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Effective transition rates for epitaxial growth using fast modulation
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Thin-film deposition is an industrially important process that is highly dependent on the processing condi-
tions. Most films are grown under constant conditions, but a few studies show that modified properties may be
obtained with periodic inputs. However, assessing the effects of modulation experimentally becomes imprac-
tical with increasing material complexity. Here we consider periodic conditions in which the period is short
relative to the time scales of growth. We analyze a stochastic model of thin-film growth, computing effective
transition rates associated with rapid periodic process parameters. Combinations of effective rates may exist
that are not attainable under steady conditions, potentially enabling new film properties. An algorithm is
presented to construct the periodic input for a desired set of effective transition rates. These ideas are demon-
strated in three simple examples using kinetic Monte Carlo simulations of epitaxial growth.
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I. INTRODUCTION inputs. The second question is whether or not the same ef-

Thin-film deposition is a critical step in the manufacture f€cts are achievable by other steady process conditions. If
of many devices, including integrated circuits and microelec 0t then it may be possible to grow films with modulation
tromechanical systems. This often-complex process is highi{hat have properties that differ from those achievable with
dependent on process conditions such as temperature apfy set of steady conditions.
pressure. Process development for a new material system hasPeriodic growth strategies have been exploited to alter the
historically been accomplished empirically, but as materialgatio of various surface events. Olseh al® modulated the
become more complex, this approach becomes increasinglrecursor flux during diamond growth to suppress gas-phase
difficult. Even when the process parameters are held constafgactions, preventing the production and subsequent adsorp-
throughout deposition, the number of experiments requiretion of hydrocarbons. Sugiyama, Matsura, and Mtfata
to probe the parameter space grows exponentially with thétead alternated between precursor flux and plasma power to
number of parameteién the case of a multispecies film, the prevent the production and adsorption of chlorine radicals
process conditions might include gas concentration for eacHuring etching. Periodic conditions have also been utilized in
species, plus substrate temperature, ion bombardment ragectrodeposition by Svensson, Wahlstrom, and Holmi8om
and plasma powegr Exploring the effects otime-varying  to obtain altered film stoichiometry through current modula-
process conditions quickly becomes impractical, in either extion.
periment or simulation. In this paper we show formally how the ratio of surface

Conditions for thin-film deposition are often held con- events can be altered with periodic growth conditions. In
stant, unless the process is inherently periodic, as is pulsd@ﬁl’ticmal’, we focus on modulation that is fast relative to the
laser deposition. The morphology of films deposited bytime scales of growth. In this limit, one would not expect the
pulsed layer deposition and molecular-beam epitaxy havélm to rapidly respond to each individual pulse, but instead
been compared in simulation by Taylor and Atwateriso-  to change only slightly over each modulation period. We
late the effects of a time-varying process. Deliberate moduconstruct a framework from which to view fast modulation,
lation of process conditions has also been investigated. by derivingeffectiverates for the surface events. These rates
However, even in the case of a simple single-species systerflay or may not be attainable with steady conditions, de-
the effect of flux modulation on film properties such as sur-pending on the functional form of the transition rates relative
face roughness is not completely clear. Compared to a filnto the process conditions.
grown under constant flux with the same mean growth rate,
arguments can be made that films grown with modulated flux
should be roughéror smoothef.

When considering periodic variation of the process con- Thin-film growth encompasses a wide range of length and
ditions, two questions are of interest. First, under what contime scales, with corresponding models at each scale, from
ditions do films grown with periodic variation of process quantum mechanics to continuum theory. We require a model
parameters differ from those grown under steady conditionsvhich accurately captures the atomic-scale effects of the pro-
with the same mean process conditions? Presumably, the efess conditions, and which describes film properties of inter-
fects will depend on the magnitude and frequency of theest on the time scales of film growth. A lattice model for
variation, and will depend on the relative phase of differentcrystal growth provides a good balance between these re-

Il. LATTICE MODEL OF EPITAXIAL GROWTH
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T from H, to H, may occur through desorption at this site.
T The number of configurations grows exponentially with
the size of the lattice. For a substrate of *0D00 sites and

a maximum height of only 10, the number of configurations

/ is 10190<100 Although this number can be reduced by physi-
Adsorption Desorption Diffusion cal assumptions and symmetry arguments, it is clearly im-
/ * \ possible to directly simulate the master equation for any re-
alistic domain size. We use the structure of the master

[ ]] (L] T equation in our analysis, but continue to perform stochastic
simulations with the kinetic Monte Carlo method.

The master equation may be expressed in terms of sums
over all the configurations

FIG. 1. lllustration of three common transition mechanisms for

a two-dimensional lattice associated with a one-dimensional

d ! ’
substrate. aPH(t) =2 KRR (1) - 2 KT P (D), (1)
HY H’

quirements. The lattice model is described mathematically byheret is time andPy(t) is the time-dependent probability

a high-dimensional probabilistic master equation, but is typif configurationH. The first term on the right-hand side re-

cally simulated using a stochastic Monte Carlo metiod.  fiects transitions from other configuratiok¥ into configu-
The two key components of the lattice model are the rigidration H, and the second term represents transitions out of

lattice to which atoms are constrained and the mechanismgynfigurationH. Any expected property, such as island den-

and rates of atomic transitions between points on the latticeijty or root-mean-square roughness, may be expressed as a
The lattice represents the underlying crystal structure of th@near combination of the probabilities:

material, and is assumed to be fixed. The transition mecha-
nisms are defined in terms of lattice configurations, in which (Y)(t) = D Py Y(H), (2)
unique configurations are distinguished by differences in the H

occupancy of the lattice sites. Each unique transition mecha- ) ) , ,
nism is associated with a set of configuration pairs, in whichVhereY is the quantity of interesty(H) is the value ofY

the first element of each pair may transition into the secon@ssociated with configuratiad, and(Y)(t) denotes the time
element. Three common transition mechanisms—adsorptiolependent expected value 6f
desorption, and diffusion—are illustrated in Fig. 1. The de- Although there are a large number of configurations and
pendence on the process conditions enters through the ratg@ssible transitions between configuratidis; "> may only
of transition associated with each transition mechanism. ~takemdistinct values associated with theunique transition
mechanisms, or zero if no allowable transition between two
_ configurations exists. The master equation may be recast as a
A. Master equation sum over them transition mechanisms. We use the symbol
A master equation describes the evolution in time of thekiHﬁH' to denote the transition rate associated with a particu-
probabilities of each lattice configuratiéfiLet the symbol lar transition mechanism, and express the master equation as
H denote a particular configuration, akié—Hb the transition "
rate fromH, to Hy. Figure 2 illustrates two of the many d " N
possible configurations for a one-dimensional substrate. In aPH(t) 22 <2 kiH "Py () -2 kiH " PH(t))' 3)
the figure, a transition mechanism frar, to H, is the ad- FRAH H’
sorption of an atom at the third site from the left. A transition Taking k. to be the rate of transition through mechanigm

note thatkiH*H' may take only two values: zero, if no tran-
k sition from H to H'’ is allowed via mechanism or k;, if a

transition through mechanisims allowed.
K\ We next rewrite Eq(3) as a vector equation for the prob-
ability vectorP

Hy—H,

H d <
’ P =2 (kNP -kNPP), 4)
0| SE—)
\J whereN" andN?“" are matrices that represent the allowable
transitions either into or out of a configuration through
(HaH) mechanismi. N" and N*"' contain mostly zero elements,

since a transition mechanism will likely not exist between
FIG. 2. Two possible configurations of a two-dimensional latticetwo randomly selected configurations. As the last step we
associated with a one-dimensional substrate, with correspondingombineN!" and N°“* into a single matrixN;=N."-N°"" to
transitions and transition rates. arrive at our final form of the master equation
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m _ 1 T
EP:Eki(u)NiP. (5) f(f()E-f f(x,t)dt, (7)

dt i=1 TJo

Equation(5) is equivalent to Eq(1)—only the notation is and the averaged equation is defined as

different. We definai to be the vector of process parameters d .

and explicitly state the dependencekpbn u because it will —%=€ef(X), (8)
be important in the analysis that follows. dt

whereX is a vector of the same dimensionyasThe averag-
ing theorem relates the difference betwaeandxX to the size

. . of e. Specifically,
The lattice model captures many key features of thin-film

growth and has been used extensively over the past 30 years [X(t) = X(t)| = O(e) (9
as the basis for Monte Carlo simulatiods3 We perform
kinetic Monte Carlo(KMC) simulations in this paper, using

the formalism of Bort#* to capture the correct evolution in h . I th q g d .
time. Kinetic Monte Carlo simulations provide useful predic- whene is small, the averaged equati®) is a good approxi-

tions of thin-film growth, but the rule-based simulations areMmation for the original equatio(t). Refer to Wiggins® for

not conducive to mathematical analysis. For example, théurther d|scuss_|on and a proof of the averaging theorem.
simulations are not invertible; the evolution of a film grown Th? averaging theorem may be applied to th? ’T'asrter
under particular process conditions can be computed, but thcéquatlon(3_) when the process parameters are periodic, i.e.
process parameters required to achieve a film with particulall’:u(_“’t) with frequencyw=2m/7. Restating Eq(3) to em-
film properties cannot. phasize the dependence on time, we obtain

B. Kinetic Monte Carlo simulations

on a time scale of)(C/e) if |x(tg)—X(ty)| <O(e) for some
initial time ty. The constan€ is independent oé. Notice that

The analysis developed in the remainder of the paper ap- d m
plies generally to any lattice model. However, throughout the =P =2 k[u(wt)IN,P. (10)
paper we demonstrate the analysis on specific model systems dt o

through KMC simulations. These simulations are based on Betor ving the method of averadin 0) must b
cubic lattice in which each atom has a maximum of six nearc o' ¢ aPPlying the method ot averaging, B40) must be

est neighbors—one on each side for a total of four, ong" the form of Eq.(6) with a small parametee. With this

above, and one below. Additionally, we make the solid-on-gcial we rescale time by. Defining a new times=wt and
e=1/w, EQ.(10) becomes

solid approximation, in which no vacancies in the crystal are
permitted; equivalently, every atom must have a neighbor d m

below it. Periodic boundaries are utilized to simulate an in- —P=¢e>, k[u(s)IN;P. (11
finite surface, since an actual film is much larger than the ds i=1

simulation domain. A simulation domain of 3800 was
used, with selected simulations also computed on ZOQh
X 200 and 40x 400 domains.

Settingx=P and f(x,s) ==, k[u(s)]N;x, and observing
at the period in scaled time isr2the averaged version of
Eqg. (11 is

m
Ill. DERIVATION OF EFFECTIVE TRANSITION RATES Eﬁ): 62 (

ds i=1

1 2 R
Z—J ki[u(s)]ds) N;P. (12)
a
We now analyze the effects of periodic process conditions 0

for the particular case when the process condition period i8Ve may express this more compactly by defining an “effec-
short relative to the time scales of film growth. In this situ- tive” transition ratek.s; as

ation the film is not able to respond fast enough to keep up 1( 1 (2

with changes in the process parameters. Instead, the film Keft = _f k[u(wt)ldt=—] k[u(9]ds. (13
evolves as if the transition rates were replaced by constant 7Jo 2w Jq

“effective” transition rates. We employ the method of . . L

averagind® to compute these effective transition rates. Simi-An effective transition rate is simply the average value of the

lar application of the averaging theorem has been applied tijansition rate over a period, and_|s not a func_tlon of time. In
mechanical systems with periodic inpés. physical timet the averaged version of E(LO) is then
The method of averaging may be applied to a differential d. = A
equation of the form U > keiriNiP. (14)
i=1
d
d—tXZGf(X,t), (6)  The time scale on which the approximation is valid is
O(Cl/e€) in scaled times but is O(C) in physical timet, in-

wherex is a vector of dimensiom, € is a constant, anflis  dependent of the frequency. We explore the time scales of
a function with continuous first and second derivatives.applicability further in the simulations of Sec. IV.
When f is periodic int with period 7, such thatf(t+7) Notice that the averaged master equatidd) has the
=f(t), its average is defined as same form as Eq(10); the transition ratek; are simply
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replaced bykes;;. Application of fast periodic process condi- ~ TABLE I. Transition rates for models 1 and 2. The dimension-
tions is equivalent to a film growth process with constantless transition ratek; are functions of the dimensionless process
effective transition rateky;. If these effective rates are not parameters andT .
attainable with constant process conditions, then altered filr
evolution may be possible. In practice, the process param- Model 1 Model 2
eters are bounded, so we let;, and u,,,, be the minimum K (F)=F K (F')=F"
and maximum values ofi, and ask the question: do there o B . N .
exist effective transition rates attainable with periodic pro- k2T )=728XA-E,/T) L (T)=rexp-8,/T)
cess conditions in the rand@», Umad that are not attain- ka(T") = veexp(-E5/T) ks(F", T')=F vgexp(~E5/T')
able with constant parameters|itiyi,, Umnaxl?
No single transition raté&.; can be outside the set of the mechanism is adsorption; its rate is equal to the fiixn
ki's attainable with constant parameters, since the effectivboth modelgunity sticking coefficient The second mecha-
rate is simply the time average over the instantaneous rat@ism is surface diffusion. It is a thermally activated process
However, newcombinationsof effective transition rates with proportionality constant); and activation energ)E;,
might be obtained. The ratio of the transition rates of variousand is again the same in both models. The only difference
mechanisms strongly affects the evolution and final properbetween models 1 and 2 is the transition rate for the third
ties of a film—for example, the ratio of flux to surface dif- mechanism, which results in the removal of an atom from the
fusion is a key parameter in the evolution of island densitysurface. In the first model, the third mechanism is a ther-
and surface roughne$s!8 mally activated process, which is only dependent on the tem-
perature, with a proportionality constan*g and activation
energyE;. However, in model 2 the third mechanism is an
etching process, which is thermally activated as in model 1

To demonstrate the idea of effective transition rates, wéut is also proportional to the flux. In model 1, atoms desorb
first consider a single-species system. The focus of this exat high temperature due to thermal effects, but in model 2,
ample is to show that the set of achievable effective rate§igh temperature and high flux must coincide to remove at-
depends on the relationship between the process inputs af@s from the surface.
the transition rates. A second example is then considered, First consider the evolution of a film described by model
which is motivated by chemical vapor deposition. Whenl, which we investigate through kinetic Monte Carlo simu-
multiple species are delivered by a single precursor, temperdations. The physical parameters are determined by selecting
ture modulation can be used to alter a film's stoichiometry. the values of the transition rates at the upper and lower

Both examples are based on a cubic lattice, have periodigounds of the flux and temperature,(F,, T')=0,
boundary conditions, and disallow vacancies in the crystalo(F", Tpyp) =0.01, Ky(F", Ti,) =1000, ky(F™, Tpy)) =10, and
The two process parameters are the flunf precursors to  Ky(F™,T,,,0=1000. As a final constraint we seledt,
the surface and the surface temperaflirso thatu={F,T}. =2/3 toobtain physically realistic activation energies.

We assume that we have complete control over the flux and Before analyzing periodic flux and temperature, we visu-
temperature within preset upper and lower bounds, such thalize the set of transition rates attainable with constant flux

u may be constant or a periodic function of time. In all casesand temperature. Because there are only three transition
the flux ranges between 0 and 1 monolayers/s, the temperaechanisms, we may plot the transition rates against each
ture ranges between 400 and 600 K, and the activation enepther and obtain the two-dimensional surface of transition
gies lie between 0.5 and 1.5 eV. However, in this study weates. This surface is shown in Fig. 3. The surface is two-
use dimensionless quantities to further generalize the resultdimensional because there are two process parameters and is
The time scale is taken from the maximum fleix,., and the  bounded because the process parameters have upper and
energy scale ik, T, Wherek, is Boltzmann’s constant and lower bounds.

Tmax IS the upper bound on temperature. The length scale is Any combination of transition rates that is not on the sur-
set by the lattice spacing A dimensionless quantity will be face of Fig. 3 cannot be obtained with constant flux and
denoted by an asterisk in the remainder of this section—fotemperature. However, periodic inputs may produce a com-
example, transition ratél =kF., activation energyE; bination of effective transition rates that is not on the surface.
=E;/Ky Trmax and heighth’=h/a. Consider the input pictured in Fig. 4. The flux is set to the
maximum value, but the temperature alternates between its
upper and lower bounds. The set of effective rates associated
with this periodic input may be computed with E43), and

Three types of transitions are allowed in the single-is denoted by the filled diamond in Fig. 3. These rates are not
species model¢l) adsorption of an atom from the gas onto achievable with constant flux and temperature, and result in a
the surface(2) diffusion of an atom with no side neighbors decrease in desorption relative to diffusion and adsorption.
along the surface, an@®) loss of an atom with no side neigh- An effective transition rate is the time average of the instan-
bors to the gas. An atom with one or more side neighborganeous rate over a period, and thus for the input in Fig. 4,
may undergo no transition and thus is permanently incorpothe effective rate is the average of the transition rates at
rated into the film. Two models for the transition rates are{F ., Trad @Nd {Fra0 Tmin- These instantaneous rates are
considered, and are given in Table |. The first transitionmarked by the open square and open triangle in Fig. 3. Any

IV. EXAMPLES

A. Single-species example
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FIG. 3. The surface of transition rates achievable with constant F|G. 5. KMC simulations of model 1: Final roughne®$ vs
process pal’ameters for model 1. The filled diamond marks the set (ﬂf]icknessh* for various constant process paramet@'pen sym-
effective transition rates for the 50% duty cycle input in Fig. 4. The bols) and for the set of effective transition ratéflled symbo).
instantaneous constant transition rates used to generate the setgfch simulation is run up t6 =100, and each symbol represents
effective rates are marked with the open squéfe=1 and T the mean of three simulations. Error bars denote the standard de-
=2/3) and the open trianglg-" =1 andT =1). viation, but are too small to be seen in most cases. Constant input

) ) ) ] simulations are marked by the open symbols,F6x0.5, 0.75, and
point along the dashed line can be achieved by altering the. ang T=2/3(0), 0.70(0), 0.73(+), 0.78(X), 0.83(%),
duty cycle of the modulation of Fig. 4. Throughout this pa-.92(v), and 1(A). Effective rates associated with the modulated
per, open symbols are used for constant conditions, whilghputs of Fig. 4 are also simulated, as marked with the filled dia-
filled symbols denote effective rates associated with modumond ().
lated conditions.

Periodic process parameters enable new effective transinput surface is qualitatively quite different from the surface
tion rates, which may ultimately result in altered film prop- associated with model (Fig. 3). We again select a periodic
erties. We use kinetic Monte Carlo simulations to contrasinput composed of two constant-parameter settings, this time
the mean thickness™ and root-mean-square roughn@4s  alternating between high flux at low temperature, and low
obtained under constant and periodic inputs. Each simulatiofiux at high temperature, as pictured in Fig. 7. The rates
is run fromt =0 to t" =100, which results in a thickness of associated with these two constant settings are marked with
up to 100 layers. The mean of three simulations is shown impen symbols in Fig. 6; the filled diamond denotes the set of
Fig. 5. effective rates associated with the input in Fig. 7. Variations

The simulations are performed for representative valueg the duty cycle of this input produce other effective rates,
of constant flux and temperature, as well as for the set ofvhich lie along the dashed line in Fig. 6. The set of effective
effective transition rates considered above. Notice that theates is dramatically different from any combination of rates
final combination of thickness and roughness for the effecachievable with constant inputs, which suggests that new
tive case could not be achieved by constant inputs in théilm properties may also be obtained.
fixed time interval we considered. The periodic input sup- Kinetic Monte Carlo simulations of model 2 are shown in
presses desorption relative to diffusion, enabling a thickerFig. 8 for a range of constant parameters and for the effective
smoother film. With constant flux and temperature we might
be able to produce a film similar to that produced with the
periodic inputs, but the growth time would be longer.

We will now analyze model 2, whose transition rates are
shown in Table I. The physical parameters for Model 2 are
selected by first settingy(Fry, T')=0, Ky(F", T.,) = 1000,
and Ky(F a0 Tra =10 000. We also wank,(F*,T,,,) and
Ka(Frase Tmin) 10 be negligible, and consequently sej
=10, v,=10" andT,,;,=2/3.

Figure 6 contains the surface of transition rates achievable
with constant inputs. Because the desorption rate is a func-
tion of both flux and temperature, the shape of the constant

F T
L Tnonr FIG. 6. The surface of transition rates achievable with constant
[ process parameters for model 2. The filled diamond marks the set of
213 effective transition rates for the 50% duty cycle input in Fig. 7. The
g IT f IT t. instantaneous constant transition rates used to generate the set of

effective rates are marked with the squéfé=1 andT =2/3) and
FIG. 4. A set of periodic process parameters for model 1. the triangle(F" =0 andT" =1).
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2/13

0
T r T r

FIG. 7. A set of periodic process parameters for model 2.

transition rates of Fig. 7. We again focus on the combinations
of roughness and thickness that can be obtainet=at00.
The effective rate surface is qualitatively different from the
constant input surfaces—it lies almost completely outside the
region defined by the constant inputs.

Figure 9 shows the final surfaces of a film grown under
the set of effective transition rates and a much rougher film
of a similar final thickness grown under the constant process
parameters oF =1.0 andT =0.78. A significant fraction of
former surface is covered by smooth terraces, while the latter
is dominated by step edges. The physical mechanism for the
smoothing associated with modulation is simple—under con-
stant process conditions the temperature must be raised to
induce smoothing, which results in the loss of atoms due to
desorption. The use of periodic parameters enables the sup
pression of desorption, while still allowing smoothing
through diffusion.

B. Multispecies example

We now consider a multispecies KMC simulation, which
is motivated by a problem in chemical vapor deposition. In
physical vapor deposition processes, one may be able to in-
dependently adjust the flux of each species to control the film
composition, but in chemical vapor deposition, a single pre-

cursor may contain multiple film components. For example, FiG, 9. KMC simulations of model 2. Only a portion of the
in gallium arsenide, residual carbon from the gallium precur-300x 300 domain is showna) Final surface of a film grown at the
effective transition rates, marked by the filled diamond in Figb8.
Final surface of a film grown at the constant parameEérs1.0,
T°=0.78, marked by an< in Fig. 8. Each atom with four side
neighbors is light colored—atoms with at least one empty side bond
are dark.

sor has been used as a dop¥nin this situation the film

composition is dependent on surface transitions that are
strongly dependent on temperature. Activation energy mod-
els have been developed for gallium arsenide to quantify the
dependence of precursor dissociation and desorption on

0 Z E i E temperaturé® The transition rates considered here are moti-
0 20 40 60 80 vated by this model, in which the activation energy for pre-
h cursor dissociation is less than the energy for dopant desorp-
FIG. 8. KMC simulations of model 2: Final roughne®é vs tion, but greater than the energy for desorption of the
. . : recursor.
thicknessh™ for various constant process parameters and for the sert)

of effective transition rates. Each simulation is run upt'te 100, In particular, four events are considered) adsorption,

and each symbol represents the mean of three simulations. Err(?rquaI to the precursor fluék; (2) precursor desorption, with
bars denote the standard deviation, but are too small to be seen ﬂft'vat'on barnerEz 9.69; (3) precursor dissociation, with
most cases. Constant input simulations are marked by the opéns=19-4; and(4) dopant desorption, WithE;=29.1. Vibra-
symbols, for F*=0.5, 0.75, and 1; and”=0.70(O), 0.73(+), tional frequenmes are set such thatT,,)" =10, k3(Tmax)
0.78(x), 0.83(¢), 0.92(V), and 1(A). Effective rates associated = 1000, andk,(T,,,) =1000, withT,,;,=2/3. Thecorrespond-
with the modulated inputs of Fig. 4 are also simulated, as markedng rate “surface” is shown in Fig. 10, fég, ks, andk,. Each

with the filled diamond 4 ). of these rates depends only on the temperature, resulting in a
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1000 T > 20| ¥ B=0.25 T
- ¢ B=050 :
-V " B=075 : : i
" sl L :_'_‘{'_/if ''''' L 15| ® Bp=090 f--- - L S A1
- ; P : : — T constant | : : :
: - X . B .
/./ '/l’ : ey
o : : : ;
0 200 400 600 800 1000
k3
10 " .
. . -,
: - x
A h
. ‘ -7 :
TS P A 5P P FIG. 11. KMC simulations of the multispecies model: Final
: e - : : dopant incorporatiod” vs thickness$” for various constant process
o g ; : 5 parameters and for the set of effective transition rates. Each simu-
o - i i ' lation is run up tat" =100, and each symbol represents the mean of
0 200 400 600 800 1000 three simulations. Error bars denote the standard deviation, but are
k, too small to be seen. Constant input simulations are marked by the

open symbols, forF"=1 and T"=2/3(0), 0.80 (O), 0.87(+),

FIG. 10. Combinations of surface transition rates attainable witt.90(x), 0.93(< ), 0.97(V), and 1(A). Effective rates associated
the multispecies model under constant temperature and$hlid with the modulated inputs of Fig. 4 are also simulated, w&h
line). The 50% duty cycle modulation of Fig. 4 is markéé ), denoting the fraction of each period spenfTa,.
along with other duty cycles with 250%), 75%(H), and 90%(®)
of each period spent at,,,. The instantaneous constant transition we mean by “fast.” The averaging theorem predicts that as
rates used to generate the effective rates are marked with the opeite modulation frequency is raised, simulations that explic-
square(F" =1 andT =2/3) and the open trianglé="=1 andT" jtly include modulation will approach those obtained using
=1). Additional constant inputs witl =1 andT =0.93(¢) and  the constant effective transition rates. This point is illustrated
T'=0.97V) are also shown. in Fig. 12, which shows the evolution of model 1 under the

one-dimensional curve of transition rates attainable with Congondltlons Ofl F'ﬁ]' 4, f%r ‘I’af'ouj modulation frgqude?uesﬁ
stant temperature. This curve is difficult to visualize on a_ N 9eneral, the modulation frequency required for effec-

three-dimensional plot, so two-dimensional plots are showdiVe rate behavior will depend on the transition mechanisms
instead. Temperature modulation betweggn, and T, is and their rates. To explore this fast limit, we isolate indi-

represented by the dashed lines of Fig. 10 for the spectrum ofidual surface transition mechanisms, considering first ad-
possible duty cycles. Temperature modulation suppresses ti§€rption with adatom desorption only, and then adsorption

effective rate folk, relative toks, and enhancels, relative to ~ With adatom surface diffusion only. In both cases, simula-
K. tions are run with a constant flux & =1, and the tempera-

The corresponding KMC simulations are shown in Fig_ture is modulated betwe€eh =0 and various finite tempera-
11, for growth up ta"=100. Final thickness is plotted versus , i ,
d’, the total amount of secondary dopant spe¢measured b RPN e S .
in layery. As the constant growth temperature is increased : : '

to T, the final thickness increases because the [ .. .. ... Lo . ________ T 4 }

from T,
ratio of precursor dissociation to precursor desorption is en-
hanced. However, as the temperature is increased Tpast
=0.93 the dopant desorption becomes significant, leading to . .
a reduction ind". W N N
Temperature modulation leads to different combinations ) g : '
of thickness and composition. In particular, thickness is en-
hanced since the precursor desorption rate is suppressed rela-
tive to dissociation. The dopant desorption rate is raised
slightly, which could potially lower the resulting value df.

7" =003
T =001 -
7" =0.003
T —— effective
— modulated

However, this effect is more than compensated by the en- 0 ‘

hanced growth rate, in which dopant atoms on the surface are 0 5 10 15 20

more rapidly incorporated into the bulk. t*

V. CONSTRUCTION OF EFFECTIVE TRANSITION RATES FIG. 12. Kinetic Monte Carlo simulations of model 1 on a

300% 300 lattice, using the modulated inputs of Fig. 4. As the
modulation periodr is decreased, the modulated simulations ap-

We derived effective transition rates associated with fasproach the predictions associated with the constant effective transi-
periodic process conditions, but have not yet addressed wh#on rates.

A. Modulation frequency for limiting behavior
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10 E— _ - B. Computation of periodic inputs
- = Wf(Zm) = | : /’ . . . .
:des : . We focus here on periodic inputs that switch between

multiple process settings. In the examples, the input was
modulated between two settings, but this may be generalized
tor settings. Definingy; as the fraction of the period spent at
input settingu;, one obtainskeffyizi‘,}:1 a; ki(u;). By defi-
nition, ;=0 andzlf:1 a;=1. This expression for the effec-
tive rates formally reduces to a problem in the theory of
convex sets, in which the set of effective transition rates is
the largest convex set containing the set of constant-
parameter transition ratés.

The mathematical structure of the effective transition rates
can be exploited to compute periodic process parameters.

W2 (7

10° . = Defining ky,;; as our objective transition rates, we may then
- Wem =k, - : : , . P
. wem =035k 2B ke define the following error function to be minimized:

dif . =m (koiji—E]le ajki(u)))?, representing the error between

the desired and the effective transition rates. One may then
discretizeu into r representative settings, and computedhe
to minimize the error. This optimization problem takes the
specific form of a quadratic prograth.Furthermore, when
the transition rates are all positive, the quadratic program
always converges to global minimum of the error functién.
This optimization problem can be solved usingTLAB 'S
quadratic programming function, and code has been included
in Ref. 33.

To approximate the continuous range of process inputs,

FIG. 13. Comparison between modulated growth and effective>n0Uld be a large number, so the quadratic programming ap-
transition rates(a) adsorption with adatom desorptiofi) adsorp-  Proach may produce complicated periodic inputs witet-
tion with adatom surface diffusion. The solid lines represent errofings. Caratheodory’s theorem, a theorem in convex analysis,
contours for the root-mean-square errotanheight and roughness; Provides a way to simplify these complicated inptitSpe-

(b) roughness and step density. Dashed lines are used to plot thegifically, the theorem states that the maximum number of
retical predictions. points required to generate any convex combinatiomis

] ] +1, wherem is the dimension of the space. In this applica-
tures over a range of modulation frequencies. The errofion, mis the number of transition rates, so only a maximum
between the modulated and effective rate simulations is thegf m+1 settings are required to construct any achievable
computed and represented by the contour plots of Fig. 13:5nvex combination. The proof of this theorem given also
The error in the first case, with adsorption and desorptiotyroyides an algorithm to reduce thesettings tom+122 The

only, is quantified as the root-mean-square error of the thickyorresponding MatLaB  code is found in our EPAPS
ness and roughness, and is represented in Fig).18s the  jepqsit33

modulation frequency approaches the desorption rate, the

/2w (s

k. sh

modulated S|mulat|_ons approach the effective ones. In this V1. DISCUSSION
case, the modulation must be faster than the rates of the
surface transitions. The averaging analysis developed in this paper provides a

The simulations for adsorption and surface diffusion aretool to simplify the interpretation of fast periodic inputs. The
summarized in Fig. 1®), with error measured by surface corresponding periodic process parameters may then be com-
roughness and step edge density. In these simulations, tpeited through quadratic programming. This overall approach
error decays not according to the transition rate for surfaceequires that the desired effective transition rates be known,
diffusion, but instead sublinearly as the rate at which an adaand that the modulation frequency be faster than the time
tom diffuses across an atomically flat terrace. This rate wascales of evolution. These two assumptions are discussed
computed using the parameter study of Evans and Battelt, further in this section.
in which the characteristic length scale is equated to the in- In general, the user will not knowa priori which effective
terisland distance, and the island dendityis fitted asN transitions rates will produce the desired surface properties.
=(0.55+0.02(Kgit/ Kagd 03992 The characteristic time is However, the averaging analysis simplifies the interpretation
then the time required to hop a distance equal to the charaof periodic inputs by reducing the large number of indepen-
teristic length via a random walk. Thus, to achieve the fastlent parameters associated with the mean value and the
limit, the modulation frequency must be faster than characmodulation frequency, phase, and amplitude of each process
teristic time scales of surface evolution. However, in the caséput. This parameter set is replaced with the set of effective
of surface diffusion, this does not require modulation fasteitransition rates in the averaging analysis. However, the suc-
than the fastest transition rate. cess of this approach does require that the user have some
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physical intuition regarding the effect of each constant tran-Thus, the averaging analysis presented here is not the only
sition rate on the final film properties, to guide the selectiontool needed to compute process inputs, but instead describes
of desired effective transition rates. For example, one mighbne particular aspect. Further development of systematic

understand based on physical intuition that the ratio of admathematical approaches for process development is needed,

sorption rate to diffusion rate should be minimized topyt the initial work presented here suggests that this type of
achieve the smoothest surface. These effective rates mugpproach can provide a different insight.

then be tested in simulation to verify the effect on surface
properties.

A second key assumption in our analysis is that the modu- VII. CONCLUSION
lation is fast relative to the time scales of growth, which may .
present practical challenges. However, throughout the last In this paper we developed a method to analyze the ef

decade various film growth processes have been develop gets of periodi_c process conditions when the p_eri_od is short
to deposit films under periodic process conditions. To modu_relatlve to the time scales of growth. The analysis is based on

late the flux of species to the surface, two primary methog€ lattice model of growth, in which the transition rates are
have been employed: the use of valves to switch flow beStrongly dependent on the process parameters. We showed
tween the chamber and a vent lifeand sequential exposure that when the quulatlon of the process parameters is suffi-
to flux as the substrate rotates through differentciently fast, the film does not react to the individual pulses
environment$. Methods for temperature modulation include but instead evolves as if each periodic transition rate were
resistive heating® laser irradiatior?® and supplemental cool- replaced by a constant effective rate. Although the master
ing with water and liquid nitroge® In electrodeposition, €quation for the lattice model is an extremely high-
modulation is accomplished by pulsing the electrodedimensional differential equation, this method requires only
current?® It may not be practical to speed up temperaturean analysis of the transition rates.

modulation through backside resistive heating due to thermal The set of all possible effective rates is characterized in
inertia, or to speed up flux modulation through valve modu-terms of the transition rates: this set is the smallest convex
lation due to transport de|ays_ However, other methods, inset Containing the transition rates achievable with constant
cluding the substrate rotatidriaser excitatior® and current  process parameters. With this mathematical framework we
modulatior?® are more anemable to fast modulation. The fea.use a theorem of convex analysis to construct simple peri-
sibility of achieving the fast limit of the averaging analysis 0dic process parameters. The periodic inputs are computed
must be assessed individually for each application, dependising quadratic programming, and when the desired effective
ing on the dominant time scales of surface evolution and théates are not achievable, then the inputs are computed that

process inputs. approximate the rates as closely as possible.
The analysis and algorithm presented in this paper apply
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