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We report a numerical investigation of the fluctuations of the Lyapunov exponent of a two-dimensional
noninteracting disordered system. While the ratio of the mean to the variance of the Lyapunov exponent is not
constant, as it is in one dimension, its variation is consistent with the single parameter scaling hypothesis.
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I. INTRODUCTION

The single parameter scaling(SPS) hypothesis1,2 is the
foundation of our understanding of Anderson localization in
disordered systems. According to the SPS hypothesis Ander-
son localization phenomena are governed by a single param-
eter: The ratio of the system size to the localization lengthj.
When applied to the zero temperature conductanceg of dis-
ordered mesoscopic system the hypothesis implies that the
probability distributionpsgd of the conductance obeys3

psgd . Fsg;L/jd. s1d

Hereg is in units of 2e2/h andL is the system size. The SPS
hypothesis has been applied to other physically interesting
quantities including the localization length4,5 and Lyapunov
exponent spectra6 of quasi-one-dimensional(1D) systems, as
well as the energy level statistics of disordered systems.7 The
probability distribution of all these quantities should have a
form similar to Eq.(1) if SPS holds.

Our understanding of scaling is most complete for one-
dimensional(1D) systems. There are two properties of 1D
systems that distinguish them from higher dimensional sys-
tems. First, their electronic eigenstates are, with very few
exceptions, always localized. Second, the localization length
j is comparable to the mean free path so that there is no
diffusive regime. It has been shown that, in 1D, the cumu-
lants of lng all scale linearly with lengthL.8 It follows that
psgd is log-normal whenL@j.9 The log-normal distribution
is determined by two parameters, the mean and variance of
ln g. Consistency with the SPS hypothesis requires that they
be related. For weak disorder a perturbative analysis of the
1D Anderson model reveals8

sln g
2 ; ksln g − kln gld2l = 2k− ln gl. s2d

Angular brackets mean an average over disorder. For the 1D
Anderson model, only weak disorder is relevant since for
strong disorderj is comparable to the lattice spacing.

Equation(2) holds for many models. The precise condi-
tions for its validity is10–13

j @ ,s, s3d

where ,s is a length scale that is related to the integrated
density of states. SPS is violated at the boundaries of the

original spectrum of the system and for fluctuation states
arising due to disorder in the initial band gaps. A violation8,14

of SPS at the band center of the Anderson model was shown
in Ref. 15 to arise for similar reasons.

Single parameter scaling of the conductance distribution
[Eq. (1)] has also been verified numerically in the three-
dimensional(3D) Anderson model close to the critical point
of the Anderson transition.16,17 The region of validity of the
scaling in 3D, however, is not known. One can imagine,
however, that an inequality similar to Eq.(3) may be appli-
cable in this case as well.

The situation in two-dimensional(2D) systems is cur-
rently very controversial. According to Ref. 2 all states in 2D
are localized. At the same time there are a large number of
experiments, in which an apparent metal-insulator transition
has been observed.(For a recent review see Ref. 18.) The
physical meaning of these observation is not yet understood,
despite a debate that has already lasted a decade. The valid-
ity, or otherwise, of SPS in 2D is, therefore, an important
issue. Even for single particle models this issue has not yet
been fully resolved. For instance, careful numerical
analyses4,19 of the 2D Anderson model showed excellent
agreement with SPS. While other studies20–23 suggested the
existence of power-law localized states and two-parameter
scaling. Violations of SPS have also been reported in more
recent papers.24,25

The example of 1D systems demonstrates that conclusive
results regarding scaling properties can only be obtained
from studying the distribution functions of relevant quanti-
ties. Numerical studies26,27 in 2D show that lng is normally
distributed in the regime of strong localization. It follows
that single parameter scaling must be manifest in a relation
between the average of lng, and its variance, similar to the
1D equation(2). However, attempts to verify this relation did
not reach definite conclusions because of the small system
sizes simulated and an approach to Eq.(2) that was too na-
ive.

The main objective of our paper is to perform a careful
analysis of the statistical properties of a 2D disordered sys-
tem of noninteracting electrons, and verify that they are con-
sistent with SPS. The object of our calculations is the finite
length Lyapunov exponent(LE) for a 2D Anderson model
with diagonal disorder.(The definition of the LE and the
meaning of the qualificationfinite lengthis given below.) For
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a 2DL3L system withL@j the mean of the LE is equal to
the inverse of the localization lengthj.

The distribution of conductance has been given special
attention in the literature because it is directly accessible in
experiments. However, it should be understood that the con-
ductance unavoidably reflects properties not only of the sys-
tem in question, but also properties of the contacts used to
measure it. The Lyapunov exponent, on the other hand, is an
intrinsic property of the disordered system, containing infor-
mation about spatial distribution of the wave functions,
which are ultimately responsible for all other properties in-
cluding conductance.

We find that the distribution function of the LE is approxi-
mately normal both whenL!j and whenL@j. This con-
trasts with the conductance which exhibits not only very
strong fluctuations but also a significant change in the form
of its distribution between the diffusive and localized re-
gimes.

We approach the question of scaling by clarifying the re-
lation between the average and variance of the LE that is
implied by the SPS hypothesis in 2D, and checking whether
numerical data are consistent with it. We find that the relation
between the mean and variance is characterized by a single
parameter, namely the ratio of the system size to the local-
ization length. Thus, we provide convincing evidence that
the SPS hypothesis is valid in 2D disordered systems of non-
interacting electrons.

II. MODEL AND METHOD

A. The transfer matrix for the Anderson model

We simulated the two-dimensional Anderson model with
Hamiltonian

H = o
i

eici
†ci − o

ki,jl
ci

†cj . s4d

The first summation is over all sites on anLt3L square
lattice, i.e., a system of widthLt and lengthL. The second
summation is over all pairs of nearest neighbors. We im-
posed periodic boundary conditions in the transverse direc-
tion and used a “box” distribution of widthW for the site
energiesei

pseid = H1/W ueiu ø W/2

0 ueiu . W/2
. s5d

Lyapunov exponents arise when the time independent
Schrödinger equation is expressed as a product of random
transfer matrices.29 We divide the system in the longitudinal
direction intoL layers. We form vectorsCn of lengthLt from
the wavefunction amplitudes on each layer. For an arbitrary
energyE we derive from the Schrödinger equation the trans-
fer matrix equation

SCn+1

Cn
D = MnS Cn

Cn−1
D . s6d

The 2Lt32Lt transfer matrixMn relates the wave function
amplitudes on layern and n−1 to those on layersn and n

+1. For Eq.(4), Cn and Mn are real vectors and matrices,
respectively, and the transfer matrices are identically and in-
dependently distributed random matrices.

B. Definition of Lyapunov exponents

We start with a 2Lt32Lt orthogonal matrixQ0. We per-
form L transfer matrix multiplications and factor the result
into a product of an orthgonal matrixQ, a diagonal matrixD
with positive elements, and an upper triangular matrixR with
unit diagonal elements

ML ¯ M1Q0 = QDR. s7d

We define 2Lt finite length LEsgL
s1d
¯gL

s2Ltd by

gL
snd =

1

L
ln Dn. s8d

HereDn is thenth diagonal element ofD. The finite length
LEs are random variables that fluctuate as we sample the
random potential. For fixedLt, whenL→` the LEs always
tend to the same limiting values

lim
L→`

gL
snd = gsnd, s9d

for (nearly) all samplings of the distribution of transfer ma-
trices and(nearly) any choice ofQ0.

28

The Lt
th LE is the most physically significant:gsLtd is the

inverse of the localization lengthl of an electron on an
infinite quasi-1D system of widthLt described by(4)29

gsLtd =
1

l
. s10d

Therefore, in what follows we focus ongL
sLtd, dropping the

superscript and referring to it asthe LE

gL
sLtd ; gL. s11d

In numerical calculations, if only the firstm LEs are re-
quired, it is sufficient to makeQ0 a 2Lt3m real matrix with
orthonormal columns. Depending on the value ofm, this can
save a considerable amount of computer time. The values for
the first m LEs obtained in any particular calculation are
independent of whether or not LEs with higher indices are
also calculated.

To avoid numerical difficulties with the transfer matrix
multiplication Eq. (7), we performed additional Gram-
Schmidt orthogonalization after every 8 transfer matrix
multiplications.5

The definition, given in Eq.(8), of the LE forfinite length
that we have adopted here is not the only reasonable one. We
compare our choice with an obvious alternative in Appendix
A.

C. Special considerations for systems of finite length

In this paper we are concerned with the the distribution of
gL for finite lengthL rather than with its asymptotic value as
L→`. Therefore, we have to deal properly with effects re-
lated to the finite value ofL, effects that were routinely con-
sidered unimportant in previous studies.
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In the asymptotic limitL→`, the value ofgL depends
only on the distribution of the transfer matrixpsMnd, and is
independent of the choice of the initial matrixQ0. For finite
L, however, the distribution ofgL depends onQ0 and L, in
addition topsMnd. The dependence onQ0 would, if not dealt
with, introduce an arbitrary element to our analysis that is
undesirable.

To remove the dependence of the distribution ofgL on Q0
we used the following observation to our advantage. For(al-
most) anyQ0, the distribution of the matrixQ approaches an
L independent stationary distributionpssQd as L increases.
The form ofpssQd depends only onpsMnd. By samplingQ0

from pssQd we obtain a distribution forgL that depends only
on L andpsMnd.

To generate matrices with the required stationary distribu-
tion pssQd, we took an arbitrary set of orthonormal vectors,
performedNr transfer matrix multiplications and factored the
result according to Eq.(7). To determine how largeNr should
be to get a good approximation topssQd, we checked
whether or not the Kolmogorov-Smirnov test could distin-
guish between the distributions ofgL for L=1 obtained with
different Nr. The test showed that onceNr .100, the distri-
bution of the LE becomes independent ofNr. Below we set
Nr =1000.

III. RESULTS

Since our interest in this paper is in the distribution of the
LE in 2D systems we set the widthLt and lengthL of the
system equal

Lt = L, s12d

i.e., in the remainder of the paper we consider only 2DL
3L systems.

A. Distribution of the LE

We simulated systems with Fermi energyE=1, disorder
5øWø14 and a range of systems sizes betweenL=16 and
L=512. The distribution of the LE for two particular cases
are shown in Figs. 1 and 2. These are representative of the
parameter range we studied. Figure 1 corresponds to the situ-
ationL!j, while Fig. 2 corresponds to the situationL@j. In
the figure captions we give the values of the mean, variance
and skewness for the numerical data, as well as the number
of samples simulated.

The skewness is a measure of the symmetry of the distri-
bution. Distributions that are symmetrical about their mean,
such as the normal distribution, have a skewness equal to
zero. According to Ref. 30, a distribution whose skewness
has absolute value greater than unity is considered highly
skew. A distribution whose skewness has absolute value less
than one half is considered fairly symmetrical. For data
sampled from a normal distribution, the skewness is ex-
pected to be distributed around zero with a standard devia-
tion of Î15/Ns whereNs is the number of samples.31

For the data in Fig. 1, the difference of the skewness from
zero is not statistically significant. This is consistent with the
LE having a normal distribution.

For the data in Fig. 2, the difference of the skewness from
zero is statistically significant. What is the physical signifi-
cance of this deviation? Normally we would expect the scal-
ing hypothesis to apply only when the localization lengthj is
much longer than microscopic length scales such as the mean
free path, lattice constant, etc. Here these are approximately
unity, so this condition corresponds toj@1. This condition
is satisfied for the data in Fig. 1, wherej.180 (see Table I),
but not for the data in Fig. 2, wherej.2.5. Therefore, we
think that the deviation from the normal distribution seen in
Fig. 2 is not significant in the context of our study.

FIG. 1. The distribution of the LE for a 2DL3L system with
E=1, W=5, andL=32. The line is a normal distribution with the
mean and variance equal to that of the numerical data. The numeri-
cal data have a mean of 0.032, a standard deviation of 0.032, and a
skewness of −0.0031. The number of samples is 65 523.

FIG. 2. The distribution of the LE for a 2DL3L system with
E=1, W=14, andL=128. The line is a normal distribution with the
mean and variance equal to that of the numerical data. The numeri-
cal data have a mean of 0.40, a standard deviation of 0.035, and a
skewness of −0.33. The number of samples is 40 000.
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In our opinion, the normal distribution is a reasonable
approximation to the observed distribution for the range of
L /j in our simulations. In what follows, we concentrate our
attention on the mean and variance of the LE and their scal-
ing.

It is also important to bear in mind when looking at Figs.
1 and 2 that the scaling hypothesis is expected to apply to the
bulk of the distribution not its tails, i.e., to typical states not
necessarily to very rare states. Hence, we use a linear scale
for the probability density axis and not a logarithmic scale,
which would unduly emphasize the tails of the distribution.

B. The scaling of the mean LE

According to the SPS hypothesis the scaling of both the
mean and variance of the LE should be governed by the
same length scale, the localization lengthj. A quantitative
test of scaling involves checking the consistency of the dis-
order dependence ofj obtained independently from the scal-
ing of the mean and variance of the LE. In this section we
deal with the scaling of the mean LE.

For the scaling analysis of the mean LE we estimatedkgLl
to a precision of 0.25% for system sizesL
=16, 32, 64, 128, 256, and 512. ForWø11 the maximum
system size was reduced to 256. We determinedj;jsWd by
fitting the variation of the mean LE withL andW to the SPS
law

kgLlL = FSL

j
D . s13d

WhenL@j we suppose that the mean of the LE will tend to
the inverse of the 2D localization lengthj, i.e.,

lim
L→`

kgLl =
1

j
. s14d

This is equivalent to

Fsxd → x x@ 1. s15d

For numerical reasons we expressed the scaling function in
the form

log10kgLlL = fSlog10
L

j
D , s16d

and used a spline to interpolate the functionf. The values of
f, at the values ofL /j in Table I, were fitting parameters. To
ensure the spline interpolation reproduces Eq.(15), we fixed
the value off at L /j=1000. The corresponding value ofF is
given in parenthesis in Table I. The remaining fitting param-
eters were the localization lengths for each disorder. Finally,
we used the shape preserving Akima spline to avoid unphysi-
cal oscillations off. We summarize the results in Tables I
and II and in Fig. 3. We can see from this figure that the data
for different values of disorderW and system sizeL fall on a

TABLE I. The 2D localization length and the scaling functionF determined from the scaling of the mean
LE. The errors quoted are 95% confidence intervals and are estimated using the Monte Carlo method(Ref.
31).

W j L /j F

5 178±2 0.1 0.86±0.005

5.5 85±1 0.5 1.51±0.01

6 48±0.5 1 2.11±0.02

6.5 30.2±0.3 2 3.17±0.02

7 20.8±0.2 5 6.16±0.05

8 11.7±0.1 10 11.0±0.1

9 7.69±0.08 20 20.6±0.2

10 5.54±0.06 1000 (1000)

11 4.26±0.04

12 3.44±0.03

13 2.88±0.03

14 2.47±0.02

TABLE II. Details of the finite size scaling fits: The number of dataNd, the number of parametersNp, the
value ofx2 for the best fit and the goodness of fit probabilityQ.

Statistic and data range Np Nd x2 Q

kglL
16øLø512, 5øWø14 19 63 46.0 0.4

S

64øLø256, 5øWø12 15 30 20.3 0.2

SLEVIN, ASADA, AND DEYCH PHYSICAL REVIEW B 70, 054201(2004)

054201-4



common scaling curve when expressed as a function ofL /j.
Moreover, for largeL we observe the expected linear depen-
dence, with slope equal to the inverse localization length.

C. Scaling of the fluctuations of the LE

Taking into account that the dimension ofgL is 1/L, and
that of its variances2 is 1/L2, we can define a dimensionless
quantityS by

S =
s2L

kgLl
. s17d

According to the SPS hypothesis the localization length is
the only relevant length in the system, soS should obey the
SPS law

S = FSSL

j
D . s18d

In 1D, the linear scaling of the cumulants of lng, and the
relation between the LE andg described in the Appendix,
allow us to deduce from Eq.(2) the much more prescriptive
statement

S = 1. s19d

However, for a 2DL3L system the cumulants of lng do not
scale linearly withL, except perhaps in the regime whereL
@j; a regime which it is more difficult to reach in 2D than in
1D. Therefore, we should not expect thatS be unity or even
constant in our calculations. Confirmation of the SPS hy-
pothesis in 2D consists not in demonstrating that calculated
values vary in accord with Eq.(19) but rather in trying to
establish Eq.(18).

We have plotted the variation ofS with system size in
Fig. 4, where different lines correspond to different values of
disorder,W. These data were analyzed in an analogous way
to the mean LE. We expressed the SPS law Eq.(18) in the
form

S = fSSlog10
L

j
D , s20d

and used an Akima spline interpolation of the functionfS.
The values offS, at the values ofL /j listed in Table III, and
the localization lengths for each disorder were fitting param-
eters. To obtain a reasonable goodness of fits.0.1d we had
to restrict the range of data considered to 5øWø12 andL
ù64. [There seem to be a more pronounced finite size cor-
rection in the data for the variance than in the data for the
mean LE. Also, the breakdown of scaling whenj is compa-
rable to the lattice spacingsj,1d seems to be evident sooner
in the variance of the LE than in the mean LE.]

When fitting data for the mean LE, we were able to de-
termine the absolute value ofj with the aid of(15). Unfor-

FIG. 3. The finite size scaling fit(line) to the data(circles) for
the mean of the Lyapunov exponent. The precision of the numerical
data is 0.25%.

FIG. 4. S versus system size. For each point 160 000 samples
were simulated, corresponding to a precision of approximately
0.4%. The lines, which connect points corresponding to a common
value of the disorderW, are a guide to the eye only.

TABLE III. The 2D localization length and the scaling function
F determined from the scaling ofS.

W j L /j FS

5 226±38 0.1 0.98±0.02

5.5 96±8 1 0.948±0.005

6 50±2 5 0.804±0.004

6.5 30.4±1 10 0.683±0.004

7 20.9±0.6 20 0.551±0.003

8 11.9±0.3 50 0.403±0.002

9 7.8±0.2

10 5.6±0.1

11 4.3±0.1

12 s3.44d
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tunately, no similar relation is available forfS and so we
cannot fix the absolute scale ofj by fitting data forS alone.
Indeed, looking at Fig. 5 we can see that, if we translate both
the fit and the data by the same amount parallel to the ab-
scissa, we obtain an equally good fit. To avoid this ambigu-
ity, we set the value of the localization length forW=12 to
that found for the mean LE. We show the results in Table III.
Apart from an over estimate ofj for W=5 andW=5.5, the
results are consistent with those for the mean LE. In addi-
tion, in Fig. 5, we have plottedS versusL /j, wherej is
estimated from this fit. We see that all the different curves of
Fig. 4 collapse on to a single curve, confirming the correct-
ness of Eq.(18). We conclude that the fluctuations of the LE
are consistent with the SPS hypothesis.

Looking at Fig. 5, it is plausible that the functionS will
tend to a finite asymptotic value asL /j→`. If this does
occur, the fluctuations of the LE in the 2D asymptotic limit
(L /j→` with Lt=L) decay as 1/ÎL. This is similar to the
behavior in the quasi-1D limit(L /j→` with Lt fixed) where
the fluctuations in the LE also decay as 1/ÎL. The only dif-
ference is thatS is always unity in quasi-1D, while the
asymptotic value ofS is less than unity in 2D.

IV. CONCLUSION

We have investigated numerically the scaling of the fluc-
tuations of the LE in the 2D Anderson model with diagonal
disorder. We found that the distribution of the LE is approxi-
mately normal both whenL!j and L@j. We showed that
the parameters of the distribution, the mean LE and its vari-
ance behave in accordance with the single parameter scaling
hypothesis for the energy value considered in our calcula-
tions. This value,E=1, was chosen to lie far from the bound-
aries of the initial spectrum,E= ±4, and from its centerE

=0 in order to avoid anomalies related to the band edge
behavior, which were found in 1D systems. We expect that
the behavior for any other value of the energy will be similar
as long as it is not close to an anomalous region. We found
that the manifestation of SPS in numerical studies of 2D
systems is different from that of 1D systems. Instead of the
simple relation between the mean and variance of the LE
given by Eq.(19) and valid for 1D, in 2D one has to analyze
the compliance of numerical data with the SPS relation Eq.
(18).

The fact that we verified SPS both whenL!j andL@j is
significant because it contradicts the conclusions of Refs. 24
and 25, where a behavior inconsistent with SPS was found.
While a complete elucidation of the sources of this disagree-
ment is beyond the scope of this paper, we can suggest some
possibilities that might be worth pursuing in future work.
First, it is possible that the logarithmic increase of the local-
ization length seen in Ref. 24 might be reconcilable with the
SPS hypothesis, in much the same way as we have recon-
ciled the system size and disorder dependence of the ratioS
with SPS here. Second, the authors of Refs. 24 and 25 ana-
lyzed the spatial properties of eigenfunctions. In 1D the re-
lationship between lengths that characterize transport and
wave functions is well established.32 In 2D there may be
aspects of this relationship that have not yet been properly
understood. Third, in Refs. 24 and 25 wave functions corre-
sponding toE=0 were studied. In 1D this is a special spec-
tral point, at which SPS is violated.14,15 It seems reasonable
to suggest thatE=0 is also a special point for 2D where SPS
should not be expected.
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APPENDIX A: ALTERNATIVE DEFINITION OF THE LE
FOR FINITE LENGTH

The definition of the finite length LE(which we have used
in this work) is not the only reasonable one. In this appendix
we will describe an alternative and compare with the defini-
tion described in the main text of this paper. Given a transfer
matrix M

M = p
n=1

L

Mn, sA1d

we can define a matrixV by

V = ln M†M . sA2d

The eigenvalue spectrum ofV is composed of pairs of op-
posite signh+nsnd ,−nsnd :n=1¯Ltj. From these eigenvalues
we could define the LE in an alternative way as

gL
snd =

nsnd

2L
. sA3d

In the limit thatL→` at fixedLt, the random variables de-
fined by Eq.(A3) always tend to be the same limiting values

FIG. 5. A visual check that the numerical data forS defined in
Eq. (17) (points) satisfy the SPS law Eq.(18) (line).
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for (nearly) all samplings of the distribution of transfer ma-
trices. These values are the same as those obtained with Eq.
(8) in the same limit. For finiteL the values of Eqs.(8) and
(A3) are different. We summarizes the main characteristics
of each definition below.

For the definition Eq.(8) in the main text:
P1 The LE are not the eigenvalues of a matrix. The indi-

ces of the LE refer to the order in which they are obtained
from the Gram-Schmidt procedure. In general, this isnot in a
strictly decreasing order.

P2 Though the sum of the all LEs is always zero, for finite
L and for a single sample, the LE do not occur in pairs of
opposite sign. This symmetry is restored after taking the
limit L→` for a single sample, or after averaging over an
ensemble of samples. For a single sample we have found that
the symmetry also appears whenQ0 is sampled from the
stationary distributionpssQ0d described in Sec. II C.

P3 For fixedLt andQ0 sampled frompssQ0d, the mean of
the LEs are independent ofL. (Note that in the main text we
consider scaling withLt=L, so this property is not applicable
there.)

P4 The LE have a simple geometrical interpretation in
terms of the exponential rate of increase of lengths, areas,
volumes, etc.

For the definition(A3):
P1 The LEs are related to the eigenvalues of a matrix and

hence there is no prescribed ordering for them. It is conven-
tional to put the LEs in decreasing order and the index in the
definition (A3) usually refers to this order.

P2 For allL, the LE occur in pairs of opposite sign. This
exact symmetry is exhibited not just after averaging over an

ensemble of samples but also by a single sample.
P3 In this definition there is no analogue ofQ0 and hence

no analogue of property P3 for Eq.(8).
P4 There is no simple geometric interpretation except in

the asymptotic limit.
SPS can be investigated using either definition. The quan-

tity defined by Eq.(8) has the advantage that its distribution
is normal, while at the same time retaining a straightforward
relationship to the decay of the wave function in the disor-
dered system.

APPENDIX B: RELATION OF LE TO
CONDUCTANCE IN 1D

For a strictly 1D system whose length is much longer than
the localization length the transmission coefficientt for the
transmission of electrons through the disordered sample de-
cays as

− lnutu = ln D1 + OsL0dsL @ jd. sB1d

The OsL0d term is a fluctuating term that depends on the
nature of the leads attached to the sample when defining the
scattering problem. Using the Landauer formula to relate the
transmission and the conductance we have

− ln g = 2gLL + OsL0dsL @ jd. sB2d

From this we deduce that equation Eq.(2) is equivalent to
Eq. (19) whenL@j.
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