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Fluctuations of the Lyapunov exponent in two-dimensional disordered systems
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We report a numerical investigation of the fluctuations of the Lyapunov exponent of a two-dimensional
noninteracting disordered system. While the ratio of the mean to the variance of the Lyapunov exponent is not
constant, as it is in one dimension, its variation is consistent with the single parameter scaling hypothesis.
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[. INTRODUCTION original spectrum of the system and for fluctuation states
arising due to disorder in the initial band gaps. A violafiéh

. . 0o
¢ Tze ;lngI(? param(;ater ch.“r@Pfi hg/pothe?é II'S the ._of SPS at the band center of the Anderson model was shown
oundation of our understanding of Anderson localization inj, ref 15 to arise for similar reasons.

disordered systems. According to the SPS hypothesis Ander- gjngje parameter scaling of the conductance distribution
son localization phenomena are governed by a single parameq. (1)] has also been verified numerically in the three-
eter: The erIO of the system size to the localization Ie_n_;’gth dimensional3D) Anderson model close to the critical point
When applied to the zero temperature conductanoédis-  of the Anderson transitio:1” The region of validity of the
ordered mesoscopic system the hypothesis implies that th&saling in 3D, however, is not known. One can imagine,

probability distributionp(g) of the conductance obeys however, that an inequality similar to E¢B) may be appli-
= F(g:L/ 1 cable in this case as well.
P(O) = Flg:L/e). (1) The situation in two-dimensiong?D) systems is cur-

Hereg is in units of 22/h andL is the system size. The SPS rently very controversial. According to Ref. 2 all states in 2D
hypothesis has been applied to other physically interesting"® localized. At the same time there are a large number of
quantities including the localization lendthand Lyapunov experiments, in which an apparent r_netal-lnsulator transition
exponent spectfaf quasi-one-dimensiondl D) systems, as has been observedror a recent review see Ref. 18he

well as the energy level statistics of disordered systéfite physical meaning of these observation is not yet understood,

probability distribution of all these quantities should have ad€SPité @ debate that has already lasted a decade. The valid-
form similar to Eq.(1) if SPS holds. ity, or otherwise, of SPS in 2D is, therefore, an important

Our understanding of scaling is most complete for oneiSsue. Even for single particle models this issue has not yet

di ional(1D ; Th gy i £ 1D been fully resolved. For instance, careful numerical
Imensional(1D) systems. There are two properties o analyse$®® of the 2D Anderson model showed excellent
systems that distinguish them from higher dimensional sys

tems. First, their electronic eigenstates are, with ver fewégreement with SPS. While other studfe$’ suggested the
' ' 9 ' y xistence of power-law localized states and two-parameter

ex_ceptions, always localized. Second, the localization le.ngtﬁcaling. Violations of SPS have also been reported in more
¢ is comparable to the mean free path so that there is ne,

diffusive regime. It has been shown that, in 1D, the cumu- CCENt Papers:®
USIVE TegIme. as been sho aé » (N cumu- - o example of 1D systems demonstrates that conclusive
lants of Ing all scale linearly with length..° It follows that

. s o 79 i S results regarding scaling properties can only be obtained
p(g) IS Iog normal wherl.>£.” The log-normal d|str|bu_t|on from studying the distribution functions of relevant quanti-
is determined by two parameters, the mean and variance ¢tq Nymerical studi€2’in 2D show that Ing is normally

lk;] 9. Cllonzlslt:ency wﬁc(h(;_he %PS hypotheb5|§ requwels t.hat]fhﬁ&istributed in the regime of strong localization. It follows
e related. For weak disorder a perturbative analysis of thg, .+ gingle parameter scaling must be manifest in a relation

1D Anderson model revedls between the average of ty and its variance, similar to the
ol ¢={((ng=(In 9)?=2(-n g). 2) 1D equatlor(Z). However, attempts to verify this relation did
not reach definite conclusions because of the small system
Angular brackets mean an average over disorder. For the 1BEizes simulated and an approach to B).that was too na-
Anderson model, only weak disorder is relevant since forve.

strong disordek is comparable to the lattice spacing. The main objective of our paper is to perform a careful
Equation(2) holds for many models. The precise condi- analysis of the statistical properties of a 2D disordered sys-
tions for its validity ig0-13 tem of noninteracting electrons, and verify that they are con-
£> 0, 3) sistent with SPS. The object of our calculations is the finite

length Lyapunov exponenLE) for a 2D Anderson model
where ¢, is a length scale that is related to the integratedwith diagonal disorder(The definition of the LE and the
density of states. SPS is violated at the boundaries of thmeaning of the qualificatiofinite lengthis given below For
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a 2DL X L system withL > ¢ the mean of the LE is equal to +1. For Eq.(4), ¥,, and M, are real vectors and matrices,
the inverse of the localization length respectively, and the transfer matrices are identically and in-
The distribution of conductance has been given speciallependently distributed random matrices.
attention in the literature because it is directly accessible in
experiments. However, it should be understood that the con- B. Definition of Lyapunov exponents
ductance unavoidably reflects properties not only of the sys-
tem in question, but also properties of the contacts used tfbr
measure it. The Lyapunov exponent, on the other hand, is
intripsic property of.the Qisolrdelred system, containing i.nfor'with positive elements, and an upper triangular ma®ixith
mation about spatial distribution of the wave functions, .. .
: . . -~~~ unit diagonal elements
which are ultimately responsible for all other properties in-
cluding conductance. M, -+ M;Qu=QDR. (7)
We find that the distribution function of the LE is approxi- _ . @@L
mately normal both whei < ¢ and whenL> & This con-  We define Z finite length LEsy, "---» "™ by
trasts with the conductance which exhibits not only very

We start with a 2, X 2L, orthogonal matrixQ,. We per-
m L transfer matrix multiplications and factor the result
fto a product of an orthgonal matr@@, a diagonal matri>D

1
strong fluctuations but also a significant change in the form y(L“) =—In D,. (8
of its distribution between the diffusive and localized re- L
gimes. HereD, is thenth diagonal element ob. The finite length

We approach the question of scaling by clarifying the re-| Es are random variables that fluctuate as we sample the
lation between the average and variance of the LE that ifandom potential. For fixet,,, whenL — the LEs always
implied by the SPS hypothesis in 2D, and checking whethefend to the same limiting values
numerical data are consistent with it. We find that the relation
between the mean and variance is characterized by a single lim " = Y7, 9
parameter, namely the ratio of the system size to the local- Lo
ization length. Thus, we provide convincing evidence thatfor (nearly all samplings of the distribution of transfer ma-
the SPS hypothesis is valid in 2D disordered systems of nortrices and(nearly) any choice 0fQ,.28
interacting electrons. The LI" LE is the most physically significant™ is the

inverse of the localization length of an electron on an
infinite quasi-1D system of width, described by4)%°

1

Il. MODEL AND METHOD

A. The transfer matrix for the Anderson model Yy = X (10)
We simulated the two-dimensional Anderson model with , Ly ,
Hamiltonian Therefore, in what follows we focus on ™, dropping the
superscript and referring to it dse LE
H=> eclci—- > clc.. 4 L
Ei o %' ! @ A=y (12)
The first summation is over all sites on &pxL square In numerical calculations, if only the firsh LEs are re-

lattice, i.e., a system of width, and lengthL. The second duired, itis sufficient to mak®q a 2. X m real matrix with
summation is over all pairs of nearest neighbors. We imOrthonormal columns. Depending on the valuemtthis can
posed periodic boundary conditions in the transverse direcs@ve a considerable amount of computer time. The values for
tion and used a “box” distribution of widthV for the site  the firstm LEs obtained in any particular calculation are

energiese independent of whether or not LEs with higher indices are
also calculated.
_Juw le&| < W2 To avoid numerical difficulties with the transfer matrix
p(e) 0 |el>wW2’ ®) multiplication Eg. (7), we performed additional Gram-

_ _ . Schmidt orthogonalization after every 8 transfer matrix
Lyapunov exponents arise when the time independenfyltiplications®
Schrodinger equation is expressed as a product of random The definition, given in Eq(8), of the LE forfinite length
transfer matriced? We divide the system in the longitudinal that we have adopted here is not the 0n|y reasonable one. We

direction intoL layers. We form vector¥, of lengthL from  compare our choice with an obvious alternative in Appendix
the wavefunction amplitudes on each layer. For an arbitrary

energyE we derive from the Schrddinger equation the trans-

fer matrix equation C. Special considerations for systems of finite length
Vo v, In this paper we are concerned with the the distribution of
N =M, W, (6) v for finite lengthL rather than with its asymptotic value as
n n—-

L — oo, Therefore, we have to deal properly with effects re-
The 24X 2L, transfer matrixM,, relates the wave function lated to the finite value dof, effects that were routinely con-
amplitudes on layen andn-1 to those on layera andn sidered unimportant in previous studies.
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o _ FIG. 2. The distribution of the LE for a 2D X L system with
FIG. 1. The distribution of the LE for a 2D XL system with  £_q \y=14 andL=128. The line is a normal distribution with the

E=1, W=5, andL=32. The line is a normal distribution with the o5 and variance equal to that of the numerical data. The numeri-
mean and variance equal to that of the numerical data. The NUMEr,| data have a mean of 0.40. a standard deviation of 0.035. and a
cal data have a mean of 0.032, a standard deviation of 0.032, ands@(ewness of —0.33. The numt;er of samples is 40 000. '

skewness of —0.0031. The number of samples is 65 523.
A. Distribution of the LE

We simulated systems with Fermi energBy 1, disorder

) . - o 5=<W=14 and a range of systems sizes betwkeri6 and
independent of the choice of the initial mat@. For finite | _515 The distribution of the LE for two particular cases

L, however, the distribution of;_depends orQ, andL, in are shown in Figs. 1 and 2. These are representative of the

addition top(M,). The dependence a@, would, if not dealt parameter range we studied. Figure 1 corresponds to the situ-

\lgv*tgésl,ir:ggldeuce an arbitrary element to our analysis that isyion| < ¢ while Fig. 2 corresponds to the situatib® . In

he d d he distributi the figure captions we give the values of the mean, variance
To remove the dependence of the distributionyobnQy 514 skewness for the numerical data, as well as the number
we used the following observation to our advantage.(&br

of samples simulated.
mos) any Q,, the distribution of the matrix) approaches an P

; ; stributi _ The skewness is a measure of the symmetry of the distri-
L independent stationary distributign(Q) asL increases.  ion. Distributions that are symmetrical about their mean,

The form ofpy(Q) depends only op(M,). By samplingQo  gych as the normal distribution, have a skewness equal to
from py(Q) we obtain a distribution for, that depends only  zerg. According to Ref. 30, a distribution whose skewness
onlL andp(Mp). has absolute value greater than unity is considered highly

To generate matrices with the required stationary distribuskew. A distribution whose skewness has absolute value less
tion ps(Q), we took an arbitrary set of orthonormal vectors, than one half is considered fairly symmetrical. For data
performedN, transfer matrix multiplications and factored the sampled from a normal distribution, the skewness is ex-
result according to Eq7). To determine how largh; should  pected to be distributed around zero with a standard devia-
be to get a good approximation tpy(Q), we checked tion of \15/Ng whereN, is the number of samplés.
whether or not the Kolmogorov-Smirnov test could distin-  For the data in Fig. 1, the difference of the skewness from
guish between the distributions ¢f for L=1 obtained with  zero is not statistically significant. This is consistent with the
differentN,. The test showed that ond¢ > 100, the distri- LE having a normal distribution.
bution of the LE becomes independentMf Below we set For the data in Fig. 2, the difference of the skewness from
N, =1000. zero is statistically significant. What is the physical signifi-
cance of this deviation? Normally we would expect the scal-
ing hypothesis to apply only when the localization len§ik

Since our interest in this paper is in the distribution of themuch longer than microscopic length scales such as the mean
LE in 2D systems we set the widih and lengthL of the  free path, lattice constant, etc. Here these are approximately
system equal unity, so this condition corresponds §>1. This condition

L=L (12) is satisfied for the dafta in_ Fig. 1, whefe- 180(see Table)|,
te but not for the data in Fig. 2, wherg=2.5. Therefore, we

i.e., in the remainder of the paper we consider only 2D think that the deviation from the normal distribution seen in
X L systems. Fig. 2 is not significant in the context of our study.

In the asymptotic limitL —co, the value ofy, depends
only on the distribution of the transfer matp{M,,), and is

IIl. RESULTS
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TABLE I. The 2D localization length and the scaling functiBrdetermined from the scaling of the mean
LE. The errors quoted are 95% confidence intervals and are estimated using the Monte Carlo(Rethod

31).

w & L/& F

5 178+2 0.1 0.86+0.005
5.5 85+1 0.5 1.51+0.01
6 48+0.5 1 2.11+0.02
6.5 30.2+0.3 2 3.17+0.02
7 20.8+0.2 5 6.16+0.05
8 11.7+0.1 10 11.0+0.1
9 7.69+0.08 20 20.6+0.2
10 5.54+0.06 1000 (1000

11 4.26+0.04

12 3.44+0.03

13 2.88+0.03

14 2.47+0.02

In our opinion, the normal distribution is a reasonable L
approximation to the observed distribution for the range of (wl = F(E) (13
L/¢& in our simulations. In what follows, we concentrate our
attention on the mean and variance of the LE and their scaWhenL> ¢ we suppose that the mean of the LE will tend to

ing. the inverse of the 2D localization lengéhi.e.,

It is also important to bear in mind when looking at Figs.
1 and 2 that the scaling hypothesis is expected to apply to the lim () = l_ (14)
bulk of the distribution not its tails, i.e., to typical states not L—o £

necessarily to very rare states. Hence, we use a linear sca.leh
for the probability density axis and not a logarithmic scale,
which would unduly emphasize the tails of the distribution. FX) —x x> 1. (15)

is is equivalent to

For numerical reasons we expressed the scaling function in
B. The scaling of the mean LE the form

According to the SPS hypothesis the scaling of both the L
mean and variance of the LE should be governed by the |0910<7L>|-:f<|091o—), (16)
same length scale, the localization lengthA quantitative ¢
test of scaling involves checking the consistency of the disand used a spline to interpolate the functfoirhe values of
order dependence dgfobtained independently from the scal- f, at the values of./ & in Table I, were fitting parameters. To
ing of the mean and variance of the LE. In this section weensure the spline interpolation reproduces @&), we fixed
deal with the scaling of the mean LE. the value off atL/£=1000. The corresponding value Bfis

For the scaling analysis of the mean LE we estimdd  given in parenthesis in Table I. The remaining fitting param-
to a precision of 0.25% for system sized eters were the localization lengths for each disorder. Finally,
=16, 32, 64, 128, 256, and 512. P&f<11 the maximum we used the shape preserving Akima spline to avoid unphysi-
system size was reduced to 256. We determifred(W) by  cal oscillations off. We summarize the results in Tables |
fitting the variation of the mean LE with andW to the SPS and Il and in Fig. 3. We can see from this figure that the data
law for different values of disorde and system sizk fall on a

TABLE II. Details of the finite size scaling fits: The number of daka the number of parametels,, the
value of y? for the best fit and the goodness of fit probabil@ty

Statistic and data range N, Ny X Q
(nL

16=L =512, 5=sW=14 19 63 46.0 0.4
p)

64<L <256, 5<W=12 15 30 20.3 0.2
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FIG. 3. The finite size scaling filine) to the data(circles for 10 L 100

the mean of the Lyapunov exponent. The precision of the numerical

i 0,
data is 0.25%. FIG. 4. 3 versus system size. For each point 160 000 samples

were simulated, corresponding to a precision of approximately
common scaling curve when expressed as a functido/ 6f  0.4%. The lines, which connect points corresponding to a common
Moreover, for largel we observe the expected linear depen-value of the disordew, are a guide to the eye only.
dence, with slope equal to the inverse localization length.

C. Scaling of the fluctuations of the LE S = fz<|0910E> (20)
Taking into account that the dimension gf is 1/L, and 3
that of its variancer? is 1/L2, we can define a dimensionless ) o _ _
quantity S, by and used an Akima spline interpolation of the functign
The values offy, at the values oE/£ listed in Table 1ll, and
ot the localization lengths for each disorder were fitting param-
oL (17) he localization | hs f h disord fitti

- <7L>.

According to the SPS hypothesis the localization length i
the only relevant length in the system, 3ashould obey the
SPS law

eters. To obtain a reasonable goodness gffid.1) we had
to restrict the range of data considered te B/<12 andL
= 64. [There seem to be a more pronounced finite size cor-
rection in the data for the variance than in the data for the
mean LE. Also, the breakdown of scaling wh&is compa-
s - L rable to the lattice spacing ~ 1) seems to be evident sooner
=Fs E ' (18) in the variance of the LE than in the mean LE.
When fitting data for the mean LE, we were able to de-

In 1D, the linear scaling of the cumulants ofdgnand the  termine the absolute value @fwith the aid of(15). Unfor-
relation between the LE ang described in the Appendix,

allow us to deduce from Eq2) the much more prescriptive TABLE lIl. The 2D localization length and the scaling function

statement F determined from the scaling &f.
>=1. (19
& L/ Fs

However, for a 20L X L system the cumulants of imdo not
scale linearly withL, except perhaps in the regime whére 5 226+38 0.1 0.98+0.02
> & aregime which it is more difficult to reach in 2D than in 5 5 96+8 1 0.948+0.005
1D. There_fore, we shouk_j not expept tlfabe unity or even ¢ 5042 5 0.804+0.004
constant in our caIc;uIauons_. Conﬁrmatlor_] of the SPS hy—gl5 30441 10 0.683+0.004
pothesis in 2D consists not in demonstrating that calculate
values vary in accord with Eq19) but rather in trying to ! 20.9+0.6 20 0.551+0.003
establish Eq(18). 8 11.9+0.3 50 0.403+0.002

We have plotted the variation & with system size in 9 7.8£0.2
Fig. 4, where different lines correspond to different values of10 5.6+0.1
disorder,W. These data were analyzed in an analogous way1 4.3+0.1
to the mean LE. We expressed the SPS law (#§) in the 12 (3.44

form
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=0 in order to avoid anomalies related to the band edge
behavior, which were found in 1D systems. We expect that
the behavior for any other value of the energy will be similar
as long as it is not close to an anomalous region. We found
that the manifestation of SPS in numerical studies of 2D
systems is different from that of 1D systems. Instead of the
simple relation between the mean and variance of the LE
given by Eq.(19) and valid for 1D, in 2D one has to analyze
the compliance of numerical data with the SPS relation Eq.
(18).

The fact that we verified SPS both where £ andL> ¢ is
significant because it contradicts the conclusions of Refs. 24
and 25, where a behavior inconsistent with SPS was found.
While a complete elucidation of the sources of this disagree-
ment is beyond the scope of this paper, we can suggest some
possibilities that might be worth pursuing in future work.
First, it is possible that the logarithmic increase of the local-
ization length seen in Ref. 24 might be reconcilable with the
0.0 1 — ] — SPS hypothesis, in much the same way as we have recon-

1 10 100 ciled the system size and disorder dependence of theXatio

Lg with SPS here. Second, the authors of Refs. 24 and 25 ana-

lyzed the spatial properties of eigenfunctions. In 1D the re-
lationship between lengths that characterize transport and
wave functions is well establishéd.in 2D there may be
o o . aspects of this relationship that have not yet been properly
tunately, no similar relation is available fds and so we ynderstood. Third, in Refs. 24 and 25 wave functions corre-
cannot fix the absolute scale éby fitting data for> alone. sponding toE=0 were studied. In 1D this is a special spec-
Indeed, looking at Fig. 5 we can see that, if we translate botlyg| point, at which SPS is violatéd:15 It seems reasonable

the fit and the data by the same amount parallel to the alip suggest thaE=0 is also a special point for 2D where SPS
scissa, we obtain an equally good fit. To avoid this ambigushould not be expected.

ity, we set the value of the localization length ff=12 to
that found for the mean LE. We show the results in Table IlI. ACKNOWLEDGMENTS

Apart from an over estimate d&f for W=5 andW=5.5, the ~  qith Slevin would like to thank Tomi Ohtsuki for sug-
results are consistent with those for the mean LE. In add'gesting scaling at a fixed aspect ratio. Lev Deych is grateful

tion, in Fig. 5, we have plotted versusL/¢ where&is 4, ajey Lisyansky for numerous useful discussions of this
estimated from this fit. We see that all the different curves o

Fig. 4 collapse on to a single curve, confirming the correct-
ness of Eq(18). We conclude that the fluctuations of the LE APPENDIX A: ALTERNATIVE DEFINITION OF THE LE
are consistent with the SPS hypothesis. FOR FINITE LENGTH

Looking at Fig. 5, it is plausible that the functic will
tend to a finite asymptotic value dg ¢{— . If this does
occur, the fluctuations of the LE in the 2D asymptotic limit
(L/é—o with L,=L) decay as 1JL. This is similar to the
behavior in the quasi-1D limit./§— o with L, fixed) where
the fluctuations in the LE also decay asyL/ The only dif-
ference is thatt is always unity in quasi-1D, while the
asymptotic value ok is less than unity in 2D. M=11 M, (A1)

0.2 7

FIG. 5. A visual check that the numerical data ®defined in
Eq. (17) (pointy satisfy the SPS law Eq18) (line).

The definition of the finite length LEwvhich we have used
in this worK) is not the only reasonable one. In this appendix
we will describe an alternative and compare with the defini-
tion described in the main text of this paper. Given a transfer
matrix M

we can define a matri by

IV. CONCLUSION
Q=InM™™. (A2)

We have investigated numerically the scaling of the fluc- ) ) )
tuations of the LE in the 2D Anderson model with diagonal The eigenvalue spectrum 6t is composed of pairs of op-
disorder. We found that the distribution of the LE is approxi-Posite sign{+»™,—»:n=1.--L;}. From these eigenvalues
mately normal both wheh < ¢ andL> & We showed that We could define the LE in an alternative way as
the parameters of the distribution, the mean LE and its vari- (n)
ance behave in accordance with the single parameter scaling
hypothesis for the energy value considered in our calcula-
tions. This valueE=1, was chosen to lie far from the bound- In the limit thatL — « at fixedL,, the random variables de-

aries of the initial spectrumE=+4, and from its centeE  fined by Eq.(A3) always tend to be the same limiting values

m_Y

=—. A3
YL 2L (A3)
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for (nearly all samplings of the distribution of transfer ma- ensemble of samples but also by a single sample.
trices. These values are the same as those obtained with Eq. P3 In this definition there is no analogue@§ and hence
(8) in the same limit. For finitd. the values of Eqs(8) and  no analogue of property P3 for E(B).
(A3) are different. We summarizes the main characteristics P4 There is no simple geometric interpretation except in
of each defini'giqr! below. . _ the asymptotic limit.
For the definition Eq(8) in the main text: _ ~ SPScan be investigated using either definition. The quan-
P1 The LE are not the eigenvalues of a matrix. The indi+jty defined by Eq(8) has the advantage that its distribution

ces of the LE refer to the order in which they are obtainedg ormal, while at the same time retaining a straightforward
from the Gram-Schmidt procedure. In general, thisasina  |ationship to the decay of the wave function in the disor-
strictly decreasing order. dered system

P2 Though the sum of the all LEs is always zero, for finite
L and for a single sample, the LE do not occur in pairs of
opposite sign. This symmetry is restored after taking the
limit L—oo for a single sample, or after averaging over an
ensemble of samples. For a single sample we have found that

APPENDIX B: RELATION OF LE TO
CONDUCTANCE IN 1D

the symmetry also appears whe€} is sampled from the
stationary distributiorps(Q,) described in Sec. Il C.

P3 For fixedL; and Qg sampled fromps(Qy), the mean of
the LEs are independent bf (Note that in the main text we
consider scaling witt.;=L, so this property is not applicable
there)

P4 The LE have a simple geometrical interpretation in

For a strictly 1D system whose length is much longer than
the localization length the transmission coefficierior the
transmission of electrons through the disordered sample de-
cays as

—Injt|=In D, + O(LO(L > ¢). (B1)

terms of the exponential rate of increase of lengths, areadne O(L®) term is a fluctuating term that depends on the

volumes, etc.
For the definition(A3):

nature of the leads attached to the sample when defining the
scattering problem. Using the Landauer formula to relate the

P1 The LEs are related to the eigenvalues of a matrix antfansmission and the conductance we have
hence there is no prescribed ordering for them. It is conven-

tional to put the LEs in decreasing order and the index in the

definition (A3) usually refers to this order.
P2 For allL, the LE occur in pairs of opposite sign. This

-Ing=2y L+0O(LO(L> &). (B2)

From this we deduce that equation E®) is equivalent to

exact symmetry is exhibited not just after averaging over arkEq. (19) whenL>&.
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