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The phenomenological expressigﬁ'/(NgzlLé/k):Cln exp(—W;,/T) +C,, exp(-W,,/ T) describes very ac-
curately the temperature dependence of the magnetic susceptibility computed for antiferromagnetic rings of
Heisenberg spin§=1, whose sizen is even and ranges from 6 to 20. This expression has been obtained
through a strategy justified by scaling considerations together with finite size numerical calculations. For
large, the coefficients of the expression converge tow&id<0.125,W,;=0.451], C,=0.564,W,=1.793) (J is
the exchange constgntvhich are appropriate for describing the susceptibility of the spin-1 Haldane chain. The
Curie constant, the paramagnetic Curie—Weiss temperature, the correlation lefigth and the Haldane gap
are found to be closely related to these coefficients. With this expression, a very good description of the
magnetic behavior of ¥8aNiOs and of Ni(C,HgN,),NO,CIO, (NENP), the archetype of the Haldane gap
systems, is achieved over the whole temperature range.

DOI: 10.1103/PhysRevB.70.054410 PACS nung®er75.10.Jm

[. INTRODUCTION of the quantum Heisenberg rings is given in the same sec-
tion. The whole procedure provides a new insight upon the
The antiferromagneti¢AF) chain of Heisenberg spifS  gap and the finite correlation length &t 0, and ultimately it
=1 is still an object of interest many years after Haldaneresults into a formula which is also useful to fit the experi-
conjectured that an energy gapseparates the singlet ground mental evidence, as demonstrated for two Haldane chain
state from the first excited statéor all AF chains with inte- compounds, YBaNiOs (Ref. 8 and NiC,HgN,),NO,CIO,
ger spin values, while the excitation spectra of the half inteyNENP). A brief physical interpretation of the results is at-
ger spin chains are gapless. The Haldane prediction was cogempted in Sec. IV.
firmed experimentally and theoreticafly* After the
pioneering work of Boteet al, who solved numerically the
spin Hamiltonian for finite rings of spins withn up to 12,
further calculations have been performed by means of the
quantum Monte Carfoand the density-matrix renormaliza- Let XT=NP§ﬁ/3k' wherepes=gugl S(S+1)]1V2, be the Cu-
tion group(DMRG) techniqueSto determine more precisely rie constant oN independent atoms of sizg. In the pres-
the energy gap as diverges. The extrapolated Haldane gapence of interactions between the atoms, larger units, whose
value for the infinite chain was estimated to he-0.41),*  sjze &T) defines the correlation length, act as the new inde-
whereJ is the nearest neighbor exchange interaction. pendent entities. By definition, the number of these units is
The spin-1 system displays other fascinating fe.atures 3R(T) < &T)™° in space dimensioD. We assume, further-
well. For example, the ground state of an open spin-1 opefgre following Néel in his approach of the superparamag-

chain is characterized by an effective SfBr1/2 ateach pgtism of fine AF particles, that the effective moment of each
end, which leads to fourfold degeneracy of the ground statgit increases like a powed’ which may differ from the
Furthermore, the correlation length @0 reaches a finite . N o’

space dimensioD.’ Then pg &T)° and

value, §=2JS/ A, which directly results from effects of spin
fluctuations in low dimension. XT o g(T)—(D—ZD’). (1)

In this paper, we derive a phenomenological expression of
the magnetic susceptibilityy) of AF rings made up of an We now assume th&tT) increases whem decreases, and
even numben of Heisenberg spinS=1 which, extrapolated that it is possible, in the spirit of Kadanov’s renormalization
to the thermodynamic limit, captures the main features of thecheme, to connect by a “hierarchical recipe” the successive
Haldane chain. The method is based upon physical scalingteps of the cascade which relag¢$) and&,. Assuming, for
argument&that we recall in Sec. Il and it is applied to the example, that is multiplied byb when(J/T¢—-J/T) is mul-
theoretical data on finite quantum rings in Sec. Ill. A descrip-tiplied by a, then, ifn steps are needed to reldtgwith J, we
tion of the numerical methods used for solving the problemcan write’:

II. NON-CRITICAL-SCALING: THE OTHER SOLUTIONS
OF THE SCALING MODEL
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ITe=IT,=ax (ITc-IT, 1) In order to check these ideas and to decide which expres-
_ o sion is more appropriate to describe experimental systems,
=axaxa- X(UTc-=a"x ITc-1), we propose to differentiate Eq&)—(7) to obtain the equiva-

(2) lent expression:

dlog(M/alog(xT) =—(T—-Te)/yTc=—(T-T)/W. (8)

It appears tha# log(T)/dlog(xT) is a linear function ofl
By eliminatingn between Eqg(2) and(3), one derives the  with slope W™, in the temperature window where the scal-

=X & =bXbXbX - X&=b"XE. (3)

standard relation of static scaling: ing argument is valid, and thaf* and T are simultaneously
deduced from the intersection of the straight line with the
EMIE =1 -TT) "= (1 -T/T) e, (4)  axes. In theTc=0 limit, where theyT product is given by

. - Eq. (6), the straight line intersects the axes at their origin.
We have introduced abovg,=(1-Tc/J)™", v=-log(@)/ In previous works, we have reported examples where
log(b) and(or) ®=vTc, which must be positive in order to ;16q(T)/5log(yT) obtained by differentiating the experi-
ensure thag(T)/ §=1+@/T+--is an increasing function of mental data shows a unique linear regime, givir-avalue
1/T. The “static scaling assumption” has measurable consgnat is positive null or negative® In some cases, we ob-

quences. In particular, using E@l) and allowingTc to be  serve an abrupt crossover, from one regime to the gthar,

positive null or negative, we firld from solutions of typ&®) to solutions of typ&5)] occurring
at a particular temperature where the effective space dimen-
XT/(NGPud/k) = C X (1 = T/T)~ @' sionality of the system changés.g., because correlations

from chain to chain which were negligible at the scale of
atomic distances in a linear system may become important
on larger segmeny3°
XTI(NGZ2/K) = C X exp((2D’ = D) X O/T) We will, hereafter, consider, still, another situation where
two different criticalities seem to coexist in the same tem-
=CXexp(-~WIT) for Tc=0, (6)  perature range, i.e., where two solutions of tyfpare su-
perimposed in a common temperature window.

=CX(A-TT)” for Tc>0, (5

TI(NGPuZ/K) = C X (1 + T, /T)@0'-D)erTk
XTING pg/k) (1+Tx )_ IIl. APPLICATION OF THE MODEL TO THE SPIN-1
=CX(L+T/M)™ for Te=-Tx. (7) HALDANE CHAIN

The solutiong(5) are the familiar power laws appropriate  since the work of Boteét al. on the ground-state proper-
to describe the usual phase transitions, With(2D'-D)»  ties of finite AF rings withn=6 to 12 spin-1 sites, using
being the critical exponent related to the spin and latticq_anczos' algorithn?, many numerical calculations have
dimensionalities. Note that instead DfJ, we have used/T complemented our knowledge of the physics of the Haldane
(which goes to zero a$ divergeg to construct the scaling chain, focusing in particular on the spectrum of low-lying
variable (J/T¢c=J/T). This is to ensure that all three equa- spin states, with a special emphasis on the energy gap, the
tions above have a sensible high temperature expansioexponential decay of the spin correlation function and the
where the Curie-Weiss law,=C/(T-W), is recovered, with  correlation length a§ — 0.4
C=S(S+1)/3 being the Curie constant, aWi=(2D’-D)® We have, hereafter, obtained the thermodynamic proper-
the paramagnetic Curie temperature in all three cases abouies of the finite AF rings ofi spinsS=1 by the exact diago-

Let us now focus upon other aspects of the above equaralization of the spin Hamiltonian far up to 10 and by the
tions that have, in general, been left aside. First, we observeensity-matrix renormalization groMRG) technique for
that the solutions of typé&b) or (7) have the same legitimacy n=16 and 20. Periodic boundary conditions have been im-
as the solutions of typé) and that they are not forbidden by posed to minimize finite size effects, while only evenal-
any thermodynamic rule. They are therefore natural candiues have been considered to avoid frustration effects.
dates to describe those systems, sitting at or below a “lower A standard DMRG procedure was used to construct the
critical dimensionality,” where spin correlations are signifi- spin Hamiltonian matrices in the DMRG basis, imposing pe-
cant but where no long-range order sets in at any finite temrodic boundary conditions to minimize the finite size effects
perature. Second, we observe that, for a given positive with Sy,;=S,.9* It might appear surprising that the DMRG
=vT¢, the model provides, depending on the sign &2 method, in which one or a few states only, usually the ground
-D, both ferromagnetic solutions whejd increases upon state and one or two excited states, are targeted in each it-
cooling down and AF solutions whepel decreases. We in- eration, can provide accurate thermodynamic properties. It
tend to use the latter to describe the magnetization of real Aks, however, well known that, at each iteration, the DMRG
systems, in rupture with a tradition whereby it is believedspace, which contains the lowest energy state, has substantial
that the usual susceptibility does not contain valuable inforprojections from low-lying excited states. Hence, these ex-
mation, and that the “staggered” magnetization should beited states can be well described in the chosen DMRG basis.
considered instead, and discussed in the same manner as #@thermore, the low-energy states of the full system, which
magnetization in a ferromagnetic system. are important from the low-temperature thermodynamic
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FIG. 2. (Color onling Results of exact calculations of the sus-
. o . - : ceptibility x(T) of AF rings ofn Heisenberg spin§=1, for n equal
calculations of the susceptibility of AF Heisenberg ringsapins t0 6, 8, 10, 16, and 20. FOF>T,, there is a high temperature

S=11s shown VST/‘] forn=6, 16, and 20. T_h(_a linear regime at .h'gh Arrhenius regime, whereby theTl data first depart from the theo-
temperature, which extrapolates to the origin of the axes, points an

exponential solution of typg6) for T larger thanTy, where retical Curie constant f(ﬁ.:l(CH.:-%»)' Below Ty, there isadistir_wt
alog(T)/alog(xT)=1. A distinct exponential regime is observed at l_OW temperature Arrhenllus regime whose Curie constanCis
temperatures smaller thah,, where dlog(T)/dlog(xyT)=0.5. The —_2/n and whose activation energfi, is _the Haldane gap. The
low temperature gap saturates to the Haldane gap vahsenn different parameter€ andW for all n are listed in Table I.
increases.

FIG. 1. (Color online ¢log(T)/dlog(xT) deduced from exact

as x(T) vs logT/J. The corresponding parametetsand W
point of view, are often found to be few of the low-energy are listed in Table | and their dependence on /displayed
states in different tota# sectors. We first set up the Hamil- in Fig. 4.
tonian matrices for all the allowed tot&F sectors for a ring For n<10, each parameter is precisely what the theory
of 20 spin-1 sites. We then diagonalize these matrices tpredicts. The Curie constant in the high temperature regime
obtain all the eigenvalues in each of the tdabkectors. The agrees with the expecte8(S+1)/3 value. The associated
number of direct product states increases roughlyras r  activation energy, namely, the actual paramagnetic Curie—
a density-matrix cut-off omin a spin-1 chain. As the num- \\ejss temperature, approachiis=1.44J for all n, which is
ber of DMRG basis states increases rapidly with increasinglose enough to the high temperature limit/d@ deduced
m, and since we have to diagonalize the matrices fully, weanalytically for a ring of 4 spins. In the low temperature
retain a smaller number of dominant density matrix eigentegime, we have€, ,,=2/n, which is the expected value for a
vectors in the DMRG procedure, i.e., €0n=< 80, depending
on the total$ sectors. These energies, however, turn out to 0.2
be quite accurate, even on an absolute s€a@alculations
of thermodynamic properties from these eigenvalues are then P
quite straightforward. 0.15 0 2:?3

Figure 1 shows?log(T)/dlog(xT) vs T, which are ob- = n=16
tained by differentiating numerically the 16gT) vs log(T) o n=20
data computed for AF rings ofi spin-1 sites, withn 0.1
=6 to 20. In both the high and the low temperature regimes, \
the data are positive and approach a straight line which
intersects the axes near the origin at0. This indicates 0.05 j

x/(Ng2ug?/K)

that an AF exponential solution of the tyé) is relevant 0.178/T*exp(-0.605J/T)
in either range. The high temperature solutioal +0.544/T*exp(-2.09/T) for n=06
=Cyp eXpP—Wy,/T) is much the same for al values, and 0 ——ﬁ

valid at temperatures larger thanT,, where

dlog(T)/9log(xT)=1 (this is where the magnetic suscepti- Pl v
bility x is maximum. The low temperature solutioyT '0-056 o1 o1 1 T 10
=C.,exp—W_,/T) is valid at temperatures smaller th@p, ) ’

where dlog(T)/dlog(xT)=0.5 (this is wherex/T is maxi- FIG. 3. (Color online The same susceptibility data as in Fig. 2
mum). The high and low temperature regimes are describedre shown here versus I3, with the best values of the coeffi-

by different straight lines forT>T,, and T<T,, in the cientsCy,,W;, and C,,W,,, characterizing the low and the high
Arrhenius plot of Fig. 2. The same data are shown in Fig. 3emperature regimes in a single fit.
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TABLE I. Exact value of the gapr(n) between the ground and the first excited state, and best values of the parameter®@pfded\F
rings ofn Heisenberg spinS=1. The best values of the same parameters characterizing the high and the low temperature regimes in a single
fit (see Fig. 3 are also listed.

n 1/n A(n)/J Cin W, /J Chn Wyn!/J Cin Wi /J Con Won/J

4 0.2500 1.000 0.486 0.999 0.680 1.495 0.204 0.769 0.506 2.087
6 0.1666 0.721 0.329 0.720 0.674 1.444 0.178 0.605 0.544 2.090
8 0.1250 0.594 0.248 0.593 0.673 1.438 0.145 0.512 0.558 1.916
10 0.1000 0.525 0.193 0.524 0.673 1.439 0.132 0.475 0.561 1.844
12 0.0833 0.502

14 0.0714 0.486

16 0.0625 0.478 0.162 0.483 0.673 1.437 0.132 0.475 0.561 1.844
18 0.0555 0.469

20 0.0500 0.457 0.191 0.523 0.673 1.438 0.128 0.463 0.561 1.819
o 0.0000 0.421 0.125 0.451 0.564 1.793

singlet-triplet spin configuration well separated from the highzation has been achieved wif{T) rather than theyT(T),

spin high-energy state@n that temperature range, the influ- because more weight is given to the data in the range of the
ence of upper excited states is negligibl€he associated susceptibility maximum. Clearly th€ coefficients given in
W, is precisely the energy distanagn) from the funda- Taple | need be related b€~ Cyin+Cyy and Cp Wy,
mental to the first excited level, that is directly deduced by~c, W,,+C,,W,, to reproduce the main features in the
computation for finite chains and is also reported in Table |-high temperature limit. SimilarlyC, ,=~Cy, and W, ,=Wj,,

A(n) decreases asincreases and its dependencenda well i, the Jow temperature regime where one exponential neces-
approximated by the power law(n)=0.421+6.57""% I garily dominates. These constraints are pretty well realized
the n—co limit, it tends towards a finite value that may be ith the C's and W's given in Table I. The resulting fit is
compared to the Haldane gap. Note that our finite size cal\-,ery good(Figs. 2 and § and the parameters become nearly
culations overestimate the extrapolajeat T=0 and so the  gnstant for rings larger than 10 spins, as shown in Fig. 5.

gap; however, the finite size numerical study has been cagqr sych rings, we propose the following expression of the
ried out in the spirit of comparison with the scaling anaIyS|s.X-|- product(normalized toNg?u2/K),

This remarkable aptitude of two distinct exponentials for
representing the magnetic susceptibility in two different tem-
perature ranges was a motivation to fit the data at all tem-
peratures from two superimposed exponentials. The optimi-

N
2
1.5 I
1.44 > Q 3 1
;‘ g —
C
g:i: o G S W,
I = W,
- n
3 11 A Wy, A=0.421+6.5/n1.74
—0— Delta
o \ i

2/3

Y

R 1 c
0.5 o | 0.5 O“L%‘)ﬂ

Gy
; Cin=2/n it :
[ ] / 0 i
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1/n

0 ' 1/n
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FIG. 5. (Color onling Best values of the parametes,,, Wy,

FIG. 4. (Color onling Variation of the parameter€,,, W, C,n, andWs,,, characterizing the overall temperature dependence of
Chn» @andW,y,, of the exponentials characterizing the asympotic lowthe susceptibility of AF rings of spinsS=1 from a two exponen-
and high temperature Arrhenius regimestT/(Ngzﬂélk). tial fit.
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TABLE Il. Results of a two exponential fit of the susceptibilty o 80
of Y,BaNiOs; (from Ref. 8, together with those of E
Ni(C,HgN,),NO,CIO,, (NENP) along thea andb axes(see Fig. 6. 5 70 / q‘\
The data compare to the theoretical values providte800 K and E
—_ H — (0]
g=2.28 for Y,BaNiOs and 43 K andy=2.1 for NENP. L 60 pr——
Cl Wl C2 Wz 104X0 £ 50
(emu.K/molg (K) (emu.K/molg (K) (emu/mole = \ /
40
Y ,BaNiOg 0.267 138 1.07 534 /\
NENP-a 0.210 23 0.921 77.7 6.06 30
NENP-b 0.200 17 0.885 77.4 25 //
20 // along a axis
xXT = Cyp exp(= Wy/T) + Cop expl= War/T), 9 0 M
XO 0

whose coefficientgTable I) are relevant for temperature re-
gion T/J>0.1. Notice that forT <0.1J, the finite size spec-
tra do not allow a reliable extrapolation of the properties to FIG. 6. (Color onling Fit of the magnetic susceptibility data of
the thermodynamlc limit. Nl(C2H8N2)2N02C|O4 (NENP) along two Crysta"OgraphIC axes,
For the Haldane chaifh— ) limit, the best fit param- giving from theW, value,J=43 K along all axes. The anisotropy at

eters are C;=0.125, W,;=0.451), C,=0.564, and W, lower temperature is considered by permitting the Haldane gap to

=1.793.24 In Ref. 8, the authors have used the above equa\fary from 0.53 along theb axis to 0.4 along thea axis instead of

. . . : 0.447 expected for the isotropic case. An additional conspant
tlcin to an_alyze the magnetic data OE%NOS’ a typical A.F .has beenpintroduced to accoupnt for a residual contributior?a:tf:) the
S=1 chain system. The corresponding parameters given in - ) X
. S h susceptibility that is expected to depend on axial symmetry as

Table Il agree with our prediction, provided tha&300 K ' =,
which matches with previous findingd=285-322 K.15 '

In this system, the magnetic measurements have been per- .
formed down to 10 mK, so that at low enough temperaturemuCh the same along andb axes(see F'g' 6 and Table)“
the Curie-like paramagnetism of a small number of chain-The effect of the Known anisotropy of this system Is that the
breaks ends up being the dominant contribution to the Suéjaldane gap, Wh'ch we deduce from the f'.t’ ranges from
ceptibility. Incidentally, in Ref. 8, this contribution is well 0.53) along thea axis to 0'40 along theb axis when we
fitted by an additional ternC, exp-Wa/T). With Wy<T in  €XPect 0.451 for the isotropic crystal. o
this case, we are using the fact that E@—7) have a com- Thg values of the Curie constants and of the activation
mon high temperature expansion in terms of Ithat goes energies, Qeduced for YBaNi@nd the NENP monocrystal,
beyond the Curie—-Weiss law: it contains information abouf™® listed in Table I1.
the sign and the scale of the interactions. Note that the de-
fects are expected to have very different effects in gapless
1D systems and Haldane chaffisin the former, the main To our knowledge, Eq6) is the only expression available
effect is to reduce the correlation length: the magnetism ino describe the behavior of the Haldane chain in the whole
this case amounts to the Curie-like contribution of the finitetemperature range. At high temperature, everything behaves
segments with an odd number of spins. For the Haldangnitially as in any system sitting at a lower critical dimen-
spin-1 chain, by contrast, which is characterized by a finitesionality: an exponential solution of the typ®) is found, as
correlation length at low temperature, the valence-bond-soli¢h the case of the classical Ising chain with nearest neighbor
(VBS) model suggests a free sp%nat each end of the finite interactions.
segments, giving rise to a staggered susceptibility, butinturn In turn, in the low temperature regime, gapped
there is no significant change of the gap value. AF chains are usually described by the expressjpn

We have extended the same analysis to the magnetic be AT Y2exp(-A/T).2® The T-? factor which follows from
havior of Ni(C,HgN,),NO,CIO, (referred to as NENP field-theory mappiny is essentially related to the relativistic
which is the archetype of the Haldane gap systéribe  magnetic properties in the nanometric scale magnon
defect-spin contribution is particularly small in this case be-dispersion' and has further been quantitatively confirmed
cause, presumably, of the high quality of the single-crystalshy Monte Carlo calculation®¥’ Actually, it can be pointed out
and no Curie-like term is needed in the temperature rangthat this expression, which is dominated by the exponential,
under consideration. We have therefore introduced a smatloes not differ significantly from the proposed approach,
temperature independegs, which is a contribution depend- even forT/J ranging from 0.2 to 0.05, givind =0.409. Fur-
ing on axial symmetry. The agreement between theory anther, it becomes irrelevant at higher temperatures, since little
experiment is excellent along the crystal axesndb, as  can be inferred from the magnitude of the prefacfor,
may be observed in Fig. 6. We ne&d43 K along both axes In the proposed model, we observe at low temperature the
to match the paramagnetic Curie—Weiss temperature which terminal stages of the ordering of a different Ising-like chain,

—_

10 T/K 100

IV. DISCUSSION
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where the Curie constant has been divided by a factor of Beach rings oin>10 spins, large enough to contain several
and the activation energyow the Haldane gagfoy a factor ~ segments of sizg;. Interestingly, such rings already contain
of 3. all the elements which are required for describing the physics
Such behavior could be explained by assuming that\the of the system.
individual moments of the initial chain are not permitted to  There are many other such cases where the observed ex-
order completely in a single process whé(&) would grow  perimental evidence can be convincingly described as the
from 0 to <« as is described in Sec. Il. The initial chainf  superposition of two critical processes in the same tempera-
spins, rather, is rearranged as a new chailNts AF seg- ture range: for example, in ferrimagnetic 1D systéfhthe
ments of 5 spins each, with an uncompensated Spihdue  minimum of the T dependence can be well described by
to the unbalance of the up and down moments in the corretwo superimposed exponentials, namely ferromagnetic and
lated state of each segment. The Haldane gap would correntiferromagnetic-like contributions, and at the same time a
spond to the renormalized interaction from segment to segparticular length is selected which shows up as a modulation
ment. of the ferromagnetic order. Perhaps some general strategy
This implies that some sort of dichotomy occurs, at ancan be elaborated for these systems along the same lines as
early stage, whereby a finite length of 5 atomic distances islescribed here.
selected for each segment and the ordering is made in two
stages: the former accounts for the short range ordering
0<&(T) <&, which is responsible for the cohesion of each V. CONCLUSIONS
segment, the latteg&, < £(T), with the Curie constant divided We have derived a simple phenomenological expression
by 5, describes the divergence of the correlation between tHer the susceptibilityy(T) of finite AF rings ofn Heisenberg
newly defined segments. The expressi@ displays two spinsS=1 by applying to the results of exact calculations a
simultaneous contributions, accordingly. The segmentatiomethod based on physical scaling arguments. On increasing
length &,=5, which comes out from the ratio of the Curie n, the coefficients of this expression rapidly converge to val-
constants, turns out to be of the same magnitude as the finitées that do not depend enanymore. The resulting formula
correlation lengtht,=2JS A predicted for the Haldane chain is simple and easy to use: it beautifully fits the experimental
in the T=0 limit.* Maybe it is not much of a surprise, after magnetic data of NC,HgN,),NO,CIO, (NENP) and
all, if the susceptibility does not vary very much once weY ,BaNiOs, two archetypes of the Haldane gap systems.
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