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The phenomenological expressionxT/ sNg2mB
2 /kd=C1n exps−W1n/Td+C2n exps−W2n/Td describes very ac-

curately the temperature dependence of the magnetic susceptibility computed for antiferromagnetic rings of
Heisenberg spinsS=1, whose sizen is even and ranges from 6 to 20. This expression has been obtained
through a strategy justified by scaling considerations together with finite size numerical calculations. Forn
large, the coefficients of the expression converge towardsC1=0.125,W1=0.451J, C2=0.564,W2=1.793J (J is
the exchange constant), which are appropriate for describing the susceptibility of the spin-1 Haldane chain. The
Curie constant, the paramagnetic Curie–Weiss temperature, the correlation length atT=0 and the Haldane gap
are found to be closely related to these coefficients. With this expression, a very good description of the
magnetic behavior of Y2BaNiO5 and of NisC2H8N2d2NO2ClO4 (NENP), the archetype of the Haldane gap
systems, is achieved over the whole temperature range.
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I. INTRODUCTION

The antiferromagnetic(AF) chain of Heisenberg spinsS
=1 is still an object of interest many years after Haldane
conjectured that an energy gapD separates the singlet ground
state from the first excited state1 for all AF chains with inte-
ger spin values, while the excitation spectra of the half inte-
ger spin chains are gapless. The Haldane prediction was con-
firmed experimentally and theoretically.2–4 After the
pioneering work of Botetet al., who solved numerically the
spin Hamiltonian for finite rings ofn spins withn up to 12,
further calculations have been performed by means of the
quantum Monte Carlo5 and the density-matrix renormaliza-
tion group(DMRG) techniques6 to determine more precisely
the energy gap asn diverges. The extrapolated Haldane gap
value for the infinite chain was estimated to beD,0.41J,4

whereJ is the nearest neighbor exchange interaction.
The spin-1 system displays other fascinating features as

well. For example, the ground state of an open spin-1 open
chain is characterized by an effective spinS=1/2 at each
end, which leads to fourfold degeneracy of the ground state.
Furthermore, the correlation length atT=0 reaches a finite
value,j=2JS/D, which directly results from effects of spin
fluctuations in low dimension.

In this paper, we derive a phenomenological expression of
the magnetic susceptibilitysxd of AF rings made up of an
even numbern of Heisenberg spinsS=1 which, extrapolated
to the thermodynamic limit, captures the main features of the
Haldane chain. The method is based upon physical scaling
arguments7 that we recall in Sec. II and it is applied to the
theoretical data on finite quantum rings in Sec. III. A descrip-
tion of the numerical methods used for solving the problem

of the quantum Heisenberg rings is given in the same sec-
tion. The whole procedure provides a new insight upon the
gap and the finite correlation length atT=0, and ultimately it
results into a formula which is also useful to fit the experi-
mental evidence, as demonstrated for two Haldane chain
compounds, Y2BaNiO5 (Ref. 8) and NisC2H8N2d2NO2ClO4

(NENP). A brief physical interpretation of the results is at-
tempted in Sec. IV.

II. NON-CRITICAL-SCALING: THE OTHER SOLUTIONS
OF THE SCALING MODEL

Let xT=Npeff
2 /3k, wherepeff=gmBfSsS+1dg1/2, be the Cu-

rie constant ofN independent atoms of sizej0. In the pres-
ence of interactions between the atoms, larger units, whose
sizejsTd defines the correlation length, act as the new inde-
pendent entities. By definition, the number of these units is
NsTd~jsTd−D in space dimensionD. We assume, further-
more, following Néel in his approach of the superparamag-
netism of fine AF particles, that the effective moment of each
unit increases like a powerD8 which may differ from the
space dimensionD.7 Thenpeff~jsTdD8 and

xT ~ jsTd−sD−2D8d. s1d

We now assume thatjsTd increases whenT decreases, and
that it is possible, in the spirit of Kadanov’s renormalization
scheme, to connect by a “hierarchical recipe” the successive
steps of the cascade which relatesjsTd andj0. Assuming, for
example, thatj is multiplied byb whensJ/TC−J/Td is mul-
tiplied bya, then, ifn steps are needed to relateTn with J, we
can write7:
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J/TC − J/Tn = a 3 sJ/TC − J/Tn−1d

= a 3 a 3 a¯ 3 sJ/TC − 1d = an 3 sJ/TC − 1d,

s2d

jn = b 3 jn−1 = b 3 b 3 b 3 ¯ 3 j0 = bn 3 j0. s3d

By eliminatingn between Eqs.(2) and(3), one derives the
standard relation of static scaling:

jsTd/j08 = s1 − TC/Td−n = s1 − TC/Td−Q/TC. s4d

We have introduced abovej08=s1−TC/Jd−n, n=−logsad /
logsbd and (or) Q=nTC, which must be positive in order to
ensure thatjsTd /j08=1+Q /T+¯ is an increasing function of
1/T. The “static scaling assumption” has measurable conse-
quences. In particular, using Eq.(1) and allowingTC to be
positive null or negative, we find7:

xT/sNg2mB
2/kd = C 3 s1 − TC/Td−s2D8−Ddn

= C 3 s1 − TC/Td−g for TC . 0, s5d

xT/sNg2mB
2/kd = C 3 exp„s2D8 − Dd 3 Q/T…

= C 3 exps− W/Td for TC = 0, s6d

xT/sNg2mB
2/kd = C 3 s1 + TK/Tds2D8−DdQ/TK

= C 3 s1 + TK/Td−g for TC = − TK. s7d

The solutions(5) are the familiar power laws appropriate
to describe the usual phase transitions, withg=s2D8−Ddn
being the critical exponent related to the spin and lattice
dimensionalities. Note that instead ofT/J, we have usedJ/T
(which goes to zero asT diverges) to construct the scaling
variable sJ/TC−J/Td. This is to ensure that all three equa-
tions above have a sensible high temperature expansion,
where the Curie–Weiss law,x=C/ sT−Wd, is recovered, with
C=SsS+1d /3 being the Curie constant, andW=s2D8−DdQ
the paramagnetic Curie temperature in all three cases above.

Let us now focus upon other aspects of the above equa-
tions that have, in general, been left aside. First, we observe
that the solutions of type(6) or (7) have the same legitimacy
as the solutions of type(5) and that they are not forbidden by
any thermodynamic rule. They are therefore natural candi-
dates to describe those systems, sitting at or below a “lower
critical dimensionality,” where spin correlations are signifi-
cant but where no long-range order sets in at any finite tem-
perature. Second, we observe that, for a given positiveQ
=nTC, the model provides, depending on the sign of 2D8
−D, both ferromagnetic solutions wherexT increases upon
cooling down and AF solutions wherexT decreases. We in-
tend to use the latter to describe the magnetization of real AF
systems, in rupture with a tradition whereby it is believed
that the usual susceptibility does not contain valuable infor-
mation, and that the “staggered” magnetization should be
considered instead, and discussed in the same manner as the
magnetization in a ferromagnetic system.

In order to check these ideas and to decide which expres-
sion is more appropriate to describe experimental systems,
we propose to differentiate Eqs.(5)–(7) to obtain the equiva-
lent expression:

] logsTd/] logsxTd = − sT − TCd/gTC = − sT − TCd/W. s8d

It appears that] logsTd /] logsxTd is a linear function ofT
with slope −W−1, in the temperature window where the scal-
ing argument is valid, and thatg−1 andTC are simultaneously
deduced from the intersection of the straight line with the
axes. In theTC=0 limit, where thexT product is given by
Eq. (6), the straight line intersects the axes at their origin.

In previous works, we have reported examples where
] logsTd /] logsxTd obtained by differentiating the experi-
mental data shows a unique linear regime, giving aTC value
that is positive null or negative.7,9,10 In some cases, we ob-
serve an abrupt crossover, from one regime to the other[e.g.,
from solutions of type(6) to solutions of type(5)] occurring
at a particular temperature where the effective space dimen-
sionality of the system changes(e.g., because correlations
from chain to chain which were negligible at the scale of
atomic distances in a linear system may become important
on larger segments).10

We will, hereafter, consider, still, another situation where
two different criticalities seem to coexist in the same tem-
perature range, i.e., where two solutions of type(6) are su-
perimposed in a common temperature window.

III. APPLICATION OF THE MODEL TO THE SPIN-1
HALDANE CHAIN

Since the work of Botetet al. on the ground-state proper-
ties of finite AF rings withn=6 to 12 spin-1 sites, using
Lanczös’ algorithm,2 many numerical calculations have
complemented our knowledge of the physics of the Haldane
chain, focusing in particular on the spectrum of low-lying
spin states, with a special emphasis on the energy gap, the
exponential decay of the spin correlation function and the
correlation length asT→0.4

We have, hereafter, obtained the thermodynamic proper-
ties of the finite AF rings ofn spinsS=1 by the exact diago-
nalization of the spin Hamiltonian forn up to 10 and by the
density-matrix renormalization group(DMRG) technique for
n=16 and 20. Periodic boundary conditions have been im-
posed to minimize finite size effects, while only evenn val-
ues have been considered to avoid frustration effects.

A standard DMRG procedure was used to construct the
spin Hamiltonian matrices in the DMRG basis, imposing pe-
riodic boundary conditions to minimize the finite size effects
with SN+1=S1.

6,11 It might appear surprising that the DMRG
method, in which one or a few states only, usually the ground
state and one or two excited states, are targeted in each it-
eration, can provide accurate thermodynamic properties. It
is, however, well known that, at each iteration, the DMRG
space, which contains the lowest energy state, has substantial
projections from low-lying excited states. Hence, these ex-
cited states can be well described in the chosen DMRG basis.
Furthermore, the low-energy states of the full system, which
are important from the low-temperature thermodynamic
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point of view, are often found to be few of the low-energy
states in different totalSz sectors. We first set up the Hamil-
tonian matrices for all the allowed totalSz sectors for a ring
of 20 spin-1 sites. We then diagonalize these matrices to
obtain all the eigenvalues in each of the totalSz sectors. The
number of direct product states increases roughly as 9m2, for
a density-matrix cut-off ofm in a spin-1 chain. As the num-
ber of DMRG basis states increases rapidly with increasing
m, and since we have to diagonalize the matrices fully, we
retain a smaller number of dominant density matrix eigen-
vectors in the DMRG procedure, i.e., 60ømø80, depending
on the totalSz sectors. These energies, however, turn out to
be quite accurate, even on an absolute scale.12 Calculations
of thermodynamic properties from these eigenvalues are then
quite straightforward.

Figure 1 shows] logsTd /] logsxTd vs T, which are ob-
tained by differentiating numerically the logsxTd vs logsTd
data computed for AF rings ofn spin-1 sites, withn
=6 to 20. In both the high and the low temperature regimes,
the data are positive and approach a straight line which
intersects the axes near the origin atT=0. This indicates
that an AF exponential solution of the type(6) is relevant
in either range. The high temperature solutionxT
=CHn exps−WHn/Td is much the same for alln values, and
valid at temperatures larger than TM where
] logsTd /] logsxTd=1 (this is where the magnetic suscepti-
bility x is maximum). The low temperature solutionxT
=CLn exps−WLn/Td is valid at temperatures smaller thanTm

where ] logsTd /] logsxTd=0.5 (this is wherex /T is maxi-
mum). The high and low temperature regimes are described
by different straight lines forT.TM and T,Tm in the
Arrhenius plot of Fig. 2. The same data are shown in Fig. 3

asxsTd vs logT/J. The corresponding parametersC andW
are listed in Table I and their dependence on 1/n is displayed
in Fig. 4.

For nø10, each parameter is precisely what the theory
predicts. The Curie constant in the high temperature regime
agrees with the expectedSsS+1d /3 value. The associated
activation energy, namely, the actual paramagnetic Curie–
Weiss temperature, approachesWH=1.44J for all n, which is
close enough to the high temperature limit 4J/3 deduced
analytically for a ring of 4 spins. In the low temperature
regime, we haveCLn=2/n, which is the expected value for a

FIG. 1. (Color online) ] logsTd /] logsxTd deduced from exact
calculations of the susceptibility of AF Heisenberg rings ofn spins
S=1 is shown vsT/J for n=6, 16, and 20. The linear regime at high
temperature, which extrapolates to the origin of the axes, points an
exponential solution of type(6) for T larger than TM, where
] logsTd /] logsxTd=1. A distinct exponential regime is observed at
temperatures smaller thanTm where ] logsTd /] logsxTd=0.5. The
low temperature gap saturates to the Haldane gap valueD whenn
increases.

FIG. 2. (Color online) Results of exact calculations of the sus-
ceptibility xsTd of AF rings ofn Heisenberg spinsS=1, for n equal
to 6, 8, 10, 16, and 20. ForT.TM, there is a high temperature
Arrhenius regime, whereby thexT data first depart from the theo-
retical Curie constant forS=1 sCH= 2

3
d. BelowTm, there is a distinct

low temperature Arrhenius regime whose Curie constant isCLn

=2/n and whose activation energyWLn is the Haldane gap. The
different parametersC andW for all n are listed in Table I.

FIG. 3. (Color online) The same susceptibility data as in Fig. 2
are shown here versus logsTd, with the best values of the coeffi-
cients C1n,W1n and C2n,W2n, characterizing the low and the high
temperature regimes in a single fit.
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singlet-triplet spin configuration well separated from the high
spin high-energy states(in that temperature range, the influ-
ence of upper excited states is negligible). The associated
WLn is precisely the energy distanceDsnd from the funda-
mental to the first excited level, that is directly deduced by
computation for finite chains and is also reported in Table I.
Dsnd decreases asn increases and its dependence onn is well
approximated by the power lawDsnd=0.421+6.5n−1.74. In
the n→` limit, it tends towards a finite value that may be
compared to the Haldane gap. Note that our finite size cal-
culations overestimate the extrapolatedx at T=0 and so the
gap; however, the finite size numerical study has been car-
ried out in the spirit of comparison with the scaling analysis.

This remarkable aptitude of two distinct exponentials for
representing the magnetic susceptibility in two different tem-
perature ranges was a motivation to fit the data at all tem-
peratures from two superimposed exponentials. The optimi-

zation has been achieved withxsTd rather than thexTsTd,
because more weight is given to the data in the range of the
susceptibility maximum. Clearly theC coefficients given in
Table I need be related byCHn<C1n+C2n and CHnWHn

<C1nW1n+C2nW2n to reproduce the main features in the
high temperature limit. Similarly,CLn<C1n and WLn<W1n

in the low temperature regime where one exponential neces-
sarily dominates. These constraints are pretty well realized
with the C’s and W’s given in Table I. The resulting fit is
very good(Figs. 2 and 3), and the parameters become nearly
constant for rings larger than 10 spins, as shown in Fig. 5.
For such rings, we propose the following expression of the
xT product(normalized toNg2mB

2 /k),

TABLE I. Exact value of the gapDsnd between the ground and the first excited state, and best values of the parameters of Eq.(9) for AF
rings ofn Heisenberg spinsS=1. The best values of the same parameters characterizing the high and the low temperature regimes in a single
fit (see Fig. 3) are also listed.

n 1/n Dsnd /J CLn WLn/J CHn WHn/J C1n W1n/J C2n W2n/J

4 0.2500 1.000 0.486 0.999 0.680 1.495 0.204 0.769 0.506 2.087

6 0.1666 0.721 0.329 0.720 0.674 1.444 0.178 0.605 0.544 2.090

8 0.1250 0.594 0.248 0.593 0.673 1.438 0.145 0.512 0.558 1.916

10 0.1000 0.525 0.193 0.524 0.673 1.439 0.132 0.475 0.561 1.844

12 0.0833 0.502

14 0.0714 0.486

16 0.0625 0.478 0.162 0.483 0.673 1.437 0.132 0.475 0.561 1.844

18 0.0555 0.469

20 0.0500 0.457 0.191 0.523 0.673 1.438 0.128 0.463 0.561 1.819

` 0.0000 0.421 0.125 0.451 0.564 1.793

FIG. 4. (Color online) Variation of the parametersCLn, WLn,
CHn, andWHn of the exponentials characterizing the asympotic low
and high temperature Arrhenius regimes ofxT/ sNg2mB

2 /kd.

FIG. 5. (Color online) Best values of the parametersC1n, W1n,
C2n, andW2n, characterizing the overall temperature dependence of
the susceptibility of AF rings ofn spinsS=1 from a two exponen-
tial fit.
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xT = C1n exps− W1n/Td + C2n exps− W2n/Td, s9d

whose coefficients(Table I) are relevant for temperature re-
gion T/J.0.1. Notice that forT,0.1J, the finite size spec-
tra do not allow a reliable extrapolation of the properties to
the thermodynamic limit.

For the Haldane chainsn→`d limit, the best fit param-
eters are C1=0.125, W1=0.451J, C2=0.564, and W2
=1.793J.14 In Ref. 8, the authors have used the above equa-
tion to analyze the magnetic data of Y2BaNiO5, a typical AF
S=1 chain system. The corresponding parameters given in
Table II agree with our prediction, provided thatJ=300 K
which matches with previous findingssJ=285–322 Kd.15

In this system, the magnetic measurements have been per-
formed down to 10 mK, so that at low enough temperature,
the Curie-like paramagnetism of a small number of chain-
breaks ends up being the dominant contribution to the sus-
ceptibility. Incidentally, in Ref. 8, this contribution is well
fitted by an additional termC3 exps−W3/Td. With W3!T in
this case, we are using the fact that Eqs.(5)–(7) have a com-
mon high temperature expansion in terms of 1/T that goes
beyond the Curie–Weiss law: it contains information about
the sign and the scale of the interactions. Note that the de-
fects are expected to have very different effects in gapless
1D systems and Haldane chains.16 In the former, the main
effect is to reduce the correlation length: the magnetism in
this case amounts to the Curie-like contribution of the finite
segments with an odd number of spins. For the Haldane
spin-1 chain, by contrast, which is characterized by a finite
correlation length at low temperature, the valence-bond-solid
(VBS) model suggests a free spin-1

2 at each end of the finite
segments, giving rise to a staggered susceptibility, but in turn
there is no significant change of the gap value.

We have extended the same analysis to the magnetic be-
havior of NisC2H8N2d2NO2ClO4 (referred to as NENP),
which is the archetype of the Haldane gap systems.3 The
defect-spin contribution is particularly small in this case be-
cause, presumably, of the high quality of the single-crystals,
and no Curie-like term is needed in the temperature range
under consideration. We have therefore introduced a small
temperature independentx0, which is a contribution depend-
ing on axial symmetry. The agreement between theory and
experiment is excellent along the crystal axesa and b, as
may be observed in Fig. 6. We needJ=43 K along both axes
to match the paramagnetic Curie–Weiss temperature which is

much the same alonga andb axes(see Fig. 6 and Table II).
The effect of the known anisotropy of this system is that the
Haldane gap, which we deduce from the fit, ranges from
0.53J along thea axis to 0.40J along theb axis when we
expect 0.451J for the isotropic crystal.

The values of the Curie constants and of the activation
energies, deduced for YBaNiO5 and the NENP monocrystal,
are listed in Table II.

IV. DISCUSSION

To our knowledge, Eq.(6) is the only expression available
to describe the behavior of the Haldane chain in the whole
temperature range. At high temperature, everything behaves
initially as in any system sitting at a lower critical dimen-
sionality: an exponential solution of the type(6) is found, as
in the case of the classical Ising chain with nearest neighbor
interactions.

In turn, in the low temperature regime, gapped
AF chains are usually described by the expressionx
=AT−1/2 exps−D /Td.13 The T−1/2 factor which follows from
field-theory mapping17 is essentially related to the relativistic
magnetic properties in the nanometric scale magnon
dispersion,18 and has further been quantitatively confirmed
by Monte Carlo calculations.19 Actually, it can be pointed out
that this expression, which is dominated by the exponential,
does not differ significantly from the proposed approach,
even forT/J ranging from 0.2 to 0.05, givingD=0.409. Fur-
ther, it becomes irrelevant at higher temperatures, since little
can be inferred from the magnitude of the prefactor,A.

In the proposed model, we observe at low temperature the
terminal stages of the ordering of a different Ising-like chain,

TABLE II. Results of a two exponential fit of the susceptibility
of Y2BaNiO5 (from Ref. 8), together with those of
NisC2H8N2d2NO2ClO4, (NENP) along thea andb axes(see Fig. 6).
The data compare to the theoretical values providedJ=300 K and
g=2.28 for Y2BaNiO5 and 43 K andg=2.1 for NENP.

C1

(emu.K/mole)
W1

(K)
C2

(emu.K/mole)
W2

(K)
104x0

(emu/mole)

Y2BaNiO5 0.267 138 1.07 534

NENP-a 0.210 23 0.921 77.7 6.06

NENP-b 0.200 17 0.885 77.4 2.5

FIG. 6. (Color online) Fit of the magnetic susceptibility data of
NisC2H8N2d2NO2ClO4 (NENP) along two crystallographic axes,
giving from theW2 value,J=43 K along all axes. The anisotropy at
lower temperature is considered by permitting the Haldane gap to
vary from 0.53J along theb axis to 0.4J along thea axis instead of
0.447J expected for the isotropic case. An additional constantx0

has been introduced to account for a residual contribution to the
susceptibility that is expected to depend on axial symmetry as
observed.
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where the Curie constant has been divided by a factor of 5
and the activation energy(now the Haldane gap) by a factor
of 3.

Such behavior could be explained by assuming that theN
individual moments of the initial chain are not permitted to
order completely in a single process wherejsTd would grow
from 0 to ` as is described in Sec. II. The initial chain ofN
spins, rather, is rearranged as a new chain ofN/5 AF seg-
ments of 5 spins each, with an uncompensated spinS=1 due
to the unbalance of the up and down moments in the corre-
lated state of each segment. The Haldane gap would corre-
spond to the renormalized interaction from segment to seg-
ment.

This implies that some sort of dichotomy occurs, at an
early stage, whereby a finite length of 5 atomic distances is
selected for each segment and the ordering is made in two
stages: the former accounts for the short range ordering
0,jsTd,jq which is responsible for the cohesion of each
segment; the latter,jq,jsTd, with the Curie constant divided
by 5, describes the divergence of the correlation between the
newly defined segments. The expression(9) displays two
simultaneous contributions, accordingly. The segmentation
length jq=5, which comes out from the ratio of the Curie
constants, turns out to be of the same magnitude as the finite
correlation lengthjq=2JS/D predicted for the Haldane chain
in the T=0 limit.4 Maybe it is not much of a surprise, after
all, if the susceptibility does not vary very much once we

reach rings ofn.10 spins, large enough to contain several
segments of sizejq. Interestingly, such rings already contain
all the elements which are required for describing the physics
of the system.

There are many other such cases where the observed ex-
perimental evidence can be convincingly described as the
superposition of two critical processes in the same tempera-
ture range: for example, in ferrimagnetic 1D systems,10 the
minimum of thexT dependence can be well described by
two superimposed exponentials, namely ferromagnetic and
antiferromagnetic-like contributions, and at the same time a
particular length is selected which shows up as a modulation
of the ferromagnetic order. Perhaps some general strategy
can be elaborated for these systems along the same lines as
described here.

V. CONCLUSIONS

We have derived a simple phenomenological expression
for the susceptibilityxsTd of finite AF rings ofn Heisenberg
spinsS=1 by applying to the results of exact calculations a
method based on physical scaling arguments. On increasing
n, the coefficients of this expression rapidly converge to val-
ues that do not depend onn anymore. The resulting formula
is simple and easy to use: it beautifully fits the experimental
magnetic data of NisC2H8N2d2NO2ClO4 (NENP) and
Y2BaNiO5, two archetypes of the Haldane gap systems.
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