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Thin-film deposition is an industrially important process that is highly dependent on the processing condi-
tions. Most films are grown under constant conditions, but a few studies show that modified properties may be
obtained with periodic inputs. However, assessing the effects of modulation experimentally becomes imprac-
tical with increasing material complexity. Here we consider periodic conditions in which the period is short
relative to the time scales of growth. We analyze a stochastic model of thin-film growth, computing effective
transition rates associated with rapid periodic process parameters. Combinations of effective rates may exist
that are not attainable under steady conditions, potentially enabling new film properties. An algorithm is
presented to construct the periodic input for a desired set of effective transition rates. These ideas are demon-
strated in three simple examples using kinetic Monte Carlo simulations of epitaxial growth.
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I. INTRODUCTION

Thin-film deposition is a critical step in the manufacture
of many devices, including integrated circuits and microelec-
tromechanical systems. This often-complex process is highly
dependent on process conditions such as temperature and
pressure. Process development for a new material system has
historically been accomplished empirically, but as materials
become more complex, this approach becomes increasingly
difficult. Even when the process parameters are held constant
throughout deposition, the number of experiments required
to probe the parameter space grows exponentially with the
number of parameters(in the case of a multispecies film, the
process conditions might include gas concentration for each
species, plus substrate temperature, ion bombardment rate,
and plasma power). Exploring the effects oftime-varying
process conditions quickly becomes impractical, in either ex-
periment or simulation.

Conditions for thin-film deposition are often held con-
stant, unless the process is inherently periodic, as is pulsed
laser deposition. The morphology of films deposited by
pulsed layer deposition and molecular-beam epitaxy have
been compared in simulation by Taylor and Atwater1 to iso-
late the effects of a time-varying process. Deliberate modu-
lation of process conditions has also been investigated.2–7

However, even in the case of a simple single-species system,
the effect of flux modulation on film properties such as sur-
face roughness is not completely clear. Compared to a film
grown under constant flux with the same mean growth rate,
arguments can be made that films grown with modulated flux
should be rougher1 or smoother.4

When considering periodic variation of the process con-
ditions, two questions are of interest. First, under what con-
ditions do films grown with periodic variation of process
parameters differ from those grown under steady conditions
with the same mean process conditions? Presumably, the ef-
fects will depend on the magnitude and frequency of the
variation, and will depend on the relative phase of different

inputs. The second question is whether or not the same ef-
fects are achievable by other steady process conditions. If
not, then it may be possible to grow films with modulation
that have properties that differ from those achievable with
any set of steady conditions.

Periodic growth strategies have been exploited to alter the
ratio of various surface events. Olsonet al.8 modulated the
precursor flux during diamond growth to suppress gas-phase
reactions, preventing the production and subsequent adsorp-
tion of hydrocarbons. Sugiyama, Matsura, and Murota9 in-
stead alternated between precursor flux and plasma power to
prevent the production and adsorption of chlorine radicals
during etching. Periodic conditions have also been utilized in
electrodeposition by Svensson, Wahlstrom, and Holmbom10

to obtain altered film stoichiometry through current modula-
tion.

In this paper we show formally how the ratio of surface
events can be altered with periodic growth conditions. In
particular, we focus on modulation that is fast relative to the
time scales of growth. In this limit, one would not expect the
film to rapidly respond to each individual pulse, but instead
to change only slightly over each modulation period. We
construct a framework from which to view fast modulation,
by derivingeffectiverates for the surface events. These rates
may or may not be attainable with steady conditions, de-
pending on the functional form of the transition rates relative
to the process conditions.

II. LATTICE MODEL OF EPITAXIAL GROWTH

Thin-film growth encompasses a wide range of length and
time scales, with corresponding models at each scale, from
quantum mechanics to continuum theory. We require a model
which accurately captures the atomic-scale effects of the pro-
cess conditions, and which describes film properties of inter-
est on the time scales of film growth. A lattice model for
crystal growth provides a good balance between these re-
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quirements. The lattice model is described mathematically by
a high-dimensional probabilistic master equation, but is typi-
cally simulated using a stochastic Monte Carlo method.11

The two key components of the lattice model are the rigid
lattice to which atoms are constrained and the mechanisms
and rates of atomic transitions between points on the lattice.
The lattice represents the underlying crystal structure of the
material, and is assumed to be fixed. The transition mecha-
nisms are defined in terms of lattice configurations, in which
unique configurations are distinguished by differences in the
occupancy of the lattice sites. Each unique transition mecha-
nism is associated with a set of configuration pairs, in which
the first element of each pair may transition into the second
element. Three common transition mechanisms—adsorption,
desorption, and diffusion—are illustrated in Fig. 1. The de-
pendence on the process conditions enters through the rates
of transition associated with each transition mechanism.

A. Master equation

A master equation describes the evolution in time of the
probabilities of each lattice configuration.12 Let the symbol
H denote a particular configuration, andkHa→Hb the transition
rate from Ha to Hb. Figure 2 illustrates two of the many
possible configurations for a one-dimensional substrate. In
the figure, a transition mechanism fromHa to Hb is the ad-
sorption of an atom at the third site from the left. A transition

from Hb to Ha may occur through desorption at this site.
The number of configurations grows exponentially with

the size of the lattice. For a substrate of 1003100 sites and
a maximum height of only 10, the number of configurations
is 101003100. Although this number can be reduced by physi-
cal assumptions and symmetry arguments, it is clearly im-
possible to directly simulate the master equation for any re-
alistic domain size. We use the structure of the master
equation in our analysis, but continue to perform stochastic
simulations with the kinetic Monte Carlo method.

The master equation may be expressed in terms of sums
over all the configurations

d

dt
PHstd = o

H8

kH8→HPH8std − o
H8

kH→H8PHstd, s1d

where t is time andPHstd is the time-dependent probability
of configurationH. The first term on the right-hand side re-
flects transitions from other configurationsH8 into configu-
ration H, and the second term represents transitions out of
configurationH. Any expected property, such as island den-
sity or root-mean-square roughness, may be expressed as a
linear combination of the probabilities:

kYlstd = o
H

PHstdYsHd, s2d

whereY is the quantity of interest,YsHd is the value ofY
associated with configurationH, andkYlstd denotes the time
dependent expected value ofY.

Although there are a large number of configurations and
possible transitions between configurations,kHa→Hb may only
takem distinct values associated with them unique transition
mechanisms, or zero if no allowable transition between two
configurations exists. The master equation may be recast as a
sum over them transition mechanisms. We use the symbol

ki
H→H8 to denote the transition rate associated with a particu-

lar transition mechanism, and express the master equation as

d

dt
PHstd = o

i=1

m

So
H8

ki
H8→HPH8std − o

H8

ki
H→H8PHstdD . s3d

Taking ki to be the rate of transition through mechanismi,

note thatki
H→H8 may take only two values: zero, if no tran-

sition from H to H8 is allowed via mechanismi, or ki, if a
transition through mechanismi is allowed.

We next rewrite Eq.(3) as a vector equation for the prob-
ability vectorP

d

dt
P = o

i=1

m

skiNi
inP − kiNi

outPd, s4d

whereNi
in andNi

out are matrices that represent the allowable
transitions either into or out of a configuration through
mechanismi. Ni

in and Ni
out contain mostly zero elements,

since a transition mechanism will likely not exist between
two randomly selected configurations. As the last step we
combineNi

in and Ni
out into a single matrixNi =Ni

in−Ni
out to

arrive at our final form of the master equation

FIG. 1. Illustration of three common transition mechanisms for
a two-dimensional lattice associated with a one-dimensional
substrate.

FIG. 2. Two possible configurations of a two-dimensional lattice
associated with a one-dimensional substrate, with corresponding
transitions and transition rates.
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d

dt
P = o

i=1

m

kisudNiP. s5d

Equation(5) is equivalent to Eq.(1)—only the notation is
different. We defineu to be the vector of process parameters
and explicitly state the dependence ofki on u because it will
be important in the analysis that follows.

B. Kinetic Monte Carlo simulations

The lattice model captures many key features of thin-film
growth and has been used extensively over the past 30 years
as the basis for Monte Carlo simulations.11,13 We perform
kinetic Monte Carlo(KMC) simulations in this paper, using
the formalism of Bortz14 to capture the correct evolution in
time. Kinetic Monte Carlo simulations provide useful predic-
tions of thin-film growth, but the rule-based simulations are
not conducive to mathematical analysis. For example, the
simulations are not invertible; the evolution of a film grown
under particular process conditions can be computed, but the
process parameters required to achieve a film with particular
film properties cannot.

The analysis developed in the remainder of the paper ap-
plies generally to any lattice model. However, throughout the
paper we demonstrate the analysis on specific model systems
through KMC simulations. These simulations are based on a
cubic lattice in which each atom has a maximum of six near-
est neighbors—one on each side for a total of four, one
above, and one below. Additionally, we make the solid-on-
solid approximation, in which no vacancies in the crystal are
permitted; equivalently, every atom must have a neighbor
below it. Periodic boundaries are utilized to simulate an in-
finite surface, since an actual film is much larger than the
simulation domain. A simulation domain of 3003300 was
used, with selected simulations also computed on 200
3200 and 4003400 domains.

III. DERIVATION OF EFFECTIVE TRANSITION RATES

We now analyze the effects of periodic process conditions
for the particular case when the process condition period is
short relative to the time scales of film growth. In this situ-
ation the film is not able to respond fast enough to keep up
with changes in the process parameters. Instead, the film
evolves as if the transition rates were replaced by constant
“effective” transition rates. We employ the method of
averaging15 to compute these effective transition rates. Simi-
lar application of the averaging theorem has been applied to
mechanical systems with periodic inputs.16

The method of averaging may be applied to a differential
equation of the form

d

dt
x = efsx,td, s6d

wherex is a vector of dimensionn, e is a constant, andf is
a function with continuous first and second derivatives.
When f is periodic in t with period t, such that fst+td
= fstd, its average is defined as

f̄sx̂d ;
1

t
E

0

t

fsx̂,tddt, s7d

and the averaged equation is defined as

d

dt
x̂ = e f̄sx̂d, s8d

wherex̂ is a vector of the same dimension asx. The averag-
ing theorem relates the difference betweenx andx̂ to the size
of e. Specifically,

uxstd − x̂stdu = Osed s9d

on a time scale ofOsC/ed if uxst0d− x̂st0du,Osed for some
initial time t0. The constantC is independent ofe. Notice that
whene is small, the averaged equation(8) is a good approxi-
mation for the original equation(6). Refer to Wiggins15 for
further discussion and a proof of the averaging theorem.

The averaging theorem may be applied to the master
equation(3) when the process parameters are periodic, i.e.
u=usvtd with frequencyv=2p /t. Restating Eq.(3) to em-
phasize the dependence on time, we obtain

d

dt
P = o

i=1

m

kifusvtdgNiP. s10d

Before applying the method of averaging, Eq.(10) must be
in the form of Eq.(6) with a small parametere. With this
goal we rescale time byv. Defining a new times;vt and
e;1/v, Eq. (10) becomes

d

ds
P = eo

i=1

m

kifussdgNiP. s11d

Settingx=P and fsx ,sd=oi=1
m kifussdgNix, and observing

that the period in scaled time is 2p, the averaged version of
Eq. (11) is

d

ds
P̂ = eo

i=1

m S 1

2p
E

0

2p

kifussdgdsDNiP̂. s12d

We may express this more compactly by defining an “effec-
tive” transition ratekeff,i as

keff,i ;
1

t
E

0

t

kifusvtdgdt =
1

2p
E

0

2p

kifussdgds. s13d

An effective transition rate is simply the average value of the
transition rate over a period, and is not a function of time. In
physical timet the averaged version of Eq.(10) is then

d

dt
P̂ = o

i=1

m

keff,iNiP̂. s14d

The time scale on which the approximation is valid is
OsC/ed in scaled times but is OsCd in physical timet, in-
dependent of the frequency. We explore the time scales of
applicability further in the simulations of Sec. IV.

Notice that the averaged master equation(14) has the
same form as Eq.(10); the transition rateski are simply
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replaced bykeff,i. Application of fast periodic process condi-
tions is equivalent to a film growth process with constant
effective transition rateskeff,i. If these effective rates are not
attainable with constant process conditions, then altered film
evolution may be possible. In practice, the process param-
eters are bounded, so we letumin andumax be the minimum
and maximum values ofu, and ask the question: do there
exist effective transition rates attainable with periodic pro-
cess conditions in the rangefumin,umaxg that are not attain-
able with constant parameters infumin,umaxg?

No single transition ratekeff,i can be outside the set of the
ki’s attainable with constant parameters, since the effective
rate is simply the time average over the instantaneous rate.
However, newcombinationsof effective transition rates
might be obtained. The ratio of the transition rates of various
mechanisms strongly affects the evolution and final proper-
ties of a film—for example, the ratio of flux to surface dif-
fusion is a key parameter in the evolution of island density
and surface roughness.17,18

IV. EXAMPLES

To demonstrate the idea of effective transition rates, we
first consider a single-species system. The focus of this ex-
ample is to show that the set of achievable effective rates
depends on the relationship between the process inputs and
the transition rates. A second example is then considered,
which is motivated by chemical vapor deposition. When
multiple species are delivered by a single precursor, tempera-
ture modulation can be used to alter a film’s stoichiometry.

Both examples are based on a cubic lattice, have periodic
boundary conditions, and disallow vacancies in the crystal.
The two process parameters are the fluxF of precursors to
the surface and the surface temperatureT, so thatu=hF ,Tj.
We assume that we have complete control over the flux and
temperature within preset upper and lower bounds, such that
u may be constant or a periodic function of time. In all cases
the flux ranges between 0 and 1 monolayers/s, the tempera-
ture ranges between 400 and 600 K, and the activation ener-
gies lie between 0.5 and 1.5 eV. However, in this study we
use dimensionless quantities to further generalize the results.
The time scale is taken from the maximum fluxFmax and the
energy scale iskb Tmax, wherekb is Boltzmann’s constant and
Tmax is the upper bound on temperature. The length scale is
set by the lattice spacinga. A dimensionless quantity will be
denoted by an asterisk in the remainder of this section—for
example, transition rateki

* =kiFmax, activation energyEj
*

=Ej /kb Tmax, and heighth* =h/a.

A. Single-species example

Three types of transitions are allowed in the single-
species model:(1) adsorption of an atom from the gas onto
the surface,(2) diffusion of an atom with no side neighbors
along the surface, and(3) loss of an atom with no side neigh-
bors to the gas. An atom with one or more side neighbors
may undergo no transition and thus is permanently incorpo-
rated into the film. Two models for the transition rates are
considered, and are given in Table I. The first transition

mechanism is adsorption; its rate is equal to the fluxF* in
both models(unity sticking coefficient). The second mecha-
nism is surface diffusion. It is a thermally activated process
with proportionality constantv2

* and activation energyE2
* ,

and is again the same in both models. The only difference
between models 1 and 2 is the transition rate for the third
mechanism, which results in the removal of an atom from the
surface. In the first model, the third mechanism is a ther-
mally activated process, which is only dependent on the tem-
perature, with a proportionality constantv3

* and activation
energyE3

* . However, in model 2 the third mechanism is an
etching process, which is thermally activated as in model 1
but is also proportional to the flux. In model 1, atoms desorb
at high temperature due to thermal effects, but in model 2,
high temperature and high flux must coincide to remove at-
oms from the surface.

First consider the evolution of a film described by model
1, which we investigate through kinetic Monte Carlo simu-
lations. The physical parameters are determined by selecting
the values of the transition rates at the upper and lower
bounds of the flux and temperature:k1

*sFmin
* ,T*d=0,

k2
*sF* ,Tmin

* d=0.01, k2
*sF* ,Tmax

* d=1000, k3
*sF* ,Tmin

* d=10, and
k3

*sF* ,Tmax
* d=1000. As a final constraint we selectTmin

*

=2/3 to obtain physically realistic activation energies.
Before analyzing periodic flux and temperature, we visu-

alize the set of transition rates attainable with constant flux
and temperature. Because there are only three transition
mechanisms, we may plot the transition rates against each
other and obtain the two-dimensional surface of transition
rates. This surface is shown in Fig. 3. The surface is two-
dimensional because there are two process parameters and is
bounded because the process parameters have upper and
lower bounds.

Any combination of transition rates that is not on the sur-
face of Fig. 3 cannot be obtained with constant flux and
temperature. However, periodic inputs may produce a com-
bination of effective transition rates that is not on the surface.
Consider the input pictured in Fig. 4. The flux is set to the
maximum value, but the temperature alternates between its
upper and lower bounds. The set of effective rates associated
with this periodic input may be computed with Eq.(13), and
is denoted by the filled diamond in Fig. 3. These rates are not
achievable with constant flux and temperature, and result in a
decrease in desorption relative to diffusion and adsorption.
An effective transition rate is the time average of the instan-
taneous rate over a period, and thus for the input in Fig. 4,
the effective rate is the average of the transition rates at
hFmax

* ,Tmax
* j and hFmax

* ,Tmin
* j. These instantaneous rates are

marked by the open square and open triangle in Fig. 3. Any

TABLE I. Transition rates for models 1 and 2. The dimension-
less transition rateski

* are functions of the dimensionless process
parametersF* andT* .

Model 1 Model 2

k1
*sF*d=F* k1

*sF*d=F*

k2
*sT*d=n2

*exps−E2
* /T*d k2

*sT*d=n2
*exps−E2

* /T*d
k3

*sT*d=n3
*exps−E3

* /T*d k3
*sF* ,T*d=F*n3

*exps−E3
* /T*d
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point along the dashed line can be achieved by altering the
duty cycle of the modulation of Fig. 4. Throughout this pa-
per, open symbols are used for constant conditions, while
filled symbols denote effective rates associated with modu-
lated conditions.

Periodic process parameters enable new effective transi-
tion rates, which may ultimately result in altered film prop-
erties. We use kinetic Monte Carlo simulations to contrast
the mean thicknessh* and root-mean-square roughnessW*

obtained under constant and periodic inputs. Each simulation
is run from t* =0 to t* =100, which results in a thickness of
up to 100 layers. The mean of three simulations is shown in
Fig. 5.

The simulations are performed for representative values
of constant flux and temperature, as well as for the set of
effective transition rates considered above. Notice that the
final combination of thickness and roughness for the effec-
tive case could not be achieved by constant inputs in the
fixed time interval we considered. The periodic input sup-
presses desorption relative to diffusion, enabling a thicker,
smoother film. With constant flux and temperature we might
be able to produce a film similar to that produced with the
periodic inputs, but the growth time would be longer.

We will now analyze model 2, whose transition rates are
shown in Table I. The physical parameters for Model 2 are
selected by first settingk1

*sFmin
* ,T*d=0, k2

*sF* ,Tmax
* d=1000,

and k3
*sFmax

* ,Tmax
* d=10 000. We also wantk2

*sF* ,Tmin
* d and

k3
*sFmax

* ,Tmin
* d to be negligible, and consequently setn2

*

=1013, n3
* =1012, andTmin

* =2/3.
Figure 6 contains the surface of transition rates achievable

with constant inputs. Because the desorption rate is a func-
tion of both flux and temperature, the shape of the constant

input surface is qualitatively quite different from the surface
associated with model 1(Fig. 3). We again select a periodic
input composed of two constant-parameter settings, this time
alternating between high flux at low temperature, and low
flux at high temperature, as pictured in Fig. 7. The rates
associated with these two constant settings are marked with
open symbols in Fig. 6; the filled diamond denotes the set of
effective rates associated with the input in Fig. 7. Variations
in the duty cycle of this input produce other effective rates,
which lie along the dashed line in Fig. 6. The set of effective
rates is dramatically different from any combination of rates
achievable with constant inputs, which suggests that new
film properties may also be obtained.

Kinetic Monte Carlo simulations of model 2 are shown in
Fig. 8 for a range of constant parameters and for the effective

FIG. 3. The surface of transition rates achievable with constant
process parameters for model 1. The filled diamond marks the set of
effective transition rates for the 50% duty cycle input in Fig. 4. The
instantaneous constant transition rates used to generate the set of
effective rates are marked with the open square(F* =1 and T*

=2/3) and the open triangle(F* =1 andT* =1).

FIG. 4. A set of periodic process parameters for model 1.

FIG. 5. KMC simulations of model 1: Final roughnessW* vs
thicknessh* for various constant process parameters(open sym-
bols) and for the set of effective transition rates(filled symbol).
Each simulation is run up tot* =100, and each symbol represents
the mean of three simulations. Error bars denote the standard de-
viation, but are too small to be seen in most cases. Constant input
simulations are marked by the open symbols, forF* =0.5, 0.75, and
1; and T* =2/3 shd, 0.70ssd, 0.73s+d, 0.78s3d, 0.83sLd,
0.92 s,d, and 1snd. Effective rates associated with the modulated
inputs of Fig. 4 are also simulated, as marked with the filled dia-
mond sld.

FIG. 6. The surface of transition rates achievable with constant
process parameters for model 2. The filled diamond marks the set of
effective transition rates for the 50% duty cycle input in Fig. 7. The
instantaneous constant transition rates used to generate the set of
effective rates are marked with the square(F* =1 andT* =2/3) and
the triangle(F* =0 andT* =1).
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transition rates of Fig. 7. We again focus on the combinations
of roughness and thickness that can be obtained att* =100.
The effective rate surface is qualitatively different from the
constant input surfaces—it lies almost completely outside the
region defined by the constant inputs.

Figure 9 shows the final surfaces of a film grown under
the set of effective transition rates and a much rougher film
of a similar final thickness grown under the constant process
parameters ofF* =1.0 andT* =0.78. A significant fraction of
former surface is covered by smooth terraces, while the latter
is dominated by step edges. The physical mechanism for the
smoothing associated with modulation is simple—under con-
stant process conditions the temperature must be raised to
induce smoothing, which results in the loss of atoms due to
desorption. The use of periodic parameters enables the sup-
pression of desorption, while still allowing smoothing
through diffusion.

B. Multispecies example

We now consider a multispecies KMC simulation, which
is motivated by a problem in chemical vapor deposition. In
physical vapor deposition processes, one may be able to in-
dependently adjust the flux of each species to control the film
composition, but in chemical vapor deposition, a single pre-
cursor may contain multiple film components. For example,
in gallium arsenide, residual carbon from the gallium precur-

sor has been used as a dopant.19 In this situation the film
composition is dependent on surface transitions that are
strongly dependent on temperature. Activation energy mod-
els have been developed for gallium arsenide to quantify the
dependence of precursor dissociation and desorption on
temperature.20 The transition rates considered here are moti-
vated by this model, in which the activation energy for pre-
cursor dissociation is less than the energy for dopant desorp-
tion, but greater than the energy for desorption of the
precursor.

In particular, four events are considered:(1) adsorption,
equal to the precursor fluxF; (2) precursor desorption, with
activation barrierE2

* =9.69; (3) precursor dissociation, with
E3

* =19.4; and(4) dopant desorption, withE4
* =29.1. Vibra-

tional frequencies are set such thatk2sTmaxd* =10, k3sTmax
* d

=1000, andk4sTmax
* d=1000, withTmin

* =2/3. Thecorrespond-
ing rate “surface” is shown in Fig. 10, fork2, k3, andk4. Each
of these rates depends only on the temperature, resulting in a

FIG. 7. A set of periodic process parameters for model 2.

FIG. 8. KMC simulations of model 2: Final roughnessW* vs
thicknessh* for various constant process parameters and for the set
of effective transition rates. Each simulation is run up tot* =100,
and each symbol represents the mean of three simulations. Error
bars denote the standard deviation, but are too small to be seen in
most cases. Constant input simulations are marked by the open
symbols, for F* =0.5, 0.75, and 1; andT* =0.70ssd, 0.73s+d,
0.78 s3d, 0.83sLd, 0.92s,d, and 1snd. Effective rates associated
with the modulated inputs of Fig. 4 are also simulated, as marked
with the filled diamondsld.

FIG. 9. KMC simulations of model 2. Only a portion of the
3003300 domain is shown.(a) Final surface of a film grown at the
effective transition rates, marked by the filled diamond in Fig. 8.(b)
Final surface of a film grown at the constant parametersF* =1.0,
T* =0.78, marked by an3 in Fig. 8. Each atom with four side
neighbors is light colored—atoms with at least one empty side bond
are dark.
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one-dimensional curve of transition rates attainable with con-
stant temperature. This curve is difficult to visualize on a
three-dimensional plot, so two-dimensional plots are shown
instead. Temperature modulation betweenTmin

* and Tmax
* is

represented by the dashed lines of Fig. 10 for the spectrum of
possible duty cycles. Temperature modulation suppresses the
effective rate fork4 relative tok3, and enhancesk2 relative to
k3.

The corresponding KMC simulations are shown in Fig.
11, for growth up tot* =100. Final thickness is plotted versus
d* , the total amount of secondary dopant species(measured
in layers). As the constant growth temperature is increased
from Tmin

* to Tmax
* , the final thickness increases because the

ratio of precursor dissociation to precursor desorption is en-
hanced. However, as the temperature is increased pastT*

=0.93 the dopant desorption becomes significant, leading to
a reduction ind* .

Temperature modulation leads to different combinations
of thickness and composition. In particular, thickness is en-
hanced since the precursor desorption rate is suppressed rela-
tive to dissociation. The dopant desorption rate is raised
slightly, which could potially lower the resulting value ofd* .
However, this effect is more than compensated by the en-
hanced growth rate, in which dopant atoms on the surface are
more rapidly incorporated into the bulk.

V. CONSTRUCTION OF EFFECTIVE TRANSITION RATES

A. Modulation frequency for limiting behavior

We derived effective transition rates associated with fast
periodic process conditions, but have not yet addressed what

we mean by “fast.” The averaging theorem predicts that as
the modulation frequency is raised, simulations that explic-
itly include modulation will approach those obtained using
the constant effective transition rates. This point is illustrated
in Fig. 12, which shows the evolution of model 1 under the
conditions of Fig. 4, for various modulation frequencies.

In general, the modulation frequency required for effec-
tive rate behavior will depend on the transition mechanisms
and their rates. To explore this fast limit, we isolate indi-
vidual surface transition mechanisms, considering first ad-
sorption with adatom desorption only, and then adsorption
with adatom surface diffusion only. In both cases, simula-
tions are run with a constant flux ofF* =1, and the tempera-
ture is modulated betweenT* =0 and various finite tempera-

FIG. 10. Combinations of surface transition rates attainable with
the multispecies model under constant temperature and flux(solid
line). The 50% duty cycle modulation of Fig. 4 is markedsld,
along with other duty cycles with 25%s.d, 75%sjd, and 90%sPd
of each period spent atTmin. The instantaneous constant transition
rates used to generate the effective rates are marked with the open
square(F* =1 andT* =2/3) and the open triangle(F* =1 andT*

=1). Additional constant inputs withF* =1 andT* =0.93sLd and
T* =0.97s,d are also shown.

FIG. 11. KMC simulations of the multispecies model: Final
dopant incorporationd* vs thicknessh* for various constant process
parameters and for the set of effective transition rates. Each simu-
lation is run up tot* =100, and each symbol represents the mean of
three simulations. Error bars denote the standard deviation, but are
too small to be seen. Constant input simulations are marked by the
open symbols, forF* =1 and T* =2/3 shd, 0.80 ssd, 0.87s+d,
0.90 s3d, 0.93sLd, 0.97s,d, and 1snd. Effective rates associated
with the modulated inputs of Fig. 4 are also simulated, withb
denoting the fraction of each period spent atTmin.

FIG. 12. Kinetic Monte Carlo simulations of model 1 on a
3003300 lattice, using the modulated inputs of Fig. 4. As the
modulation periodt is decreased, the modulated simulations ap-
proach the predictions associated with the constant effective transi-
tion rates.
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tures over a range of modulation frequencies. The error
between the modulated and effective rate simulations is then
computed and represented by the contour plots of Fig. 13.
The error in the first case, with adsorption and desorption
only, is quantified as the root-mean-square error of the thick-
ness and roughness, and is represented in Fig. 13(a). As the
modulation frequency approaches the desorption rate, the
modulated simulations approach the effective ones. In this
case, the modulation must be faster than the rates of the
surface transitions.

The simulations for adsorption and surface diffusion are
summarized in Fig. 13(b), with error measured by surface
roughness and step edge density. In these simulations, the
error decays not according to the transition rate for surface
diffusion, but instead sublinearly as the rate at which an ada-
tom diffuses across an atomically flat terrace. This rate was
computed using the parameter study of Evans and Bartelt,21

in which the characteristic length scale is equated to the in-
terisland distance, and the island densityN is fitted asN
=s0.55±0.02dskdif /kadsd−0.3±0.03. The characteristic time is
then the time required to hop a distance equal to the charac-
teristic length via a random walk. Thus, to achieve the fast
limit, the modulation frequency must be faster than charac-
teristic time scales of surface evolution. However, in the case
of surface diffusion, this does not require modulation faster
than the fastest transition rate.

B. Computation of periodic inputs

We focus here on periodic inputs that switch between
multiple process settings. In the examples, the input was
modulated between two settings, but this may be generalized
to r settings. Defininga j as the fraction of the period spent at
input settingu j, one obtainskeff,i =o j=1

r a j kisu jd. By defi-
nition, a j ù0 ando j=1

r a j =1. This expression for the effec-
tive rates formally reduces to a problem in the theory of
convex sets, in which the set of effective transition rates is
the largest convex set containing the set of constant-
parameter transition rates.22

The mathematical structure of the effective transition rates
can be exploited to compute periodic process parameters.
Defining kobj,i as our objective transition rates, we may then
define the following error function to be minimized:
oi=1

m skobj,i −o j=1
r a jkisu jdd2, representing the error between

the desired and the effective transition rates. One may then
discretizeu into r representative settings, and compute thea j
to minimize the error. This optimization problem takes the
specific form of a quadratic program.23 Furthermore, when
the transition rates are all positive, the quadratic program
always converges to global minimum of the error function.23

This optimization problem can be solved usingMATLAB ’s
quadratic programming function, and code has been included
in Ref. 33.

To approximate the continuous range of process inputs,r
should be a large number, so the quadratic programming ap-
proach may produce complicated periodic inputs withr set-
tings. Caratheodory’s theorem, a theorem in convex analysis,
provides a way to simplify these complicated inputs.22 Spe-
cifically, the theorem states that the maximum number of
points required to generate any convex combination ism
+1, wherem is the dimension of the space. In this applica-
tion, m is the number of transition rates, so only a maximum
of m+1 settings are required to construct any achievable
convex combination. The proof of this theorem given also
provides an algorithm to reduce ther settings tom+1.22 The
corresponding MATLAB code is found in our EPAPS
deposit.33

VI. DISCUSSION

The averaging analysis developed in this paper provides a
tool to simplify the interpretation of fast periodic inputs. The
corresponding periodic process parameters may then be com-
puted through quadratic programming. This overall approach
requires that the desired effective transition rates be known,
and that the modulation frequency be faster than the time
scales of evolution. These two assumptions are discussed
further in this section.

In general, the user will not knowa priori which effective
transitions rates will produce the desired surface properties.
However, the averaging analysis simplifies the interpretation
of periodic inputs by reducing the large number of indepen-
dent parameters associated with the mean value and the
modulation frequency, phase, and amplitude of each process
input. This parameter set is replaced with the set of effective
transition rates in the averaging analysis. However, the suc-
cess of this approach does require that the user have some

FIG. 13. Comparison between modulated growth and effective
transition rates:(a) adsorption with adatom desorption;(b) adsorp-
tion with adatom surface diffusion. The solid lines represent error
contours for the root-mean-square error in(a) height and roughness;
(b) roughness and step density. Dashed lines are used to plot theo-
retical predictions.
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physical intuition regarding the effect of each constant tran-
sition rate on the final film properties, to guide the selection
of desired effective transition rates. For example, one might
understand based on physical intuition that the ratio of ad-
sorption rate to diffusion rate should be minimized to
achieve the smoothest surface. These effective rates must
then be tested in simulation to verify the effect on surface
properties.

A second key assumption in our analysis is that the modu-
lation is fast relative to the time scales of growth, which may
present practical challenges. However, throughout the last
decade various film growth processes have been developed
to deposit films under periodic process conditions. To modu-
late the flux of species to the surface, two primary methods
have been employed: the use of valves to switch flow be-
tween the chamber and a vent line,24 and sequential exposure
to flux as the substrate rotates through different
environments.8 Methods for temperature modulation include
resistive heating,25 laser irradiation,26 and supplemental cool-
ing with water and liquid nitrogen.27 In electrodeposition,
modulation is accomplished by pulsing the electrode
current.28 It may not be practical to speed up temperature
modulation through backside resistive heating due to thermal
inertia, or to speed up flux modulation through valve modu-
lation due to transport delays. However, other methods, in-
cluding the substrate rotation,8 laser excitation,26 and current
modulation28 are more anemable to fast modulation. The fea-
sibility of achieving the fast limit of the averaging analysis
must be assessed individually for each application, depend-
ing on the dominant time scales of surface evolution and the
process inputs.

The analysis and algorithm presented in this paper apply
only to fast modulation, but slower variation of the process,
as such a temperature ramp, can also be beneficial.29 Other
recent work by the authors describes a method for designing
process parameters that vary more slowly, on the time scale
of the overall process.30,32 This approach has also been ap-
plied to germanium homoepitaxy by Gallivan and Atwater.31

Thus, the averaging analysis presented here is not the only
tool needed to compute process inputs, but instead describes
one particular aspect. Further development of systematic
mathematical approaches for process development is needed,
but the initial work presented here suggests that this type of
approach can provide a different insight.

VII. CONCLUSION

In this paper we developed a method to analyze the ef-
fects of periodic process conditions when the period is short
relative to the time scales of growth. The analysis is based on
a lattice model of growth, in which the transition rates are
strongly dependent on the process parameters. We showed
that when the modulation of the process parameters is suffi-
ciently fast, the film does not react to the individual pulses
but instead evolves as if each periodic transition rate were
replaced by a constant effective rate. Although the master
equation for the lattice model is an extremely high-
dimensional differential equation, this method requires only
an analysis of the transition rates.

The set of all possible effective rates is characterized in
terms of the transition rates: this set is the smallest convex
set containing the transition rates achievable with constant
process parameters. With this mathematical framework we
use a theorem of convex analysis to construct simple peri-
odic process parameters. The periodic inputs are computed
using quadratic programming, and when the desired effective
rates are not achievable, then the inputs are computed that
approximate the rates as closely as possible.
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