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We use a variational approach to gain insight into the strongly correthteave superconducting state of
the highT, cuprates aff=0. We show that strong correlations lead to qualitatively different trends in pairing
and phase coherence: the pairing scale decreases monotonically with hole doping while the superconducting
order parameter shows a honmonotonic dome. We obtain detailed results for the doping dependence of a large
number of experimentally observable quantities, including the chemical potential, coherence length, momen-
tum distribution, nodal quasiparticle weight and dispersion, incoherent features in photoemission spectra,
optical spectral weight, and superfluid density. Most of our results are in remarkable quantitative agreement
with existing data and some of our predictions, first reported in Phys. Rev.8%t217002(2001), have been
recently verified.
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I. INTRODUCTION large spectral gap but loW, and superfluid density, on the

In this paper our main goal is to understand the supercorinderdoped side. The resulting insights could also help in
ducting ground state and low energy excitations of the higifharacterizing the anomalous normal states which are ob-
T, cuprates, in particular, their doping dependence as thefgined upon destroying the SC order.
evolve from a Fermi liquid state on the overdoped side to- Ve choose to work within a two-dimensional, single-band
wards a Mott insulator at half filling. Toward this end, we approach with strong local electron-electron interactions, de-
examine in detail the properties of superconducting wavescribed by the larg&) Hubbard model which was advocated
functions in which double occupancy is strongly suppressedty Andersof for the cuprate superconductors. Our goal is to
by short-range Coulomb interactions. see how much of the physics of the cuprates can be captured

In the past 17 years since the discovery of higtsuper- ~ within this framework. To the extent that this approach
conductivity (SC) in the cuprates,a lot of theoretical effort proves inadequate, one may need to go beyond it and include
has gone into trying to understand SC as an instability froneither long-range Coulomb interactions, additional bands, in-
a nonsuperconducting state. There are three possible routtgslayer effects, or even phonons. The success of our ap-
to such an attack and each has its own strengths and limitg@roach reported here suggest to us that, at least for the SC
tions. First, one may approach the SC state from the overstate properties studied, one does not need to explicitly in-
doped side, where the normal state is a well-understoodlude these additional degrees of freedom.

Fermi liquid. However, the diagrammatic methods used in The key technical challenge is to treat the effect of strong
such an approach are not adequate for addressing the mastrrelations in a controlled manner. We have chosen to deal
interesting underdoped region in the vicinity of the Mott in- with this using Gutzwiller wave functions and using the
sulator. Second, one might hope to examine the SC instabilkariational Monte Carlo method to evaluate various expecta-
ity from the near-optimal normal state, except that this nortion values building on pioneering work by several
mal state is highly abnormal and the breakdown of Fermi-authors?->

liquid behavior remains one of the biggest open questions in We now summarize our main results; this also serves as
the field. The third approach is to enter the SC state as an outline of the remainder of the paper. Some of these re-
doping-driven instability from the Mott insulator. While this sults were first reported in a Letter.

approach has seen considerable theoretical progress, much of(1) We introduce in Sec. IV our wave function which is a
the discussion is complicated by various broken symmetriefully projectedd-wave BCS state, in which all configurations
and competing instabilities in lightly doped Mott insulators. with doubly occupied sites are first eliminated, and the ef-

Here we take a rather different approach, in which we ddects of the finite Coulomb) are then built in via a canonical
not view superconductivity as an instability from any transformation described in Sec. Ill.
non-SC state, but rather study the SC state in and of itself. (2) Using a variational calculation, we obtain in Sec. V B
After all, the main reason for interest in the cuprates comeghe following T=0 phase diagram: a Fermi liquid metal for
from their superconductivityand not from other possible or- hole concentrationsx>x,~0.35, a strongly correlated
ders, which may well exist in specific materials in limited d-wave SC for G<x<x., and a spin-liquid Mott insulator at
doping regimes. Thus, it is very important to theoreticallyx=0.
understand the SC state in all its details, particularly captur- (3) The pairing, as characterized by our variational param-
ing both the Bardeen-Cooper-Schrieff®CS)-like behavior — eter A,,(x), is a monotonically decreasing function of hole
on the overdoped side and the non-BCS aspects, like thdopingx, largest atx=0 and vanishing beyonx,; see Fig.
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1(a). In marked contrast, the SC order paramdéx) shows  mainly the consequence of the projection, which imposes the

a nonmonotonic doping dependence; see Hig). 3 no double-occupancy constraint, rather than of other aspects
(4) The nonmonotonic SC order parameter naturally giveof the wave function or details of the Hamiltonian.
rise to the notion of optimal doping=0.2 at which super- Three appendices contain technical details. Appendix A

conductivity is the strongest. We explain in detail in Sec. V Bdescribes the canonical transformation and its effect on vari-
this nonmonotonic behavior and, in particular, how strongous operators used throughout the text. Appendix B contains
correlations—and not a competing order—lead to a suppresietails about the Monte Carlo method used and various
sion of superconductivity ag— 0 despite the presence of checks on the program. Finally, Appendix C is a self con-
strong pairing. tained summary of the slave boson mean field theory calcu-
(5) We predict a nonmonotonic doping dependence for thdations with which we compare our variational results
SC coherence lengtl,, which diverges both as— 0" and  throughout the text.
asx—Xg, but is small, of order few lattice spacings at opti-
mal doping; see Fig.(®) and Sec. V C.
(6) We study the momentum distributiarik) and its dop-

ing dependence in Sec. VI, and find that the “Fermi surface” |n a field with a literature as large as the hi@hsuper-

derived fromn(k) is consistent with angle-resolved photo- conductors it is important to try and make a clear comparison
emission spectroscogARPES experiments and very simi- of our approach and its results with those of other ap-
lar to the noninteracting band-theory result. proaches. In this section we will briefly endeavor to do this.

(7) Using the singularities of the moments of the elec- First, a few remarks about the choice of Hamiltonian: as
tronic spectral function, we characterize in detail the low-indicated in the Introduction, we wish to explore strongly
lying excitations of the SC state in Secs. VII and VIIl. We correlated one band systems, since this is clearly a minimal
obtain the doping dependence of the coherent wefghhd  description of the cuprates. We have chosen to work with the
Fermi velocity vg of nodal quasiparticle$QP) and make strong coupling Hubbard model and find that the results are
predictions for the nodal QP self-energy. Remarkablyan-  more reasonable than those for the tJ model as evidenced,
ishes axx— 0, howeverp is essentially doping independent e.g., in the comparison of the momentum distributions of the
and finite asx— 0. Our prediction$for the magnitudes and two models[see Fig. €a)] and well-known differences in
doping dependence of the nodabndvg have been verified sum rules. These differences arise in part because in the tJ
by ARPES experiments as discussed in Sec. VIII. model certairt?/ U terms(superexchangeare retained while

(8) We demonstrate, using moments of the electroniothers (three-site hops discarded. More importantly, the
spectral function, that strong correlations lead to large incoCoulombU is treated asymmetrically in the tJ model: it is
herent spectral weight which is distributed over a large entarge but finite in the orded~t?/U term retained in the
ergy scale. Specifically, we relate our variational parameteHamiltonian but set to infinity insofar as the upper cutoff and
Aalx) to an incoherent energy scalekat (,0) in Sec. IX.  other operators are concerned as discussed further in Sec. Il.
This motivates us to comparkg,,, with the incoherentsr, 0) However, these differences may well be matters of detalil.
“hump” scale in ARPES. As seen from Fig. 8, once we scale The more important point is that no variational calculation
A, to agree with the data at one doping value, we findcan eveiprovethat the Hubbard or tJ model has a SC ground
excellent agreement between the two for all doping levels. state in some given doping and parameter range. While some

(9) We compute in Sec. X the total optical spectral weightnumerical studies hint at a SC ground state in the tJ nfodel,
Do @and the low frequency optical spectral weight or Drudesuch studies, which attempt to improve upon a variational
weight D,,,,; see Fig. 10s). The Drude weight, which van- wave function, are naturally biased by the choice of their
ishes with underdoping, is in good quantitative agreemenstarting state. More direct numerical attatRk$ on these
with optics experiments. models have been unable to provide unambiguous answers to

(10) We predict that the Drude weigh,, ~Z nodal QP  this question for both technicgfermion sign problem and
weight, in the entire SC regime, which could be tested bysmall system size@sand physicalcompetition between vari-
comparing optics and ARPES experiments. ous ordered states at low dopjngasons.

(11) We use the calculation db,,, to obtain an upper The exact ground state very likely depends sensitively on
bound on the superfluid density, leading to the conclusiordetails of the Hamiltonian, for instance, presence of small
that the superfluid density vanishesxas 0, consistent with  ring-exchange terms. We are thus less interested here in the
experiments. The underdoped regime thus has strong pairirexact ground state of a particular microscopic Hamiltonian,
but very small phase stiffness leading to a pairing pseudogagnd more in the properties of strongly correlated supercon-
aboveT,. ducting wave functions. Motivated by our wotk,aughlint?

It had not been realized that such a wealth of informatiorhas recently inverted the problem to find the Hamiltonian for
can be extracted from variational wave functions. Our workwhich a certain correlated SC wave function is the exact
permits useful comparison with, and predictions for, a vari-ground state.
ety of experiments. Further, as we will emphasize later in the In any case, it is clear that one needs to study Hamilto-
text, many qualitative features of our results in the undernians like the Hubbard model in which the largest energy
doped region, such as the incoherence in the spectral funseale is the on-site Coulomb correlation. The key question
tion and the doping dependence of quantities like the SGhen is how one treats this, or indeed any, strongly interacting
order parameter, nodal QP weight, and Drude weight aréwo-dimensiona{2D) Hamiltonian. The two approaches ex-

Il. COMPARISON WITH OTHER APPROACHES
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plored in detail in the literature are variational wave func- We write C=-%, ., ; t,r,c:rocr,,, in real space, and set the
tions and slave bosons. Variational Gutzwiller wave func-hopping t, .=t for nearest neighborst, ,=-t’ for next-
tions were introduced in the first paper of Anders@md  nearest neighbors artg, =0 for other(r,r’) on a square
extensively studied by the Zurich and Tokyo grotiB$®>'®  |attice. This leads to the dispersior(k)=-2t(cosk,
and others using both exact Monte Carlo methods andcosky)+4t' cosk, cosk,. The need to include & >0 term
Gutzwiller approximations. The primary focus of these stud-in the dispersion is suggested by modeling of ARPES
ies was the ground state energetics of various competingat1.22 and electronic structure calculatiofss.
phases, and in fact-wave superconductivity was predicted  we will focus on the strong correlation regime of this
by an early variational calculatich. model, defined by >t,t’ and low hole doping, where the
Our work builds upon these earlier studies but goes bequmber density of electronén)=1-x. Thus x=0 corre-
yond them in the following aspectgl) We propose a wave — gnongs to half filling, with one electron per site. To make
function in which we first fully project out doubly-occupied g antitative comparison with the cuprates, we choose repre-
sites and then back off frod=c using a canonical trans- gentative valuest=300 meV,t'=t/4, andU=12. The val-
formation. (2) We focusnot on the energy, which can cer- o5 oft andt’ are obtained from band theory estimatesets
tainly be further improved by additional short-range Jastrowne scale of the bandwidth, while the choice(tfe sign and
factors, but rather on various experimentally observablggiue of t' controls mainly the shape or topology of the
quantities.(3) We exploit sum rules to write frequency mo- «rermj surface” as shown later in Sec. VI. A nonzetalso
ments of dynamical correlation functions as equal-time corgngyres that we break bipartite symmetry, which can be im-
relators which can be calculated within our methet).We  yortant for certain properti€d. The CoulombU=12 is cho-
exploit the singularities of moments to extract informationgeny sych that the nearest-neighbor antiferromagnetic ex-
about the important low-lying excitations: the nodal q“aSi'change coupling=4t2/U=100 meV, consistent with values
particles.(5) Through the study of moments, we also extractoptained from inelastic light scatteriffgand neutron scatter-
information about incoherent features in electronic spectrajyg experiment$27 on the cuprates. There are no more ad-
functions, which are an integral part of strongly correlated;siaple parameters ontet’, andU are fixed.
systems and have not been studied much theoretically. The Hilbert space of the electrons described by the Hub-
Throughout the textand in Appendix Gwe compare our  parg model has four states at each dig:[1), 1), and| ).
results with those obtained within slave boson method meagyany-hody configurations can then be labeled by the total
field theory (SBMFT).1%7 The chief advantage of this ap-  mper of doubly occupied sites in the lattibe=, NNy .-
proach is its simplicity but there are important questions the |argeU limit we focus on the low-energy subspace
about its validity, especially the approximations of treatingyith no doubly occupied site9=0. Towards this end we
the no-double occupancy constraint in an average manngjise the canonical transformation, originally due to Kéhn,
The resulting answers for the overall phase diagram in thenq sypsequently used in the derivation of the tJ nf8del
doping-temperature plane are very suggestv@However,  from the largeU Hubbard model. We discuss this transfor-
there are major problems: the fluctuations about the meagation in some detail since it is used to define our variational
field, which are necessary to include in order to impose thgyaye function as discussed in the next section, and it will
constraint reliably, are described by a strongly coupled gauggyso pe important in understanding the differences between
theory over which one has no control, in genéfain view i pbard and tJ results.
of this, the very language of spinons and holons, which are The pitary transformatid=3° exp(iS) is defined so that

the natural excitations at the mean field level, is suspect sinc - . .
these are actually strongly coupled degrees of freedom rath&h® transformed Hamiltoniaf! = exp(iS)7 exp(~iS) has no

than forming a “quasiparticle” basis in which to solve the matrix elements connecting sectors with different do_uble oc-
problem. The same conclusion is also reached by comparing'PancyD. For largeU, we can determin& perturbatively
SBMFT results with the corresponding results from ourin (t/U), such that the off-diagonal matrix elements %f
variational calculation where the constraint is imposed exbetween differenD sectors are eliminated order by order in
actly; see Sec. VIIl and Appendix C. In our approach we(t/U).
always work in terms of the physical electron coordinates.  Following Ref. 30, we write the kinetic energy &S
=Ko+K_1+K,1, WherekC, acting on a state increasésby
n. Thus, K, conservesD, K_; leads toD—D-1 andK,,
leads toD—D+1. Defining the hole number operatbr,

A minimal model for strongly correlated electrons on a=(1-n,,) ando=-0, we find
lattice is the single-band Hubbard model defined by the
Hamiltonian

Ill. MODEL

_ t t
Ko== 2 tolnscl coronis+hach coohesl,

rr'o

H=K+Hin =2 k)t U2 nne. (1)
k,o r
The kinetic energyC is governed by the free electron dis-
persione(k), andH;,; describes the local Coulomb repulsion
between electronsnm:cfgcm is the electron number opera- K== > t,r,n,;c;r(,cr/(,hr,;,
tor. rrlo
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Ka=— > tyhach,Coonps (2)  wave functiof® with cp(k):vk/uk:Ak/[gk+V’§§+Aﬁ]. The
two variational parameterg,,, and A, ,, enter the pair wave
function ¢(k) through & =e(k) =y and A=A, (cosk

rr’o

The resulting transformation t0(t/U)“ is —cosk,)/2. Since the wave function is dimensionless, it is
1 1 important to realize that the actual variational parameters are
iS=igdl+igd= U(IC+1—IC_1) + @([ICH,ICO] the dimensionless, anduv,, or equivalently the dimension-
less quantitieStiyg= uyadt and Ay, =Aya/t.
+[K-1,Ko)). ) The numerical calculationevhose details are described

in Appendix B) are done in real space. The wave function is

Using the expression foB to O(t/U) the transformed written as a Slater determinant of pairs

Hamiltonian in the sector witlD=0 is given by

{rikdr 'j}|‘I’Bcs> = Defle(ri-r 'j)“v (7
=~ trRth’ t t . )
H=Ko= 2 U (M 3C/ ,CReNRFCRy Cr 7o Ny 157) - where{r;} and{r’;} are the coordinates of the spin-up and

rr'.Roa! down electrons respectively, anglr;-r’;) is the Fourier

(4)  transform ofe(k).
We focus on thed-wave state in part motivated by the

Here we have retained all terms to ordéfU. These are of experimental evidence in the cuprates, but also because very

two kinds: (1) Exchange olr J:ntgracnon t'erms of the fo'rm early variational calculatiort$ predicted that the-wave SC
S-S or nn.,, where §'=5c,,7_ _,C;,» With 7 the Pauli

. rolo,o’ . state is energetically the most favorable over a large range of
matrlces(a:x,_y,z). These_ terms arise whewr’ in Eq.(4).  hole doping. It is also straightforward to see, at a mean field
(2) Three-site  hopping terms of the form jevel, that largeU Hubbard and tJ models should favor

hy5Cl . CroNRGCR  Cr Ny g7, Which arise whem #r”. d-wave superconductivi®§ with superexchangé mediating
The tJ model may be obtained from the earlier model ashe pairing.
follows. (i) KeepU/t>1 but finite in’H leading to two-site The effect of strong correlations comes in through the

interaction terms o®)(J) but drop the three-site terms which Gutzwiller projection operatorP=II.(1-n;;n;|) which
are alsoO(J), whereJ=4t?/U, and(ii) takeU/t— in the ellmlnat_es all doubly occupied sites frdrﬁslcs) as woulq be
canonical transformation e$) for all operatorsother than ~ @ppropriate forU/t=c. We back off from infiniteU using
the Hamiltonian, so that these amet transformed. Clearly, the unitary operator expiS) defined earlier, which builds in
these simplifications are not consistent for the Hubbardhe effects of double occupancy perturbatively in powers of
model at anyU/t> 1. However, we may view the tJ model, t/U without introducing any new variational parameters. For
derived in this manner, as an interesting model in its owrfn® most part we will nee to O(t/U), so thats[l] will
right, capturing some of the nontrivial strong correlation Suffice. However, in some calculations, we will need to keep
physics of the largé) Hubbard model. With the constraint the (t/U)* corrections arising frong?l,

on the Hilbert spacey, ,n,,<1 at eachr, the tJ model is To understand the role of efS), note that for any op-
defined by the Hamiltonian erator Q:

(V| QW) = (Wpcd POP|Wpco), (8)

where ézexp(iS)Q exp(—iS). The fully projected wave
(5)  function P|Wgce is an appropriate ansatz for the ground

whered, =4 /U, state of the canonically transformed Hamiltoniahin the

ey S : . ) )
We will compare later our results for the lartyeHubbard sector withD=0. Thus, incorporating the etqiS) factor in

. . . the wave function is entirely equivalent to canonically trans-
model with the corresponding results for the tJ model in ) ~ ) ] i
order to understand the importance of the canonical transfoforming all operatorsQ — Q=exgiS)Q exp(-iS). This has
mation on various operators and of the inclusion of the threelmportant consequences, some of which were noted previ-

site terms irf{. In addition we will also compare our varia- ously in Ref. 7, and which will be discussed in detail later.

tional results with SBMFT for the tJ model. we emphasmg that our wave func_t|on K@) is not the
same as theartially projected Gutzwiller wave function

I [1-(1-g)nyn, ]| ¥ece With an additional variational pa-
IV. THE VARIATIONAL WAVE FUNCTION rameter 6<g<1. Such partially projected states have re-

. cently been reexamined by Laughlin and dubbed “gossamer
Our variational ansatz for the ground state of the high superconductorst? The advantage of such an approach is

superconductors is the Gutzwiller projected BCS wave funciyat py exploiting the invertability of partial projectors one
tion can identify a Hamiltonian for which such a state is the exact
W) = exp(— iIS)P|Wace. (6) ground state. The differences between pr_;lr'tial projection and
our approach are most apparent at half fillixg:0). As we
We now describe each of the three terms in this equationwill show, our wave function Eq(6) describes a Mott insu-
[Wece)=(Ske(k)cy ¢l )V2|0) is theN-electrond-wave BCS  lator with a vanishing low energy opticéDrude) weight at

1 1
Hy=- E '[”/C:(,C,»/U.‘F 52 Jrr/<sr S - annr’)a
'

rr'o
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(@] t

| contrast to simple BCS theorxzvar(x) is not the SC order
. parameter. Its relationship to the spectral gap will be clarified

1 7 ah Jwa in Sec. IX; for now it is simply a variational parameter that
& Tl | - characterizes pairing in the internal wave function.
<7 ?? 1 For x>x.~0.35, Ay,(X)=0, there is no pairing and the
05 _ system has a Fermi liquid ground state, which is expected at
i 1 o sufficiently large doping’ At x=x, there is a transition to a
" o d-wave SC, with the superexchange interaction leading to
L ver i pairing. We have found numerically that the valuexgfis
A [l=a(H)/a
olii.i. .8 AN DN weakly dependent o andt for a range of values around the
0 02 040 02 chosen ones. A similar result is also obtained from slave-
Doping (x) Doping (x) boson mean-field theory in Appendix C. A crude estimate for

_ ] ) _ . X.may be obtained as follows. With increasing hole doping,

FIG. 1.~(a) Doping dependence of the dimensionless variationaly given electron has fewer neighboring electrons to pair with,
parameterd 4 (filled squares (b) Doping dependence of the di- |eading to an effective interactiodz=J(1-4x), where the
mensionless variational paramefey.(x) (filled squaresand the  factor of 4 is the coordination number on the 2D square
“BCS value”Lgcs(x) (0pen trianglepdefined in the text, both plot-  |5ttice. The vanishing o determinesx,=0.25, which is
ted on the scale given on the left-hapdxis. The physical chemical both independent ofl and in reasonable agreement with
potential(in units of § = u/t wheren=d(})/oN (filled triangles 5 jational estimate,~0.35, given the crudeness of the ar-
is plotted on the right-hang-axis scale. gument. ¢ '

_ . _ The optimal value of the second variational parameter
x=0. In contrast, the partially projected Gutzwiller wave 7, (x) is plotted in Fig. ib). It is important to distinguish
function has nonzero Drude weight>at0 and continues t0  this quantity from the chemical potential of the system
be superconducting at half filling. _ =H)/JN. As seen from Fig. (b), u(x)=u/t and Zu,a(X)

The inability of partially projectedstates to describe Mott 5.6 quite different magnitudes and doping dependences, in

insulators at half filling and sum-rule problems for such ,4ked contrast with simple BCS theory, where the two
states are well know?r. As shown in Ref. 35 a calculation of would have been identical.

the optical conductivity based on partially projected states T, ,nderstand the physical meaningzaf,(x), we com-
H o0 _ 'al L]

leads to the (unphysical result [q.dw R_G‘T(“’)‘O_ EVEN  pare it with igcs(X) = uacsX)/t, the chemical potential for

though Res(w) # 0 for w> 0 for Hubbard-like Hamiltonian.  he unprojectedBCS state with a gap oA,a. wecsX) is

The important property of the Hamiltonian used for this re-gefined via the BCS number equatiar 25,02, with n=1
sult is that the vector potential couples only to the kinetic_, &= e(K) - upes and Ek:\ffﬁ‘*Az We find, quite re-

energy which is quadratic in th_e el_ectr_on operators. It Seernr°n‘1arkab|y, that except for the immeézii;te vicinity>of 0, over
likely that the “gossamer” Hamiltonian is not of this type and

t of th i & =~ f Fig.
may avoid the sum rule problem. rlrzg;s of the doping rangfvalx) = kecs() seen from Fig

In this work we have preferred to use €xi5)P, rather
than a partial projection, to build in the effects of a large but
finite U. This permits us to obtain a Mott insulator xat 0 V. VARIATIONAL PHASE DIAGRAM
and avoid the unphysical optical conductivity problem for

the Hubbard Hamiltonian. To determine theT=0 phase diagram as a function of

doping within our variational approach we computg:the
SC order parameter which allows us to delineate the SC re-
A. Optimal variational parameters gime of the phase diagrangii) the spin structure factor

The first step in any variational calculation is to minimize Which allows us to check for antiferromagnetic long-range

the ground state energy)=(W|H|Wo)/(W,|W,) at each order. andiii) the low energy optical spectral weight which
doping valuex. This determines the optimal values of the allows us to determine whether the system is insulating or
conducting. Here we describe in detail the calculation of the

(dimensionlespvariational parameters, o andjuq as func- 5c order parameter and only mention relevant results on the
tions of the hole-doping. From now orXQ) will denote the  gpin structure factor and optical spectral weight, deferring a
expectation value of an operat@ in the normalized, opti-  detailed discussion of the latter to Sec. X. We then discuss
mal state{W). For a two-dimensiona-particle system the  the three phases—resonating valence b@\B) Mott insu-

required  expectation values can be written asjtor, d-wave SC, and Fermi liquid—and the transitions be-
2N-dimensional multiple integrals which are calculated usingyyeen them.

standard Monte Carlo techniqu&sthe technical details of
which are given in Appendix B.

The optimalA,,(X) is plotted as a function of doping in
Fig. 1(a). We find that it is finite atx=0, and decreases The SC correlation function is the two-particle reduced
monotonically with increasing, vanishing beyond a critical density matrix defined by, 4(r-r')=(B! B, ), where the

x=x;=~0.35. We will show in the next section that, in marked B,,=3(c/,cl,; —cf c!,;,) creates a singlet on the bond

A. Superconducting order parameter
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I ]
£ ] F (a)-
0.001 & ol|B 3 0.04 .
o \/-\’—4——<+ (1)2 ] I ]
\ ok 3 0.02 |- .
E Tk ] - ¥ ODLRO
i< L ] [/ parameter Q)
[ e E’_q)g 3 Y A N T
—0.001 alf 3 0 01 02 03,04
- 1 RVB Mott insulator X, Fermi
[T R B ;<—d-wave SC—»} liquid
2 4 6 8
I" —_ I‘ ? T T T I T T T
x-1/2 (b)]
FIG. 2. Plot of the SC correlation functioR,(r-r’), with & 20 & gpai,=vg/Avar__

and S eitherX or § calculated on a %51 system ak~0.07, with
r-r’ alongX. The correlation function saturates td#as indicated
by the dotted line, and defines tdewvave order parameteb.

" Ssc [

FTr T

10

(r,r+a). The SC order paramet@ is defined in terms of
off-diagonal long-range ordgfODLRO) in this correlation: Doping (x)

Fap— +®? for large [r-r’[. The +(—) sign obtained for

all(1) to 1237 indicating d-wave SC. In the more familiar FIG. 3. Phase diagram obtained within our variational calcula-

- _ . tion is shown between panefa) and (b). The phases are a spin-
|f2>(<;$c(i;pha>l|se representation® would - correspond  to liquid Mott insulator atx=0, a correlated-wave SC for G<x <X,
r] '

r+al , . , and a Fermi liquid metal fox>x.. (a) Doping dependence of the

In Fig. 2 we plotF,s(r-r') as a function ofr-r’| for a 4 \yave order parametab(x) showing a superconducting “dome”
hole-dopingx=0.07. For simplicity, we show here the re- \ith optimal doping arouna=0.2.(b) Doping dependence of vari-
sults for F calculated to zeroth order itVU, i.e., using ous length scales: the “pair siz%m;ggmvar is shown as open

exp(iS)=1. We have checked that the much more involvediriangles; the average interhole separatioi’? is shown as a
calculation which keept/U terms leads to only small quan- dashed line; and the SC coherence length min(x 2, ;).
titative changes in the results. We obtain the SC order param-

eter for various doping values and plbtx) in Fig. 3@). In Whydoes the SC order parametervanish at half filling
strong contrast to the variational “gap” paramegy, which  even though the pairing amplitudg,,(x=0) is nonzero? We
was a monotonically decreasing functionxofsee Fig. 1a)],  give two arguments to understand how Mott physios-
we find that the order parametéx(x) is nonmonotonic and double occupangyleads to the loss of superconductivity as
vanishes at botlx=x,~0.35 and aix=0. The vanishing of x—0. First, projection leads to a fixed electron numbgr

®(0) was first noted by Gros in Ref. 4. =1 at each site whex=0, thus implying large fluctuations in
the conjugate variable, the phase of the order parameter.
B. Phase diagram These quantum phase fluctuations destroy SC ODLRO lead-

ing to ®(x=0)=0.

Quite generally, we expect that the order parameted)

For large doping values>x,~0.35,A,,=0 implies that  should be proportional ta,,(x). However, an additionak
there is no pairing and =0 implies that there is no super- dependence arises from projection. The correlation function
conductivity. The ground state wave function for-x; is  F,5(r—r’) involves moving a pair of electrons on adjacent
then a Landau Fermi liquid. This can be explicitly checkedsites to a distant pair of neighboring sites, which should both
from its momentum distribution which shows a sharp Fermibe vacant in order to satisfy the no-double-occupancy con-
surface with a finite jump discontinuity all around the Fermi straint. Since the density of vacant sitesle§ ~x, the prob-
surface. ability to find two holes implieF ~x?, leading to an addi-
tional factor of® ~ x. Putting these two effects together we
getd ~xA,,(x) which agrees remarkably well with the cal-

As x decreases below,, a nonzeroA,,, indicates that culated nonmonotoni®(x).
pairing develops and leads tbwave superconducting order ~ The dome in®(x) seen in Fig. 8) naturally leads to the
characterized byb. The most striking result is the qualitative notion of optimal doping neax=0.2 where SC correlations
difference between the doping dependence of the variationalre strongest. Based on ol=0 calculation, we expect that
Ays and the SC order parametér AlthoughA,,, increases  the transition temperaturg(x) should correspondingly also
monotonically with underdopingi.e., decreasingx), ® exhibit nonmonotonix dependence, with a maximum at op-
reaches a maximum neae 0.2 and then goes down to zero timal doplng The SC dome is thus determined in our varia-
asx—0. We shall show later in Sec. X that the superfluid tional calculation by loss of pairing on the overdoped side as
stiffness also vanishes as- 0. A4 Vanishes beyond, and by the loss of phase coherence

1. Fermi liquid (x>x,)

2. d-wave superconductof0<x <X.)
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(as we will further substantiate later in Sec) &ue to Mott  freedom in our trial state, but our primary focus here is a
physics atx=0. detailed characterization of the simplest description of a
We emphasize that we dmt need to invoke any compet- strongly correlateguperconductingtate.
ing order parameter at smad] to explain the loss of super- We should also note that the ground state energy of the
conductivity at low doping. The high-energy Mott constraint our spin-liquid state at=0 is within few percent of the best
of no double-occupancy forces this on us, and competingstimates. The best way to present this comparison to look at
orders(such as antiferromagnetism or charge oydehich  the spin correlationy=(S; -S;/) between neighboring sites
may emerge at low energy scales aat the primary cause r and r’ at half filling. For our state we find
for the loss of superconductivity at small vy=-0.313+£0.002. For comparison, the best estimate
We can also crudely estimate the “condensation energyfor the 2D nearest-neighbor Heisenberg model is
by calculating the energy difference between the projected=-0.3346+0.0001 from Green's function Monte Carlo
SC ground state and the non-SC state defined by the prealculations’? while a classical Néel state has—0.25. For
jected Fermi gas. The vedefinitionof “the non-SC ground the nearest-neighbor hopping Hubbard model in the large
state” is fraught with difficulty. However, we feel that the limit, the ground state energy per siteBg=2J(y—-1/4) at
projected Fermi gas state is a physically reasonable candidateilf filling. Further neighbor hopping leads to additive cor-
on (and only on the overdoped sidei.e, forx=0.2. rections of orderd’/J=(t'/t)2=1/16 for ourchoice of pa-
Computing the ground state energy difference betweefgmeters.
the projected SC and the projected Fermi gas, we find that it

is the antiferromagnetiCAFM) superexchange term i N _
which drives the SC condensation energy. Our preliminary C. Phase transitions and correlation lengths

estimate of the condensation energy at optimal dofig  The variational wave function Eg6) describes the three
=0.2) is 22+4 K per unit cell. Given the crudeness of the phases discussed earlier, and our approach also gives inter-
estimate, particularly in the overestimate of the “normalesting information about the quantum phase transitions be-
state” energy as discussed later, it is not surprising that thigveen these phases. We find that there are diverging length
result is much larger than the experimental value of ordekcales in the SC state as one approaches the Mott insulator at
1 K per CuQ plaquette?®“°It should be emphasized that the x=0 and also the Fermi liquid metal beyord

projected Fermi gas has no variational parameters at all and The internal pair wave functiopa(k)=v,/u,, or more cor-
therefore leads to a rather poor energy estimate even fgctly the related quantity,u,, defines a pair-Size
overdoping. We will discuss details of the condensation en=,2/A,,, wherev? is the bare average Fermi velocity. Pro-
ergy calculations elsewheféThe condensation energy rela- jection is not expected to affect the pair-size mugh;, di-

tive to the staggered flux state in the optimal and underdopegerges atx, and decreases monotonically with decreasing

regime has been discussed in Ref. 42. hole doping as the pairing becomes progressively stronger.
_ The pair size remains finite at=0, where it defines the
3. Mott insulator (x=0) range of singlet bonds in the RVB insulator, which is very

At half filling (x=0) ®=0 implying that the undoped state short, of the order of thf: lattice spacing. Note that in con-
is nonsuperconducting. We will show below in Sec. X that itsverting the dimensionless, ,, to an energyneeded to define
low frequency integrated optical spectral weight vanisheshe pair sizg we need to use the scale of either J (which
and thus it is an insulator. we have chosen to be 300 and 100 meV, respechivéty

A careful finite size scaling analysis of the spin structureSec. IX we will discuss this question in detail; here we sim-

factor s_hows that thex=0 is a critical state exhibiting ply chose AvaFthan since in any case we want to get a
algebraic decay of AFM spin correlations: (§S)  |ower bound on the coherence length.
~(=1)""v/|r[¥”2. These results will be presented elsewfiere A second important length scale is the average interhole
along with detailed discussions of other competing order paspacing 14/x. At shorter distances there are no holes, no SC
rameters at low doping. order can develop and the system effectively looks like the
The variational state at=0 is an insulator made up of a x=0 insulator. The SC correlation lenggy. must necessarily
superposition of singlet pairs: sindg,(x=0) is nonzero, the satisfy &= ma><(§pai,,1/\s’x). As shown in Fig. &), this
function ¢(r —r’) describes the singlet bonds in this state.bound implies that,. must diverge both in the insulating
The Gutzwiller projection prevents this liquid of singlet pairs limit x— 0 and the metallic limix— x;, but could be small
from (supejconducting, and th&=0 state is a RVRRef. 20  (few lattice spacingsnear optimal doping.
or spin-liquid Mott insulator. The divergence o&,{(x) asx—0 could also be tested in
The form of the wave function studied here apparentlyexperiments designed to measure the conductixity, ) in
does not have enough variational freedom to exhibit brokeminderdoped SC's, atonzero momenturg. We expect sig-
spin-rotational or translational invariance to describe thenificantq dependence at low, with the conductivity rapidly
Néel AFM state which is known to be the experimentalvanishing forq> ¢ as insulating behavior is recovered. An-
ground state of the undoped cuprate materials and also bether important question related to the proper definition of
lieved to be the ground state of the 2D largeHubbard the correlation length concerns the vortex core radius as
model at half filling. We plan to study in the future the com- function of dopingx. This problem deserves careful study
petition between SC and AFM by adding more variationalusing Gutzwiller wave functions, since th¥1) slave boson-
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BCS maximum(not shown, both are very similar to thaorinter-

acting FS that would have been obtained from the free dis-
persione(k). For this reason we call such contours the inter-
acting Fermi surfacé These similarity between the
interacting and noninteracting FS is closely related to the
x=0.00 approximate equality ofigcs and the variational parameter
' Myar discussed in Sec. Il B.
x=0.05
‘ center to the zone corners, the overall “topology” of the mo-
x=0.18 mentum distribution is not qualitatively changed.

To further see the extent to which strong correlations af-
For t'=t/4, the noninteracting FS and the interacting
“FS” both show a change in topology from a large hole-like
barrel centered dtr, 7) for smallx to an electron-like FS for
x=0.28

with that obtained from simple BCS theory. The BCS result
n(k):uﬁ using optimal valuea, ., and .= ugcs/t is plot-
ted in the right panel of Fig. 4. While projection leads to a
transfer of spectral weight.e., n(k) intensity] from the zone

fect the momentum distribution, we compare thi) ob-

tained from the projected wave functions in the left panel
i x=0.22. The precise value at which the topology changes
depends sensitively on the sign and valug’ofSuch a to-

x=0.28

B L pology change has been clearly observed in ARPES data on
FIG. 4. Grayscale plotélack= 1, white=0) of the momentum La,,SrCu0, (LSCO 46 and less obviously in

distribution n(k) at various doping. The left panel shows the :
results of the projected variational calculation. The dashed lin Bgigg;;%%gg(lirsgcé%?e%h:g;?;he topology change may

marks the contour on whialk)=1/2, which closely resembles the . . .
noninteracting Fermi surface. The right panel showsnitke of the In later §ectlpns yve W.'" return .to a_ detailed studyngk) .
along special directions in the Brillouin zone, where we will

unprojected BCS calculation at the corresponding doping value. . -
see that strong correlations play a crucial role, even though
they appear to be not very important insofar as gross features

gauge theory approach predicts that the vortex core size dh’ke the topology of the Fermi surface is concerned.

verges as 1yx as x— 0,2° while an SU2) approac sug-
gests a stronger X/divergence.

It is clear that we must carefully distinguish between vari- VIl. SPECTRAL FUNCTION MOMENTS
ous “coherence lengths,” which are the same in simple BCS A variational wave function approach is limited to the
theory up to factors of order unity, but could be very differ- caicylation of equal-time correlations and thus interesting
ent in strongly correlated SCs. Only the result of a detailedyynamical information would, at first sight, seem to be out of
calculation can reveal which coherence length is relevant fofaach. We now show that this is not always true. First, the
a particular experiment. frequency moments of dynamical correlations can always be
written as equal-time correlators, and this in itself can give
very useful information as we shall see in the following sec-
tions. Further, one can obtain much more detailed informa-
Next we study the momentum distributiom(k) tion, when the moments, which are functions onlykofvith

=(c} ). This is calculated by computing the Fourier trans- © integrated out, exhibit singularities kn In the case of the

form of (G, (r ,r’))z(cf(,c,,(). The details of the transformed Single-particle Green’s function, we show that the singulari-

~ ties of its moments af=0 are completely governed by gap-
operatorG=expiS)G exp(-iS) to first order int/U are given o4 quasiparticles, if they exist. petely g y gap

in Appendix A. The one-particle spectral function is defined in terms of

In Fig. 4 (left pane) we show grayscale plots @f(k) at  tha retarded Green function Agk , w)=-ImG(K, w+i0%)/
various doping values ranging from the insulating state at 5,4 has tha=0 spectral representation
=0 to the overdoped SC at=0.28. We see than(k) has
considerable structure at all dopings includixg0. These  A(k,w) = >, [[(m|c] |0)28(w + wy — ) + [{M/Cy,|0)|?8(w
results are qualitatively consistent with photoemission ex- m
periments on the SC cuprate4® and related insulating ~ wgt wn)] )
compound$’ @o Cml -

In a strict sense there is no meaning to a Fermi surfacélere |m) (and w,,,) are the eigenstatggnd eigenvalugsof
(FS) at T=0 since the system is either SC or insulatiagy (7 —uN) with N the total number of particles and all ener-
x=0) for 0=<x<x.. Nevertheless it is interesting to note that gies are measured with respectito
if one plots either the contour on whictik)=1/2 (shown as One can consider moments of the full spectral functfon,
a dashed line in Fig. 4 or the contour on whidin(k)| is  but for our purposes it is much more useful to consider mo-

VI. MOMENTUM DISTRIBUTION
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Ak,0) Mo(K) =n(K) =Z6(= &) + ...,

Z -~ o~
k <kg Mi(K)=Z&EO(- &) + ..., (12

where the terms omitted are the nonsingular contributions
from the incoherent piece.
It follows that, precisely ak=kg, My(k) has a jump dis-
Zt continuity of Z and dM;(k)/dk has a discontinuity oZuvr.
k=kp | ) Thus, studying the moments 6i(-w)A(k,w) allows us to
/ extractZ andvg from singular behavior oMy(k) andM(k),
- while kr can be determined from the location kn space
where this singularity occurs.
fZ It is worth emphasizing what has been achieved. In
k > kg strongly correlated systems, interactions lead to a transfer of
/ spectral weight from coherent excitations to incoherent fea-
: tures in the spectral function. The values Mf(k) are, in
0 ® general, dominated by these incoherent featgwdsch we
will find to be very broad in the cases we examinbut
FIG. 5. Schematic plot of the spectral function when gaplessyeyertheless their singularities are governed by the gapless

quasiparticles are dispersing across the chemical potent@ll,  coherent part of the spectral function, if it exists. We exploit

with a quasiparticle weight and velocityve. The solid(dashedl — nage results below in our study of nodal quasiparticles in the
lines indicate the occupiequnoccupiedl part of the spectral d-wave SC state

function.

ments of theoccupied partof spectral functiorf(w)A(K , ), VIIl. NODAL QUASIPARTICLES
where f(w) is the Fermi function. This is also the quantity  There is considerable evidence from ARPE®S55 and
measured in ARPES experimefitsAt T=0, f(0)=0(-®)  transport experimerfi&8 that there are sharp gapless QP
and only the second term in the spectral representation Colxcitations in the low temperature superconducting state
tributes: @ (-w)A(k , ) = (M|, 0) > 8w — wo+ wpy). along the nodal directiof0,0)— (r, ). These nodal exci-

The ¢th moment of the occupied spectral function tations then govern the low temperature properties in the SC
M (k) =2, dww’A(k, ) can be expressed as a ground statestate. In this section we show that our SC wave function
correlator following standard algebra. We will focus on thesupports sharp nodal quasiparticles and calculate various
first two moments in what follows. These are given by properties such as their locatidp(x), spectral weighZ(x),

and Fermi velocityvg(x) as a function of doping and com-

0 . o .
Mo(K) :j dwAK, @) = D [(mle,|0)2=n(k), pare with existing experiments.
© m

A. ke(x) and Z(x)

0
- - _ 2 In Figs. §a) and &b) we plot the momentum distribution
Ma(k) f_w daowAk, ) % (0 = o) [(miCies O (black squaresn(k) along (0,0) — (ar, ) for two different
ot doping levels. We see a clear jump discontinuity which im-
=(Col koM = D), plies the existence of sharp, gapless nodal (Nste that
:<CEU[CKU.H]> - un(k). (10) §uch a discontinuity isotlobserved along any other direction
in k space due to the existence ofi-avave SC gap.We thus
We next describe the characteristic singularities in theseletermine the nodad-(x), the location of the discontinuity in
moments arising from coherent QP excitations; the result fop(k), and the nodal QP weiglt from the magnitude of the
the momentum distribution is very well known, but that for jump in n(k).5°
the first moment seems not to have been appreciated before. we find that the nodat=(x) has weak doping dependence
In the presence of gapless quasiparticles, the spectral funggynsistent with ARPE46 and at optimal dopingke

tion has the form =0.69 A1, which is close to the ARPES value of
- 0.707 A 150 As already noted while discussing Fig. i, is
AK,w) =Z8(w = &) + Ak, o), (1) not much affected by interaction, and noninteractibgnd
) — _ theory) estimates fokg are accurate.
plotted schematically in Fig. 5. Hei2 is the coherent QP In contrast, we find that interactions have a very strong

weight (0<Z=1) and §=ve(k—kg) is the QP dispersion effect on coherence: the QP spectral weigle considerably
with kg the Fermi wave vector andg the Fermi velocity. reduced from unity and the incoherent weigtit-2) is
Anc(k, w) is the smooth, incoherent part of the spectral func-spread out to high energies. We infer large incoherent line-
tion. It is then easy to see from E@LO) that widths from the fact that, even at the zone ceriker(0,0)
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! e K, (a) fon Kp (b} L unusual, although not forbidden by any exact inequality or

Eowd 1f X 1 sum rule. Further, the tJ mode(k) is ak-independent con-
0.5 7980 qeoa] [ E 1o stant equal to one half a&=0. However, we find that thg U

E Lk 0°°7] corrections incorporated in the &) factor in the Hubbard
(005 | o] k0,18 " ea i i ing i i

000y K o (00 K o ° model, which arise from mixing in states with double occu-
':(C>' T3 pancy into the ground state, lead to a nontrivial structure in

05 & v B n(k) at all x includingx=0 and also eliminate the nonmono-

__,_/Z/—S‘E—: tonic feature neakg. At x=0 [see Eq(B2) in Appendix B|
N ] thet/U corrections arise from short-range antiferromagnetic
0.1 0.2 03 spin correlations. These correlations are expected to persist

Doping (x) even away from half filling although they get weaker with

FIG. 6. (a), (b) The momentum distributionn(k), along the ~ NCr€asingx. . )
nodal direction(0,0)— (r, ) (black squares The white squares Finally we compare our result faf(x) with that obtained
are results for the tJ model, and correspond to ignatiycorrec- ~ from SBMFT. In Fig. Gc), we also plot the SBMFT result
tions in Eq.(A5). The nonmonotonic behavior af(k) nearks is  Z°°=x and findZ(x) >Z°%x), i.e., the SBMFT underestimates
removed on including?(t/U) terms. The discontinuity im(k) at ~ the coherence of nodal QPs. To understand the significance
k=k signals gapless quasiparticles with a weighdetermined by  of this difference, we must look at the assumptions of SB-
the magnitude of the jumgc) Doping dependence af compared  MFT. (1) There is a full “spin-charge separation,” so that the
with ZsP=x from slave-boson mean-field theory. spinon and holon correlatompletelydecouple, i.e., fac-

which is the “bottom of the band[k=(0,0)]~0.85 (for torize. (2) There iscompleteBose condensation of the ho-

x=0.05, implying that 15% of the spectral weight must have Ionsr.](|j<b>t| ﬂ)](' §3)fThe Sr?lfrilolg rg;n:/enéugsdgén\llavlijtaon _ccr>rr]re
spilled over to the unoccupied side>0. A second indicator sponds 1o that of anean-iie ave a Jump

inewi i i - i« Zsp=1 along the nodal direction. With these assumptions, the
fl I dths is the magnitude of the first moment dis-sp
gusasrgs |£§;/_VI $ 15 the magnituce of the first moment cis jump inn(k) is just given byZ*"=|(b)|?Zs,=x. Conditions(2)
The doping dependence of the nodal QP weBht) is and(3) are definitely violated as one goes beyond the mean

shown in Fig. 6c). The most striking feature is the complete field approximation. However, we then exp¢§¢1>|2<x and

loss of coherence as— 0, with Z~x as the insulator is Zsp<1 both of which lead to &urther decreasén Z*". Thus,
approached. We can understand the vanishing(gf as x the observed inequalit®(x) > ZS%(x) implies that assumption
—0 from the following argument. A jump discontinuity in (1) must also be violated when the constraint is taken into
n(k) leads to the following long distance behavior in its Fou-account by including gauge fluctuations around the SBMFT
rier transformg(r):<c3(r)c(,(0)>: a power law decay with saddle point. Inclu5|on_of such gauge fluctuations would also
period k'—:l oscillations and an overall amplitude &f How- be necessary to obtain the mcoherent_ part of the spectral
ever, forG(r) to be nonzero alarge r in a projected wave function. We thus conclqde that_ the spinons and holons of
function, we need to find a vacant site at a pdiftaway SBMFT must be strongly interacting and their correlator can-

from the origin. This probability scales asthe hole density, not be factorized.
and thusZ~ x. Near half filling we expect thix dependence

0.25

<

due to projection to dominate other sources g&f B. Nodal quasiparticle velocity v(x)
dependenc@! in the same way as the discussion of the order

parameteid(x) (see Sec. V Band we see why ~x for x The first momeniM (k) of the occupied part of(k, w) is
<1. plotted in Fig. 7a) as a function ok long the zone diagonal

After our theoretical predictidhof the nodal QPZ(x), (0,0 — (m, 7). We note that, eveat k-, the momeni,(kg)
ARPES studies on LSC®have been used to systematically lies significantly beloww=0: for x=0.18 it is 200 meV be-
extract the nodaZ as a function of Sr concentration The low the chemical potential. This directly quantifies the large
extractedZ’s are in arbitrary units, but the overall trend, and incoherent linewidth alluded to earlier.
particularly the vanishing aZ asx— 0, is roughly consistent We have already established the existence of nodal quasi-
with our predictions. We should note however that under{articles, so they must lead gngular behaviorin M;(k)
doped LSCO likely has a strong influence of charge and spimith a slope discontinuity oZvg at k.. We can see this
ordering competing with the superconductivity. While this clearly in Fig. 1a) and use this to estimate the nodal Fermi
physics is not explicitly built into our wave function, the velocity vg, whose doping dependence is plotted in Fidp)7
vanishing ofZ with underdoping is a general property of The large error bars on thg estimate come from the errors
projected states as discussed earlier. involved in extracting the slope discontinuity M;(k).

We next contrast our results with those obtained for simi-  First, we see thaig(x) is reduced by almost a factor of 2
lar variational calculation on the tJ model, which gives in-relative to its barg¢band structurevaluev? in the low dop-
sight into the differences between the large Hubbard ing regime of interest, which corresponds to a mass enhance-
(black squargsand tJ modelgopen symbols in Figs.(6)  ment due to interactions. At large=0.5, deep in the Fermi
and @b)]. The tJ model results, which set €kp)=1 insofar  liquid regime, thev obtained from the moment calculation
as the operator:f,(r)c(,(O) is concerned, lead to an(k) agrees with the bare velocity, which also serves as a non-
which is a nonmonotonic function d€. This is somewhat trivial check on our calculation.
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0

requires a dense sampling kf points lying on the Fermi
5 surface, which cannot be achieved for accessible system
sizes which are limited by the computational time. Second, it
is known from experiment8®° that ve/v,>1 (around 15—
20); thus small errors in locating the Fermi surface would
mean that theM,(k) would be dominated by effects of-.
Nevertheless, it would be very interesting to calculaten
the future.
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C. Nodal quasiparticle self-energy

FIG. 7. (a) The first moment of the occupied part of the spectral
function M4(k) along the zone diagondD,0) — (7, 7r) showing
discontinuity ofZvg in its slope,dM,(k)/dk, at k=kg. (b) Doping

The doping dependence of nodal QP spectral wefgk,
and Fermi velocityg(x) obtained earlier, places strong con-

dependence obg, extracted fromMq(k). The error bars here are _stramts on the_s_elf—ener@(k,w) particularly near the.! SCto
associated with fits td1,(k) andn(k) and errors inZ. Also shown insulator transition ax—»O_. Forl_< along the zone _dlago_nal
are the bare velocity? (dashed ling and the QP velocity within (0,0)— (m, m) the gap vanishes in@wave SC and ignoring
slave-boson mean-field theony?” (dotted ling. The experimental the off-diagonal self-energy we can simply write the Green
QP velocity ~=1.5 eV A from ARPES datasee Ref. 51in near  function asG™(k,w)=w-ek)-u-2(k,w), whereX =3’
optimal BSCCO, and experiments indicate that it is nearly doping+2". Standard arguments then lead to the results
independen{see Ref. 58

2=

More remarkably, we see that the renormalizgdx) is
essentially doping independent in the SC part of the phase

diagram, and appears to remain finitexas 0. Thus, as one gs
approaches the insulatornat 0, the coherent QP weight van- VE= z(vg + —> , (13)
ishes likeZ~x, but the effective masa* remains finite. kK
This has important implications for the form of the nodal where the right-hand side is evaluated at the nddew

quasiparticle self-energy which are discussed in detail Iater_.o)
Th I d th k doping d d f th dal™” . .
e value an © wear doping dependence ot the noda From Z~x—0 we conclude thalX'/dw| diverges like

Fermi velocity are both consistent with the ARPES : A
estimaté of v~1.5 eV A in BSCCO. Very recently, our 1/x asx— 0. However, sinceyr remains finite in this limit,

prediction has been tested by ARPES experiments Oﬂwere must be a compens_atin,g divergence _in_Izthée_pen-
LSCOS3 where a remarkably doping independgltuw en- ence of the self-energy with'/ ok~ 1/x. A similar situa-

ergy) vr has been found tion is also realized in the slave-boson mean-field solution
It is also instructive to compare this result with the SB_discussed in Appendix C, even though it is quantitat.ively a
MET resu“véb [dashed line in Fig. (b)] obtained from the poor description of the results fa(x) and vg(x). The. f|rst_
spinon dispersion as discussed in Appendix C. We find thafX@mple we are aware of where such compensating diver-
U's:b is much less than and has considerable doping depen_g'e.nce's appeared is the .normal Fermi |IQUIg to insulator tran-
dence, even though SBMFT does predict a nonzé;Poas sition in the largeN solution 9f thet] model>* :
x—0. Thus, not only do the nodal QPs have more coherence Note that the results obtained here are very different from
than in SBMET they also propagate faster. many other situations where the self energy has nontrivial

Another important nodal quasiparticle parameter is theflependence, bL_’t is essentiamyindependent._ These.include
“gap velocity” v,= (1/kg)JA(6)/ 96| o 1a Which is the slope examples as diverse as electron-phonon interaction, heavy

: ' fermion$® (where the largen* or small v is tied to a small
of the SC energy gap at the no@e= /4 in the first quad- DA . F .
rant of the Brillouin zong Together withk- andur, v, com- Z), and the Mott transition in dynamical mean field the®y.

pletely specifies the Dirac cone for the nodal QP dispersion:
E(k)=\(vek,)?+(vok)? wherek, (k) are the deviations
from kg perpendicularparalle) to the Fermi surface. In a
d-wave SC one expects the singular parAtk , ) O(-w) to We now move away from the zone diagonal and examine
be of the formZv2 & w+E(k)] near the node. Thus the sin- the neighborhood dt=(,0), where the anisotropid-wave
gular part of the first momeri,(k) is given by Z[E(k) SC gap is the largest. Our main aim is to see if we can learn
-vek, ]/2. Fork=0 (i.e., k along the zone diagonathis ~ Something the spectral gap and its doping dependence. The
simply reproduces the slope discontinuity analyzed ear”e,{__nformatlop _avallablfa from groun_d state correle}tlo_n functions
However, setting k, =0, one finds My(k)=-Zuv,|k|/2 is not sufﬁcu_ant to ngorously estimate the excitation gap, so
+smooth, so that crossing the node by moving along thd'e Proceed in two different ways using some guidance from
Fermi surface, one would see a slope discontinuitlijgk) ~ €xPeriments. First, we convert our dimensionless variational
from whichv, may be estimated, in principle. parameterA(x),,, to an energy scale and compare with ex-

In practice, we are unable to extract this singularity fromperiment, and second, we use the information available from
our present calculations owing to two difficulties. First, onethe momentsi(k) andM,(k) along(,0) to (m, ).

IX. SPECTRAL FUNCTION ALONG (a7,0)— (77, 7)
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0 0.2 04 — (ar, ) direction, compared with the unprojected BCS result at
Doping (X) the same\,,, and w5 These results imply that correlations leads to

considerable broadening afik). (b) n(k) plotted for variousx,

FIG. 8. The dimensionless variational parametgg(x) of Fig. ~ Showing increasing broadening ®s-0, induced by correlations.
1(a) is converted to an energy scaldA, ,(x), wherea is a dimen-

sionless prefactor of order unity. The corresponding energy ¢cale
meV) is plotted as a function of hole-doping For the choicex

each of the moments individually as a function of doping.
From Fig. 9a) we see that the momentum distribution

=0.8 the energy scaldilled circles agrees well with the ARPES ?(k)o)fgr} (the [))r()égﬁ:egrgéowi?hst;t; Iiorrnutﬁg bljﬁa?s;;g;\g
energy gap in the SC statepen hexagonswhile for «=3 it (filled - . P Proj

squares agrees well with the “hump” scaleopen trianglesin  |Wece With the sameA,,. This suggests that it is not the

ARPES spectra dt=(m,0). All the ARPES results are taken from €nergy gap, but rather the correlation-induced incoherence in
Campuzanet al. (see Ref. 38 the spectral functions, that is broadenim). A direct mea-

sure of the incoherent linewidth in terms of the first moment

As discussed earlier, the superexchange interaction 3calem, (k) will be discussed later. We see that projection leads to
leads to pairing, and in addition as one approaches the insigr significant buildup of spectral weight fé's in the range
lator atx=0, J is the only scale in the problem. In view of (7 0.27) to (a, ), which were essentially unoccupied in the
this it is natural to considefA,,(x) as the energy scale char- unprojectedWgcs) state. Correspondingly, correlations lead
acteristic of pairing. In Fig. 8 we platJA,,(X) as function  to a loss of spectral weight neétr,0). The doping depen-
of the hole dopingx where«a is a dimensionless number of dence ofn(k) for the projected ground state is shown in Fig.
order unity. For the choicee=0.8 we find that we get very 9(b). The increasing importance of correlations with under-
good agreement with the experimentally measured valuedoping is evident from the fact thaik) becomes progres-
and doping dependence of the energy gap as obtained frogively broader with decreasing
ARPES?® In Fig. 1Qa), we plot the first moment of the occupied

Next we use the spectral function momemi&k) and  part of the spectral functiol (k) along(w,0) — (7, 7) and
M, (k) to get further insights into the pairing scale. In the compare it with the unprojected BCS value. We find that
presence of a gap there are no singularities in the momentorrelations lead to a large negative valueMf(k) which
and, hence, we cannot directly hope to get information abouhdicates a large incoherent spectral linewidth.
the coherent part of the spectral function, as we did near the The quantity{w)(k), defined by the ratio of moments in
nodes. However, as argued later, we will use the moments tgq. (14), is the characteristic energy scale over which the
determine a characteristic energy scale for the incoheremjccupied spectral weight is distributed. Quite generally we
part of the spectral function, which we are able to relate, orexpect this to be dominated by the largeoherentpart of
the one hand, to the variational parameigg(x) and, on the the spectral function. We see from Fig.(hpthat this energy
other, to the experimentally observéd,0) hump scale in scale at(w,0) increases with underdoping. This trend arises

ARPESS38 from a combination of an increasing spectral gap and an
The ratio of the first moment to the zeroth moment of theincreasing incoherent linewidth &t=(,0) asx— 0.
occupied spectral function It can be argued that the energy)(w,0) is an upper
bound on the SC gap, even though a very crdde, inac-
dewf(w)A(k,w) curate one. This can be seen by using,|V,) as a trial
_ _ excited state. A more sensible trial state is obtained by pro-
[Ma(k)l/n(k) = = (o)), (14 jecting a Bogoliubov quasiparticle staighere the excitati)(;np
fdwf(w)A(k-w) is created first and then projected, unlike the former case

where this order is reversgdrhis and further improved ex-
naturally defines a characteristic energy saaiék). Before  cited states are currently under investigation and will be dis-
studying this quantity in detail, it may help to first look at cussed in a later publication.
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low energy(Dj,,) Optical spectral weight®,,,, ~ X at low x, which

FIG. 10. (a) The first moment of the occupied part of the spec- implies a Mott insulating state at=0. (b) Parametric plot of the
tral function My(k) along the(r,0)— () direction compared Drude weightDig, vs the nodal quasiparticle weight with hole
with the corresponding unprojected BCS resiM, (k)| is much ~ dopingxas the implicit parameter. We firitho,, ~ Z over 0<X<X.
larger than the BCS result from which we infer that strong correla-
tions lead to very large incoherent linewidth) Parametric plot of agreement with the experimentally observed energy gap and
(@)(K)=|My(K)|/n(k) (see textatk=(m,0) vs A, with dopingx ~ Wwith another choice ofx (=3.0) we find good agreement
as the implicit parameter. The linear relation indicates fatx) is ~ With the ARPES hump scale. We hope that in the future a
related to an incoherent energy scale in the spectral function tudy of variationakxcitedstates will give a direct estimate
(7,0). of the energy gap and also explain the ratio of approximately

3.75(independent ok) between the hump and gap.

From Fig. 1@b) we see that, as a function of doping, the

energy{w)(,0) scales linearly with the variational param-

eterzvag(x), characterizing pairing in the wave function. This

suggests that we should think af,, as a characteristin- A. Total and low energy optical spectral weights
coherent scaldn the SC stateA(k, ) at (,0). A second We next turn to a discussion of the optical conductivity.
argument in support of such an identification comes from thg=or a superconductor the real part of the optical conductivity
observation that at and near0 A, is mainly determined is of the formo(w) = 7€?Ds8(w) + 0y @), Where the conden-
by minimizing the exchange energy. This implies a closesate contributes thé(w) whose strength is the superfluid
relation betweerlocal antiferromagnetic order and short- stiffnessD,, while the regular partre ) comes from exci-
ranged-wave singlet pairing. This is directly borne out by tations. We will now exploit sum rules which relate fre-
correlating the doping dependences A&f,, and the near- quency integrals of(w) to equal time ground state correla-
neighbor spin correlatioqwhich will be described in detail tion functions which can be reliably calculated in our
elsewherg All of these arguments serve to relatg, to high ~ formalism.
energy, short-distance physics, rather than to the low energy FOr a single-band model, the optical conductivity sum
coherent feature such as the quasiparticle gap in the SC staf8l€®®"° can be written as

Motivated by these arguments we compare the energy foc

scale obtained from the variational parametéNA\,ar(x) with
an experimentally observed incoherent scale in the SC spec-

tral function at(7r,0). The natural candidate for the latter is wherem (k) =(62e(k)/ k,dk,) is thenoninteractinginverse
the (m,0) hump in ARPES, where it has been establishednass and we sét=c=e=1. All effects of interactions enter
that the spectral function &tr,0) has a very interesting through the momentum distributiar(k).
peak-dip-hump structure fol <T at all dopings® The The total optical spectral weighD,,(x) plotted in Fig.
sharp peak corresponds to the coherent quasiparticle at thaa) is found to be nonzero for=0 and an increasing func-
SC energy gap, while hump comes from the incoherent pafjon of hole concentratiox in the regime shown. We have
of the spectral function. Two other significant experimentala|so found thaD,,, decreases fax>0.4 and eventually van-
facts about the hump are tha#) While both the hump and jshes atx=1, as it must in thempty bandimit. These re-
gap energies decrease monotonically with hole doping sults, which are not shown here, serve as a nontrivial check
their ratio is roughly doping independent, with the humpgon our calculation.
being a factor of 3.5-4.0 larger than the SC &apb) A It is more important for our present purposes to under-
vestige of the hump persists even abdieon the under- stand why the total optical spectral weight in the insulating
doped side where it is called the “high energy pseudo§&p.” limit (x=0) is nonzero. This is because the infinite cutoff in
In Fig. 8, we find good agreement between the energyne integral in Eq(15) includes contributions due to transi-
scale aJA,(x) with the ARPES(7r,0) hump energy mea- tions from the ground state to the “upper Hubbard band,”
sured by Campuzano and coworkétgrovided we choo$é  i.e., to states with doubly occupied sites whose energies
a=3. In summary, with one choice of (=0.8) we find good =U.

X. OPTICAL SUM RULES AND SUPERFLUIDITY

dw Red(w) = >, mk)n(k) = #D/2, (15)
0 k
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A physically much more interesting quantity is thmv  from the upper to the lower Hubbard band with increasing
frequencyoptical weightD,,,,, often called the Drude weight, hole doping, with a comparatively smaller change in the total
where the upper cutoff in Eq15) is chosen to bé). such  spectral weight.
that JI=t<Q.<U. The question then arises: can one write There is considerable experimental data on the Drude
Dow @s an equal-time correlation? Toward this end it is conweight of cuprates and its doping dependence; see,
venient to work in the “low energy” basis, using the grounde.g., Refs. 71 and 72. This is usually presented in terms of
state wave functiorP|Wgcgo), and explicitly include the ca- the plasma frequency’, defined so that the integral in Eq.
nonical transformation expiS) on the operators. In the (18)is (w;)2/477:D|0W(e2/d)K. Here,d is the c-axis lattice
presence of a vector potential, the canonically transforme@pacing withK planes per unit cell, and the chargeand

Hamiltonian(see Appendix Ato O(t?/U) is given by factors of lattice spacing have been reinstated to convert to
- _ real units’®
Ha= 2 ty €4 [higcl e ohy ] First, the experimentalw,)? vanishes linearly with the
' hole density in the low doping regime, in agreement with our
1 . results forD,,,. Furthermore, the data summarized in Ref. 72
- = X trtge@ARMROh ol cp e gives w,=2.12 eV along thea axis (no chaing for
" 'Rao’ YBa,Cu;Og.5 at optimal doping, i.e.d=1. Using our calcu-

<ol e ha— (16) lated Do, =90 meV (at optimality), together with ac-axis

Rg/=r7o i o lattice spacingd=11.68 A and two planes per unit cell as
This can be used to extract the diamagnetic response oper@Ppropriate to YBCO, we find,=1.67 eV. Thus, both the
tor D= PHul oA doping dependence and magnitudeDgf,(x) are in reason-

dia A . : :
able agreement with optical data on the cuprates.

Dgia= 2 tr [Nzl Crrohe 7l(r = 1)? We predict that the nodal quasiparticZéx) scales with
the Drude weightD,,,(x) over the entire doping range in
which the ground state is superconducting. A parametric plot
of these two quantities witlk as the implicit parameter, is
shown in Fig. 11b), from which we see that thdd,,,~Z
over the entire SC range<Ox<x.. This is a prediction
X(re=ry)?, (17)  which can be checked by comparing optics and ARPES on
d the cuprates. We should note that this scaling must break

wherer, is thex component of . In the low energy projecte ] . 17k , toni
subspace, standard Kubo formula analysis shows that the egpwn atlargew, since ax— 1, £ Keeps Increases monotoni-
cally to unity, whileD,,,,— 0, since it is bounded above by

pectation valug¥scd PDyaP|Vecs) gives bothi() the dia- Dyt Which vanishes in the empty lattice limit.

o

trtRe/
t t
+ E [hrECrgCRanRECR(r/Cr ra! hr’?’]

rm'Roa’

magnetic response to @=0 vector potential andii) the A related scaling has already been noted experimentally.
optical spectral weight in the low energy subspace. ARPES experiment47’5 have shown that the quasiparticle
We thus calculate the low frequency optical spectralyeightz, at the antinodal point neark=(,0) scales as a
weight function of doping with the superfluid density;~ Z, for
Q ~ T<T,.
Diow = —f dw Red(w) = (Vgcd PDyiaP|Vece) s Finally, these results also have interesting implications for
mJ0 the SC to insulator transition as—0, and caution one

(18) against naively interpretin®,q,, ~ Nest/ M* with nek related
L to the size of the Fermi surface. First,»as>0, D,,,, indeed
where the last expression is independent of the cutoff progapishes, but the Fermi surface always remains large, i.e.,
vided J=t<Q.<U. Dy, includes contributions of?(xt) includes(1+x) holes, as seen in Sec. VI. Second, the effec-
from carrier motion in the lower Hubbard band coming from jye massm* does not diverge but remains finite and doping
the first term in Eq.(17), as well as terms o®(xJ) from independent ax—0 (see Sec. VI Thus, one needs to
carrier motion which occurs through virtual transitions to theactually calculate the correlation function definibg,, and
upper Hubbard band coming from the second term in Edeannot break it up into a ratio of individually defined quan-
(17). We refer the reader to Ref. 3 for related discussion. tjties nes andm*. A second question arises about the fate of
Diow(x) obtained in this manner is plotted in Fig.(8L In  the Fermi surface az— 0. Although this contour remains
marked contrast to the total spectral weight, the Drudgarge, the coherent QP weigBtvanishes as the insulator is
weight Dj,,(X) vanishes ax— 0. The vanishing oDy, at  approached ax=0. (We have actually shown this only for
half filling proves that|W,) describes an insulating ground the Z at the node, but expect it to hold everywhere on the
state atx=0. Its linearx dependence at smadlcan be easily Fs)
understood from the form of Eq17) and the no-double-
occupancy constrainusing arguments very similar to the
ones used earlier in understanding the smalkhavior of the
order parameter and nodal QP weighit low doping, we We begin by showing that the Drude weigbi,, is an
find that Dy, is a weak function of, while Dy, increases upper bound on the superfluid stiffneBg and then use this
more rapidly. This reflects a rapid transfer of spectral weighto compare our results with experiments. There are many

B. Superfluid stiffness
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ways to see thab;<D,,, and we mention three. Different ture phase diagram of the cuprates, especially on the under-

ways of looking at this result may be helpful because thejoped side. We have identified the pairing paramatgy(x)
specific form ofDj,,, in Eq. (18) is not well known in the i our wave function with the high energy pseudogap or the
literature. o (7,0) hump feature seen in ARPES experiments; see Fig.
First, we use the Kubo formula for the superfluid stlffnessl(a) and Sec. IX. This has the same doping dependence as
Ds=Djow—A, whereDj,, is the diamagnetic response and i experimentally observed maximum SC energy gap and
the paramagnetic response, is the transverse current- q pseudogap temperatufe 38 On the other hand, the dop-
current correlator evaluated in the low energrojected ing dependence of the SC order parameb¢x) in Fig. 3
b"’.‘S'S' From its speqtral representa?ftml.zo wh|c.h M- closely resembles the experimentl(x). As discussed in
plies Ds=Dion- I.t IS important to emphaslié_that in the Sec. V B, strong correlations supprebs-0 asx— 0. Fur-
abs_en(_:e of pontlnuous_trans_lgtlonal mvana(r_mmer due to ther, our results in the previous section imply that the super-
periodic lattice and/or impuritigsone cannot in general ar- fluid stiffnessD. also vanishes as— 0
— : S "
gue thatAi(T_O()j vams?es. ite th ical ductivi Thus, on the underdoped side the pairing gap will survive
In 0:” second proof, we write the optical cOnductivity i, the normal stafé above the finite temperature phase tran-
sum rule as sition whoseT,, will be governed by the vanishing @f(T).82
Q% 9 While this much is definitely true, a quantitative theoretical
Diow =Ds+ f do—0redw), (19)  calculation of the pseudogap region of the cuprate phase dia-
0" . gram will necessarily involve taking into account additional

with t, J<Q.<U. Since o,eg)=0 it follows that Dg fluctuating orders which are likely to exist.
<D, Finally, it may be illuminating to see this in yet

another way by applying a phase twétto the system along XIl. CONCLUSIONS
the x axis, say, which raises the ground state energy by an
amount SE=D ®?/2. Following Ref. 76 let us make the
variational ansatz

In this paper we have shown that the simplest strongly
correlated SC wave function is extremely successful in de-
scribing the superconducting state properties of higltu-
— i AN prates and the evolution of the ground state from a Fermi
Vo) =e SPexmg NNV ece (20 liquid at large doping, to a-wave SC down to the Mott
) i insulator at half filling. The SC dome does not require any
for the ground state of the system with a phase twist, cho0Ssompeting order, but is rather a natural consequence of Mott
ing a uniformly winding phaseé(r) with 6(r +LX)=6(r)+®.  yusics at half filling. The dichotomy of a large pairing en-
It is straightforward to show that the energy difference be-rgy scale and a small superfluid stiffness is also naturally

tween this state ant¥o) is Dio,®2/2 with Dyo,, given by Eq. explained in our work and leads to a pairing induced
(18). We thus arrive at the variational estimég=<D,,. pseudogap in the underdoped region.

We now use this bound to extract information relevant to We have also obtained considerable insight into the dop-

experimental data on theé=0 superfluid density. First, the g dependence of various physical observables such as the
vanishing ofDj,,, at smallx implies that we geDs—0 as  cpemical potential, coherence length, momentum distribu-
x— 0 which is consistent witluSR experimentS in the un-  ion nodal quasiparticle weight, nodal Fermi velocity, inco-
derdoped regime. Second, we can rewrite the inequality d&serent features of ARPES spectral functions, optical spectral
rived earlier to obtain a lower bound on the penetration deptiyeight, and superfluid density. We will discuss in a separate
)‘EZWh'Ch IS r(glz%ted toDs of a two-dimensional layer via paper various competing orders—growth of antiferromag-
N *=4me?Dy/ h?cd,, whered, is the mean-interlayer spacing netic correlations, incipient charge instability, and singular
along thec axis in a layered compound. Usint=7.5A  cpira| current correlations—that arise in our projected wave

appropriate to BSCCO and our calculated valueDgf, function in the very low doping regime.
~90 meV at optimality and we fina, =1350 A. The mea-

sured value in optimally doped BSCCONs=2100 A (Ref.
78). This agreement is quite satisfactory, given that The
=0 superfluid density is expected to be reduced by two ef- The authors have benefited from interactions with numer-
fects which are not included in our theoretical estimate. Theyus colleagues during the course of this work, and would
first is impurities and inhomogeneti€which are certainly particularly like to acknowledge discussions with Juan-
present in most underdoped sampgie¥, and the second is Carlos Campuzano, H. R. Krishnamurthy, Tony Leggett, and
the effect of long wavelength quantum phase fluctuationgoe Orenstein. They are grateful to Phil Anderson for his
which are estimated to lead to a 10%—-20% suppression of comments on the manuscript and, in particular, for empha-
the superfluid density. sizing to them the importance of dimensionless variational
parameters. M.R. and N.T. would like to thank the Physics
Department of the University of lllinois at Urbana-
Champaign for hospitality and stimulation during the course
of the writing of this paper. Their work at Illinois was sup-
All of our calculations have been done Bt0. We now  ported through DOE Grant No. DEFG02-91ER45439 and
discuss the implications of our results for the finite temperaDARPA Grant No. N0014-01-1-1062. A.P. was supported by
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APPENDIX A: THE CANONICAL TRANSFORMATION

In this Appendix we first sketch the construction of the

canonical transformation operate?f defined in Sec. Ill and

then give explicit expressions for various canonically trans-

formed operator® =exp(iS) Q exp(—iS) that are used in the
paper.

The Hubbard Hamiltoniaiil) may be written as{=/C,
+ K1+ K_1+Hin, WhereC,, have been explicitly defined in
Eqg. (2). In the presence of an external vector potential
=-A, on the link (rr '), the kinetic energy term&,, are
modified viat,  —t, expiA, ). We consider the unitary

transformationHA—>7-lA:eX|iiSA)HA exp(—iSy), where the

subscripts onH and S denote the presence of the vector

potential. We determin&, perturbatively, order by order in

t/U, such thaﬂN-(A has no matrix elements between different

D sectors at each order.

The systematic procedure devised in Ref. 30 may be trivi-

ally generalized to include the vector potential. @t/ U?)
we find the resul§,=S+S with

= S (Kp = K o), (A1)

) 1
15¢!= GalkasuKaal + [Ka-1Kndl),  (A2)
which generalizes the expression in E§) to include the
vector potential.

As explained in Appendix B, in the Monte Carlo calcula-

tion we treat the canonical transformation as modifying the ﬁ(r,r’) =-
operator whose expectation value is then taken in the fully

projected BCS state; see H®).

1. Hamiltonian

Using theiSEf] derived earlier, it is easy to show that the
transformed Hamiltonian in thé®>=0 sector is given to
O(t?/U) by

~ 1

Ha=Kao* U[’CA,+L Ka-1l- (A3)
For A, =0 this reduces to the result of E@t), while more
generally we get Eq(16) which was used in the derivation
of the optical spectral weight.

2. Momentum distribution

The momentum distributiotn, ) is the Fourier transform
of (G (r ,r’))s(c;r(,cr,(,). In parallel with our earlier notation
for K, we may write the operato@ (r,r')=Go+G,1+G_4,
where G,, connects the sectd® to D+n. The transformed

~ 1
Golrr) = Golr.r",0) = 5(K1Gua + GaKun). - (A4)

Writing this explicitly in terms of electronic operators,
with h,,=(1-n,,) ando=-0, we get

Ve — T
Golr,r’) = hrECro'Cf’O'hr’E

1 t
= _ _of _
+ E (trR hRU’CRg-’Cr o'y U’Cr o’Cr '(rhr "o
R,o’
+

ro

+
+ tr'thEC Crr oMy ’EcrrorCer’hR?)- (AS)

Note that the difference between the large U Hubbard and tJ
model momentum distributions shown in Fig. 6 comes en-
tirely from the O(t/U) terms in Eq.(A5), which would be
omitted in calculatingi(k) for the tJ model.

3. First moment of the spectral function

The first momentM;, (k) is given by

M (k) = (0lef LCion HII0) = pa(ni) = (2(K) = )N + Q(K),
(A6)
whereQ (k) is the Fourier transform of

Q(r,r") =U(0|c! ¢ /oN15]0). (A7)

Since() is of O(U), we have to canonically transform it up
to to second order ity U to get the momenit1,(k) correct up
to O(J). Thus, writing Q(r,r')=Qy+Q_1+Q,4, we find
Q,,=0, and in the sector wit®=0:

1 1 1
GQ—1K+1 + mﬂ—l[ICOiKl] + mlc—lﬂolcl-
(A8)

The explicit expression fo?l(r ,r'’") in terms of electron op-
erators is rather lengthy and omitted for simplicity.

APPENDIX B: TECHNICAL DETAILS OF THE MONTE
CARLO CALCULATIONS

The use of Monte Carlo methods in variational calcula-
tions has a long histo?§ and there have been many applica-
tions to Hubbard and tJ models which are referenced in the
text. In this Appendix we discuss various technical points of
the Monte Carlo calculation, includin@) the choice of lat-
tice and boundary conditiondy) the Monte Carlo moves in
the sampling and their implementatio) details about
number of configurations sampled for equilibration and for
averaging data, an@l) various checks on our code.

To implement the Monte Carlo for evaluating expectation
values of operators on our wave function, we find it conve-
nient to work with the fully projected wave function

P|Wgce and canonically transformed operatoré
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this choice. Further checks of our procedure are described
later.

2. Monte Carlo method

To sample configurations for evaluating expectation val-
ues, we use the standard variational Monte Carlo method
using the Metropolis algorithm to generate a sequence of
many-body configurations distributed according to

FIG. 12. Left: Real space picture of the?+1 lattice forL=5,  |P({{r},{r';}| ¥sco|* The Monte Carlo moves used arey
with periodic boundary conditions applied along the opposite edgeghoosing an electron and moving it to an empty site @nd
of the tilted square indicated by dashed linBsght: The k-space  exchanging two antiparallel spins. Starting in fhe 0 sector
Brillouin zone of the *tilted lattice” forL=5. In the calculations these moves conser thus the no double-occupancy con-
reported in this paper we used systems Withl5, 17, 19. straint P is trivial to implement exactly. Also all allowed

states in theD=0 sector(with S*'=0) can be accessed. For
=expiS) Qexp(—-iS). At discussed in Sec. lll, this is equiva- an N-electron system, the moves involve updating the deter-
lent to evaluating expectation values @fin |¥y); see Eq. minant of theN/2x N/2 matrix of Eq.(7). We do this using
(). the inverse update method of Ceperley, Chester, and R&los,
the time for which scales-N?, in contrast to~N2 for di-
rectly evaluating the determinant of an updated configura-
1. Lattice and boundary conditions tion.

1=l 80T

The BCS part of the variational wave function is written
in coordinate space as a Slater determinant of pairs as shown
in Eq. (7). Each element of this determinagptr;;-r;) is the Much of the data were obtained dn=15 (L?+1=226
Fourier transform ofp(k) =v\./u, defined below Eq(6). For  -site) lattices. Some runs were on & 19 (362-sitg lattice

a d-wave statezkzo on the Brillouin zongBZ) diagonals, to reduce finite size errors on the order parameter at over-
which leads to a singularity ip(k) at all k-points|kx|=|ky| doping and for bettek resolution forn(k). We equilibrated
with e(k)—u,o<0. For a numerical calculation it is thus the system for about 5000 sweeps, where every electron is
best to avoid thesd-points by appropriate choice of the Updated once on average per sweep. Typically we averaged
lattice and boundary conditions. Three possible alternativedata over 1000 configurations chosen from about 5000
are: (1) a square lattice with periodic/antiperiodic boundarySWeeps. For some parameter values we performed long runs
conditions; or(2) a rectangular lattice whose dimensions are0f 10° sweeps. Specifically, such long runs were used to cal-
mutually coprime and periodic boundary conditiq®BC); ~ Culate quantities such as the order parameter at certain dop-
or (3) a “tilted” lattice, described further later, with PBCs. ing values to reduce statistical error bars. In most figures the
All three schemes lead to a set lofpoints which avoid the ~€fror bars are not explicitly shown, because the errors from
zone diagonal on any finite system. the stochastic Monte Carlo evaluation are smaller than the

We have chosen to work on a tilted lattice even though iSymbol size.
is perhaps the least intuitively obvious of the three alterna-
tives because it preserves the fourfold rotational symmetry of 4. Checks on the code
the lattice and also does not introduce any twists in the
boundary conditiongwhich might be important in a state
with long range SC orderWe have later checked that our
results for doped systen{ig>0) are not dependent on this
choice by comparing them with optiqi).

The tilted lattice with PBCs was also used in the early,
work of Gros and coworkers?® These lattices have2+1
sites with oddL; an example withL=5 is shown in Fig.
12(a). The corresponding BZ is a tilted square of allowed
points shown in Fig. 1). More generally, the allowe#
points are the solutions of efig,L+ik,)=1 and exjpik L
-ik,)=1. This leads to thgL?+1) solutions: k,=27(mL
-n)/[L?+1] and k,=2m(m+nL)/[L2+1] with m=-(L
-1)/2,...,4HL-1)2, n==(L-1)/2,...,HL-1)2 and the
single additional pointk=(#,#) corresponding to(m,n) =>3.,(s .S, -1%), B1
=((L+1)/2,(L-1)/2). Tae ; (S S =d) (B

Note that thék =0 point is not avoided in this scheme, and 5
we choosep(k=0) to be a very large but finite number, and WhereJy»=4t; ,/U. We can thus compute the ground state
check that we recover standard BCS results independent ehergy in two different ways: either by directly usihgfrom

3. Numerical details

To check our code we have made detailed comparisons
against published results of the ground state erfeigyap-
propriate parameter values. At various points in the text we
also mentioned other checks we have made on the limiting
values of several observables. We have checked that in the
low electron densitynearly empty latticglimit, the quasi-
particle weightZ— 1, our estimated, approaches the bare
Fermi velocity, and the total optical spectral weight vanishes
asx—1.

Here we describe three additional checks we have made
in the x=0 insulating limit. First, it is well-known that at

=0 the canonically transformed Hamiltonidn can be re-
written as the Heisenberg spin model
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Ed. (4), or by calculating the ground state spin correlations+cosk,)+4t’ cosk, cosk,. The next-nearest neighbd¥/J

& -S,,>:3(Sf§,) (from spin rotational invariance in the sin- =1/16 isignored.

glet ground stateand then using EqB1) to get the energy. Following Ref. 17 we make three approximations. First,
s ; a ke a Hartree-Fock-Bogoliubov mean-field approxima-

We have verified that these two estimates agtge W& Ma ,

=(Hag), Which serves as a nontrivial check on our Code.tlon for the S'(r)-S/(r") term. Second, we assume that the

Note that, unlike in the rest of the paper, in the remainder Oposons are fully cond.ensed’é"r'-o S(.) thakb)=x. Third, \{ve .
this Appendix we use the symbal..) to mean the expecta- make the(most drastig approximation that the constraint is

. . . obeyedon averageand not necessarily at each sit&his
tion value in the stateP|Wgco), without the factor of leads to the mean-field Hamiltonian

exp-iS).
Second, the canonically transformed Fourier transform of Hue = 2 [€K) = TNy + > Ak(fletki +h.c), (C2
the momentum distributiong,(r,r’) in Eqg. (A5), may be ko k

related to spin correlations at0 (see also Refs. 7, 83, and
84) as

where
t (1 ‘e(k) = — 2(xt+ 3Jx/4)(cosk, + cosk,) + 4xt’ cosk, cosk,,
~ , _ r ’
~ — AShy _
We have explicitly checked our code by calculat{gg from A= Acosky ~ cosk,)/2.
Eq. (A5) and independently evaluating the spin correlationThe pairing field, ASb:3J|(fITf,,l>|, the Fock field x
(§;+S,/), and verifying the relation in EqB2). :(fIUfr,U), and the “chemical potentialli, are determined

Finally, for the first moment calculation described at thethrough the following set of self-consistent equations:
end of Appendix A we find the following simple result =t

=0. For the cases' =r andr’ #r, we find, respectively, 1.3 d’k (cosk, - cosk,)?
5 J 8) (2m)? = '
Q(rlr) = Gz trzRSrRi (B3)
" =- 1 o (i)(cosk + cosk,)
. =74 @em?\E x v
~ RYr’R
QI r) =t S+ ’erJ (S r+Sr-S:), (B4 K [ &
R k
- S c3
X (277)2<Ek) €3

with S, =(1/4—(S;-S,/)). We have verified that the mo-
ments computed directly using E¢A8) agree with those where & =¢(k) -7 andE, =& +AZ.
obtained using earlier expressions in terms of spin correla- These equations can be numerically solved and the
tion functions, which serves as yet another nontrivial checkyesyits summarized as follows) x(x) andz(x) are smooth
nonsingular functions. In the insulatog(0)# 0, leading
to a finite spinon dispersion determined by(ii) AS(x=0)
is finite atx=0 and its scale is determined purely by(iii )
In this Appendix we first briefly summarize the results of AS(x) decreases with increasing doping, vanishing at a criti-
the SBMFT for the tJ mod&1”and then compare them with cal x=x,~0.35-0.4, which is a weak function df
the variational results presented in the text. Many authors We next calculate various physical quantities within
have used SBMFT with small variations and it is importantSBMFT and compare with our variational results. The
to unambiguously define our notation to make detailed comSC order parameter is given byd=[(c,C.,5)|
parisons. =xAS%(x)/3J where the explicit factor ofx comes from
The tJ model is defined by the Hamiltonian in B&)  |(b)]?=x. The SBMFT thus correctly captures the nonmono-
acting on the Hilbert space with,n,,<1 at each site.  tonjc behavior of®, vanishing in the limitsx—0 and x
FTO"_OWI?Q standardT slave-boson methodolééwe canwrite  _,x~ and maximum ak~0.15—0.2. In the language of SB-
Cro=bif;, where f;, creates a neutral spin-1/2 fermion MFT, although the spinons are paired, the order parameter
(spinon andb/ a spinless charge-boson(holon). The con-  @sx=0)=0 since there are no holons to condense. On the

APPENDIX C: SLAVE BOSON MEAN FIELD THEORY

. . . T o . S : >
straint at each site is novl,f,,fr,+b/b,=1. The Hamil-  qther hand, the SC-Fermi liquid transition on the overdoped
tonian can now be written as side corresponds to the vanishing of the spinon pairing am-

- _ + + f fror pl'tude ASb.
Hu= E e Brfrofer by, +‘]2, [S (r)-Sr) In Sec. VIII we compared SBMFT results for the nodal
o " quasiparticle weight and dispersion with the corresponding
- 711(1 - b;rbr)(l - b:,br,)]. (C1) variational results. Although the SBMFT language of spinons

and holons appears to be very appealing, it would be justified
Heret, =t for nearest neighbors, aridt’) for next-nearest only if the spinons and holons were essentially noninteract-
neighbors, which fixes the bare dispersigiit)=—2t(cosk,  ing particles, at least at sufficiently low energies. Our con-
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clusion in Sec. VII was that this is not the case and thei) Along the zone diagonal the spinan(k)=6(-§,) and
approximation of decoupling the holon and spinon Greenshus the nodal quasiparticle resid#@=x. Thus, Z3°<Z,
functions is not valid in computing, e.g., the nodal quasiparwhereZ is the variational estimatgsee Fig. €c)], and this
ticle residuezZ; see Sec. VIII A. inequality implies the inadequacy of the spinon-holon decou-

Here we give sketch the derivation of these SBMFT re-pling. (i) The quasiparticle dispersion is obtained from the
sults. Within SBMFT the electron Green function factorizespoles ofG(k, w) and this is entirely governed by the spinon
to give G(k,w)=xG(k,w), wherex comes from the con- dispersion. At low doping, the SBMFiF,S:b(x):B.JX+4xt and
densed holons an@; is the spinon Green function obtained is smaller than the variational estimatg(x) [see Fig. )]
from Hye in Eq. (C2) earlier. Note that SBMFT does not and also exhibits much more doping dependence. Despite
capture the incoherent part of the spectral function and alstrge quantitative differences, there is one important qualita-
does not satisfy sum rules. This factorization leads to thdive similarity: both vf:b(x) andvg go to a nonzero limit as
following results for the nodal quasiparticles within SBMFT: x— 0.
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