scale in
ARPES.38

The ratio of the first moment to the zeroth moment of the
occupied spectral function

uM1skdu/nskd =
E dvvfsvdAsk,vd

E dvfsvdAsk,vd
; kvlskd, s14d

naturally defines a characteristic energy scalevlskd. Before
studying this quantity in detail, it may help to first look at

each of the moments individually as a function of doping.
From Fig. 9(a) we see that the momentum distribution

nskd for the projected ground state is much broader along
sp ,0d→ sp ,pd compared with that for the unprojected

uCBCSl with the sameD̃var. This suggests that it is not the
energy gap, but rather the correlation-induced incoherence in
the spectral functions, that is broadeningnskd. A direct mea-
sure of the incoherent linewidth in terms of the first moment
M1skd will be discussed later. We see that projection leads to
a significant buildup of spectral weight fork ’s in the range
sp ,0.2pd to sp ,pd, which were essentially unoccupied in the
unprojecteduCBCSl state. Correspondingly, correlations lead
to a loss of spectral weight nearsp ,0d. The doping depen-
dence ofnskd for the projected ground state is shown in Fig.
9(b). The increasing importance of correlations with under-
doping is evident from the fact thatnskd becomes progres-
sively broader with decreasingx.

In Fig. 10(a), we plot the first moment of the occupied
part of the spectral functionM1skd alongsp ,0d→ sp ,pd and
compare it with the unprojected BCS value. We find that
correlations lead to a large negative value ofM1skd which
indicates a large incoherent spectral linewidth.

The quantitykvlskd, defined by the ratio of moments in
Eq. (14), is the characteristic energy scale over which the
occupied spectral weight is distributed. Quite generally we
expect this to be dominated by the largeincoherentpart of
the spectral function. We see from Fig. 10(b) that this energy
scale atsp ,0d increases with underdoping. This trend arises
from a combination of an increasing spectral gap and an
increasing incoherent linewidth atk =sp ,0d asx→0.

It can be argued that the energykvlsp ,0d is an upper
bound on the SC gap, even though a very crude(i.e., inac-
curate) one. This can be seen by usingcksuC0l as a trial
excited state. A more sensible trial state is obtained by pro-
jecting a Bogoliubov quasiparticle state(where the excitation
is created first and then projected, unlike the former case
where this order is reversed). This and further improved ex-
cited states are currently under investigation and will be dis-
cussed in a later publication.

FIG. 8. The dimensionless variational parameterDvarsxd of Fig.
1(a) is converted to an energy scaleaJDvarsxd, wherea is a dimen-
sionless prefactor of order unity. The corresponding energy scale(in
meV) is plotted as a function of hole-dopingx. For the choicea
=0.8 the energy scale(filled circles) agrees well with the ARPES
energy gap in the SC state(open hexagons), while for a=3 it (filled
squares) agrees well with the “hump” scale(open triangles) in
ARPES spectra atk =sp ,0d. All the ARPES results are taken from
Campuzanoet al. (see Ref. 38).

FIG. 9. (a) The momentum distributionnskd along thesp ,0d
→ sp ,pd direction, compared with the unprojected BCS result at

the sameD̃var andmvar. These results imply that correlations leads to
considerable broadening ofnskd. (b) nskd plotted for variousx,
showing increasing broadening asx→0, induced by correlations.
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From Fig. 10(b) we see that, as a function of doping, the
energykvlsp ,0d scales linearly with the variational param-

eterD̃varsxd, characterizing pairing in the wave function. This

suggests that we should think ofD̃var as a characteristicin-
coherent scalein the SC stateAsk ,vd at sp ,0d. A second
argument in support of such an identification comes from the

observation that at and nearx=0 D̃var is mainly determined
by minimizing the exchange energy. This implies a close
relation betweenlocal antiferromagnetic order and short-
ranged-wave singlet pairing. This is directly borne out by

correlating the doping dependences ofD̃var and the near-
neighbor spin correlation(which will be described in detail

elsewhere). All of these arguments serve to relateD̃var to high
energy, short-distance physics, rather than to the low energy
coherent feature such as the quasiparticle gap in the SC state.

Motivated by these arguments we compare the energy

scale obtained from the variational parameteraJD̃varsxd with
an experimentally observed incoherent scale in the SC spec-
tral function atsp ,0d. The natural candidate for the latter is
the sp ,0d hump in ARPES, where it has been established
that the spectral function atsp ,0d has a very interesting
peak-dip-hump structure forT!Tc at all dopings.38 The
sharp peak corresponds to the coherent quasiparticle at the
SC energy gap, while hump comes from the incoherent part
of the spectral function. Two other significant experimental
facts about the hump are that:(a) While both the hump and
gap energies decrease monotonically with hole dopingx,
their ratio is roughly doping independent, with the hump
being a factor of 3.5–4.0 larger than the SC gap.38 (b) A
vestige of the hump persists even aboveTc on the under-
doped side where it is called the “high energy pseudogap.”68

In Fig. 8, we find good agreement between the energy

scaleaJD̃varsxd with the ARPESsp ,0d hump energy mea-
sured by Campuzano and coworkers,38 provided we choose67

a=3. In summary, with one choice ofa s=0.8d we find good

agreement with the experimentally observed energy gap and
with another choice ofa s=3.0d we find good agreement
with the ARPES hump scale. We hope that in the future a
study of variationalexcitedstates will give a direct estimate
of the energy gap and also explain the ratio of approximately
3.75 (independent ofx) between the hump and gap.

X. OPTICAL SUM RULES AND SUPERFLUIDITY

A. Total and low energy optical spectral weights

We next turn to a discussion of the optical conductivity.
For a superconductor the real part of the optical conductivity
is of the formssvd=pe2Dsdsvd+sregsvd, where the conden-
sate contributes thedsvd whose strength is the superfluid
stiffnessDs, while the regular partsregsvd comes from exci-
tations. We will now exploit sum rules which relate fre-
quency integrals ofssvd to equal time ground state correla-
tion functions which can be reliably calculated in our
formalism.

For a single-band model, the optical conductivity sum
rule69,70 can be written as

E
0

`

dv Ressvd = po
k

m−1skdnskd ; pDtot/2, s15d

wherem−1skd=s]2eskd /]kx]kxd is thenoninteractinginverse
mass and we set"=c=e=1. All effects of interactions enter
through the momentum distributionnskd.

The total optical spectral weightDtotsxd plotted in Fig.
11(a) is found to be nonzero forx=0 and an increasing func-
tion of hole concentrationx in the regime shown. We have
also found thatDtot decreases forx.0.4 and eventually van-
ishes atx=1, as it must in theempty bandlimit. These re-
sults, which are not shown here, serve as a nontrivial check
on our calculation.

It is more important for our present purposes to under-
stand why the total optical spectral weight in the insulating
limit sx=0d is nonzero. This is because the infinite cutoff in
the integral in Eq.(15) includes contributions due to transi-
tions from the ground state to the “upper Hubbard band,”
i.e., to states with doubly occupied sites whose energiesv
*U.

FIG. 10. (a) The first moment of the occupied part of the spec-
tral function M1skd along thesp ,0d→ sp ,pd direction compared
with the corresponding unprojected BCS result.uM1skdu is much
larger than the BCS result from which we infer that strong correla-
tions lead to very large incoherent linewidth.(b) Parametric plot of

kvlskd;uM1skdu /nskd (see text) at k =sp ,0d vs D̃var with dopingx

as the implicit parameter. The linear relation indicates thatD̃varsxd is
related to an incoherent energy scale in the spectral function at
sp ,0d.

FIG. 11. (a) Doping dependence of the totalsDtotd and Drude or
low energysDlowd optical spectral weights.Dlow,x at low x, which
implies a Mott insulating state atx=0. (b) Parametric plot of the
Drude weightDlow vs the nodal quasiparticle weightZ, with hole
dopingx as the implicit parameter. We findDlow,Z over 0,x,xc.
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A physically much more interesting quantity is thelow
frequencyoptical weightDlow, often called the Drude weight,
where the upper cutoff in Eq.(15) is chosen to beVc such
that Jø t!Vc!U. The question then arises: can one write
Dlow as an equal-time correlation? Toward this end it is con-
venient to work in the “low energy” basis, using the ground
state wave functionPuCBCSl, and explicitly include the ca-
nonical transformation exps−iSd on the operators. In the
presence of a vector potential, the canonically transformed
Hamiltonian(see Appendix A) to Ost2/Ud is given by

H̃A = o
rr 8s

trr 8e
iArr 8fhr s̄crs

† cr8shr8s̄g

−
1

U
o

rr 8Rss8

trR tRr8e
isArR+ARr 8dhr s̄crs

† cRsnRs̄

3 cRs8
† cr8s8hr8s̄8. s16d

This can be used to extract the diamagnetic response opera-

tor D̃dia;]2H̃A/]A2:

D̃dia = o
rr 8s

trr 8fhr s̄crs
† cr8shr8s̄gsr x − r x8d

2

+ o
rr 8Rss8

trR tRr8

U
fhr s̄crs

† cRsnRs̄cRs8
† cr8s8hr8s̄8g

3sr x − r x8d
2, s17d

wherer x is thex component ofr . In the low energy projected
subspace, standard Kubo formula analysis shows that the ex-

pectation valuekCBCSuPD̃diaPuCBCSl gives both:(i) the dia-
magnetic response to aq=0 vector potential and(ii ) the
optical spectral weight in the low energy subspace.

We thus calculate the low frequency optical spectral
weight

Dlow ;
2

p
E

0

Vc

dv Ressvd = kCBCSuPD̃diaPuCBCSl,

s18d

where the last expression is independent of the cutoff pro-
vided Jø t!Vc!U. Dlow includes contributions ofOsxtd
from carrier motion in the lower Hubbard band coming from
the first term in Eq.(17), as well as terms ofOsxJd from
carrier motion which occurs through virtual transitions to the
upper Hubbard band coming from the second term in Eq.
(17). We refer the reader to Ref. 3 for related discussion.

Dlowsxd obtained in this manner is plotted in Fig. 11(a). In
marked contrast to the total spectral weight, the Drude
weight Dlowsxd vanishes asx→0. The vanishing ofDlow at
half filling proves thatuC0l describes an insulating ground
state atx=0. Its linearx dependence at smallx can be easily
understood from the form of Eq.(17) and the no-double-
occupancy constraint(using arguments very similar to the
ones used earlier in understanding the smallx behavior of the
order parameter and nodal QP weight). At low doping, we
find that Dtot is a weak function ofx, while Dlow increases
more rapidly. This reflects a rapid transfer of spectral weight

from the upper to the lower Hubbard band with increasing
hole doping, with a comparatively smaller change in the total
spectral weight.

There is considerable experimental data on the Drude
weight of cuprates and its doping dependence; see,
e.g., Refs. 71 and 72. This is usually presented in terms of
the plasma frequencyvp

* defined so that the integral in Eq.
(18) is svp

* d2/4p=Dlowse2/ddK. Here,d is the c-axis lattice
spacing withK planes per unit cell, and the chargee and
factors of lattice spacing have been reinstated to convert to
real units.73

First, the experimentalsvp
* d2 vanishes linearly with the

hole density in the low doping regime, in agreement with our
results forDlow. Furthermore, the data summarized in Ref. 72
gives vp

* =2.12 eV along the a axis (no chains) for
YBa2Cu3O6+d at optimal doping, i.e.,d=1. Using our calcu-
lated Dlow<90 meV (at optimality), together with ac-axis
lattice spacingd=11.68 Å and two planes per unit cell as
appropriate to YBCO, we findvp

* =1.67 eV. Thus, both the
doping dependence and magnitude ofDlowsxd are in reason-
able agreement with optical data on the cuprates.

We predict that the nodal quasiparticleZsxd scales with
the Drude weightDlowsxd over the entire doping range in
which the ground state is superconducting. A parametric plot
of these two quantities withx as the implicit parameter, is
shown in Fig. 11(b), from which we see that thatDlow,Z
over the entire SC range 0,x,xc. This is a prediction
which can be checked by comparing optics and ARPES on
the cuprates. We should note that this scaling must break
down at largerx, since asx→1, Z keeps increases monotoni-
cally to unity, whileDlow→0, since it is bounded above by
Dtot which vanishes in the empty lattice limit.

A related scaling has already been noted experimentally.
ARPES experiments74,75 have shown that the quasiparticle
weight ZA at theantinodal point neark =sp ,0d scales as a
function of doping with the superfluid density:rs,ZA for
T!Tc.

Finally, these results also have interesting implications for
the SC to insulator transition asx→0, and caution one
against naively interpretingDlow,neff /m* with neff related
to the size of the Fermi surface. First, asx→0, Dlow indeed
vanishes, but the Fermi surface always remains large, i.e.,
includess1+xd holes, as seen in Sec. VI. Second, the effec-
tive massm* does not diverge but remains finite and doping
independent asx→0 (see Sec. VIII). Thus, one needs to
actually calculate the correlation function definingDlow and
cannot break it up into a ratio of individually defined quan-
tities neff andm*. A second question arises about the fate of
the Fermi surface asx→0. Although this contour remains
large, the coherent QP weightZ vanishes as the insulator is
approached atx=0. (We have actually shown this only for
the Z at the node, but expect it to hold everywhere on the
FS.)

B. Superfluid stiffness

We begin by showing that the Drude weightDlow is an
upper bound on the superfluid stiffnessDs, and then use this
to compare our results with experiments. There are many
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ways to see thatDsøDlow and we mention three. Different
ways of looking at this result may be helpful because the
specific form ofDlow in Eq. (18) is not well known in the
literature.

First, we use the Kubo formula for the superfluid stiffness
Ds=Dlow−L' where Dlow is the diamagnetic response and
the paramagnetic responseL' is the transverse current-
current correlator evaluated in the low energy(projected)
basis. From its spectral representation76 L'ù0 which im-
plies DsøDlow. It is important to emphasize76 that in the
absence of continuous translational invariance(either due to
periodic lattice and/or impurities) one cannot in general ar-
gue thatL'sT=0d vanishes.

In our second proof, we write the optical conductivity
sum rule as

Dlow = Ds +E
0+

Vc

dv
2

p
sregsvd, s19d

with t, J!Vc!U. Since sregsvdù0 it follows that Ds

øDlow. Finally, it may be illuminating to see this in yet
another way by applying a phase twistQ to the system along
the x axis, say, which raises the ground state energy by an
amount dE=DsQ

2/2. Following Ref. 76 let us make the
variational ansatz

uCQl = e−iSP expfio
r

n̂sr dusr dguCBCSl s20d

for the ground state of the system with a phase twist, choos-
ing a uniformly winding phaseusr d with usr +Lx̂d=usr d+Q.
It is straightforward to show that the energy difference be-
tween this state anduC0l is DlowQ2/2 with Dlow given by Eq.
(18). We thus arrive at the variational estimateDsøDlow.

We now use this bound to extract information relevant to
experimental data on theT=0 superfluid density. First, the
vanishing ofDlow at smallx implies that we getDs→0 as
x→0 which is consistent withmSR experiments77 in the un-
derdoped regime. Second, we can rewrite the inequality de-
rived earlier to obtain a lower bound on the penetration depth
lL which is related toDs of a two-dimensional layer via
lL

−2=4pe2Ds/"2c2dc, wheredc is the mean-interlayer spacing
along thec axis in a layered compound. Usingdc=7.5 Å
appropriate to BSCCO and our calculated value ofDlow
<90 meV at optimality and we findlL *1350 Å. The mea-
sured value in optimally doped BSCCO isl.2100 Å (Ref.
78). This agreement is quite satisfactory, given that theT
=0 superfluid density is expected to be reduced by two ef-
fects which are not included in our theoretical estimate. The
first is impurities and inhomogeneties,76 which are certainly
present in most underdoped samples,79,80 and the second is
the effect of long wavelength quantum phase fluctuations
which are estimated70 to lead to a 10%–20% suppression of
the superfluid density.

XI. IMPLICATIONS FOR THE FINITE TEMPERATURE
PHASE DIAGRAM

All of our calculations have been done atT=0. We now
discuss the implications of our results for the finite tempera-

ture phase diagram of the cuprates, especially on the under-

doped side. We have identified the pairing parameterD̃varsxd
in our wave function with the high energy pseudogap or the
sp ,0d hump feature seen in ARPES experiments; see Fig.
1(a) and Sec. IX. This has the same doping dependence as
the experimentally observed maximum SC energy gap and
the pseudogap temperatureT*.38 On the other hand, the dop-
ing dependence of the SC order parameterFsxd in Fig. 3
closely resembles the experimentalTcsxd. As discussed in
Sec. V B, strong correlations suppressF→0 asx→0. Fur-
ther, our results in the previous section imply that the super-
fluid stiffnessDs also vanishes asx→0.

Thus, on the underdoped side the pairing gap will survive
in the normal state81 above the finite temperature phase tran-
sition whoseTc will be governed by the vanishing ofDssTd.82

While this much is definitely true, a quantitative theoretical
calculation of the pseudogap region of the cuprate phase dia-
gram will necessarily involve taking into account additional
fluctuating orders which are likely to exist.

XII. CONCLUSIONS

In this paper we have shown that the simplest strongly
correlated SC wave function is extremely successful in de-
scribing the superconducting state properties of highTc cu-
prates and the evolution of the ground state from a Fermi
liquid at large doping, to ad-wave SC down to the Mott
insulator at half filling. The SC dome does not require any
competing order, but is rather a natural consequence of Mott
physics at half filling. The dichotomy of a large pairing en-
ergy scale and a small superfluid stiffness is also naturally
explained in our work and leads to a pairing induced
pseudogap in the underdoped region.

We have also obtained considerable insight into the dop-
ing dependence of various physical observables such as the
chemical potential, coherence length, momentum distribu-
tion, nodal quasiparticle weight, nodal Fermi velocity, inco-
herent features of ARPES spectral functions, optical spectral
weight, and superfluid density. We will discuss in a separate
paper various competing orders—growth of antiferromag-
netic correlations, incipient charge instability, and singular
chiral current correlations—that arise in our projected wave
function in the very low doping regime.
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APPENDIX A: THE CANONICAL TRANSFORMATION

In this Appendix we first sketch the construction of the
canonical transformation operatoreiS defined in Sec. III and
then give explicit expressions for various canonically trans-

formed operatorsQ̃;expsiSdQ exps−iSd that are used in the
paper.

The Hubbard Hamiltonian(1) may be written asH=K0
+K+1+K−1+Hint, whereKn have been explicitly defined in
Eq. (2). In the presence of an external vector potentialAr8r
=−Arr 8 on the link srr 8d, the kinetic energy termsKn are
modified via trr 8→ trr 8 expsiArr 8d. We consider the unitary

transformationHA→H̃A=expsiSAdHA exps−iSAd, where the
subscripts onH and S denote the presence of the vector
potential. We determineSA perturbatively, order by order in

t /U, such thatH̃A has no matrix elements between different
D sectors at each order.

The systematic procedure devised in Ref. 30 may be trivi-
ally generalized to include the vector potential. ToOst2/U2d
we find the resultSA=SA

f1g+SA
f2g with

iSA
f1g =

1

U
sKA,+1 − KA,−1d, sA1d

iSA
f2g =

1

U2sfKA,+1,KA,0g + fKA,−1,KA,0gd, sA2d

which generalizes the expression in Eq.(3) to include the
vector potential.

As explained in Appendix B, in the Monte Carlo calcula-
tion we treat the canonical transformation as modifying the
operator whose expectation value is then taken in the fully
projected BCS state; see Eq.(8).

1. Hamiltonian

Using theiSA
f1g derived earlier, it is easy to show that the

transformed Hamiltonian in theD=0 sector is given to
Ost2/Ud by

H̃A = KA,0 +
1

U
fKA,+1,KA,−1g. sA3d

For Arr 8=0 this reduces to the result of Eq.(4), while more
generally we get Eq.(16) which was used in the derivation
of the optical spectral weight.

2. Momentum distribution

The momentum distributionknksl is the Fourier transform
of kGssr ,r 8dl;kcrs

† cr8sl. In parallel with our earlier notation
for K, we may write the operatorGssr ,r 8d=G0+G+1+G−1,
whereGn connects the sectorD to D+n. The transformed

operator G̃=expsiSdG exps−iSd to first order in t /U, with
Arr 8=0, is given by

G̃ssr ,r 8d = G0sr ,r 8,sd −
1

U
sK−1G+1 + G−1K+1d. sA4d

Writing this explicitly in terms of electronic operators,
with hrs=s1−nrsd and s̄=−s, we get

G̃ssr ,r 8d = hr s̄crs
† cr8shr8s̄

+
1

U
o
R,s8

strRhRs̄8cRs8
† crs8nr s̄8crs

† cr8shr8s̄

+ tr8Rhr s̄crs
† cr8snr8s̄cr8s8

† cRs8hRs̄8d. sA5d

Note that the difference between the large U Hubbard and tJ
model momentum distributions shown in Fig. 6 comes en-
tirely from the Ost /Ud terms in Eq.(A5), which would be
omitted in calculatingnskd for the tJ model.

3. First moment of the spectral function

The first momentM1skd is given by

M1skd = k0ucks
† fcks,Hgu0l − mknkl = s«skd − mdknksl + Vskd,

sA6d

whereVskd is the Fourier transform of

Vsr ,r 8d = Uk0ucrs
† cr8snr8s̄u0l. sA7d

SinceV is of OsUd, we have to canonically transform it up
to to second order int /U to get the momentM1skd correct up
to OsJd. Thus, writing Vsr ,r 8d=V0+V−1+V+1, we find
V+1=0, and in the sector withD=0:

Ṽsr ,r 8d = −
1

U
V−1K+1 +

1

U2V−1fK0,K1g +
1

U2K−1V0K1.

sA8d

The explicit expression forṼsr ,r 8d in terms of electron op-
erators is rather lengthy and omitted for simplicity.

APPENDIX B: TECHNICAL DETAILS OF THE MONTE
CARLO CALCULATIONS

The use of Monte Carlo methods in variational calcula-
tions has a long history36 and there have been many applica-
tions to Hubbard and tJ models which are referenced in the
text. In this Appendix we discuss various technical points of
the Monte Carlo calculation, including(a) the choice of lat-
tice and boundary conditions,(b) the Monte Carlo moves in
the sampling and their implementation,(c) details about
number of configurations sampled for equilibration and for
averaging data, and(d) various checks on our code.

To implement the Monte Carlo for evaluating expectation
values of operators on our wave function, we find it conve-
nient to work with the fully projected wave function

PuCBCSl and canonically transformed operatorsQ̃
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=expsiSdQexps−iSd. At discussed in Sec. III, this is equiva-
lent to evaluating expectation values ofQ in uC0l; see Eq.
(8).

1. Lattice and boundary conditions

The BCS part of the variational wave function is written
in coordinate space as a Slater determinant of pairs as shown
in Eq. (7). Each element of this determinantwsr i↑-r j↓d is the
Fourier transform ofwskd=vk /uk defined below Eq.(6). For

a d-wave stateD̃k =0 on the Brillouin zone(BZ) diagonals,
which leads to a singularity inwskd at all k-points ukxu= ukyu
with eskd−mvarø0. For a numerical calculation it is thus
best to avoid thesek-points by appropriate choice of the
lattice and boundary conditions. Three possible alternatives
are: (1) a square lattice with periodic/antiperiodic boundary
conditions; or(2) a rectangular lattice whose dimensions are
mutually coprime and periodic boundary conditions(PBC);
or (3) a “tilted” lattice, described further later, with PBCs.
All three schemes lead to a set ofk points which avoid the
zone diagonal on any finite system.

We have chosen to work on a tilted lattice even though it
is perhaps the least intuitively obvious of the three alterna-
tives because it preserves the fourfold rotational symmetry of
the lattice and also does not introduce any twists in the
boundary conditions(which might be important in a state
with long range SC order). We have later checked that our
results for doped systemssx.0d are not dependent on this
choice by comparing them with option(1).

The tilted lattice with PBCs was also used in the early
work of Gros and coworkers.4,29 These lattices haveL2+1
sites with oddL; an example withL=5 is shown in Fig.
12(a). The corresponding BZ is a tilted square of allowedk
points shown in Fig. 12(b). More generally, the allowedk
points are the solutions of expsikxL+ ikyd=1 and expsikyL
− ikxd=1. This leads to thesL2+1d solutions: kx=2psmL
−nd / fL2+1g and ky=2psm+nLd / fL2+1g with m=−sL
−1d /2 , . . . , +sL−1d2, n=−sL−1d /2 , . . . , +sL−1d2 and the
single additional pointk =sp ,pd corresponding tosm,nd
=ssL+1d /2 ,sL−1d /2d.

Note that thek =0 point is not avoided in this scheme, and
we choosewsk =0d to be a very large but finite number, and
check that we recover standard BCS results independent of

this choice. Further checks of our procedure are described
later.

2. Monte Carlo method

To sample configurations for evaluating expectation val-
ues, we use the standard variational Monte Carlo method
using the Metropolis algorithm to generate a sequence of
many-body configurations distributed according to
uPkhr ij ,hr 8 jj uCBCSlu2. The Monte Carlo moves used are:(i)
choosing an electron and moving it to an empty site and(ii )
exchanging two antiparallel spins. Starting in theD=0 sector
these moves conserveD; thus the no double-occupancy con-
straint P is trivial to implement exactly. Also all allowed
states in theD=0 sector(with Sz

tot=0) can be accessed. For
an N-electron system, the moves involve updating the deter-
minant of theN/23N/2 matrix of Eq.(7). We do this using
the inverse update method of Ceperley, Chester, and Kalos,36

the time for which scales,N2, in contrast to,N3 for di-
rectly evaluating the determinant of an updated configura-
tion.

3. Numerical details

Much of the data were obtained onL=15 sL2+1=226
-sited lattices. Some runs were on anL=19 s362-sited lattice
to reduce finite size errors on the order parameter at over-
doping and for betterk resolution fornskd. We equilibrated
the system for about 5000 sweeps, where every electron is
updated once on average per sweep. Typically we averaged
data over 1000 configurations chosen from about 5000
sweeps. For some parameter values we performed long runs
of 105 sweeps. Specifically, such long runs were used to cal-
culate quantities such as the order parameter at certain dop-
ing values to reduce statistical error bars. In most figures the
error bars are not explicitly shown, because the errors from
the stochastic Monte Carlo evaluation are smaller than the
symbol size.

4. Checks on the code

To check our code we have made detailed comparisons
against published results of the ground state energy4 for ap-
propriate parameter values. At various points in the text we
also mentioned other checks we have made on the limiting
values of several observables. We have checked that in the
low electron density(nearly empty lattice) limit, the quasi-
particle weightZ→1, our estimatedvF approaches the bare
Fermi velocity, and the total optical spectral weight vanishes
asx→1.

Here we describe three additional checks we have made
in the x=0 insulating limit. First, it is well-known that atx

=0 the canonically transformed HamiltonianH̃ can be re-
written as the Heisenberg spin model

HAF = o
rr 8

Jrr 8sSr ·Sr8 − 1
4d , sB1d

whereJrr 8=4trr 8
2 /U. We can thus compute the ground state

energy in two different ways: either by directly usingH̃ from

FIG. 12. Left : Real space picture of theL2+1 lattice forL=5,
with periodic boundary conditions applied along the opposite edges
of the tilted square indicated by dashed lines.Right: The k-space
Brillouin zone of the “tilted lattice” forL=5. In the calculations
reported in this paper we used systems withL=15, 17, 19.
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Eq. (4), or by calculating the ground state spin correlations
kSr ·Sr8l=3kSr

zSr8
z l (from spin rotational invariance in the sin-

glet ground state) and then using Eq.(B1) to get the energy.

We have verified that these two estimates agreekH̃l
=kHAFl, which serves as a nontrivial check on our code.
Note that, unlike in the rest of the paper, in the remainder of
this Appendix we use the symbolk. . .l to mean the expecta-
tion value in the statePuCBCSl, without the factor of
exps−iSd.

Second, the canonically transformed Fourier transform of

the momentum distribution,G̃ssr ,r 8d in Eq. (A5), may be
related to spin correlations atx=0 (see also Refs. 7, 83, and
84) as

G̃ssr ,r 8d = 2
trr 8

U
S1

4
− Sr ·Sr8D . sB2d

We have explicitly checked our code by calculatingkG̃l from
Eq. (A5) and independently evaluating the spin correlation
kSr ·Sr8l, and verifying the relation in Eq.(B2).

Finally, for the first moment calculation described at the
end of Appendix A we find the following simple result atx
=0. For the casesr 8=r and r 8Þ r , we find, respectively,

Ṽsr ,r d =
2

U
o
R

trR
2 SrR, sB3d

Ṽsr ,r 8d = trr 8Srr 8 + o
R

trRtr8R

2U
sSr8R + SrR − Srr 8d, sB4d

with Srr 8;s1/4−kSr ·Sr8ld. We have verified that the mo-
ments computed directly using Eq.(A8) agree with those
obtained using earlier expressions in terms of spin correla-
tion functions, which serves as yet another nontrivial check.

APPENDIX C: SLAVE BOSON MEAN FIELD THEORY

In this Appendix we first briefly summarize the results of
the SBMFT for the tJ model16,17and then compare them with
the variational results presented in the text. Many authors
have used SBMFT with small variations and it is important
to unambiguously define our notation to make detailed com-
parisons.

The tJ model is defined by the Hamiltonian in Eq.(5)
acting on the Hilbert space withosnrsø1 at each siter .
Following standard slave-boson methodology,17 we can write
cra

† =br f ra
† where f ra

† creates a neutral spin-1/2 fermion
(spinon) andbr

† a spinless charge-e boson(holon). The con-
straint at each site is now:oaf ra

† f ra+br
†br =1. The Hamil-

tonian can now be written as

HtJ = − o
r ,r8,s

trr 8br f rs
† f r8sbr8

† + J o
krr 8l

fSfsr d ·Sfsr 8d

− 1
4s1 − br

†brds1 − br8
† br8dg . sC1d

Here trr 8= t for nearest neighbors, ands−t8d for next-nearest
neighbors, which fixes the bare dispersioneskd=−2tscoskx

+coskyd+4t8 coskx cosky. The next-nearest neighborJ8 /J
=1/16 isignored.

Following Ref. 17 we make three approximations. First,
we make a Hartree-Fock-Bogoliubov mean-field approxima-
tion for the Sfsr d ·Sfsr 8d term. Second, we assume that the
bosons are fully condensed atT=0 so thatkbl=Îx. Third, we
make the(most drastic) approximation that the constraint is
obeyedon averageand not necessarily at each site. This
leads to the mean-field Hamiltonian

HMF = o
ks

fẽskd − m̃gnks + o
k

Dksfk↑
† f−k↓

† + h.c.d, sC2d

where

ẽskd = − 2sxt + 3Jx/4dscoskx + coskyd + 4xt8 coskx cosky,

and

Dk = Dsbscoskx − coskyd/2.

The pairing field, Dsb=3Jukf r↑
† f r8↓lu, the Fock field x

=kf rs
† f r8sl, and the “chemical potential”m̃, are determined

through the following set of self-consistent equations:

1

J
=

3

8
E d2k

s2pd2

scoskx − coskyd2

Ek
,

x = −
1

4
E d2k

s2pd2S jk

Ek
Dscoskx + coskyd,

x =E d2k

s2pd2S jk

Ek
D , sC3d

wherejk = ẽskd−m̃ andEk =Îjk
2+Dk

2.
These equations can be numerically solved and the

results summarized as follows:(i) xsxd andm̃sxd are smooth
nonsingular functions. In the insulator,xs0dÞ0, leading
to a finite spinon dispersion determined byJ. (ii ) Dsbsx=0d
is finite atx=0 and its scale is determined purely byJ. (iii )
Dsbsxd decreases with increasing doping, vanishing at a criti-
cal x=xc<0.35–0.4, which is a weak function ofJ.

We next calculate various physical quantities within
SBMFT and compare with our variational results. The
SC order parameter is given byFsb;ukcr↑cr+d↓lu
=xDsbsxd /3J where the explicit factor ofx comes from
ukblu2=x. The SBMFT thus correctly captures the nonmono-
tonic behavior ofF, vanishing in the limitsx→0 and x
→xc

−, and maximum atx,0.15–0.2. In the language of SB-
MFT, although the spinons are paired, the order parameter
Fsbsx=0d=0 since there are no holons to condense. On the
other hand, the SC-Fermi liquid transition on the overdoped
side corresponds to the vanishing of the spinon pairing am-
plitude Dsb.

In Sec. VIII we compared SBMFT results for the nodal
quasiparticle weight and dispersion with the corresponding
variational results. Although the SBMFT language of spinons
and holons appears to be very appealing, it would be justified
only if the spinons and holons were essentially noninteract-
ing particles, at least at sufficiently low energies. Our con-
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clusion in Sec. VII was that this is not the case and the
approximation of decoupling the holon and spinon Greens
functions is not valid in computing, e.g., the nodal quasipar-
ticle residueZ; see Sec. VIII A.

Here we give sketch the derivation of these SBMFT re-
sults. Within SBMFT the electron Green function factorizes
to give Gsk ,vd=xGfsk ,vd, where x comes from the con-
densed holons andGf is the spinon Green function obtained
from HMF in Eq. (C2) earlier. Note that SBMFT does not
capture the incoherent part of the spectral function and also
does not satisfy sum rules. This factorization leads to the
following results for the nodal quasiparticles within SBMFT:

(i) Along the zone diagonal the spinonnfskd=us−jkd and
thus the nodal quasiparticle residueZsb=x. Thus, Zsb,Z,
whereZ is the variational estimate[see Fig. 6(c)], and this
inequality implies the inadequacy of the spinon-holon decou-
pling. (ii ) The quasiparticle dispersion is obtained from the
poles ofGsk ,vd and this is entirely governed by the spinon
dispersion. At low doping, the SBMFTvF

sbsxd=3Jx+4xt and
is smaller than the variational estimatevFsxd [see Fig. 7(b)]
and also exhibits much more doping dependence. Despite
large quantitative differences, there is one important qualita-
tive similarity: bothvF

sbsxd and vF go to a nonzero limit as
x→0.
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