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It has been reported that conductance fluctuations in noble and monovalent metals nanocontacts oscillate
with conductance, showing minima near integer multiples of the conductance quantum. Most observed features
were reproduced by means of a model based on the Landauer-Büttiker approach, but the enhancement of the
peak at conductances smaller than one quantum. Numerical simulations on metallic constrictions suggest that
this enhancement could be a consequence of the large changes that disorder introduces at the conductance
onset. Besides, our analysis shows that while the mentioned model does not apply to the case of wide contacts
(large conductance) with relatively strong disorder, it satisfactorily works when disorder is weak, indicating
that quantum suppression of fluctuations is also possible in this case.
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I. INTRODUCTION

The so-called break junction is one of the most common
techniques actually used to investigate transport through me-
tallic nanocontacts.1 The method consists of breaking a me-
tallic wire and, by means of a piezoelectric element, making
a contact with the desired conductance. The piezoelectric
element then allows one to smoothly vary the size of the
contact and measure how the conductance falls down as the
wire is pulled apart. Despite the great variability inherent to
this technique, conductance histograms of noble metals show
peaks atG=mG0, whereG0=2e2/h is the conductance quan-
tum andm=1,2, . . .,2 suggesting that channels contributing
to the current are almost fully opened.3,4

More recently,5 the combined statistical analysis of the
conductance and its derivative with respect to the bias volt-
age]G/]V, measured over hundreds(or even thousands) of
experiments, provided a tool to investigate the degree of
opening of transmission channels contributing to the current.
The results indicate that]G/]V varied randomly(both in
sign and magnitude) obeying a bell-shaped distribution with
a standard deviation,

sGV = Îks] G/] Vd2l − k] G/] Vl2 s1d

that, for noble metals, shows minima near integer values of
the conductance.5,6

The authors of Ref. 5 developed a model based upon the
Landauer-Büttiker formalism7 that led to the following result
for the standard deviation:

sGV = AÎ o
n=1,. . .,N

Tn
2s1 − Tnd, s2d

whereTn is the transmission probability of channeln andN
is the total number of conducting channels. On the other

hand,A is a constant that depends on the bias voltage, sev-
eral metal parameters(Fermi velocity, elastic scattering time,
etc.) and the geometry of the constriction. Actually,A was
adjusted in Refs. 5 and 6 to fit the experimental data. If, at
any value ofG, all channels but one have transmissions
whose values are either 0 or 1, this equation is a periodic
function of the conductance which vanishes whenever the
conductance is an integer multiple of the conductance quan-
tum sG=mG0d and shows maxima atG=sm+2/3dG0. Equa-
tion (2) was used to successfully interpret the oscillating
standard deviations observed in noble and monovalent met-
als, although failed in describing an enhancement of the
maximum that shows up atG,G0.

5,6 This enhancement, al-
beit weak, was clearly observed in gold5,6 (at several bias
voltages, see Ref. 6), silver and less sharply in copper.6 On
the other hand, interpreting the standard deviation for triva-
lent metals, which steadily increases withG, by means of Eq.
(2) requires assuming that several channels with randomly
chosen weights contribute to the current.6 Since the experi-
mental and theoretical work of Ref. 5, the technique has
became standard in identifying the number of open channels
in a variety of systems.8,9

In this work we present extensive numerical calculations
of conductance fluctuations in constrictions with a small
amount of disorder. The use of a single orbital per lattice site
makes our model closer to monovalent metals than to any
else. The results for disordered nanoconstrictions are consis-
tent with experimental data, and allow us to interpret the
above-mentioned enhancement in terms of the rather large
changes that disorder may introduce near and below the band
bottom (or the conductance onset). This is a rather general
result that should be valid in a wide variety of cases. Besides,
our results for conductance fluctuations in stripes show that,
when disorder is sufficiently weak, fluctuations do also show
minima near integer values of the conductance.

PHYSICAL REVIEW B 70, 045408(2004)

0163-1829/2004/70(4)/045408(5)/$22.50 ©2004 The American Physical Society70 045408-1



II. MODEL AND METHODS

A. General considerations

When a wire is pulled apart very complex atomic rear-
rangements occur that are surely largely different from one
experiment to another. This is the source of the observed
fluctuations. A detailed microscopic description of a single
breaking process will require expensive molecular dynamics
calculations. Besides, hundreds of them would be needed to
attain a minimally trustable statistics. Here we adopt a much
simpler approach. We fix the overall geometry of the system,
and introduce disorder by randomly distributing a number of
vacancies11 in either the constriction(see Fig. 1) or in a L
3L region in the case of the stripe. Averages over a suffi-
ciently large number of realizations of disorder can then be
easily carried out.

An additional approximation used in this work is to re-
place the bias voltage derivative of the conductance[see Eq.
(1)] by its derivative with respect to the energy. In the
present case(a tight-binding calculation) both coincide. But,
even in the hypothetical case that anab initio calculation
would be feasible, the results of Ref. 4 support this approxi-
mation. Specifically, it was shown in Ref. 4 that theIsVd
numerical results for Au and Al nanocontacts derived from a
full nonequilibrium treatment of the problem and those ob-
tained by integrating the result forV=0 over the energy
rangef−V/2 ,V/2g, almost coincided for low bias voltages
(in the case examined in Ref. 4 forV lower than 3 V). Fi-
nally the most crude aspect of our simulations is the way we
vary the system conductance. In the experimentsG changes
as the wire is pulled apart. Here, instead, we vary the energy
from the conductance onset up to a given energy which de-
pends on the maximum conductance to be explored.

B. Hamiltonian and conductance calculations

The model we use is described by means of a tight-
binding Hamiltonian with a single atomic level at sites of the
square lattice,

Ĥ = o
i

ei − to
ki j l

ĉi
†ĉj , s3d

where the operatorĉi destroys an electron on sitei with
energyei. All hopping integralst are taken equal to 1(here-
after taken as the unit of energy) and restricted to nearest
neighboring sites(indicated by the symbolskl).

The Kubo formalism10,11 was used to calculate the con-
ductance and the conductance eigenchannels.12 For a current
propagating in thex-direction, the static electrical conductiv-
ity is given by

G = − 2Se2

h
DTrfs"v̂xdImĜsEds"v̂xdImĜsEdg, s4d

where the velocity(current) operatorv̂x is related to the po-
sition operator x̂ through the equation of motion"v̂x

=fĤ , x̂g, Ĥ being the Hamiltonian. Due to the simple form of
"v̂x

10 only the matrix elements of the Green’s function be-
tween the left- and right-end slabs of the cavity have to be
calculated. This procedure saves a great amount of comput-

ing time. ImĜsEd is obtained from the advanced and retarded
Green’s functions

Im ĜsEd =
1

2i
fĜRsEd − ĜAsEdg. s5d

The matrix elements of the retarded Green’s function are
given by

fE+I − H − SlsE+d − SrsE+dgGRsEd = I , s6d

whereE+= limd→0+sE+idd andSl,rsE+d are the retarded self-
energies matrices introduced by the left and right semi-
infinite leads.

Simulations were carried out on constrictions such as that
of Fig. 1 with Nv vacancies randomly distributed over the
whole region. Vacancies were introduced by takingei =` for
i =1, . . . ,Nv. Constrictions of widthL (all lengths are given
in units of the lattice constant) with Nv vacancies distributed
over a L3L region were also investigated. Semi-infinite
leads of widthL were connected at left and right sides of
those regions. In order to make feasible including a large
number of realizations of disorder,L was fixed at 51(some
checks with larger systems were also carried out). The en-
ergy was varied in steps of 0.001(of the order of the mean
level spacing forL=51). The derivative with respect to the
energy E was calculated by taking alsoDE=0.001. The
results were averaged over at least 1000 realizations of
disorder. This allowed us to build up histograms with more
than one million points and conductances in the rangeG
=0−6G0 (wider ranges were also occasionally explored).

III. RESULTS

A. Nanoconstrictions

Figure 2 shows the results obtained on a constriction such
as that of Fig. 1 with ten vacancies randomly distributed over
the whole system. The conductance histogram shows peaks
near integer values of the conductance in agreement with the

FIG. 1. Atomic arrangement in one of the nanocontacts used to
investigate conductance fluctuations. In this particular case the con-
striction is a 737 square. The cluster is connected to semi-infinite
stripes of width 51(the maximum width of the cluster shown in the
figure) on the left and right sides. The ten vacancies in a particular
realization of disorder are clearly visible.
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experimental data for nanocontacts.6 There are, however, im-
portant differences(relative peak height and peak positions)
that are likely due to actual atomic arrangements(the possi-
bility of chain formation, see Ref. 13) and band structure
effects not taken into account by our simple model. Fluctua-
tions are also in line with data for noble metals, including the
enhancement of the first conductance peak, although in the
results shown in Fig. 2, this is more pronounced.5 In order to
check whether this difference is related to the amount of
disorder introduced in the calculation, we have carried out a
similar calculation with two instead of ten vacancies. The
results shown in Fig. 3 clearly indicate that this may in fact
be the case. Now the first peak is only 20% higher than the
second peak.

In the upper panel of Figs. 2 and 3 we also plot the results
obtained by inserting the computed eigenchannels(transmis-
sion probabilitiesTn for each channeln) in each realization
of disorder into Eq.(2) and averaging over realizations. It is
clearly noted that Eq.(2) fails in reproducing the enhance-
ment of the first peak in the conductance fluctuations, lead-
ing to fluctuations maxima that monotonically increase with
conductance. Trying to identify the origin of this enhance-
ment seems worthwhile. In Fig. 4 we show the conductance
versus energy for two realizations of disorder in the nano-
constriction of Fig. 1 with ten vacancies. It can be clearly
noted that just around the conductance onset there are large
differences between the two realizations(indicated by an ar-
row in the figure) caused by the strong perturbations intro-
duced by vacancies. This is surely the cause of the enhance-
ment of the first peak in Figs. 2 and 3, and may help in
attaining a full understanding of the experimental results.

B. Stripes

The results for a stripe of width 51 with ten vacancies
distributed over a 51351 region are shown in Fig. 5. The

conductance histogram increases steadily withG and is quite
different from those observed in the nanoconstrictions dis-
cussed above. Fluctuations show a peak at a conductance
smaller thanG0 and then decreases steadily. This behavior is
clearly not reproduced by Eq.(2). Although the agreement is,
in general, rather poor, the most dramatic difference is the
peak below one conductance quantum. As the conductance
increases the difference between the two sets of data de-
creases, and both remain fairly constant(although one
slightly increases withG while the other decreases). It is
worth noting that increasing the number of vacancies(we
have gone up to 200 vacancies in the same square region)
does not change the qualitative features of Fig. 5. We have
checked that the origin of the peak below one conductance

FIG. 2. Conductance fluctuations(a) and conductance histogram
(b) in a nanocontact such as that of Fig. 1 with ten vacancies ran-
domly distributed in the region depicted in the figure. Averages
were taken over the energy rangef−4,−1g and 1000 realizations of
disorder. The thick line in(a) corresponds to the numerical results
derived from Eq.(2) with A=10.

FIG. 3. As Fig. 2 with two vacancies in the region depicted in
Fig. 1. In this case the thick line in(a) corresponds to the numerical
results derived from Eq.(2) with A=15.

FIG. 4. Conductance versus energy in the nanocontact of Fig. 1
for two realizations of disorder(ten randomly distributed vacancies
were included in the region depicted in Fig. 1). The large changes in
the conductance just at onset(marked with an arrow) have to be
noted. These are likely the origin of the enhancement of the peak in
fluctuations that show up for conductances smaller than a conduc-
tance quantum(see Figs. 2 and 3 and text).
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quantum is, again, the strong conductance variability around
the conductance onset, as illustrated in Fig. 4.

Apparently, the results of Fig. 5 would suggest that there
is no quantum suppression of fluctuations in wide nanocon-
tacts where a large number of channels may be opened, in
agreement with the results of Ref. 15. In order to further
investigate this question we have carried out simulations for
a stripe with a very weak Anderson disorder. In particular we
chose the energies of atomic orbitals at all sitesei within a
51351 region, randomly over the rangef−0.05,0.05g. The
results are reported in Fig. 6. Quantum suppression of fluc-
tuations at integer values of the conductance is now clearly
observed. Fluctuations oscillate in a manner similar to the
results derived from Eq.(2) also shown in the upper panel of
the figure. The rather noisy numerical results are probably
related with a characteristic of the histogram shown in the
lower panel of Fig. 6: The number of points in the histogram
whenG varies over the rangesmG0−sm+1/2dG0 is exceed-
ingly low. In any case, the suppression of conductance fluc-
tuations near integer values of the conductance in systems
with a large number of conducting channels is clearly illus-
trated by these results.

IV. CONCLUSIONS

Conductance fluctuations in metallic nanocontacts and
stripes with some degree of disorder have been investigated

by means of a simple one-orbital tight binding model. Our
results for nanoconstrictions indicate that fluctuations oscil-
late with conductance showing minima near integer mul-
tiples of the conductance quantum in a manner similar to
experimental observations and to the results derived from a
model based upon the Landauer-Büttiker approach.5 Besides,
our results show an enhancement of the first fluctuation peak
that, being in qualitative agreement with experimental results
for gold and silver, is not accounted for by the model of Ref.
5. Our analysis indicates that the origin of this enhancement
may likely be due to the large effects that disorder introduces
at the conductance onset. On the other hand the results for
weakly disordered stripes do also show quantum suppression
of fluctuations at integer values of the conductance. Instead,
in stripes with relatively strong disorder, fluctuations show a
maximum at a conductance smaller than one quantum, de-
creasing almost monotonically thereafter. The latter behavior
is not reproduced by the simple expression of Ref. 5.
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