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We examine the possibility that the large Nernst signal observed in the pseudogap regime of hole-doped
cuprates originates from quasiparticle transport in a state withd-density wave(DDW) order, proposed by S.
Chakravartyet al. [Phys. Rev. B63, 094503(2001)]. We find that the Nernst coefficient can be moderately
enhanced in magnitude by DDW order, and is generally of negative sign. Thus, the quasiparticles of the DDW
state cannot account for the large and positive Nernst signal observed in the pseudogap phase of the cuprates.
However, the general considerations outlined in this paper may be of broader relevance, in particular to the
recent measurements of Belet al. in NbSe2 and CeCoIn5 [Phys. Rev. Lett.91, 066602(2003); ibid. 92,
217002(2004)].
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I. INTRODUCTION

Much of the original interest in the pseudogap phenomena
in high-temperature superconductors(HTSC) stemmed from
the belief that it represented, in some way, a vestige of the
superconducting state,1 and thus could offer insights as to the
latter’s origins. In recent years, however, fluctuations of
other orders, such as spin and charge density waves, have
been detected in some of these materials,1,2 suggesting that a
proper understanding of the pseudogap phase requires incor-
porating these ordering instabilities. A proposal by Chakra-
varty et al.3 goes one step further: according to them the
pseudogap is a consequence of long ranged-density wave
(DDW) order, a pattern of circulating currents. At the mean-
field level, this unconventional density wave order possesses
quasiparticles, and much of its potential for explaining
pseudogap phenomena stems from the changes in the single
particle spectrum due to the breaking of translational
symmetry.4–10

The discovery11 of a large Nernst effect in hole-doped
cuprates posed a new major challenge for the theoretical de-
scription of the pseudogap regime. The Nernst effect(see
Sec. II) is anomalously large in the nonsuperconducting state
of underdoped samples, extending to rather high tempera-
tures aboveTc.

11–14This surprising result contrasts with con-
ventional materials where the effect is generally small in the
normal state.

In superconductors (both conventional and high-
temperature), a large Nernst signal is observed belowTc as
field induced vortices become depinned and float down the
thermal gradient, their motion producing a transverse voltage
by phase slips.15 By continuity, therefore, the observed signal
in the pseudogap may be associated with collective fluctua-
tions of the superconducting order parameter. In this spirit,
Ong and collaborators have interpreted their results as evi-
dence for vortices aboveTc.

11 Recently, a detailed analysis
by Sondhi, Huse, and one of us16 has shown that supercon-
ducting fluctuations can produce a sizable effect in the cu-
prates(see also Ref. 17). Other works18–20 have also sug-
gested, in one way or another, that the Nernst effect is a
result of collective phenomena of superconducting origin.

In contrast, here we consider whether single particle
transport can be a source of an enhanced Nernst signal. This
is done first on rather general terms, which should be appli-
cable to different systems(including spin and charge density
waves). We then consider in detail whether the onset of
DDW order can by itself account for the experimental obser-
vations in HTSC. We also discuss two experiments by Bel
and coworkers, in which a large Nernst signal is observed in
the normal state of NbSe2,

21 and, very recently, in a heavy
fermion compound CeCoIn5.

22

We begin by re-examining the conventional theory of
transport in metals in Sec. II, focusing in particular on the
Nernst phenomena it predicts. In Sec. III we compute the
effects of the DDW order. Experimental results are discussed
in the following section. We close with a short Summary and
an Appendix.

II. GENERAL CONSIDERATIONS

The Nernst effect is the off-diagonal component of the
thermopower tensorQ, measured in the absence of electric
flow and with magnetic fieldB in the ẑ direction (in the
cuprates, perpendicular to the copper-oxide planes). The
thermopower tensor is given by

E = Q · = T = s−1 · a · = T, s1d

wheres anda are the conductivity and Peltier(thermoelec-
tric) conductivity tensors, respectively. The relationQxy
=−Qyx generally holds only when the system has isotropic
transport tensors(e.g.,sxx=syy). In this case, the Nernst sig-
nal is given by

Qxy =
Ey

s− ¹ Tdx
=

axysxx − axxsxy

sxx
2 + sxy

2 . s2d

Here, we follow the sign convention such that the Nernst
signal arising from vortex flow in a superconductor is posi-
tive. We will be mainly concerned with situations where
Qxy~B over a wide range of fields, and therefore concentrate
on the calculation of the Nernst coefficientn=Qxy/B.
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Quasiparticle contribution to the Nernst effect is usually
argued to be small, as it is strictly zero in the simple Drude
model due to the “Sondheimer cancellation”12 between the
two terms in Eq.(2). Generally, in any realistic system, such
a cancellation will be incomplete. In this section we delin-
eate the factors determining the magnitude ofQxy under gen-
eral conditions of validity of the Boltzmann theory of
transport.23,24

Solving the Boltzmann equation at low temperatureT, the
thermoelectric tensora is related to the conductivity tensors
through

a = −
p2

3

kB
2T

e

] s

] m
, s3d

wherem is the chemical potential, and −e,0 is the electron
charge.25 Using Eq.(2), the Nernst coefficient of a degener-
ate Fermi liquid may then be reduced to

n = −
p2

3

kB
2T

eB

] QH

] m
. s4d

Here,QH=sxy/sxx is the Hall angle to linear order in mag-
netic field. The Nernst coefficient is thus encoded in the de-
pendence ofQH on m.

We proceed by assuming a constant scattering timet, in
order to focus on the role of Fermi surface geometry in the
Nernst effect, returning to the details oft below. In two
dimensions and to linear order in magnetic field the longitu-
dinal and Hall conductivities are expressed in terms of inte-
grals over the Fermi surface,

sxx = e2tE d2k

s2pd2vx
2dsek − md, s5d

sxy = −
e3Bt2

"c
E d2k

s2pd2Svx
2] vy

] ky
− vxvy

] vy

] kx
D dsek − md,

s6d

wherev=s]ek /]kd /" is the velocity of the quasiparticle(and
spin and band indices are suppressed).26

It is convenient to rearrange the expression for the Nernst
coefficient, Eq.(4), as

Bn = −
p2

3

kB

e

a2

,B
2

kBTt

"

] Y

] m
. s7d

Here,kB/e<86 mV/K is the only dimensionful factor, set-
ting the natural scale for a thermopower measurement. The
reduction factor involving the lattice spacingfag and the
magnetic lengthf,B=s"c/eBd1/2g encodes the field’s weak-
ness on a scale natural to the system. This is multiplied(apart
from the numerical factor) by the ratio of the thermal energy
and relaxation rate, and by the dimensionless derivative
]Y /]m. The energy scaleY is constructed by formally strip-
ping the weak-field Hall angle of its dependence on magnetic
field and relaxation,

Y =
,B

2

a2

"

t
QH. s8d

For an isotropic Fermi surface of holesQH=vct (with the
cyclotron mass given bym="kF /vF), and Y="2/ma2. Fi-
nally, it is important to note that when]Y /]m.0 the Nernst
coefficient is negative.

We now consider a tight-binding model on the square
lattice with nearest and next-nearest neighbor hopping pa-
rameters(t-t8 model) as a simple, concrete example with
which to explore Eq.(7), and also for future use in Sec. III.
The free electron expression forY suggests a simple way of
approximating the slope ofYsmd by its average over the
entire band,

] Y

] m
=

1

W

"2

a2S 1

me
+

1

mh
D =

1

2
. s9d

Here, me smhd is the electron(hole) mass near the bottom
(top) of the band,W is the overall bandwidth, and the result
is independent of the hopping parameters. Remarkably, this
crude estimate is exceedingly accurate(see Fig. 1) and for
practical purposes]Y /]m is a number of order 1.27 With
]Y /]m<1, the estimate for the Nernst coefficient then boils
down to

n < − 100
kBTt

"

nV

KT
, s10d

where the last expression is evaluated usinga=5 Å. Remark-
ably, this estimate is applicable even in the limit where the
effective band dispersion is essentially that of free particles
(e.g., form.4t in Fig. 1), despite the Sondheimer cancella-
tion. The results for the conductivities(inset of Fig. 1) can

FIG. 1. The energy scaleY (Hall angle in appropriate units) is
compared against the naive estimate of a uniform slope over the
entire band range, from 0 to 2 electrons per site(using the same
hopping parameters as in Sec. III,t8=0.3t; half-filling is at m
=−0.66t). In the inset we presentsxx and sxy in units
se2/"dstt /"d and se2/"dstt /"d2sa2/,B

2d, respectively.
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also be used to extract the components of the Peltier tensor
and to compute the Nernst coefficient via Eq.(2).

Equation(10) suggests that quasiparticles will generally
make a finite, typically negative contribution to the Nernst
coefficient. The magnitude of the effect is controlled by the
productkBTt /". This can be small, e.g., when the scattering
is strong or at low temperatures in the impurity dominated
regime, or large, e.g., in clean systems with only moderate
inelastic scattering. In this latter regime the Boltzmann
theory predicts that the range of magnetic fields over which
Qxy is linear diminishes, with the crossover toQxy,1/B
taking place atvct<1. Although in practice this crossover
between weak-field and large-field regimes need not be sharp
(or simple), in cases where such behavior inQxysBd can be
observed as the temperature is lowered, it can serve as an
independent evidence of coherent quasiparticle transport.28

Up to now our discussion explicitly assumed that all re-
laxation processes can be summarized by a single scattering
time, independent of the energy or momentum of the quasi-
particles. This simplified analysis can be readily generalized
to three dimensions[the factor of 1/2 in Eq.(9) becomes
1/3]. The analysis in the next section proceeds along these
lines and focuses on the contribution to the effect coming
from the DDW induced changes in Fermi surface, which is
very much in the spirit of the proposal of Refs. 3–6.

We believe, however, that a more detailed modelling of
relaxation may be necessary, both in HTSC and other cases.
For example, we have completely neglected issues such as
the dependence of the scattering time on energy or location
on the Fermi surface, as well as the difference in the relax-
ation of electrical and energy currents23 (which may lead to
different scattering times, as may be the case for scattering
by phonons). Clearly, these issues cannot be addressed with-
out a specific material in mind. We defer our discussion of
particular experiments until Sec. IV. Here, we focus on the
energy dependence of the scattering time, for which a gen-
eral statement is possible.

Consider, for simplicity, a nearly isotropic Fermi surface
(this corresponds to the regimem. t in Fig. 1). One may
then estimate

QH =
a2

,B
2

tsmd
"

1

2pNsmda2 , s11d

whereNsmd is the density of states at the Fermi surface. If
the scattering is primarily due to weak quenched disorder(or
phonons above the Debye temperature) the corresponding
rate is approximated by 1/tsmd~Nsmd. Then, properly ac-
counting for them dependence oft amounts to an additional
factor of 2 in the estimate of the Nernst coefficient.29 More
generally, even for inelastic processes, one expects the scat-
tering rate to be an increasing function of the electronic den-
sity of states, and therefore act to enhance the estimate in Eq.
(10).

III. THE DDW STATE

The DDW state is specified by the following
Hamiltonian3–6

H = o
s
E

BZ

d2k

s2pd2sekck,s
† ck,s + iDkck,s

† ck+Q,s + h.c.d,

s12d

where ck,s
† is the creation operator for a quasiparticle with

momentumk and spins, andek is the effective quasiparticle
dispersion. When present, the DDW order parameter gives
rise to a potential,Dk, connecting states separated by the
ordering wave vectorQ=sp ,pd, creating two bands in a
reduced Brillouin zone. The eigenvalues of this Hamiltonian
are

ek
± = 1

2sek + ek+Qd ± 1
2
Îsek − ek+Qd2 + 4Dk

2. s13d

The essential ingredient in transport calculations is the par-
ticle current operator. In the basis in which the Hamiltonian
is diagonal, the current operator is given by

j = − eo
s
E

RBZ

d2k

s2pd2xk,s
† S¹kek

+/" vk
inter

vk
inter ¹kek

−/"
Dxk,s. s14d

The off-diagonal elements

vk
inter =

1

"

sek − ek+Qd¹kDk − s¹kek − ¹kek+QdDk

Îsek − ek+Qd2 + 4Dk
2

s15d

result in interband contributions to transport. However, if the
energy gap to the second band is larger thankBT and " /t,
these interband contributions may be neglected and the
Boltzmann equation recovered for dc transport(see Appen-
dix for an example where interband and intraband contribu-
tions must be treated on equal footing).

Following common practice we approximateek
=−2tscoskx+coskyd+4t8coskx cosky and Dk=Dscoskx

−coskyd (in this section we seta=1). For the effective band-
structure parameters we shall uset=0.3 eV andt8=0.3t, with
the chemical potential in the range −t&m&−0.75t. In the
absence of DDW this choice of parameters is consistent with
the character of the Fermi surface observed in ARPES(Ref.
10) in the doping range of 5% –20%. The choice ofD re-
quires some care as the effect of DDW order is sensitive to
the filling. For clarity we loosely classify the different re-
gimes as “weak,” “moderate,” “ambipolar,” and “Dirac.” The
names are meant to reflect qualitatively the character of the
Fermi surface in each of the regimes(see Fig. 2).

The Dirac DDW occurs whenD is large in the vicinity of
half filling. Its spectrum consists of Dirac points at
s±p /2 ,p /2d. The ambipolar regime can occur at moderately
strongD, in the vicinity of half-filling. Here the Fermi sur-
face consists of three well formed sheets, two holelike cen-
tered abouts±p /2 ,p /2d and one electronlike centered about
sp ,0d, and the system is thus composed of two types of
carriers. We discuss these two regime in the Appendix, as we
do not believe either of them is realized in the doping range
where enhanced Nernst effect is observed. The Fermi sur-
faces of both of these states are sufficiently remarkable to be
easily ruled out based on the available ARPES data.10 Ex-
perimentally, neither well defined electron pockets in the an-
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tinodal direction nor Dirac nodes(with the Fermi energy
essentially at the node) are of relevance to the normal state of
hole-doped cuprates.

In their stead, in this section, we present results for DDW
order in the weak(high temperature) and moderate(low tem-
perature) regimes(for which we use, as representative val-
ues, D=0.05t and 0.25t, respectively). Qualitatively, the
former regime is where DDW order just begins to set in by
disconnecting the Fermi surface into two hole pockets
[closed abouts±p /2 ,p /2d] and one electron pocket[closed
aboutsp ,0d]. Given the rather short scattering times at these
elevated temperatures it is not clear whether such minute
changes in the Fermi surface geometry can be discerned(and
motivated) from ARPES. However, this regime is virtually
unavoidable as one begins one’s descent into the pseudogap.
It is worth remarking that since the electronlike pocket is
only such in its topology(and name), e.g., its contribution to
sxy is holelike, the effect of the DDW order is expected to be
rather insignificant. At larger values ofD and away from
half-filling, the regime with moderate DDW order is in-
tended as a caricature of the pseudogap at low temperatures,
near the superconductingTc. Here the electron pocket is ab-
sent and only two hole pockets(“arcs”5) remain. Perhaps this
is the regime of most interest, as the behavior in this regime
provides much of the motivation for introducing DDW order
to explain the pseudogap in the first place.

Our results in these two regimes(as well as forD=0) are
presented in Fig. 3. Using Eqs.(5) and (6) we numerically
calculatedsxx andsxy, extracted the Hall angle(andY), and
evaluated its derivative which appears in the result for the
Nernst effect, Eq.(7). Even for the moderate regime,D
=0.25, the result for]Y /]m [panel(d)] shows that the over-

all enhancement in magnitude of the Nernst coefficient is at
most by a factor of 3. Moreover, the sign of the Nernst signal
(which is opposite to the sign of]Y /]m) remains negative.
These are the central results of this section, and are important
for the comparison with experiment in Sec. IV.

Two other points are perhaps worth noting in these re-
sults. First, as anticipated, the effect of a weak DDW is very
small (solid vs. dashed lines in Fig. 3). Second, we note that
for moderate DDWsxx is decreasing asm is increasing, and
that this is the main source of the enhanced]Y /]m. This is
the beginning of the trend which becomes especially pro-
nounced in the Dirac regime of the model(see Appendix).

IV. EXPERIMENTS

A. HTSC and DDW order

We are now in a position to compare transport properties
of the DDW scenario with experimental data, obtained from
different underdoped HTSC.11–14Consider first the high tem-
perature regime, where the observed effect is small, with a
magnitude of about 25 nV/KT, usually negative, roughly in-
dependent of temperature, and linear in the applied magnetic
fields over a very wide range. These experimental findings
are consistent with our discussion of Sec. II(i.e., without
DDW), where we argued for a generically negative sign of
the effect. To fit the actual magnitude of the effect with our
calculations requires takingkBTt /"<0.2, which is probably
somewhat small for the cuprates. Additional factors which
may affect the Nernst signal and were not taken into account
may include the short scattering time of quasiparticles in the

FIG. 2. Fermi surface in the upper right quadrant of the Bril-
louin zone, for parameter values representing the four regimes de-
scribed in the text:(a) “weak” regime (D=0.05t, m=−0.9t), (b)
“moderate” regime(D=0.25t, m=−0.9t), (c) “ambipolar” regime
(D=0.35t, m=−0.4t), (d) “Dirac” regime (D=0.75t, m=−0.2t).

FIG. 3. (a) Conductivity [in units of se2/"dstt /"d], (b) Hall
conductivity[in units of se2/"dstt /"d2sa2/,B

2d] (c) energy scale(or
Hall angle) Y, and(d) ]Y /]m that enters the Nernst coefficient. All
quantities are given as a function of chemical potential(in the
physically relevant range) for D=0 (solid line), D=0.05 (dashed
line), andD=0.25(dashed-dotted line). Note that a positive]Y /]m
implies a negative Nernst coefficient[see Eq.(7)].
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antinodal region and a dependence of the scattering time on
energy(see below). A separate measurement of the contribu-
tion of the two terms in Eq.(2) (Refs. 11 and 12) reveals a
significant Sondheimer cancellation in some cases(in itself
suggestive of the quasiparticle origin of the signal), but not
in others, indicating that these additional factors may be
more material dependent.

As the temperature is lowered, below an onset tempera-
ture which is well separated from the superconducting tran-
sition temperatureTc, the Nernst coefficient begins to in-
crease. The signal becomes large and positive, reaching a
value of about 1mV/KT nearTc (depending on material, the
increase in magnitude is typically by a factor of 50-100).
There is no Sondheimer cancellation in this case, as all of the
increase arises from the first term in Eq.(2), while the sec-
ond goes down to zero. Deviations from linearity in the mag-
netic field dependence are observed at moderate fields in
some samples. BelowTc the line shapes are no longer linear
at small fields as one enters the flux flow regime.30

The question is then whether the enhancement of the
Nernst signal aboveTc can be ascribed to DDW order. The
results of Sec. III make such prospect unlikely. First, the
Nernst coefficient we find when the DDW order is intro-
duced remainsnegative, opposite in sign to the effect in ex-
periment. Second, the enhancement in its magnitude due to
modifications of the Fermi surface by the DDW potential is
rather modest, a factor of 3 at most. The Nernst effect in the
DDW phase is therefore not fundamentally different than
what is expected from general notions of quasiparticle trans-
port. Given thatTt does not change appreciably in the rel-
evant temperature regime(see below) the overall magnitude
of the predicted signal is significantly smaller than
1 mV/KT.

At this point it is important to consider whether this con-
clusion may be modified by changing any of the underlying
assumptions. We have investigated to some extent the depen-
dence on different choices of effective band parameters(be-
yond those reported in this paper), with no change to our
conclusions. In addition to band structure, it is important to
consider the role of scattering. Indeed, the magnitude of the
Nernst signal depends onTt. This quantity may increase by
a factor of 3 in the pseudogap regime as inferred from Hall
data31 (it is independent of temperature according to the con-
ductivity data32). We note that even if the scattering time
increases dramatically when the temperature is lowered, the
magnitude of the Nernst signal will increase, but the sign
will not change.

Another assumption we have made is to ignore the con-
tribution arising from the scattering time’s dependence on
energy. This contribution may be of either sign, and, in par-
ticular, if ]t /]m,0 there is an additional contribution to the
Nernst signal which is of positive sign. Can this contribution
be so strong so as to overwhelm the band structure contribu-
tion and lead to a large positive signal? While unlikely, we
note that this assumption leads to other discrepancies with
the data. In particular, this would require a large contribution
to the second term in Eq.(2) (equal to one-half of the con-
tribution to the first term). However, clearly this is not seen
in the experiment.11,12

B. Other Nernst experiments

Our simple estimate in Sec. II, Eq.(10), suggests that the
Nernst effect due to quasiparticles may be quite large if
kBTt /"@1. Why is it, then, that large Nernst coefficients are
not typically observed in conventional metals, wherekBTt /"
is expected to grow as the system becomes more coherent, its
magnitude limited only by the sample’s purity? Much of the
data in metals33 is collected in the temperature regime domi-
nated by classical phonons. Here, the resistivity varies lin-
early with temperature, while the Nernst signal does not
show a strong dependence on temperature(with a few no-
table exceptions, e.g., Ni). There is a considerable variation
in the magnitude of the Nernst signal(e.g.,n=−0.5 nV/KT
in Pb, n=120 nV/KT in Nb). In this regime oftentimes
kBTt /",1,24 making our simple estimate in Sec. II broadly
consistent with the data(although not a substitute for a de-
tailed material-specific modeling). The situation at lower
temperatures is less clear, even if we restrict our attention to
electron-phonon scattering(so that the resistivity varies as
T5). In this regime electric and heat currents have different
relaxation rates(as deduced from electrical and thermal con-
ductivities), leading to a violation of the Wiedemann-Franz
law.23 This difference might lead to a large conductivity in
the denominator of Eq.(2), and hence a suppression of the
Nernst signal.

Following the discovery in the hole-doped cuprates, rela-
tively large Nernst signals have been documented in other
strongly correlated materials.21,22,34,35Perhaps the most obvi-
ous difference between these and conventional materials, as
far as the Nernst effect is concerned, is in the strong tem-
perature dependence of the observed signal. Since in at least
some of these materials the transport is apparently due to
quasiparticles, it is of interest to consider the corresponding
Nernst measurements in the light of our results. While far
from a complete theory the discussion of Sec. II does allow
for a few general observations.

In NbSe2 (for 7 K&T&60 K),21 the Nernst signal is rela-
tively large and negative(except very close toTc), and hence
is naturally attributed to quasiparticles. The Nernst coeffi-
cient reaches a maximum,n<−0.12mV/KT at T<20 K,
roughly the same temperature at which the Hall number
passes through zero. The behavior of the Hall number is
apparently sensitive to the charge density wave induced re-
construction of the Fermi surface, which occurs below
TCDW=32.5 K. As recognized by the authors of Ref. 21,
RH=0 suggests an ambipolar origin of the signal due to
bands of oppositely charged carriers, reminiscent of that en-
countered in semiconductors.36 We note, however, that a
simple ambipolar picture leads to a positive Nernst signal
(see Appendix), opposite to the experimentally observed sig-
nal. It is also interesting to note that while the Hall number
remains essentially constant forT.TCDW the Nernst coeffi-
cient grows appreciably(up to 75% of its max value). This
suggests to us that the enhanced Nernst coefficient here owes
its existence as much(if not more) to enhanced coherence in
the system as to an ambipolar compensation. Alternately,
perhaps, the Nernst measurement is sensitive to incipient
CDW order, more so thanRH.39

Yet a larger Nernst signal was reported very recently in
the normal state of CeCoIn5, a heavy fermion compound.22
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Here, the Nernst signal is also negative and can be as high as
2 mV/KT at low temperatures, suggestive of a highly coher-
ent state(larget). As discussed in Sec. II, an increased co-
herence is expected to be accompanied by a reduction of the
linear response regime(in magnetic field). Indeed, the mea-
surements in CeCoIn5 are highly suggestive of such
behavior.37

V. CONCLUSIONS

The pseudogap is typically envisaged as a strongly fluc-
tuating crossover(possibly quantum critical) regime where
superconductivity and possibly other orders are present in
some form, yet not fully condensed. Theories implementing
this intuitive picture are necessarily subtle and complex(and
rarely applicable directly to experiments). The DDW pro-
posal is a breath of fresh air in that regard, here the
pseudogap phase is a true phase of matter where the standard
crisp notions of order parameter and quasiparticles apply and
can be used to make predictive statements. In particular,
most of the effects of DDW order discussed to date can be
linked directly to the changes of the Fermi surface geometry
due to the breaking of the translational symmetry. Implica-
tions of such Fermi surface reconstruction for thermody-
namic and dynamic properties of the system(including trans-
port) were addressed in the past(see, e.g., Ref. 4) and found
consistent with the observed phenomenology.

In this work we have extended this investigation, focusing
in particular on the Nernst effect. Our main result is that
quasiparticle transport inside the DDW phase cannot explain
the Nernst phenomena observed in hole-doped cuprates.

This conclusion is based on a Boltzmann theory based
calculation.38 The Nernst coefficient has a contribution origi-
nating from the changes of the Fermi surface shape, which
we compute explicitly, and one from the changes in the scat-
tering rate(treated as a phenomenological input). The first
contribution alone predicts a negative Nernst coefficient,
which is in contradiction with the experiment. It is possible
that upon inclusion of the second term the overall sign can be
reversed, however, we presented arguments for why the
overall magnitude cannot approach the experimentally ob-
served signal. We believe, therefore, that the physics of large
Nernst effect in the cuprates lies elsewhere.

Our general analysis can be applied, albeit qualitatively,
to the recent experiments of Belet al. on NbSe2 and
CeCoIn5. It suggests that the data in these materials is not
inconsistent with a quasiparticle based interpretation, al-
though a more detailed analysis is required. Likewise, it
would be interesting to examine other cases(including, e.g.,
conventional density waves and other strongly correlated
systems) along similar lines.
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APPENDIX: DDW ORDER AND PARTICLE-HOLE
SYMMETRY

The discussion of DDW order in Sec. III was limited by
its potential relevance to the cuprates. In this section, we
explore other regimes of the DDW Hamiltonian, Eq.(12),
that may be of broader interest(they may also arise in con-
ventional density waves). Particle-hole symmetry(either ex-
act, sxy=axx=0, or approximate) plays an important role in
both of the regimes considered below.

1. Ambipolar DDW

At moderately strong DDW order and in the vicinity of
half-filling (we take hereD=0.35t andm=−0.4t as represen-
tative values), the DDW model produces a well defined elec-
tronic pocket atsp ,0d, in addition to the hole pockets at
s±p /2 ,p /2d [see Fig. 2(c)]. The Nernst coefficient in this
regime is positive and modestly enhanced. For example, for
the parameters above,]Y /]m=−1.99. The reason for this
behavior may be traced to the existence of two types of car-
riers in the system.

As a representative model of this behavior consider two
oppositely charged but otherwise identical species of free
carriers. We then have

sxx = snh + ned
e2t

m
, sxy = snh − ned

e2t

m
vct, sA1d

leading to a Nernst coefficient

n =
2p2

3

kB
2T

eB

nenh

sne + nhd2S 1

eF
e +

1

eF
hDvct, sA2d

where]ne/]m=ne/eF
e, appropriate for two dimensions, was

used(and similarly for the hole band). This ambipolar Nernst
signal is maximal when the bands are exactly compensated,
and is positive. Substitutingne=nh=kF

2 /4p and rewriting

Bn =
2p2

3

kB

e

kBTt

"

1

skF,Bd2 , sA3d

we arrive at an expression which can be compared against
the lattice result in Eq.(7). Provided we loosely identifykF
,1/a, the comparison suggests that the ambipolar Nernst
effect need not be particularly larger then a signal from a
single band of carriers: long scattering times are essential for
either Eq.(7) or Eq. (A3) to produce a substantial Nernst
coefficient. In situations whenkF and a are unrelated Eq.
(A3) may lead to significant enhancements of Nernst signals
(as may be the case of Fermi pockets associated with spin-
density waves39).

2. Dirac DDW

Near half-filling and with strong DDW ordersD.0.6td,
the dispersion around the Fermi surface approaches that of a
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Dirac particle, with dispersionek
±= ±"ÎsvFkxd2+svDkyd2,

where the momenta here are measured relative to
s±p /2 ,p /2d along the diagonals of the Brillouin zone. The
density of states of the Dirac Hamiltonian in two dimensions
vanishes at the node,Nsed= ueu / s2p"2vxvyd, giving rise to a
host of unusual properties. To simplify the discussion we
shall consider an isotropic case,vx=vy=v.

Provided the chemical potential(or scattering time) is suf-
ficiently largesmt."d we can still neglect interband scatter-
ing, and use Boltzmann theory in the weak field regime. We
then have

sxx =
e2t

4p"2umu, sxy =
e3Bt2v2

4p"2c
signs− md. sA4d

Here the dissipative conductivity is proportional to the den-
sity of states at the Fermi energy(hence the factor ofumu),
while the Hall conductivity can be obtained by multiplying
the conductivity by the Hall angle

QH = vct signs− md =
eBt

m*c
signs− md = −

eBv2t

mc
, sA5d

wherem* ="kF /v. As a resultsxy is constant on either side of
the node. Finally, the Nernst coefficient

n = −
p2

3

kB
2Tv2

c

1

m2 sA6d

mirrors the divergence of the Hall angle(asm→0) [cf. Eq.
(4)]. As discussed in Sec. II, this enhancement is necessarily
accompanied by a reduced regime of linear response in mag-
netic field (with Qxy decreasing with magnetic field forvct
*1). It is also interesting to note that for the linearized Dirac

spectrum used hereaxy=0 and the large Nernst coefficient
comes entirely from the enhancements in the second term in
Eq. (2) due to reduced conductivity.

Eventually, for mt,", the Boltzmann equation is no
longer applicable, and interband contributions to transport
become important[see Eq.(14)]. Instead, a careful evalua-
tion of Kubo formulae treating the interband and intraband
terms on equal footing is necessary.40,41 Qualitatively, the
singularities of the conductivity tensor atm=0 implied by
the Boltzmann analysis above become smoothed. In particu-
lar, the Hall angle[Eq. (A5)] rapidly changes its value as a
function ofm, passing through 0 atm=0, consistent with the
particle-hole symmetry at the node. The Nernst coefficient at
the node may then become large and positive[cf. Eq. (4)],
arising entirely from an unusually large41 axy and
“universally”40,42 small s,e2/",

Bn = c1
kB

e

kBTt

"

Bev2t2

c"
= c1

kB

e

kBTt

"
S e0t

"
D2

, sA7d

wherec1 is a numerical constant. The energye0 can be iden-
tified as the energy gap between two lowest Landau levels of
the Dirac Hamiltonian(in the absence of disorder).

Equation (A7) seemingly opens the door to a positive
Nernst signal which can become very large in a clean system
(asn~t3).43 Here, we note that the possibility of observing a
large Nernst signal is very restricted(even ift is large). First,
the chemical potential must happen to be very close to the
node,umu" /t. Second, assumingm=0, a Nernst signal which
is linear in magnetic field will only be observed provided
e0&" /t. In other words, in a very clean system, the Nernst
signal as a function of magnetic field will have a large initial
slope, and will very rapidly reach its maximal value ofQxy
<kB

2Tt /e" (as in the case of Boltzmann results above).
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