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The low-energy structures of mixed Ar-Xe and Kr-Xe Lennard-Jones clusters are investigated using a newly
developed parallel Monte Carlo minimization algorithm with specific exchange moves between particles or
trajectories. Tests on the 13- and 19-atom clusters show a significant improvement over the conventional
basin-hopping method, the average search length being reduced by more than one order of magnitude. The
method is applied to the more difficult case of the 38-atom cluster, for which the homogeneous clusters have
a truncated octahedral shape. It is found that alloys of dissimilar elementssAr-Xed favor polytetrahedral
geometries over octahedra due to the reduced strain penalty. Conversely, octahedra are even more stable in
Kr-Xe alloys than in Kr38 or Xe38, and they show a core-surface phase separation behavior. These trends are
indeed also observed and further analysed on the 55-atom cluster. Finally, we correlate the relative stability of
cubic structures in these clusters to the glass forming character of the bulk mixtures.
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I. INTRODUCTION

Clusters of heterogeneous materials show a much richer
behavior than their homogeneous counterparts. In many bulk
compounds, doping can significantly affect some global
property, and alloying is a common way to tailor a com-
pletely new kind of material. At the mesoscale level, size is
another complicating factor, giving rise to further changes
with respect to the macroscopic object. To a large extent,
most expectations of nanotechnology have been put into the
electronic and catalytic properties of small atomic clusters.
Therefore, it should not be surprising that numerous theoret-
ical studies of mixed clusters were devoted to bimetallic
clusters. In particular, there has been a significant amount of
work at the level of sophisticated electronic structure
calculations,1–3 but these were often limited to small sizes
due to the numerical effort involved. On a different scale of
chemical complexity, many studies have been carried out
using explicit, empirical force fields4–12 in order to investi-
gate the segregation properties of these clusters.

There are several driving forces toward mixing or segre-
gation in binary systems:(i) the difference in atomic sizes,
(ii ) the difference in surface energies,(iii ) minimization of
the overall strain, and(iv) the number of interactions be-
tween unlike atoms. These factors can often compete with
each other. For instance, minimizing surface energies does
usually not increase with the number of interactions between
different atoms. Also, even though this is not our prime in-
terest here, it should be noted that kinetic factors can be
crucial in this problem.13

In particular, Vach and co-workers have found from ex-
periments and simulations of mixed rare-gas clusters that
some anomalous enrichment effects could be observed due to
the growth by pick-up of these systems.14 Very recently, ra-
dial segregation and layering have been observed in large
Ar/Xe clusters formed in an adiabatic expansion by Tchap-
lyguine et al.15 using photoelectron spectroscopy measure-

ments. These data have also been theoretically interpreted by
Amar and Smaby.16

Fortunately, mixed rare-gas systems can be quite safely
described using simple pairwise potentials such as the
Lennard-Jones(LJ) potential. More accurate potentials are,
of course, also available, even though we will have no need
for them in the present, mostly methodological work. Hence
they are much more convenient to study in a broad size
range, not only for their structure but also their dynamics or
thermodynamics. It is known from previous studies that the
topography of the potential energy surfaces of homogeneous
LJ clusters can be very peculiar, as for the sizes 38 or 75.17

The multiple-funnel structure of these energy landscapes
makes it especially hard to locate the most stable structures
(global minima) or to simulate the finite-temperature behav-
ior of these clusters in an ergodic way. The effects of mixing
different rare-gas atoms on cluster structure and thermody-
namics have been studied for the specific size 13 by Frantz
on the examples of Ar-Kr mixtures18 as well as Ne-Ar
mixtures.19 Fanourgakiset al. have also investigated these
latter compounds.20 A systematic work of Ar-Xe mixed clus-
ters of 13 and 19 atoms has been carried out by Munro and
co-workers,21 including some global optimization and Monte
Carlo simulations. Mixed clusters involving lighter species
such as H2 and D2 have been investigated using path-integral
Monte Carlo(PIMC) simulations by Chakravarty.22 More re-
cently, Sabo, Doll, and Freeman reported a rather complete
study of the energy landscapes23,24 and melting phase
change25 in mixed Ar-Ne clusters. In this work quantum de-
localization and the effects of impurities on cluster properties
were also accounted for using PIMC techniques.

The main conclusion of these studies is that atomic het-
erogeneity can be responsible for a drastic increase in com-
plexity of the energy landscapes of rare-gas clusters. This
complexity is manifested by numerous new low-lying
minima in competitive funnels, characterized by the same
overall geometrical arrangement but different permutations
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of unlike atoms. Following Jellinek and Krissinel,4 we will
refer to such isomers as “homotops.” The presence of several
homotops on a given energy landscape often induces solid-
solid transitions, which can be detected by some feature in
the heat capacity,18–21,26even though they can be washed out
by quantum effects.25 As shown by Munroet al.,21 the vari-
ous funnels corresponding to different homotops of the same
geometry are separated by significant energy barriers. This
explains the difficulty or even failure of simulation methods
to achieve ergodic sampling of these systems, albeit small.21

A similar situation is found in Lennard-Jones polymers,27

where a large number of isomers are based on the same
geometrical arrangement, differing only in the path linking
the monomers.

Beyond the actual rare gases, binary Lennard-Jones com-
pounds have been investigated in both the cluster and bulk
regimes. Clarke and co-workers looked at the phase separa-
tion of small particles with equal compositions.28 Based on
Monte Carlo simulations, they sketched a phase diagram in
the general structure of liquid clusters. Bulk binary Lennard-
Jones systems have been seen to provide relatively simple
numerical models for glass formation.29–34Most often, the LJ
interactions in such studies have been tuned in a nonadditive
way in order to hinder crystallization. In another related
work, Lee and co-workers35 have investigated the role of
atomic size ratio in binary and ternary metallic alloys.

Interestingly, severaly links between the physics and
chemistry of clusters and those of supercooled liquids and
glasses have been established since the pioneering work by
Frank.36 The initial suggestion that the local order in simple
liquids is not crystalline but icosahedral36 (more generally
polytetrahedral) has since been verified experimentally37 and
theoretically.29,38 From the clusters viewpoint, the favored
finite-size structures of good model glassformers have been
shown by Doye and co-workers to be polytetrahedral.39

The 38-atom homogeneous Lennard-Jones cluster is
known to show some glassy properties, especially slow re-
laxation to the ground state,40 due to the competition be-
tween two stable funnels on the energy landscape, corre-
sponding to truncated octahedral and icosahedral shapes,
respectively. Due to entropic effects,40,41 a solid-solid transi-
tion occurs between the two funnels, at temperatures lower
than the melting point. The crystal-like configuration of this
cluster makes it a good candidate to further investigate the
relationship between cluster structure and criteria for glassi-
fication.

Because homogeneous LJ38 constitutes a relatively diffi-
cult task for global optimization algorithms, binary clusters
of the same size can be expected to be much worse. In this
paper, we propose a simple but efficient way to deal with the
multiple new minima introduced by unlike atoms within a
general Monte Carlo global minimization scheme. This algo-
rithm will then be applied to the 38- and 55-atom cases, in
mixtures of Xe with either Ar or Kr atoms. In the next sec-
tion, we present the method and test it on the simple cases of
the 13- and 19-atom clusters. In Sec. III we give our results
obtained at sizes 38 and 55 and we correlate them to the
different glass forming abilities of the bulk mixtures. We
finally conclude in Sec. IV.

II. METHODS

Global optimization of cluster structure42 is currently best
achieved using either genetic algorithms43 or the Monte
Carlo1minimization method,44 also known as basin-hopping
(BH).45 The case of homogeneous Lennard-Jones clusters is
among the most documented of cluster physics, and an up-
to-date table of putative global minima can be found in Ref.
46. Even though it can never be guaranteed that global mini-
mization has been successful, it is likely that all important
structural forms of LJ clusters have been found up to more
than 100 atoms. These include icosahedral, truncated octahe-
dral, decahedral, as well as tetrahedral arrangements.

Compared to homogeneous clusters, the available data on
heterogeneous systems is rather scarce. In addition to the
specific works by Frantz on the 13-atom Ne-Ar and Kr-Ar
clusters,18,19 Munro et al. used a parallel version of the BH
scheme, similar to the replica-exchange Monte Carlo
method,47 where several trajectories are run simultaneously
at various temperatures.21 Although these authors looked at
moderately large clusters, they reported significant difficul-
ties to locate global minima at specific compositions, as in
Xe10Ar3 or Xe13Ar6, for instance.21

A. Optimization algorithm

A natural problem occuring using the basin-hopping
method is that many of the low-lying minima are expected to
be related to each other via particle exchange. Such a process
only occurs via large deformations of the remaining cluster,
hence it is quite unprobable. As in condensed matter
physics,48–50 allowing exchange moves between particles as
a possible Monte Carlo step may result in notably faster con-
vergence, provided that the interactions are not too dissimi-
lar. Actually, optimization of mixed clusters on the lattice
formed by the homogeneous system has already been studied
by Robertson and co-workers.51 Here we do not wish to re-
strict ourselves to such situations.

In the framework of global optimization methods, the lo-
cal minimization stage removes the possible energetic pen-
alty associated to replacing a small atom by a bigger one. We
can thus expect some increased efficiency of the algorithm in
the case of multiple homotops. Now we convert the extra
numerical cost of running parallel trajectories at various tem-
peratures into running them at various compositions, at the
same fixed temperatureT for all compositions. For aXpYn−p
compound, each of then trajectories is then labeled with the
numberp of X atoms, running from 0 ton. Exchange moves
between adjacent trajectories(from p to p+1) thus need to
incorporate the transmutation of two atoms(one for each
configuration) into the other atom type to preserve composi-
tion. As in most Monte Carlo processes, the probability of
attempting such moves must be set in advance as a param-
eter.

The global optimization algorithm can thus be summa-
rized into its main steps. Keeping the above notations for
atom types, and denotingRi

spd the configuration at stepi of
trajectory p, we start the optimization process using fully
random configurations, but locally optimized.

(1) With probability Pex, it is decided whether an ex-
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change between adjacent trajectories will be attempted or
not. If so, then the two trajectories involved in the exchange
are determined randomly.

(2) For each compositionp not concerned by any ex-
change, a new configurationRi+1

spd is generated fromRi
spd us-

ing either several particle exchanges or large atomic moves.
The probability to select particle exchanges is denotedPswap,
and the number of simultaneous exchanges is allowed to
fluctuate randomly between 1 andNswap

max . If atomic moves are
selected, then each atom is displaced randomly around its
previous location in the three directions by a random amount
of maximum magnitudehspd. In both cases,Ri+1

spd is obtained
after local minimization.

(3) In the case of an exchange between adjacent trajecto-
ries, the two configurationsRi

spd andRi
sp+1d corresponding to

these trajectories are then swapped, oneX atom ofRi
spd being

transmuted intoY, and oneY atom of Ri
sp+1d being trans-

muted intoX. Again, the configurationsRi+1
spd and Ri+1

sp+1d are
obtained after local minimization.

(4) Each new configuration is accepted with the usual
Metropolis acceptance probability at temperatureT.

The algorithm has two main parameters, namely,Pex and
Pswap. The maximum number of particle exchange moves,
Nswap

max , was set to 4 in this study. We expect that better results
could be obtained by adjusting this parameter appropriately,
probably taking higher values for larger clusters or for com-
postitions close to 50%. The amplitude of atomic displace-
ment hspd is set to half the equilibrium distance in theX2
dimer for p=0, half the equilibrium distance in theY2 dimer
for p=n, and is interpolated linearly between these two val-
ues for 0,p,n. In the present work, the exchange prob-
abilities were taken asPex=0.5 andPswap=0.9, hence allow-
ing a rather large probability of sampling among homotops
of a same structure.

B. Benchmark calculations

Low-energy structures for mixtures of xenon with either
argon or krypton atoms have been first investigated for the
sizesn=13 andn=19, as there are quantitative global opti-
mization data available for Ar-Xe clusters from the Jordan
group.21 We have adjusted the LJ parameters used by Leitner
et al.52 to reproduce the clusters energies found by Munro
and co-workers.21 With respect to argon, the present data for
s and « are thus sKrKr =1.12403, sXeXe=1.206, sKrXe
=1.16397, sArXe=1.074, «KrKr =1.373534, «XeXe=1.852,
«KrXe=1.59914, and«ArXe=1.48. Global optimization of Ar
-Xe and Kr-Xe clusters was performed using the parallel
algorithm previously described, simultaneously for all com-
positions, for a maximum number of 10 000 minimization
steps per trajectory, and atT=0. Ten independent runs were
carried out to estimate an average search length for each
composition. All global minima reported by Munroet al.
were always found within the number of MC steps allowed.

The results for ArnXe13−n and KrnXe13−n clusters are given
in Table I. The average search length is generally higher for
compositions close to 50%, for which the number of homo-
tops is maximum for a given isomer, regardless of symmetry.
The statistics presently obtained for Ar-Xe clusters show that
the average search is between 10 and 1000 times faster than
using conventional parallel basin-hopping.21 Kr-Xe clusters
roughly exhibit the same level of difficulty, but we do not see
any strong evidence for particularly severe cases: Ar3Xe10
even seems to be one of the easiest.

Similarly, the results obtained for ArnXe19−n clusters show
a significant improvement over fixed-composition
basinhopping.21 They are given in Table II along with the
corresponding data for KrnXe19−n clusters. This time, the al-
gorithm is about 1–100 times faster depending onn, the av-
erage search length being still longer for equal compositions.

TABLE I. Global optimization result for ArnXe13−n and KrnXe13−n clusters. The search length is the
average over ten independent runs of number of Monte Carlo steps needed to find the global minimum.
Energies are given in LJ units for argon.

ArnXe13−n Global minimum Average KrnXe13−n Global Average

cluster energy search length cluster energy search length

Xe13 −82.093 3.2 Xe13 −82.093 3.0

ArXe12 −78.698 7.9 KrXe12 −81.014 9.6

Ar2Xe11 −76.274 9.6 Kr2Xe11 −79.263 4.3

Ar3Xe10 −74.015 5.8 Kr3Xe10 −77.550 5.7

Ar4Xe9 −71.597 8.6 Kr4Xe9 −75.869 26.1

Ar5Xe8 −69.017 14.0 Kr5Xe8 −74.186 25.8

Ar6Xe7 −66.584 37.2 Kr6Xe7 −72.498 26.4

Ar7Xe6 −63.791 19.4 Kr7Xe6 −70.844 45.2

Ar8Xe5 −60.733 13.9 Kr8Xe5 −69.141 18.3

Ar9Xe4 −57.851 22.7 Kr9Xe4 −67.473 4.7

Ar10Xe3 −54.594 12.0 Kr10Xe3 −65.802 11.5

Ar11Xe2 −51.122 7.5 Kr11Xe2 −64.128 4.1

Ar12Xe −47.698 4.1 Kr12Xe −62.490 2.4

Ar13 −44.327 2.7 Kr13 −60.884 2.3
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For both the 13- and 19-atom clusters, all global minima are
homotops of either the single or double icosahedron. This
situation is particularly suited for our algorithm, especially
the exchange moves.

Initially, the configurations at all compositions are ran-
dom. The chances to locate the proper structure(without any
consideration of the homotops) increase linearly with the
number of trajectories. As soon as the right structure is
found, the algorithm naturally optimizes atom types to find
the most stable homotop, hence the global minimum. But it
can also communicate the structure to the adjacent trajecto-
ries, until all compositions only need to sample among the
permutational homotops.

When the interactions are not too dissimilar(as in Kr
-Xe clusters), it is likely that the mixed clusters share the
same isomer as the global minimum of the homogeneous
cluster, which justifies the lattice approach of Robertsonet
al.51 The problem is then reduced to locating the most stable
homotops. By settingPswap to 1 and starting all trajectories
from this minimum, the algorithm can be even more success-
ful, and we estimated the average search length to be further
reduced by a factor about 3 with respect to the values given
in Table II. However, when the interactions differ signifi-
cantly among atoms types, or when the energy landscape of
the homogeneous cluster does not display a single steep fun-
nel, it becomes much harder to make a guess about structure
in these binary clusters.

Figure 1 shows the mean first passage time needed to
locate the global minima of Ar19−nXen using the algorithm

under different conditions. Disabling swap moves between
atom types or exchange moves between adjacent trajectories
usually attenuates the efficiency. Employing a rather high
temperature is even worse, because the cluster may easily

TABLE II. Global optimization result for ArnXe19−n and KrnXe19−n clusters. The search length is the
average over ten independent runs of number of Monte Carlo steps needed to find the global minimum.
Energies are given in LJ units for argon.

ArnXe19−n Global minimum Average KrnXe19−n Global minimum Average

cluster energy search length cluster energy search length

Xe19 −134.566 72.4 Xe19 −134.566 70.7

ArXe18 −131.819 64.3 KrXe18 −133.651 94.0

Ar2Xe17 −129.116 80.3 Kr2Xe17 −132.701 109.8

Ar3Xe16 −126.547 85.2 Kr3Xe16 −130.088 84.3

Ar4Xe15 −123.764 238.2 Kr4Xe15 −129.067 167.2

Ar5Xe14 −120.786 196.6 Kr5Xe14 −127.284 175.4

Ar6Xe13 −118.284 221.2 Kr6Xe13 −125.498 265.9

Ar7Xe12 −115.681 391.8 Kr7Xe12 −123.709 334.6

Ar8Xe11 −113.075 387.9 Kr8Xe11 −121.951 319.5

Ar9Xe10 −110.242 264.2 Kr9Xe10 −120.115 287.1

Ar10Xe9 −107.531 295.8 Kr10Xe9 −118.304 243.6

Ar11Xe8 −104.576 193.8 Kr11Xe8 −116.521 187.4

Ar12Xe7 −101.811 235.5 Kr12Xe7 −114.736 214.3

Ar13Xe6 −98.110 158.5 Kr13Xe6 −112.947 201.3

Ar14Xe5 −94.396 247.3 Kr14Xe5 −111.189 188.8

Ar15Xe4 −90.438 121.3 Kr15Xe4 −108.863 176.5

Ar16Xe3 −86.328 131.2 Kr16Xe3 −106.609 115.1

Ar17Xe2 −81.907 97.3 Kr17Xe2 −104.332 10.2

Ar18Xe −77.298 86.8 Kr18Xe −102.036 98.1

Ar19 −72.660 62.2 Kr19 −99.801 69.8

FIG. 1. Mean first passage time of the parallel optimization
algorithm to locate the global minimum structure of Ar19−nXen clus-
ters versusn. The average is performed over ten independent runs.
The results are shown at zero temperature, with or without ex-
change sEd moves between trajectories, with or without swap
moves between atom typessSd. The results atT=1 with both kinds
of moves are also displayed.
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leave its optimal lattice. This contrasts with optimizing ho-
mogeneous clusters, where using a nonzero temperature
helps the system to escape from a funnel.53 However, if the
energy gap between homotops of the same lattice increases
and gets close to the gap between different lattices, we ex-
pect the zero temperature method not to be the best. But in
such cases, even the notion of a lattice should be questioned.

III. STRUCTURAL TRANSITIONS

In this section we focus on two larger sizes, for which no
global optimization result is available. The LJ38 cluster is
characterized by its archetypal two-funnel energy
landscape.40 The high free-energy barrier separating these
two funnels and the higher entropy of the less stable minima
of the icosahedral funnel make it particularly hard to locate
the truncated octahedral lowest-energy minimum using unbi-
ased global optimization algorithms. Hence it is not surpris-
ing that this peculiar structure was first found by
construction.54,55

A. Composition-induced transitions in the 38-atom clusters

We have attempted to locate global minima for binary
Ar-Xe and Kr-Xe clusters of size 38, using the parallel
basin-hopping algorithm previously described. Because of
the huge number of homotops at this size, and most impor-
tantly because of the structural competition between icosahe-
dra and truncated octahedra, we cannot be fully confident
that the global optimization was successful. Therefore, the

energies reported in Table III for Ar-Xe clusters should be
taken with caution, as they could probably be bettered. The
same data for 38-atom Kr-Xe clusters is also reported in
Table V.

Specifically to this cluster size, all minima found during
the optimization process were categorized as either icosahe-
dral or cubiclike, depending on the energy of the correspond-
ing homogeneous isomer found by quenching. In cases
where the cubic isomer was not found among the isomers,
we performed additional optimizations starting from this
structure, settingPswap to 1. This mainly occured for Ar-Xe
clusters. Eventually, two series of minima were obtained for
each of the icosahedral and octahedral funnels. We did not
find any decahedral isomer that could compete with these
structural types, even though some evidence for stabilizing
decahedra by doping was reported in Ref. 56.

We have represented in Fig. 2 the relative energy differ-
encesDE=Efcc−Eico between the most stable cubic isomers
and the most stable icosahedral isomers, as they were ob-
tained from our optimization scheme, for both the Ar-Xe and
Kr-Xe mixtures. In addition to some strong variations some-
times seen from one composition to the next, and which can
be attributed to usual finite-size effects, general trends can be
clearly observed.

First, Kr38−nXen clusters are always most stable in the
cubic shape. Actually, changing the composition most often
further stabilizes truncated octahedra, and only rarely en-
hances the stability of icosahedra, which occurs forn.29
and n=21. Conversely Ar38−nXen clusters are preferentially
found icosahedral, exceptions beingn.35 andn=0. This is
an example of a composition-induced structural transition

TABLE III. Global optimization result for Ar38−nXen. The energies are given in LJ units for argon, and the
symmetry and mixing ratios defined by Eq.(1) are reported.

n Mixing ratio Energy Point group n Mixing ratio Energy Point group

0 0 −173.928 Oh 20 0.58 −268.683 C1

1 0.03 −179.232 Cs 21 0.59 −272.465 C1

2 0.06 −186.333 Cs 22 0.56 −276.924 Cs

3 0.15 −191.890 C1 23 0.61 −280.169 Cs

4 0.19 −197.767 C1 24 0.60 −283.955 C2v

5 0.22 −203.421 Cs 25 0.60 −287.679 Cs

6 0.25 −208.709 Cs 26 0.59 −290.973 C1

7 0.28 −213.815 C1 27 0.58 −294.157 Cs

8 0.32 −218.631 Cs 28 0.58 −297.320 C2v

9 0.34 −223.491 C1 29 0.56 −300.202 C2v

10 0.36 −228.209 C1 30 0.50 −303.484 C1

11 0.39 −232.771 C1 31 0.51 −305.987 C1

12 0.40 −237.337 C1 32 0.46 −308.404 C1

13 0.43 −241.887 Cs 33 0.43 −310.521 C1

14 0.44 −246.117 C1 34 0.38 −311.708 C1

15 0.45 −249.677 Cs 35 0.31 −313.772 C1

16 0.46 −253.593 Cs 36 0.25 −315.988 C1

17 0.46 −257.184 Cs 37 0.14 −318.860 C1

18 0.46 −261.079 Cs 38 0 −322.115 Oh

19 0.56 −264.927 C1
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between the two funnels of the energy landscape.
From a computational point of view, it should be noted

that the optimization algorithm was able to locate the trun-
cated octahedral minima for Kr-Xe clusters by itself, starting
from disordered minima, and that the extra runs starting from
this structure only produced slightly more stable homotops.
This is another illustration of the efficiency of the present
parallel optimization method.

The general degree of disorder is higher in icosahedral
structures than in the cubiclike isomer. Hence it is more dif-
ficult to put up the latter geometry with very unlike interac-
tions, as in Ar-Xe clusters. Cubic homotops of argon with
xenon are rather distorted, but the strain is much lower with
krypton instead of argon. Examples of global minima ob-
tained at compositionsn=9, 19, and 29 are represented in
Fig. 3. In Kr-Xe compounds, a progressive core-surface
phase separation is seen with Kr atoms outside, in agreement
with energetic arguments: atoms with the larger« prefer to
occupy interior sites. In icosahedral clusters, the strain in-
creases at such sites, especially in polytetrahedral systems.
Icosahedral Kr-Xe clusters also prefer to have Xe atoms at

the center, but the increased strain is too high a penalty,
which explains that cubic structures are favored over icosa-
hedra.

In general, no complete phase separation is found in Ar
-Xe clusters, even though Ar atoms seem to fit best at the
center of the cluster. In both cases, surface energies thus play
an important role. Mixing in these clusters can be estimated
using radial distribution functions.57 Here we use the same
index as Jellinek and Krissinel,4 namely, the overall mixing
ratio g defined as4

gsXpYn−pd =
EXpYn−p

− EXp
sXpXn−pd − EYn−p

sYpYn−pd

EXpYn−p

, s1d

where EXpYn−p
is the binding energy of clusterXpYn−p,

EXp
sXpXn−pd the binding energy of subclusterXp in the ho-

mogeneous clusterXpXn−p at the same atomic configuration
asXpYn−p, and a similar definition for the last term of Eq.(1).
As seen from Table III, the mixing ratio increases notably in
Ar-Xe clusters, up to more than 60% for some compositions.
Kr-Xe clusters, despite exhibiting some core-surface segre-

TABLE IV. Global optimization result for Ar55−nXen. The energies are given in LJ units for argon, and the
symmetry and mixing ratios defined by Eq.(1) are reported. The structural types[Mackay icosahedron(MI )
or polytetrahedral(PT)] are also given.

n Mixing ratio Energy Point group Type n Mixing ratio Energy Point group Type

0 0 −279.248 Ih MI 28 0.53 −417.785 C1 PT

1 0.05 −284.276 C2v MI 29 0.53 −421.225 Cs PT

2 0.10 −289.313 Cs MI 30 0.51 −424.566 C1 PT

3 0.15 −294.360 Cs MI 31 0.49 −427.888 C1 PT

4 0.28 −302.344 Cs PT 32 0.47 −431.565 C1 PT

5 0.34 −310.780 Cs PT 33 0.46 −435.680 C1 PT

6 0.38 −316.331 Cs PT 34 0.45 −439.565 C1 PT

7 0.41 −321.770 C1 PT 35 0.42 −443.335 C1 PT

8 0.43 −327.241 Cs PT 36 0.41 −446.892 C1 PT

9 0.44 −332.356 C1 PT 37 0.41 −449.965 C1 PT

10 0.47 −337.497 Cs PT 38 0.36 −454.356 Cs MI

11 0.50 −342.655 Cs PT 39 0.35 −458.203 Cs MI

12 0.55 −347.608 C1 PT 40 0.34 −462.564 C2v MI

13 0.57 −352.520 C1 PT 41 0.30 −466.709 C2v MI

14 0.56 −357.586 Cs PT 42 0.28 −472.191 Ih MI

15 0.58 −362.483 C2v PT 43 0.26 −475.967 C5v MI

16 0.58 −367.231 C1 PT 44 0.24 −479.739 D5d MI

17 0.59 −372.016 Cs PT 45 0.22 −483.495 C3v MI

18 0.59 −376.740 C1 PT 46 0.20 −487.219 C2v MI

19 0.59 −381.501 C2v PT 47 0.18 −490.910 Cs MI

20 0.60 −386.007 Cs PT 48 0.16 −494.585 C2 MI

21 0.60 −390.135 C1 PT 49 0.14 −498.231 Cs MI

22 0.59 −395.065 C1 PT 50 0.12 −501.860 C2v MI

23 0.59 −399.213 C1 PT 51 0.10 −505.467 C3v MI

24 0.60 −403.205 C1 PT 52 0.08 −509.052 D5d MI

25 0.58 −406.983 C1 PT 53 0.06 −512.616 C5v MI

26 0.56 −410.686 C1 PT 54 0.04 −516.170 Ih MI

27 0.56 −414.427 Cs PT 55 0 −517.168 Ih MI
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gation, show similar variations of the mixing ratio with com-
position, with only slightly smaller values ofg. Therefore the
mixing ratio, as defined in Eq.(1), is a rather ambiguous
parameter for quantifying the extent of mixing in this small
cluster.

The optimal structure of an homogeneous cluster de-
scribed with a pairwise potential results from a competition
between maximizing the number of nearest neighbors and

minimizing the strain energy, or penalty induced by distort-
ing these bonds.55 Binary Lennard-Jones systems exhibit
several extra complications due to the various ways of rear-
ranging atom types in a given structure. In these systems, the
strain varies notably among the homotops, especially in clus-
ters made of very unlike atoms. However, our results indicate
that the same general rules hold for homogeneous and het-
erogeneous systems. In Ar19Xe19, the strain is rather high,
but the number of contacts is also high. In Kr19Xe19, both the
strain and the number of nearest neighbors are much smaller.

TABLE V. Global optimization result for Kr38−nXen. The energies are given in LJ units for argon, and the
symmetry and mixing ratios defined by Eq.(1) are reported.

n Mixing ratio Energy Point group n Mixing ratio Energy Point group

0 0 −238.897 Oh 20 0.45 −286.209 Cs

1 0.09 −241.200 Cs 21 0.44 −288.240 Cs

2 0.18 −243.604 C2v 22 0.42 −290.323 C2v

3 0.25 −245.962 Cs 23 0.42 −292.310 Cs

4 0.27 −248.453 Cs 24 0.41 −294.347 Oh

5 0.33 −250.927 Cs 25 0.37 −296.352 C3v

6 0.35 −253.489 C2v 26 0.35 −296.371 C2v

7 0.39 −256.005 Cs 27 0.33 −300.382 Cs

8 0.41 −258.570 D4h 28 0.32 −302.414 C4v

9 0.43 −261.156 Cs 29 0.29 −304.411 C4v

10 0.45 −263.740 C2v 30 0.25 −306.457 Cs

11 0.47 −266.294 Cs 31 0.22 −308.390 Cs

12 0.48 −268.867 Cs 32 0.20 −310.370 Cs

13 0.49 −271.420 Cs 33 0.16 −312.315 Cs

14 0.50 −273.996 C2v 34 0.13 −314.287 C3v

15 0.50 −275.996 Cs 35 0.10 −316.230 Cs

16 0.50 −278.046 D4h 36 0.07 −318.200 D4h

17 0.48 −280.082 Cs 37 0.04 −320.133 C4v

18 0.47 −282.129 C2v 38 0 −322.115 Oh

19 0.46 −284.164 Cs

FIG. 2. Energy differenceDE=Efcc−Eico between the most
stable cubic and icosahedral isomers of Kr38−nXen (empty circles)
and Ar38−nXen (full squares). DE is given in reduced Lennard-Jones
unit of argon(approximately 120 K).

FIG. 3. Putative global minima found for several Ar38−nXen and
Kr38−nXen clusters. Argon, krypton, and xenon atoms are repre-
sented as black, gray, and white balls, respectively. The point
groups are indicated.
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To investigate the role of heterogeneity on the strain, we
have computed the various contributions to the reduced
strain energies in Ar38−nXen clusters. The strain energies are
defined for Ar-Ar, Xe-Xe, and Ar-Xe interactions as
follows:55

EAr-Ar
strain = VAr-Ar

LJ + NAr-Ar
nn «Ar-Ar ,

EAr-Xe
strain = VAr-Xe

LJ + NAr-Xe
nn «ArXe,

EXe-Xe
strain = VXe-Xe

LJ + NXe-Xe
nn «Xe-Xe.

In these equations,VX-Y
LJ is the(negative) total binding energy

between atomsX andY, NX-Y
nn is the number ofX-Y nearest

neighbors, and«X-Y is the Lennard-Jones well depth corre-
sponding to the interaction betweenX andY atoms. Reduced
strain energies are then defined asestrain=Estrain/Nnn«, in or-
der to account for the different magnitudes of the interactions
among atom types. According to these definitions, the strain
energies are always positive quantities. The strain energies in
Ar38−nXen clusters are represented versus composition in Fig.
4. They give us some insight about the possible ways of
reducing strain.

The pattern exhibited by the reduced strain versus com-
position shows different behaviors for clusters having mostly
argon or xenon atoms. Forn,20, most strain is carried by
interactions between alike atoms. This case is illustrated by
Ar9Xe29 in Fig. 3, where a kind of core/surface phase sepa-
ration occurs. Here surface energies are also important, but
the situation is rather different from mixed cubic Kr-Xe clus-
ters. Because having the xenon atoms at the inner sites of the
icosahedral structure would maximize the strain of these at-
oms, it is much more favorable to have the smaller atoms
inside and the xenon atoms outside. The cubic Kr-Xe struc-
tures, on the other hand, are not especially strained, and hav-
ing the smaller atoms inside would lead to an energetic pen-
alty.

When the number of Ar atoms increases above about 19
in the 38-atom cluster, interactions between unlike atoms are
significantly more strained. The case of Ar29Xe9 depicted in
Fig. 3 is perticularly informative: Xe atoms are located

scarcely among the icosahedral cluster, and relieve the struc-
ture from too much strain at the expense of only few Xe
-Xe interactions. In this case, cluster structure is driven by
the number of unlike interactions.

It is also worth noting that a few compositions are espe-
cially weakly strained; this occurs when the global minimum
is octahedral, but also in the range 19,n,24. For these
latter clusters, the core/surface segregation and the number
of unlike interactions are both optimal.

B. Polytetrahedral transitions in the 55-atom Ar-Xe clusters

The cubic to icosahedral transition seen above actually
favors polyicosahedral(or anti-Mackay) structures. The
strain reduction produced by size disparity in 38-atom Ar
-Xe clusters helps in stabilizing these kinds of structures,
which are otherwise replaced by multilayer(or Mackay) ge-
ometries in the homogeneous clusters. Since most LJ clusters
under the size of 38 atoms are most stable as
polytetrahedra,58 we do not expect that changing composi-
tion will affect them to a large extent. As a notable exception,
the six-atom homogeneous LJ cluster is more stable in its
octahedral isomer. The lowest-energy geometries of mixed
Ar-Xe clusters containing six atoms, represented in Fig. 5,
show polytetrahedral transitions for two compositions,
namely, Ar4Xe2 and Ar3Xe3. This behavior mimics some-
what what was observed for the larger 38-atom cluster, only
at a smaller scale. In particular, and as in Fig. 2, polytetra-
hedral arrangements are seen to be more convenient for xe-
non compositions under 50%.

Possible polytetrahedral structures of mixed Ar-Xe clus-
ters have been investigated for the size 55, whose most stable
isomer is well known as a perfect double layer(Mackay)
icosahedron for the homogeneous system. The global opti-
mization results are summarized in Table IV for all compo-
sitions. For this we also conducted complementary calcula-
tions on the two-layer lattice. Each putative global minimum
was labeled either as Mackay icosahedron or, when the lat-
tice structure does not exactly match the multilayer icosahe-
dron, as polytetrahedral. Most compositions become increas-
ingly polytetrahedral as the ratio of xenon atoms increases,
even though the polytetrahedral character may often be only
local.

Two examples of lowest-energy structures are represented
in Fig. 6, corresponding ton=15 andn=40. The obvious
deviations of the geometry of the former from the Mackay
icosahedron and the various occupation sites of the heavy
atoms for both structures illustrate again that there is no

FIG. 4. Reduced strain energies for alike and unlike interactions
in Ar38−nXen clusters versus compositionn.

FIG. 5. Lowest-energy structures of ArnXe6−n clusters.
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simple rule that determines the most stable minima when the
atomic sizes do significantly differ from each other.

C. Temperature-induced transitions

We now go back to the 38-atom clusters of Kr and Xe
atoms, for which the global minimum was always found to
be a truncated octahedron. The extremely large number of
isomers(including homotops) in the energy landscape of bi-
nary Lennard-Jones clusters, added to the expected presence
of significant energy barriers between icosahedral and cubic
isomers,40 prevent finite-temperature simulations from being
conducted in a reliably ergodic way with the presently avail-
able tools. For example, the particle exchange moves used to
accelerate convergence of sampling among homotops will
likely have very low acceptance probabilities in MC simula-
tions at low temperatures, especially for Ar-Xe clusters.
Therefore, even with powerful methods such as parallel tem-
pering or multicanonical Monte Carlo, reaching convergence
in 38-atom LJ clusters does not seem currently feasible to us.

As an alternative, we have chosen to investigate solid-
solid transitions by means of the superposition approach.59,60

For a given cluster, databases of minima in each of the icosa-
hedral(ico) and truncated octahedral(fcc) funnels were con-
structed using the optimization algorithm. For each compo-
sition and each of the two funnels, no more than 2000
distinct minima were considered. The classical partition
function of theY38−pXep cluster(Y=Ar or Kr) restricted to
funnelA=fcc or ico is approximated by a harmonic superpo-
sition over all minima of the databases, which belong to this
funnel:60

QAsbd = o
iPA

ni
exps− bEid
sbhn̄id3n−6 , s2d

whereb=1/kBT is the inverse temperature,n̄i the geometric
mean vibrational frequency,ni =2p! sn−pd ! / hi with hi the
order of the point group of minimumi andn=38. We do not
consider quantum effects here, although they may be impor-
tant at low temperatures,61 since delocalization or zero-point
effects are not expected to be significant for rare gases as
heavy as krypton or xenon.

Within the harmonic superposition approximation, a
solid-solid transition occurs whenQfcc=Qico.

62 This latter
equation is solved numerically inb or T, its solution is de-
notedTSS. In cases where icosahedra are energetically more
stable than octahedra, a solid-solid transition can occur if

some cubic structures are entropically favored, which re-
quires lower vibrational frequencies and/or lower symme-
tries. We did not find such situations in our samples of Ar
-Xe clusters, therefore we restrict to Kr-Xe clusters in the
following.

Similar to transitions between funnels, transitions be-
tween homotops will happen if their partition functions are
equal. The huge number of homotops gives rise to as many
values for the corresponding temperatures, and we define the
homotop transition temperatureTh such that

Th = min
j

hTh
s jduTh

s jd . 0j, s3d

whereTh
s jd is the transition temperature between the global

minimum (homotop 0) and its homotopj .
Equating the harmonic partition functions for these two

isomers leads to the expression ofTh
s jd:62

kBTh
s jd =

Ej − E0

s3n − 6dln n̄0/n̄ j + ln nj/n0

. s4d

Since all homotops are characterized by different vibrational
and symmetry properties, the transition temperaturesTh

s jd are
not ordered exactly as the energy differencesEj −E0. This
reflects that solid-solid transitions involve crossover in free
energy rather than binding energy. The above equation also
shows thatTh

s jd can take negative values if homotopj has a
higher symmetry and/or a higher vibrational frequency than
the ground state. In this case the global minimum is always
the free energy minimum, and no solid-solid transition oc-
curs, hence the form of Eq.(3).

Finally, a third temperature has a strong consequence on
cluster structure, namely, the melting temperature. Its estima-
tion from either simulations or superpositions approxima-
tions is already quite difficult for the homogeneous LJ38
cluster,40,41 and we did not attempt to compute it for binary
clusters. However, the previous study by Frantz18 has shown
that the melting point in mixed, 13-atom Ar-Kr clusters var-
ies quite regularly(approximately quadratically) with com-
position. As a simple rule, we will assume that the melting
point of Kr38−nXen, Tmeltsnd, lies inside some range between
the approximate melting points of Kr38 and Xe38, respec-
tively. From the results obtained by Doye and Wales40 and
the Monte Carlo data of Ref. 41 for the LJ38 cluster, we get
Tmelts0d.0.234 andTmelts38d.0.315 in reduced LJ units of
argon. This provides rough limits to the actual melting points
of Kr-Xe clusters, for the price of neglecting finite-size ef-
fects.

The transition temperatures are represented in Fig. 7 for
all compositions in Kr38−nXen clusters. We notice first that
the structural transition temperatureTSS varies quite regu-
larly with composition in both the rangesn,19 andn.21,
and that it shows strong size effects between these limits.
Several situations are predicted to occur depending on the
relative values ofTSS, Th, andTmelt.

In most cases,Tmelt,TSS. That melting takes place at
temperatures lower than the cubic/icosahedral transition sim-
ply nullifies the transition between structural types. However,
this extra stability of the octahedral funnel may have a con-

FIG. 6. Lowest-energy structures of the Ar15Xe40 and Ar40Xe15

clusters. Both structures haveC2v symmetry.
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sequence on the melting point itself, which is likely to in-
crease. Still, this situation implies that simulations will more
easily reach convergence.

However, there are notable exceptions for this behavior, at
n,4, n=21, andn.34. In these clusters, heterogeneity is
not sufficient for the thermodynamical behavior of the clus-
ter to deviate too much from those of the homogeneous sys-
tem.

The transition between homotops usually occurs prior to
melting. Thermal equilibrium within the cubic funnels thus
involves several homotops(and “restricted” solid-solid tran-
sitions), and the corresponding thermodynamical state could
be probably simulated using specifically designed exchange
moves between outer particles within a Monte Carlo scheme.

A few clusters melt before exhibiting any transition be-
tween homotops. This occurs, for instance atn=11, 13, or
15. For these sizes the structural transition also occurs at
temperatures higher than the estimated melting point. These
cases should pose less problems to conventional simulations
than the homogeneous cluster.

D. Glassy behavior

The previous results have shown that finite-size Ar-Xe
compounds show a preferential polytetrahedral order, even
for very low doping rates, over octahedral order. On the
other hand, Kr-Xe clusters at the same sizes further favor
cubic order. Since polytetrahedral order is known to be
present in liquids and, more generally, in disordered struc-
tural glasses, it seems natural to correlate the behavior ob-
served in these clusters to the dynamics of the corresponding
bulk materials.29

We have simulated the cooling of 108-atom binary rare-
gas liquids, using a simple Metropolis Monte Carlo scheme
under constant volume and temperature. Initially the atoms
are placed randomly into a cubic box of sideL, and periodic

boundaries are treated in the minimum image convention.
The LJ interactions were not truncated, and the simulations
consisted of 100 stages of 105 MC cycles each, linearly
spaced in temperature.

Three compositions have been selected, following our
knowledge of the cluster structure. For each composition,
different length sizesL and different temperature ranges
sTmin,Tmaxd were chosen in order to cover both sides of the
melting point. In the first mixture, 24 xenon atoms and 84
argon atoms are simulated withL=4.8815 LJ units of argon,
with 0.1øTø1. In the second mixture, 24 xenon atoms are
added to 84 krypton atoms atL=5.487 and 0.15øTø1.5.
The third mixture consists of 9 argon atoms and 99 xenon
atoms atL=5.887 and 0.2øTø2. Even though we did not
attempt to locate the most stable crystalline forms for these
mixtures, our searches close to the face-centred cubic mor-
phology showed that the most stable configurations for these
mixtures always had some cubic order. It is likely that the
actual ground states for such systems are indeed
crystalline.63

The average root mean square fluctuation of the bond dis-
tances, also known as the Lindemann indexd, universally
characterizes the thermodynamical state of the condensed
system as either solid or liquid, depending on its value being
lower or higher than about 0.15. To quantify the extent of
crystalline order, we have used the bond order parameterQ4
introduced by Steinhardt and co-workers.64 The two param-
etersd and Q4 allow us to follow in Monte Carlo time the
cooling processes for all materials in a simultaneous way,
independently of thermodynamical characteristics such as
the melting temperature.

The correlation betweend andQ4 for ten cooling simula-
tions of each of the three bulk binary compounds is repre-
sented in Fig. 8. In all cases, the Lindemann parameter cov-
ers the whole range 0.01,d,0.18, indicating that the
melting point was indeed crossed. However, the three com-
pounds display very contrasted cooling behaviors.

In the sAr84Xe24d system,d regularly decreases butQ4

always remain below 0.05. Therefore crystallization never

FIG. 7. Solid-solid transition temperature(full circles) between
the octahedral and icosahedral funnels, estimated from a harmonic
superposition approximation, versus composition in Kr38−nXen clus-
ters. Also shown is the lowest transition temperature for a permu-
tation between octahedral homotops. The horizontal dotted lines
mark upper and lower limits for the estimated melting points. The
temperatures are given in LJ units for argons120 Kd.

FIG. 8. Correlation between the Lindemann parameterd and the
order parameterQ4 along cooling simulations of Ar-Xe and Kr-
Xe bulk mixtures.
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takes place, and the final state obtained by quenching is sig-
nificantly higher in energy than some crystalline forms; this
is typical of glass formation.

In sKr84Xe24d, all simulations show some rather sharp
transition from a(high d, low Q4) state to a(low d, high Q4)
state asd crosses about 0.1. The temperatures where crystal-
lization occurs may vary somewhat among the cooling runs,
in the same way as they are expected to depend on the cool-
ing rate. Lastly, the case ofsAr9Xe99d is intermediate: while
most simulations end up in a nearly fully crystalline phase
sQ4,0.15d, a few of them show a limited degree of cubic
ordering in the solid phase,Q4 having values close to 0.07.

These results very closely reflect our previous data on
binary, 38-atom clusters of the same materials. In terms of
composition, the first mixture corresponds to Ar30Xe8, which
clearly favors icosahedral shapes over truncated octahedra.
The second mixture reminds of Kr30Xe8, for which the cubic
structure is even more stable than in the homogeneous clus-
ter. The third mixture should be compared to Ar3Xe35, which
favors icosahedra only moderately.

This correlation found here between cluster structure and
the glass forming ability of the bulk material confirms pre-
vious analyses on the icosahedral local order in liquids and
glasses,29,38 as well as the recent conclusions obtained by
Doyeet al.39 that clusters of good glass formers indeed show
a polytetrahedral order.

IV. CONCLUSION

As far as the structural and dynamical properties are con-
cerned, binary compounds show a significantly richer com-
plexity with respect to homogeneous clusters. The work re-
ported in the present paper was intended to achieve several
goals. First, a parallel global optimization algorithm was de-
signed to locate the most stable structures of mixed rare-gas
clusters, beyond the lattice approximations of Robertson and
co-workers.51 Based on the basin-hopping or Monte Carlo
1minimization algorithm,44,45 this algorithm includes ex-
change moves between particles at fixed composition as well
as exchange moves between configurations at different com-
positions. Tests on simple ArnXe13−n and ArnXe19−n clusters
show that the method is quite efficient, in addition to being
easy to implement. For these systems, we have found that the
choice of a very low temperature works best as it allows
some significant time to be spent for optimizing the search
for homotops on a same common lattice.

Putative global minima for Ar38−nXen and Kr38−nXen clus-
ters have been investigated for all compositions. The struc-
ture of Ar-Xe compounds is mainly polytetrahedral, except
at very low doping rates. Kr-Xe clusters not only remain as
truncated octahedra, but mixing the two rare gases even fa-
vors these cubic structures over icosahedra. We see some
significant trend toward core/surface phase separation in Ar

-Xe clusters withn.20 and in all Kr-Xe clusters. However,
these demixing behaviors are not due to the same factors, as
Xe atoms favor outer sites to reduce strain in Ar-Xe icosa-
hedra, while they occupy interior sites to maximize the num-
ber of bonds in Kr-Xe truncated octahedra. Conversely,
Ar38−nXen clusters withn,20 exhibit a higher degree of
mixing. Analysing the strain in these stable structures con-
firms the presence of a structural transition nearn=20 in
these systems.

Polytetrahedral morphologies were also found as the most
stable structures of many mixed Ar-Xe clusters with 55 at-
oms, as soon as the relative number of Xe atoms was large
enough. The general conclusion thus seems that the extra
strain introduced by mixing these different elements penal-
izes the highly ordered(cubic or two-layer icosahedron)
structures.

Within the harmonic superposition approximation, we
have estimated the temperatures required by the 38-atom
Kr-Xe clusters to undergo a structural transition toward the
icosahedral funnel, or toward other octahedral homotops. For
compositions with a doping rate higher than 3/38, the struc-
tural transition temperature was seen to occur at temperatures
higher than the extrapolated melting point. This mainly re-
flects the special stability of the octahedral structures, and
has the probable consequence that actual melting points in-
crease somewhat. These predictions could probably be
checked with numerical simulations. For most compositions,
the transitions between different homotops of the truncated
octahedron are seen to be potentially induced by relatively
small temperatures. Therefore particle exchange moves will
be necessary in order that simulations remain close to er-
godic.

Following previous results by other researchers,29,38,39we
have found some further evidence that criteria for glass for-
mation in bulk materials may also lie in the parameters,
which are responsible for stable cluster structures. Since the
atomistic simulation of the dynamical vitrification process
can generally be much harder than obtaining stable configu-
rations of atomic clusters, we expect the approach followed
in the present theoretical effort to be also useful in the com-
munity of glasses and supercooled liquids.

The method is obviously not limited to rare gases, and its
application to other compounds, especially metallic nanoal-
loys, should be straightforward, except maybe for fine tuning
its intrinsic parameters. From a methodological point of
view, it could also be applied to materials with more than
two components. Work on ternary systems is currently in
progress.
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