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The glide of an edge dislocation, in a random solid solution(INio 8 at % A, is simulated by molecular
dynamics(MD). An embedded atom method potential has been optimized to reproduce the relevant properties
of the face centered cubic solid solution and of the N;Al phase. Glide is studied at fixed temperature and
applied stress. Three parameters are found to be necessary to describe the rate of shear as a function of applied
shear stressry is the static threshold stress, below which the glide distance of the dislocation is not sufficient
to insure sustained shearingy is the dynamical threshold stress, which reflects the friction of the pinning
potential on the moving dislocatio® is the friction coefficient, which relates the effective stréss o) to
the glide velocity. We also find that the obstacles are made of specific configurations of the Al atoms, which are
brought in positions of strong mutual repulsion in course of the glide process. The solute-solute short range
repulsion, rather than the usually assumed dislocation-solute interaction, is thus argued to be the main mecha-
nism responsible for chemical hardening in the present concentrated random solid solution. The use of the
above results in the frame of multi-scale modeling is exemplified.
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[. INTRODUCTION found in Refs. 18—21 with application to internal friction in
solid solutions? Note that, in such models, when calculating
While the elastic theory is well suited for most problemsthe potential energy surface along which the dislocation
related to dislocations, atomic scale modeling is unique fomovement proceeds, the position of the solute atoms is taken
describing the core of dislocatiofs.g., Ref. 1, the effect of as fixed(frozen), unaffected by the glide process.
electronic structure on the lattématerials chemistiy? and Here we want to explore whether this classical scheme,
ultimately the selection of the glide systefiélso unex-  which is quite efficient for dilute random solid solutions or
pected features are revealed by atomic scale modeling, whear precipitates, is realistic in the case of more concentrated
studying the interaction of dislocations with defect clusterssolid solutions, i.e., whether this scheme is appropriate for
(e.g., self-interstitialé;® stacking fault tetrahedracavities ~ what is known aghemical hardeningwe consider here ran-
and precipitatéy, or dislocation nucleation at locations of dom solid solutions; the effect of short range order is beyond
strong stress concentration, e.g., in nano-indentd8rat  the scope of the present paper. For this purpose, we simulate
crack tipg~*2or in small confined device. the glide process of a dislocation at the atomic scale and
Here we address the question of dislocation glide in constudy the glide distance as a function of time under a broad
centrated solid solutions, with BAl) as a prototype. The range of applied stresses, and for a range of compositions.
classical scheme for describing hardening in random solid In the following, we first develop an energy model for
solutions, is inherited from that of precipitate- and of dilute Ni(Al) solid solutions and give some details on the molecu-
solution- hardening®'’ The glide of the dislocation line lar dynamics technique we use to simulate the glide of an
proceeds under the combined effect of the external stress, tleglge dislocation{Sec. I). We then describe the shear rate
line tension and the dislocation -precipitate or -solute atonobserved in our simulations, as a function of the applied
interaction. In the case of a concentrated solid solution, thstress, for solute contents ranging from 1 to 8 at %, at 300 K
potential energy surface, along which the dislocation movegSec. Ill). Several n situ” observations show that disloca-
results from the superposition of two contributions: A far tion pinning results from specific configurations of the Al
field one, with undulations of weak amplitude, resulting fromatoms which are brought in positions of strong mutual repul-
the long range strain field of the solute atom population, andion in course of the glide process. This is the main finding
a short range contribution due to the solute atoms close to thef this study. In the discussion section, we outline the pos-
dislocation. The equilibrium shape of a dislocation in such asible strategies to incorporate the present findings into a mi-
strain field results from the balance between the line tensionromechanical model.
of the dislocationin a medium with elastic constants which
depend on the solute contgnand the interaction energy of
the dislocation with the strain field of the solute population.
The glide of the dislocation follows a complex path, made of Dislocation glide is simulated by molecular dynamics
obstacle unpinning events, which trigger cascades of crosgMD) at constant temperature and applied stress in a way
ings of lower potential energy barriers. A detailed simulationsimilar to that described in Refs. 4 and 5. Following the
of such a process at zero and finite temperatures can k@oneering work by Daw and Bask&s?>we employ an em-

II. ENERGY MODEL AND METHODOLOGY
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TABLE |. Parameter values chosen for the EAM potentsde text

ci(eV) 2.7277 cy(keV nn3) 87.5715 SaL 3.8804
co(nmY) 16.765 rNA (nm) 0.46168 gaL(meV nm) -9.5130
cz(nm) 0.19915 Fin(NM) 0.15 gni(meV nn?) 6.0178

bedded atom methodEAM) interatomic potential which same form as proposed by Ludwig and GumB3chas
provides a good compromise between the realism of dislocdound useful in view of the large size effect of Al in Ni and
tion simulation and the computational load necessary t®f the existence of very large strains in the dislocation core
handle a system large enough to keep at least part of theegion. The rangery;;, was not optimized but fixed to
complexity of the real alloy and to minimize the influence of 0.15 nm.
the boundary conditions. In order to simulate dislocation In order to give more flexibility to the optimization of the
glide in a Ni-rich Ni-Al solid solution, the energy model had potential, we introduced three more parameters in the homo-
to be based on a Ni potential adapted to such simulationstomic functions, in a way not to alter the quality of the fit to
The Ni-Al potentials published in the literatufe.g., Refs. the properties of the pure metalsee Ref. 24 for more de-
24 and 2% use Ni potentials with stacking fault energies too tails). Keeping Voter’s notation, these am®y, which scales
low to simulate realistic dislocation dissociations. We thusthe electronic density function of Agj, andgy;, which shift
had to optimize a new one. The requirement for this potentiathe repulsive and embedding energy contributions of pure Al
is to provide a reasonable description of the elastic propertieand Ni while, keeping the balance constant.
and stacking fault energies and of their dependence with These eight parameters were optimized by an iterative
composition. procedure: First, a simulated annealing technique is used to
adjust the parameters with a merit function written as the
sum of the squares of the relative deviations of material
properties, calculated with the potential, from their values

In the framework of the EAM, the total energy of the ynown experimentally. These properties are evaluated from a
alloy is additive?***The energy of each atom is the sum of yigig |attice model and are relative to the L NisAl com-
two terms: A repulsive part, written as a sum of pairwisepoynd(lattice parameter, cohesive energyy,CCys Cas and
interactions®,; (with @, S=Ni, Al), and an embedding en- c; elastic constanjsand to the solid solutiorithe lattice
ergy, R[p(r)], which depends only on the nature, of the  parameter with 7.3 and 10.5 at % Al, for which precise mea-
embedded atom and on the electronic dengity), at the  syrements are availaBig when modeling the solid solution,
position,r, of that atom. The electronic density is the sum of |ocal order, as measured in Ref. 28 is taken into account.
single atom functionsp(r) =2 zpg(r). As a consequence, the Second, the potential so obtained is used to simulate the fully
EAM model for an alloy implies 7 functions, 6 of which relaxed solid solution at finite temperature, using a Monte
describe the pure elemenb,,,,F,,p,,«=Ni,Al), and only  Carlo (MC) technique. The volume, atomic positions, and
one, ¥,z a#p, is specific to the alloy. For the sake of local chemical order are explored using Metropolis algo-
simplicity, we started from homo-atomic functions takenrithm, varying the volume, displacing atoms and permuting
from the literature and constructed onBya, - the latter, with respective probabilities of 1/8, 3/4, and 1/8.

For pure nickel we chose the potential developed by An-The parameters are accordingly adapted, in order to improve
geloet al. which has proved to be well adapted to the atomicthe realism of the simulation. The values of the parameters
scale simulation of dislocatiof€ In particular, the disso- obtained by this procedure are given in Table I.
ciation width of the edge dislocation is quantitatively well
reproduced by this potential. For pure aluminum we chose
the potential proposed by Voter and CHémnwyhich has the
drawback of yielding a low stacking fault energyompared, The model for pure nickel yields the correct value of the
e.g., to the potential of Ercolesst al?’), but has the advan- |attice parameter, a reasonable shear modithin 1% of
tage of being written in the very same functional form as thathe experimental dafaand acceptable stacking fault energy
for Ni, which makes the optimization procedure, to be de-(too small by 28%, when compared to the mean value of the
scribed below, more tractable. scattered existing experimental daté/hen 1 to 8 at % Al

As for s, we keep the form used for pure metéfisst  are added in a fully random manner and the solid solution is
term in the equation below, using Angelo’s notafigraug-  simulated by the MC technique, we find, in agreement with

A. Energy model for the Ni(Al) solid solution

B. Assessment of the energy model

mented by a short distance repulsive teiest term: existing experimental data, a roughly linear increase of the
Bryiag (1) = C[EXP(= 26,(1 = C)) = ol = C3)] lattice parameter and a decrease of the shear modulus and of
NiAl 1 2= 2 3 the stacking fault energy. The quantitative assessment is
Xexp(L/(r = rNAY) + ca(rine = 1H(Fne = 1). shown in Table Il.
1) The melting temperature is of the right order of magni-

tude. On the other hand, the predicted solubility limit is too
In Eq. (1), H(x)=0, or 1, respectively, fox<<0 or =0.  small by one order of magnitude. In the following, disloca-
The last term in the right-hand sid&HS) of Eq. 1, of the tion glide is studied by MD at temperatures and time scales
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TABLE II. Properties of(a) the Ni(Al) solid solution andb) the
NizAl ¥’ phase, as given by the EAM potential compared to experi-
mental values. Ia), ¢, a, u, Es, Ty Cmax Stand, respectively, for
the Al concentration, the lattice constant, the shear modulus, the
stacking fault energy, the melting temperature and the solubility
limit at 1500 K. In(b), Eq, stands for the cohesive energy and the
Cjj's for the elastic constants with the classical notation.

Ni(Al) Solid Solutiord This Model Experiment B

gala ac(Al at%)L ~0.01 ~0.0068 ZERAT N

ol wac(Al at%) ~-0.02 ~-0.0P Y=[112]

9El Etdc(Al at%) 1 ~-0.125 ~-0.017 X=[110]

T(K) 1750+200 1725+ 1700

Cnax( 1500 K)(Al at%) ~1 107 _ FIG. 1. Computatic_)nal_cgll: T_he dislocation h_as decomposed
into two Shockley partials in its glide plaridashed ling atoms in

NizAl y' phasé This Model Experiment the partial dislocation cores are shown, as well as the Al atoms of
the solid solutiorL,=30 nm,L,=43.12 nm,L,=7.32 nm. This cell

a(nm) 0.3571 0.3567 comprises 867 000 atoms.

Eq(eV) -4.52 -4.57 _ _ o _ _ N N
permits the dissociation of the dislocation. Initial velocities

C1,(GP3 231 223 L S .

' (GP 20 6F are taken from a Maxwell distribution and the MD simula-

44(GP3 tion is started. Time integration is performed using Verlet's
C12(GPa 131 148 algorithm with a time step of 2.18° s. Temperature is main-
C44(GPa 111 125 tained at a constant value by rescaling the atomic velocities

every 16 time steps. After thermalization, the external stress
is applied, i.e., a constant force, parallel to the glide direc-
tion, is added to each atom in the oukesurfaces parallel to
the glide plane. The intensity of the force is proportional to
the inverse of the number of atoms in the plane, in order to
make sure the force per unit area is the sawi¢h opposite
sign) in the upper and lower surfaces.
A standard method to identify atoms in dislocation cores
where thermally activated atomic diffusion cannot proceedin pure metals is to select the ones with highest enefgiEs.
As a consequence, highly supersaturated solutions can be the present simulations, since the energy per atom is much
handled without problem. However, the underestimate of theontrasted in the solid solution, the energy scale is of no
solubility limit by our potential is a consequence of too largehelp. We rather identify the atoms in the dislocation cores as
ordering energies, which may result in an overestimate of théhe ones having an environment, which exhibits neither a
short range repulsion among Al atoms. This, we expectface centered cubic-, nor a hexagonal closed packed
might reinforce the chemical hardening we are studying.  structure?
The optimum size of the computational cell is a compro-
mise between the duration of the computations, and the re-
C. Technical details alism of the simulations. We mainly worked with a box con-
The computation cell we use is depicted in Fig. 1. Me taining 232 320 atoms. Some studies'implie'd up to 867. 600
N . — atoms. The exact values of the box dimensions are adjusted
Y, Z dwecnois are parallel, respectively, [a10], [112], in order to account for the dependence of the lattice param-
[111]. The (111) glide plane is perpendicular @. Periodic  eter on temperature and composition. Several box widghs
boundary conditions prevail in thé andY directions, while in the Y direction (see Fig. 1 along the dislocation line,
the movements of the atoms in the upper and lower freeanging fromL,=8.6 to 43.12 nm have been probed. Most
surfaces parallel to the glide plane are confined in the planesimulations were performed with a box width of 17.2 and
*Znax The effect of imposing periodic boundary conditions 21.56 nm. More details on the dependence of dislocation be-
in the X direction has been discussed in Ref. 5. havior on the value of, are given in Sec. Il C. Several box
A typical simulation proceeds as follows. Solute and sol-lengths in the glide directioridirection X in Fig. 1) have
vent atoms are first located at random on the lattice, with thé&een probed, ranging from 10 to 30.1 nm. For 15 nm and
appropriate concentration. The precise dimensions of the boxore, the dissociation width of the dislocation is almost in-
are adjusted in order to match the temperature and composiensitive to the length of the box. The interaction of the
tion dependence of the lattice parameter of the random solidislocation with its periodic images is screened by the inter-
solution. The positions of the atoms are then set according taction with the solute atoms. As for the thickness in the
the elastic theory of dislocations, the edge dislocation beinglirection, we found 10 nm to be sufficient to screen the ef-
placed in the center of the box. The configuration so obtainefect of the two-dimensional dynamics imposed to the atoms
is then relaxed, using a conjugate gradient routine, whichat the free surfaces.

aReference 28.
bReference 29.
‘Reference 30.
dReference 31.
®Reference 32.
fReference 33.
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FIG. 2. Edge dislocation glid-
ing in a 3 at % Al random solid
solution, under 70 MPa at increas-
ing times. The computational cell
is the same as in Fig. 1, as seen
along the[111] direction. The ar-
row defines the position of the
dislocation.

W

X(1)

Figure 2 gives a typical image of the dissociated disloca-est for macroscopic plasticity is the shear rate. It is related to
tion, together with the Al atoms, at successive steps of thé¢he dislocation velocity via Orowan’s equation: the shear
glide process in th¢111) plane. In what follows, the posi- rate, y is proportional to the dislocation- velocity/, and
tion of the dislocation as a function of tim(t), will be  density,pq: y=p4bV, with b, the Burgers vector. In the simu-
extensively used. The latter is defined as the coordinatdations, the dislocation density is AL, with h andL, respec-
along the glide direction, of the median of the staking faulttively, for the thicknesgZ directior) and the lengtiX direc-
ribbon; it is monitored every Ps (see Fig. 2 tion) of the computational cell. SindeandL are smallpy is

large (of the order of 5 1% m?), and Orowan’s equation
lll. DISLOCATION GLIDE VELOCITY AND SHEAR RATE would give very large shear rates although the velocity of

The quantity physically relevant to be extracted from theindividual dislocation segments is reasonable. In addition,

simulations is the dislocation velocity. The quantity of inter- for macroscopic shear to be observed, the dislocation seg-
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350

LI 50 p9. Some glide would probably be observed if very long

| simulations were performed. In a preliminary study, we

found a large scatter of the time to wait to observe some
glide, which prevented us from doing an extensive study of
this lower stress threshold.

The latter threshold of 45 MPa, which depends on the
duration of observation, corresponds to the onset stress for
micro-creep, not to be confused with the yield stress. Indeed,
for macroscopic shear to proceed, the dislocation segment
must glide on a distance large enough to promote the critical
60 MPa ] bending for unpinning from the forest dislocations. In order
| | to stay on the conservative side, we chose a minimum glide
[ N T B T distance of 300 nnfcorresponding to a dislocation density
T ~2.8 102 m™?). With such a criterion, thehear rateis zero

up to a minimum applied stress, which we name hereafter the

FIG. 3. Mean position of the dislocation, as a function of time, static threshold stressrs. From Fig. 3, e.g., in Ni 3 at % Al
in a random 3% Al solid solution at 300 K with four distinct values at 300 K, we find 65 MP& o,<70 MPa.
of the applied stress: 60, 65, 70, and 100 MPa.

T T T T
F 100 MPa
300~ — 20

70 MPa
250~ —

w
s
T

1

glide distance (nm)
2
—
1
=

g
T

65 MPa =

number of dislocation sweeps

w
=]
T

1

B. Shear rate
ment must glide on a distance large enough to promote the Because of the boundary conditions imposed inZtdi-

crit'ical bending for uppinning from the forest dislocqtions. rection, the thicknesl of the box is a constant and the shear
This latter process might be sensitive to the value,ofFig. (5t of the computational cell scales with the dislocation ve-
1) which imposes the periodicity of the atomic configuration vy with a constantb/hL. For that reason, in the follow-

along the dislocation line. This point is discussed at the en g, we skip this transparei/ hL factor and define the ef-
of the present section. Before, we first describe our results op. e gisiocation velocity as the velocity the dislocation
the dislocation glide velocity and the associated shear rate g4 have in order to account for the shear rate. Above the
static threshold stress, the effective dislocation velocity is
A. Dislocation glide velocity identical to the velocity measured in the simulation. Below
. the staticthreshold stress, although at the scale of the simu-

ran'?jlcl)rrr?sslcj)llti?j gs':)/ﬁﬂic')n Stvr:/ihplr_eief; ;er?rior]rﬁveergeozaﬂgﬁgénlation, the dislocation can travel some distance, this distance
n yo b : P is too small to allow for unpinning from the forest disloca-

cL)antiher ;esil\J/I; gn tl?elzfj ps;zmetfr (Ijsisﬁ)liggiziedlicljn ssiﬁcé ::1' ?tions and to contribute significantly to the macroscopic strain
erag PP stress, the glae '0T8+ would rather give rise to recoverable microplastigitin
or less smooth manner. Figure 3 illustrates typical behavior

. . . is situation the effective dislocation velocity is zero.
0 A
as observed in a solution with 3 at % Al, at 300 K, for four Figure 4 shows thQEﬁeCtiVQ dislocation velocity, as a

distinct values of the applied stress. : . e
As can be seen, for an applied stress of 100 MPa, th(1;unct|on of the applied stress, as observed ifANi random

: . i ; oA
dislocation glides for 300 nm within about 375 ps. The mearﬁl?li'g ;ﬁgwr??grvﬁ]tg ;r;ireei?'ggrﬁl ;ﬁgct)imgo?,viratrﬁ, ﬁuvraelues
glide velocity (~0.8 nm.ps?!) is thus well below the sound b . y g

velocity (C,~2 nm.psY). Notice that the glide distance of of the applied stress, the saturation of the dislocation velocity

) . ) shows up. At intermediate stress values, a viscous regime is
300 nm is 20 times the length of the cell: The upper half of gy, o eq: The velocity is a linear function of the applied

the cell has thus been shifted by 20 Burgers vectors Wm%tress, with a friction coefficien(per unit length B. Below

respfzct to the Iow?_r haII: Ea(}hthSh'Xl b{i one Burgertshveclt_glihe static threshold stregs, the effective velocity drops to
creales a new configuration of the Al atoms across e gliGe g The Jinear portion of the velocity versus stress curve

glane. -:_3 a fllrstt. approximation, smg(:je Wtehdte?IL here vath xtrapolates to zero velocity at thdynamical threshold
om Solid solutions, we may consider that the sequence o, tressoy. In the stress range of practical interést., before

conflguratlons_ SO pro_duced_ Is representative of the _Cc_mf'guéaturatioo, the effective dislocation velocity is thus defined
rations one single dislocation would explore on gliding aby three parameters:

distance of 300 nm.
For an applied stress of 70 MPa, the dislocation still V=0ifo<os V=(oc-oagb/Bif 0s< o,
glides for 300 nm, but with a lower mean velocity
(~0.1Cy), and in a much less smooth manner. For 65 MPa, as long a8/ < Cs. 2)
the glide stops, for at least 50 ps, after about 5 sweeps of the Eq. (2), o, o4, andB are composition and temperature
cell. The delay of 50 ps, we use, is long enough for the soundependent.
to travel more than 5 times the length of the dislocation in  The three parameters are found to increase linearly with
the cell. the composition(Fig. 5): Starting from pure Ni whererg
For an applied stress of 60 MPa, the glide is stopped irco4=5 MPa andB=11 10° Pa.s, the static threshold stress
the course of the fourth sweep. At still lower an appliedincreases by~25 MPa/at% Al, the dynamical one by
stresg(<45 MPa3, no glide is observed at afat least within  ~15 MPa/at% and the friction by-2 10°® Pa.s/at%, at
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FIG. 4. (a) Effective glide velocity as a function of applied g B
stressyb) definition of the three parametess, o4, andB (see text .3 5k
= i
.— N
300 K. The magnitude of the increase®fwith Al content e
compares well with reported values for the increase of the Oo > 4 6 8 10

0.2% elastic limit(10 to 20 MPa/at % Al according to Ref. ]
34. solute concentration (at%)
The temperature effect has not been studied in detalils.
Preliminary results show that increasing the temperatun?tri
from 300 to 500 K, in a random solid solution with 5 at %
Al, results in a decrease of thstatic threshold from
~130 MPa to~120 MPa; thedynamicalthreshold does not A second effect of the value dfy is as follows. All the
vary significantly, and the friction coefficient increases from gpove simulations were performed with fully random solid
~20 t0~30 10° Pa.s. solutions. Despite this randomness, it is found tohise to
the static threshold stres¢he glide distance of the disloca-
tion depends on the seed of the random number generator
used to construct the initial distribution of solute atoms. Fig-
We found thatclose to the static threshaldhe glide dis- ure §b) gives an example thereof; the effect is larger for
tance of the dislocation depends on the box &izén theY  smaller values ol (compare the plain lines in Figs(&
direction. Figure @) shows the position of the dislocation as and &b). Notice that the very same simulations performed at
a function of time in a random solid solution with 3 at % Al 70 MPa with varioud.y values, exhibit extensive dislocation
under a shear stress of 65 MPa, for two distinct valuds,of glide, while no glide at all ever occurs at 50 MPa. The value
As can be seen, for the smallest value Igf(17.3 nmj, of the static threshold is thus defined within £10 MPa.
65 MPa are not enough to produce sustained glide: The dis- Although a more detailed analysis is necessary to under-
location glides a fraction of the box length and st¢fus at  stand the effect of the box width, two possible origins may
least 100 ps With Ly=21.56 nm and above, the glide dis- be proposed. Firstly, if the pinning centers are r@ess than
tance is larger than four box lengths. one on a distance df), the periodic boundary condition in

FIG. 5. Concentration dependence at 300 K(af the static
angley and dynamic(squarey threshold stresses, an) the
friction coefficient per unit length.

C. Effect of the periodic boundary condition along the
dislocation line
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- @ o I ]
’I
0= i N 008 -
_F Ly=22.56 nm ,° | i
5 401 S - g
bl ’ =] - —]
s | P 5 00
= ’
§ 30 7 i g 1
& - a2
~ - o’ _§ 0.04 — |
b -
= 20f s — & | _
% L =17.30 nm
Y 002} —
i 10 nm 50 nm h
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. . . , . — FIG. 7. Distribution of the time required to glide a distance

AX (10,20,50 nny, in a random solid solution with 3 at % Al,
under an applied stress of 70 MPa, at 300 K.

describe, here, the motion of the dislocation segment as a

whole, as defined in Sec. IIC, not the change of shape of the

dislocation and of the staking fault ribbon. Consider the po-

sition of the dislocation as a function of time, e.g., in a 3 at

% random solid solution, at 300 K, under 70 MHA&g. 3).

The time required to glide a distance of 300 nm is approxi-

mately 700 ps. The same curve can be analyzed at a finer

scale: we may ask what is the tim¥ required to glide a

distanceAX of 50, 20, or 10 nm. The time intervalst ex-

0 — wm e w hibit a complicated distribution, an example of which is

time (ps) given in Fig. 7. It contains information on the distribution of
pinning strengths, which may be analyzed using a statistical

FIG. 6. Glide distance of the dislocation as a function of time inapproach. This work will be discussed in a future work.

an ideal solid solution with 3 at % Al under 70 MP@) for L, We now summarize our main findings, and outline a way

=17.3 nm(solid line) andL,=21.56 nm(dashed lingand the same  of incorporating these results, obtained at the atomistic level,

seed of the random number generator for the initial configuration ofn a micromechanical model to describe the macroscopic

the ideal solid;(b) same aga) with another seed for the random plastic behavior.

number generator. The dislocation glide proceeds as follows:

— under large shear stresses, the dislocation glides
the Y direction imposed., as the distance between pinning smoothly at a velocity which saturates close to the shear
centers: the largdk,, i.e., the distance between pinning cen-wave speed;
ters, and the lower the critical stress to escape. In addition, — under lower stresses, the mean glide velocity is a lin-
increasingL, widens the range of available deformation ear function of the stress and extrapolates to zero at the dy-
modes for the dislocation line, which amounts to increase itmamical threshold stressy;
flexibility, hence to decrease the effective line tension. Since, — in the latter regime, a static threshold strass,exists
as will be shown below, the pinning centers are well sepabelow which the dislocation stops for a “long” period of time
rated and short ranged, an increased flexibility makes thefter gliding “some” distance. Sustained macroscopic shear
depinning event easier, and the threshold stress lower. Alsenly occurs abover..
as noticed, close to the static threshold stress, the snhgller An intuitive interpretation of the static and dynamic
the more sensitive the glide distance to the initial configurathresholds is as follows: The strong obstacles control the
tion of the random solution: this suggests that the pinningstatic threshold below which no long range dislocation mo-
centers only sample a small fraction of the Al atoms con-ion is possible. Once these strong obstacles are overcome,

glide distance (nm)

tained in the simulation cell. the moving dislocation still feels from the weaker obstacles a
pinning force, which slows down its motion. This is the
IV. DISCUSSION physical origin of the dynamic threshold.

There is some arbitrariness in the definitionogf since it
As seen on Fig. 3, the position of the dislocation segmentiepends on the value we choose for the observation time and
as a function of time reveals a jerky glide motion. This sug-for the minimum glide distance. We chose 300 nm for the
gests a “stop and go” type of analysis. Let us stress that waminimum glide distance, since it guarantees that the disloca-
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tion might propagate through a low forest density. We chose '®

50 ps as the observation tinfee., maximum allowed wait-
ing time) for computational reasons. We found, however, that
within such a crude definition, the static threshold value is
defined within £10 MPa. Indeed a detailed study of the
stress, temperature and composition dependence of the dit
tribution of the waiting time would be of great inter&sbut

the very large scatter of the waiting times at lower stresses
and their sensitivity to initial conditions, prevented us from
making such a study.

Careful examination of the glide process at the atomic
scale, revealed the following dislocation pinning mechanism: 20
When a partial dislocation glides one step forward, it shifts
the atoms above the glide plane with respect to those belov

e (nm)

[=.)
=

glide distanci
B

the glide plane, by a vector 1{B12. In the process of this
displacement, some Al atonglarge compared to Ni atomns
are brought in close contact, a strongly repulsive configura-

tion (this repulsion accounts for part of the stability of the -
L1, structure of NijAl). On the contrary, if no such nearest
neighbor Al-Al pair can ever form, the dislocation moves s
more easily. As an example, to test this idea, we generated
“constrained random” 8 at % Al solid solution, forbidding

£l

the shear induced formation of nearest neighbor Al-Al pairs’y 4,

around the glide plane: the way to achieve this, is to impose§

zero Al content in one of the tw(l11) planes across to the . s

glide plane. Under 150 MPa, the glide velocity, in the con- g +

strained solution, is larger than in a fully random solution, as, 2}

shown in Fig. 8a). Similarly, glide is observed at 100 MPa, B

Fig. 8b), much below the static threshold stress in the fully ol

random solution180 MP3. i

60—

50—

L R

Z

.
R
S
"~

_
\\

<

—
=]

[ ]
(=]
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We also studied the effect of the external stress on the o
glide velocity of the dislocation in a 3% solid solution con- 9
structed with the same constraint as ab@vig. 9), and com-
pared with a fully, unconstrained, random solid solution. The FIG. 8. (a) Glide distance of the dislocation as a function of

Al-Al pairs across the glide plane are found to play an im'time, under 150 MPania 8 at % Alfully random solution, i.e.,

portant role in the glide process. First they are, indeed, thg|gse 1o the static threshold stregmlid line) and for the same
obstacles, which determine the value of static threshold. Figso|ytion, constrained by removing Al atoms from one of the two

ure 9 cI_earIy ShOW.S that in the_ absence of shear |ndu_ceaﬁ) planes contiguous to the glide plat@ashed ling (b) Same
Al-Al palrs, the _Stat'c threshold is much lower, Close_ to its as(a) for 100 MPa, i.e., much below the static threshold stress.
value in pure Ni. Second, when the external stress is much
larger than the static threshold of the solid solution, the glide It is worth noticing that, in one of the very few systematic
velocity is larger in the constrained solutigice., in the ab-  experimental studies of yield stress as function of solute con-
sence of shear induced Al-Al pajras compared to the un- tentin a large range of composition, Wik al.3¢in Cu(Mn)
constrained random solution: The shear induced Al-Al pairssolid solutions, reach the following conclusion: Using the
form obstacles which slow down the dislocation glide andstandard theory of solute dislocation interaction to account
are responsible for the dynamic threshold stress. for the observed hardening, the density of pinning centers is
This proves indeed that the origin of the chemical harddower and their strength larger than expected for single solute
ening process is the repulsive Al-Al interaction, and not thepinning. They argue that MnMn doublets are responsible for
interaction between the Al atoms and the gliding disloca-the hardening.
tions. The waiting time on one of these obstacles would be The relevant quantity provided by our approach is the
controlled, we suggest, by the collective vibration of the fewdislocation velocity for a given applied stress. It should be
atoms the obstacle is made of. stressed that the dislocation velocities, which we generated,
The dependence with concentration of the static and theverlap the range accessible by experiments for similar ap-
dynamic thresholds has been shown to be linear, in the rangdied stresses, despite the fact that the shear rates are several
of concentrations investigated. This is indeed consistent witlorder of magnitude larger than experimental ones. The rea-
the fact that, if the dominant obstacles are solute pairs, theson for this is the small size of the computational cell, which
density scales as the square of the solute concentration anthkes the dislocation density artificially large. In the spirit of
the elastic limit increases, according to Friedel statisfié8, multi-scale modeling, the quantity to be transferred from this
as the square root of the density of obstacles, i.e., as th&udy into larger scale models is the law for the glide veloc-
solute concentration itseft. ity of a dislocation segment, i.e., EQR), coupled with a

— N I n
60 80
time (ps)
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FIG. 9. Glide velocity as a function of the external stress, fora 1. 10. Stress versus plastic strain as computed from the mi-
3 at % solid solution with a fully random distribution of A$olid  ¢romechanical model for 4 distinct Al contents: 0, 1, 5, 10 at %.
line) and with a solute distribution, where one of the tfiill) The imposed strain rate is 10s%; A=4.1 m™}, D=6.5,2=0.3;
planes contiguous to the glide plane, is constrained to be free of Alhe initial dislocation density is £ m™2. The values of all the other
atoms(dashed ling The error bars are estimated by performing aparameters are taken from the present atomic scale simulation.
sampling with respect to the seed of the random number generator
used to construct the initial configuration of the solid solution.
The dislocation velocity in Eq(3a) is given by Eq.(2),
except for the flow stress, which must now include the resis-
realistic description of the dislocation density. tance opposed by the forest dislocations, on top of solute
In the fOIIOWing derivation, we have chosen the Simplesthardening depicted by-s The Spacing of obstacles respon-
classical evolution equation for the dislocation density to i|-sib|e for solute hardening being much smaller that the spac-
lustrate the feasibility of this approach. We do not claim thating between forest dislocations, a linear superposition can be
the macroscopic behavior is accurately described at thigafely assumetf
stage, since the present study deals only with the solute ef- _
fects on dislocation glide. For instance, the present paper oy =05+ a ubVpg. (30)

does not address the question of the solute effects on d)ﬁ:he o
i a parameter represents the pinning force of the forest
narlgtlncllésv(i:r?vel%dne t al,*" we take advantage of the shear 1S10¢2tions.
rate as obtgined froyri athic scale simulati%ﬁq (2)], to . The set .Of Eqs(3§)_—(3c) and(2) can be integrated wit ha
compute stress-strain curves as predicted by a éimpie micr@ Ven !oadmg condition, n amely a constant tot al strain rate
mechanical model. The rate of plastic sheayis given by est. Figure 10 shows typical stress-plastic strain curves com-
, X ‘ ’ puted with the values of the parameters as given by the
Orowan’s law: . . ; .
present atomic scale simulation. The phenomenological pa-
] rameterse, A, D introduced by the micromechanical model
Yo=pabV, (3@ are given classical valuThe initial dislocation density is
10"* m™2, and the imposed strain rate is8& . As can be
and the dislocation densigy changes in time because of the seen, the model qualitatively reproduces the increase of the
competition between multiplication and annihilati#h: flow stress with the solute content, but fails to reproduce the
solute effect on the hardening which is observed, e.g., in
Cu(Al) solid solutions. This is not a surprise, since the sen-
sitivity of the parameteD to the solute content has been

) S : . . ignored.
The first term in this equation describes the storage of dlslo-g

cation on the so-called “forest dislocations,” and the second

tgrms account_s for.the annihilation di;tance between disloca- V. CONCLUSION

tions of opposite sign. The parameteis related to stage Il

hardening, and the paramefiis a measure of the efficiency Based on an EAM potential, which we have adapted, we
of dynamic recovery. It is usually observed thatis inde- have simulated the glide of an edge dislocation in random
pendent of solute content, whereBs which results from  Ni(Al) solid solutions(1 to 8 at % A) at 300 K. Within
extra degrees of freedom such as cross slip or climb, dependsasonable computer time, we could study the glide mecha-
on solute element®. A quantitative description of the influ- nism in the range of dislocation velocities of metallurgical
ence of solute elements on the stress strain curve would réaterest.

quire a study of the effect of solutes on cross slip and climb, Three parametersy,, oy, andB, are found necessary to
paralleling the one we have performed here for glide. describe the rate of sheaws is the static threshold stress,

pa= (AVpa=D pg)¥,. (3b)
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below which the glide distance of the dislocation is not suf-tions is likely to be of limited applicability when the solute
ficient to insure sustained mesoscopic shearing;is the  concentration is such that the above described mechanism is
dynamical threshold stress, which reflects the friction of themainly responsible for the hardening effect. In this spirit, the
pinning potential on the moving dislocatioB, is the friction  effect of short range order on dislocation motion deserves to
coefficient which relates the effective stregs-oy) to the  pe revisited.
glide velocity. Bothog, oy, andB increase linearly with the Finally, we have outlined a method for integrating the
solute content. Preliminary results suggest thatlecreases, present findings from the atomistic level into a microme-
and B increases with temperature, whilgy remains unaf-  chanical approach in order to predict macroscopic stress
fected. _ _ _ _ strain curves. While the increase of the yield stress with the
The main conclusion of this study is that chemical hard-c,mnqsition is correctly described, an atomic scale study of

ening is not simply the result of a direct dislocation solute,qq slip and climb is needed to account for the influence of
(Al) m_teractlon, but the result of close_solute.—solmm-Al) solute on dynamic recovery which controls further work
repulsion, when the passage of the dislocation forces therﬁardening

one against the other, which opposes the glide of one hal
crystal, with respect to the other
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