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Non-Markovian dynamics in a spin star system: Exact solution and approximation techniques
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The reduced dynamics of a central spin coupled to a batN ebin% particles arranged in a spin star
configuration is investigated. The exact time evolution of the reduced density operator is derived, and an
analytical solution is obtained in the limit— oo of an infinite number of bath spins, where the model shows
complete relaxation and partial decoherence. It is demonstrated that the dynamics of the central spin cannot be
treated within the Born-Markov approximation. The Nakajima-Zwanzig and the time-convolutionless projec-
tion operator technique are applied to the spin star system. The performance of the corresponding perturbation
expansions of the non-Markovian equations of motion is examined through a comparison with the exact
solution.
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I. INTRODUCTION tion techniques are discussed in Sec. lll. The dynamic equa-

Solid state spin nanodevices are known as very promisinES'[ons found in second order in the coupling are introduced in
candidates for quantum computatiohand also for quantum S€¢. Il A, where it is also demonstrated that the prominent
communicatior?. They provide a scalable system that canBorn-Markov approximation is not applicable to the spin star
easily be integrated into standard silicon technology. A drawmodel. Employing a technique that enables the calculation of
back of such systems compared to other proposals for quathe correlation functions of the spin bath, we derive in Sec.
tum computing, such as ion trépand cavity QED, are the Il B the perturbation expansions corresponding to the
many degrees of freedom of the surrounding material caudNakajima-Zwanzig and to the time-convolutionless projec-
ing dissipation and decoherent&he first step in overcom- tion operator technique and compare these approximations
ing these disadvantages is to be able to model them. with the analytical solution for the dynamics of the central
An important contribution to quantum noise in solid statespin. Finally, the conclusions are drawn in Sec. IV.
systems arises from the nuclear spins, and recently much
work has been devoted to the modeling of spin bath
system&17 (for a review, see Refs. 18 and)1The interac-
tion of a central spin with a bath of environmental spins A. The model
often leads to strong non-Markovian behavior. The usual i i i ) ) i
derivations of Markovian quantum master equations known, \We consider a ‘spin star” configuratidhwhich consists
e.g., from atomic physié& and quantum optié$ therefore of N+1 localized spins partlc_les. One of thelsplns is located
fail for many spin bath models, and a detailed investigatior@t the center of the star, while the other spins, labeled by an
of methods is required that are capable of going beyond th#édexi=1,2,... N, surround the central spin at equal dis-
Markovian approximation. tances on a sphere. In the language of open quantum
In this paper, we examine the reduced dynamics of &ystem8we regard the central spin with Pauli spin operator
simple spin star system. The advantage of this model is tha¢” @s an open system “living” in a two-dimensional Hilbert
while showing several interesting features such as partial déiPace™s and the surrounding spins described by the spin
coherence and strong non-Markovian behavior, it is exactipPeratorss” as a spin bath with Hilbert spadgg, which is
solvable due to its high symmetry. The model therefore repgiven by anN-fold tensor product of two dimensional
resents an appropriate example for a general discussion &Paces. o _ o
the performance of various non-Markovian methods. We The central spins interacts with the bath spins'” via a
study here the Nakajima-Zwan#fg2* and the time- Hel'senbergXY interactiori® represented through the Hamil-
convolutionless projection operator techni¢fiéand derive ~ tonian
and analyze the perturbation expansions of the corresponding
non-Markovian master equations. aH =2a(o,J_+0.Jd,), (1)
The paper is organized as follows. In Sec. Il, we introduce
the model investigated, a spin star model involving a Heisenwhere
berg XY coupling (Sec. Il A), and determine the exact time

II. EXACT DYNAMICS

evolution of the central spiiSec. Il B. In Sec. Il C we N
analyze the limit of an infinite number of bath spins, discuss J, = > ag), (2
the behavior of the von Neumann entropy of the central spin, i=1

and demonstrate that the model exhibits complete relaxation
and partial decoherence. Several non-Markovian approximaand
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-l o0 can be expressed as a function of the lengthof the Bloch
Oy = 5((’1 tioy) (3 vector:
represents the raising and lowering operators ofithdath S=trg{-psin pgt
spin. The Heisenber)Y coupling has been found to be an 1 1
effective Hamiltonian in many physical systems such as =In 2-5(1 —-nNin(1-r) + 5(1 +r)in(l+r). (11

quantum dots$! cavity QEDZ? two-dimensional electron

gases’? and optical latticed* Equation(1) describes a very The initial state of the reduced systemta is taken to
simple time-independent interaction with equal couplingbe an arbitrarypossibly mixeql state

strengtha for all bath spins. It is invariant under rotations

around thez axis. The operatai=1/25Y o'V represents the 1 +v5(0) v_(0)

total spin angular momentum of the baimits are chosen 2 -

such thati=1). The central spin thus couples to the collec- ps(0) = 1-0y0) | (12)
tive bath angular momentum. v4(0) 23

We introduce an orthonormal basis in the bath Hilbert
spaceHg consisting of state§,m, ). These states are de- while the spin bath is assumed to be in an unpolarized infi-
fined as eigenstates df (eigenvaluem) and of J? [eigen-  nite temperature state:
value
j(j+1)]. The indexv labels the different eigenstates in the pe(0) =2, (13

eigenspaceV; , belonging to a given paifj,m) of quantum  pare |- denotes the unit matrix iftg, and we have defined

numbers. As usua),<N/2 and § <=m=j. The dimension of  he, as linear combinations of the componenis, of the
M mis given by the expressiéh3® Bloch vector: '

n(j,N):( N,>_( N_ ) (4) v tiv,
N/2 = N2-j-1 V=T (14)

We further introduce the usual superoperator notation fo

the Liouville operator The initial state of the total system is given by an uncorre-

lated product statpg(0) ® pg(0).

Lp(t) =—i[H,p1)], (5
wherep(t) denotes the density matrix of the total system in B. Reduced system dynamics
the Hilbert space{s® Hg. The formal solution of the von In this section, we will derive the exact dynamics of the
Neumann equation reduced density matripg(t) for the model given above. One
d possibility of obtaining the evolution of the central spin is to
—p(t) = aLp(t) (6)  substitute Eq(7) into Eq.(8) and to expand the exponential
dt with respect to the coupling. This yields
can then be written as pelt) = trfexp(al)pg0) @ pg(0)}
p(t) = explaLt)p(0). () .
. _ _ _ _v (at) K N
Our main goal is to derive the dynamics of the reduced den- =2 TtrB{E ps(0) ® 27715} (15
sity matrix k=0 ™
po(t) = trglp(t)}, (8) It is easy to verify that we have
where tg denotes the partial trace taken over the Hilbert H? = 4" o, 0-(33)"+ 0-0(3,30)"] (16)

spaceHg of the spin bath. The reduced density matrix is

) ; and
completely determined in terms of the Bloch vector

HZ™=2. Moo (3J)" + 00,33, (17)

v4(1)
v(t) =| vat) | = trfopg(t)} (9) We note that such simple expressions are obtained since a
vs(t) term o3J; is missing in the interaction Hamiltonian. We sub-

stitute the last two equations into
through the relationship

_;( 1 +vg(t) vl(t)—ivz(t)>
C2\ o) *ivp)  L-va®) /)
where tg denotes the partial trace over the Hilbert spate
of the central spin. We note that the length) = |v(t)| of the tra{ L% 1p(0) ® 27N g} = 0 (19)

Bloch vector is equal to 1 if and only jf«(t) describes a pure
state, and that the von Neumann entr@uf the central spin  and

(10

n _-nn _1\k n k n-k
ps(t) ﬁp—'gf 1)<k>H pH (18

to get the formulas
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trg{£L%p(0) @ 27 Mg} tem. This solution can easily be constructed by making use
‘ of the fact that the subspaces spanned by the states
ke U300) K 2k\ ®lj,m,v) and|-)®|j,m+1,v) are invariant under the time
=(-19°Q 2 o3t (=4) {g‘) <2| R evolution, wherg+) denotes the eigenstate @f belonging

to the eigenvalue £1.

X[v-(0)o, +v.(0)o-], (20 Sometimes it is useful to express the reduced dynamics in

which hold for allk=1,2,....Here, we have introduced the

bath correlation functions end, we introduce superoperat@®s and S;, which are de-

fined by their action on an arbitrary operatr

1
Q= ?trB{(JJ_)k}' (22) S,A=o0.Ac — %{U;O’i,A}, (30)

R = 1l 22 SA= 0ATs- A, 31)

We will come back to these correlation functions when we Vith these definitions we may write the reduced density ma-

discuss approximation techniques in Sec. Il. trix as follows,

Using the formulag19) and (20) in Eq. (15) we can ex- < 1l/1

press the components of the Bloch vector as follows, ps(t) = > + 5[(5f3(t) - flz(t)>83 - f3(t) (S, + S_):|ps(0),

v:(t) = f15()v:(0), (23 (32)

v3(t) = f3(t)v4(0), (24) wherelg denotes the unit matrix ift{s. Due to the nonuni-

, ) tary behavior of the reduced system, the superoperator on the
where we have introduced the functions right-hand side is not invertible for all times. This point will
fift) = 2‘NtrB{co§L2\s"ﬁat]cos{2\fﬁat]}, (25) becomga important later on when we discuss approximation
strategies.
and
fat) = Z"NtrB{cos{4\s"ﬂat]}. (26) C. The limit of an infinite number of bath spins

The explicit solution constructed in the previous section

kes on a relatively simple form in the limiN— c of an

infinite number of bath spins. It is demonstrated in the Ap-

J=dilj,my =(j F m(j £ m+1)[j,m, ), (27) pendix that for largeN the bath correlation functions ap-
proach the asymptotic expression

Calculating the traces over the spin bath in the eigenbasis (%f
J; and J? using a

we find
. . k!
~cog2h(j,m)at]cog 2h(j,— m)at] ~ R~ ZNK
fio(t) = 2 n(j,N) o x=R ZkN (33
J,m
(28) Consequently, in Eq(15) a term of the ordeiN¥ always
occurs together with a factor @*. A nontrivial finite limit
and N— oo therefore exists if we rescale the coupling constant as
. follows
. cog4h(j,mat] ’
fa(t) = 2 n(j ,N)T, (29
jm a
a— . (34)
VN

where we have introduced the quantityh(j,m)
=\(j+m)(j-m+1). _ . Using this approximation in Eq20) one obtains
Thus we have determined the exact dynamics of the re-

duced system: The density matpx(t) of the central spin is trg{L%pg(0) ® 27 NI g}
given through the components of the Bloch vector, which are (- BN)K
provided by the relation&3), (24), (28), and(29). We note ~—
that the dynamics can be expressed completely through only 2

two real-valued functions;(t) and f(1). This fact is con- If we insert this into Eq(15) we get an infinite series which

nected to the rotational symmetry of the system. . . . ;
The reduced system dynamics has been obtained aboyleelds the following expressions for the functiohg(t) and

with the help of an expansion of e t) with respect to the ¥3(t)'

coupling constani. It should be clear that, alternatively, the f()=1+g(t), fat)=1+2g(t), (36)
behavior of the central spin may be found directly from the

solution of the Schrodinger equation for the composite syswhere

[v3(0)a3 +v-(0)o, +v,4(0)0-]. (35)
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v, () vg (1)

Vs (0) 20 bath sping  —-coo--. N = co v3 (0) 20 bath spins  -——-—__. N = oo
1 1
0.8 0.8 exact
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at e A at
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FIG. 1. Comparison of the limiN— o [see Eqs(36) and(37)] FIG. 2. Comparison of the limil— oo [see Eqs(36) and(37)]
with the exact functions foN=20 andN=200. The plot shows the with the exact functions foN=20 andN=200. The figure shows
v. component of the Bloch vector. the vz-component of the Bloch vector.

i _ initial entropy parametrized by(0) and onv3(0), which is
g(t) = - at exp(— 2a°t?) \/;erfi(\Zat). (37)  obvious because the entropy is a scalar quantity and the sys-
tem is invariant under rotations around thexis. Figure 3
Note that erfix) is the imaginary error function. It is a real- shows the entropy as a function of time for different initial

valued function defined by conditions. . .
We remark that the solution for the dynamics of the cen-

(39) tral spin in the IimitN—>_oo, as given by Eqs(36) and_(37),
can also be found with the help of a mean field-type
approximatior?® To this end one introduces the scaled bath
operators)/N into the Heisenberg equations of motion of
2 = 2+l the total system and performs the linht—oc. As shown in
erfilx) = —= >, ———. (39 the Appendix, this limit exists in the sense that all moments
Vo K (2k+ 1) of the scaled bath operators in the unpolarized bath state
Figures 1 and 2 show that this approximation obtained in thgpproach a well-defined finite limit. For an unpolarized bath
limit of an infinite number of bath spins is already reasonable>tate the scaled bath operators can then be regarded as con-
for N=200.
By contrast to efi), the imaginary error function is not

erfi(x) = m

which leads to the Taylor series

S()

bounded. However(t) is bounded, and in the limit— o 07
we haveg(t)—-1/2. Thus, in this limit the system is de- 06
scribed by the stationary density matrix ' AL
05t /7 HO) = 0.7
1 v (0 04 b vs(0)= 0.7 r0) = 0.7
= ’ v3(0)=0.3
lim lim pg(t) = 2 (40) 03 0= 1
o N v (0 1 [ 0.2 T
2 2 r0) =1
0.1 Va(0) = 0
The three-component of the Bloch vector relaxes to zero, 05 " 15 s 25 3 ot

while the off-diagonal elements of the density matrix show
partial decoherence, i.e., they assume half of their original FIG. 3. von Neumann entrop§(t) of the reduced system for
values. This behavior is also reflected in the von Neumanifferent initial conditions in the limitN— . S,,=In 2 is the
entropy of the reduced system. Its dynamics depends on theaximal entropy for a qubit, representing a completely mixed state.
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stant and commuting quantities. The procedure leads to a v+(t)

simple set of equations of motion which are independent of 0,(0) = cog2\Nat), (45)
N and from which one can easily determine the Bloch vector
of the central spin by use of the formulae given in the Ap-

v3(t)

pendix. = co4212Nat). (46)
v3(0)
I1l. APPROXIMATION TECHNIQUES In many physical applications the integration of the integrod-

ifferential equation is much more complicated and one tries
to approximate the dynamics through a master equation
\Which is local in time. To this end, the terms(s) andvs(s)
nder the integral in Eq43) are replaced by.(t) andvs(t),
éespectively. We thus arrive at the time local master equation

In this section we will apply different approximation tech-
nigues to the spin star model introduced and discussed in the
preceding section. Due to the simplicity of this model we can’”
not only integrate exactly the reduced system dynamics, b
also construct explicitly the various master equations for th
density matrix of the central spin and analyze and compare

t
their perturbation expansions. In the following discussion we ~ —pg(t) = - 4Na2f ddvi(t)o-+v_(H)o, +va(t) 03]
0

will stick to the Bloch vector notation. Each of the master dt
equations obtained can easily be transformed into an equa- = — INtaqv. () o + v_() oy +v3(t) 3], (47)
tion involving Lindblad superoperatoisee Eqs.(30) and o ) ) )
(31)] using the translation rules which is sometimes referred to as Redfield equation. Also
this master equation is easily solved to give the expressions
1
V303=1=83— 8, - S_ (ps, (41 Lt
e {2 ° } ° 00 _ - 2Na2D), (48)
v+(0)
+ 18 (42
vyo_tv_o, =~ -53ps. t
' To2Te 930 _ - aNa2?). (49)
v3(0)

The Redfield equation is equivalent to the second order of
the time-convolutionless projection operator technique,
The second order approximation of the master equatiomhich will also be discussed in detail in Sec. Il B.
for the reduced system is usually obtained within the Born In order to obtain, finally, a Markovian master equation,
approximatiorf It is equivalent to the second order of the i.e., a time local equation involving a time-independent gen-
Nakajima-Zwanzig projection operator technique, which will erator, one pushes the upper limit of the integral in @J)
be discussed systematically in Sec. Il B. In our model theto infinity, that is one studies the limtt—c« of the master
Born approximation leads to the master equation equation. This limit leads to the Born-Markov approximation
¢ of the reduced dynamics. In the present model, however, it is
. - not possible to perform this approximation because the inte-
pslt) fo dstreilH[H.pd(s) @ psO)]]) grand does not vanish for large Thus, the Born-Markov
; limit does not exist for the spin bath model investigated here
—_ 8012Q1f dgv.(9 0 +v_(9 7, +va(S) ], and the description of relaxation and decoherence processes
0 requires the usage of non-Markovian methods.

A. Second-order approximations

(43)

where the bath correlation function is found to be B. Higher-order approximations

A systematic approach to obtain approximate non-

Q.= tr (3,0} = tr S Gl Markovian master equation in any desired order is provided

B 2NTB " by the projection operator techniques. We define a projection
superoperatoP through the relation

| | N

h With the reference stajes= pg(0) and introduce the notation

i

It is important to notice tha@),, as well as all other batl
correlation functions are independent of time. This is to be (X)=PXP (51)

contrasted to those situation in which the bath correlation

functions decay rapidly and which therefore allow the deri-for any superoperatok’. Note that the “moments{X™) are
vation of a Markovian master equation. The time indepen-operators in the total Hilbert spaé¢és® Hg of the combined
dence of the correlation functions is the main reason for thesystem.

non-Markovian behavior of the spin bath model. There are two main projection operator methods: The
The integrodifferential equatiof#3) can easily be solved Nakajima-Zwanzig (NZ) technique and the time-
by a Laplace transformation with the solution convolutionless(TCL) technique. In our model, the initial
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conditions factorize. The NZ and the TCL method therefore If we express the resulting master equations in terms of
lead to relatively simple, homogeneous equations of motionw.(t) andwvs(t), we get for the TCL technique,
The NZ master equation is an integrodifferential equation for

the reduced density matrix with a memayit, 7), which _ on Sont™"
takes the form v:(t) = E (2n-1)! va(t) 7
t
ps(t) ® PB:f dzN(t, 7)pg(7) ® pg, (52) o 20t
0 bs0=( 3 a (ijfl) v3(1), (58)
while the TCL master equation is a time-local equation of "
motion with a time-dependent generafoft), which reads  and for the NZ method,
t) ® pg=K(t)pgt) ® 53
ps(t) ® ps = K(Dps(t) ® pe. (53 )= (E 2T )) o, 59
Both the NZ and the TCL master equation can of course be
expanded with respect to the coupling strengtiSince the
interaction Hamiltonian is time independent, this expansion _ *
yields v3(t) = | 2 @?"ZpnTy(t,7) Jva(7). (60)
n=1

t oo
f drN(t, Dps(D) = > a"To(t, (LM peps(r)  (54)  The quantitiessyy, Sy, Gy, anddy, represent real polynomi-
0 n=1 als inN of the ordem. For example, we have

for the NZ master equation, and =—4N, Q,=-32N?
n—l
K(t) = 2 a" T (LM (55) s = — 1024\ + 1536\% - 1536\°,

for the TCL master equation, where we have introduced the
integral operator

Go=—4N, G,=
t t th-3 th-2
In(t, T) = fo dt1J0 dt2 oo fo dtn_zfo dr (56) 'q6 =— 102N + 1536\12 _ 1280\'3,
for the ease of notion. The symb@L"™),. denotes the partial
cumulants and£"™,. the ordered cumulants of orderTheir
definitions can be found in Refs. 25-28. In our model we S;=—4N, s;=-48N+ 16\?,
have
- — _ 2 3

(L2 = (L2 )= 0 6= — 102N — 384N? + 384\°,

and

(L2)pe=(L?),

3, =—4N, T,=- 48N+ 48N

£2 - [:2, -
{L%00=(L5) %= - 1024N + 2112N% - 1216\,

<£4>pc = <£4> - <£2>21

(LY. = (LY - 3LD?, The (2n)th-order approximation of the master equations
(denoted by TCLA and NZa, respectively is obtained by
(L8ype= (L = 2L2NLH +(LD3, truncating the sums in Eq$57) and (58) and in Eqgs.(59)
and (60) after thenth term. In the TCL case, the resulting
(L8 = (L8 — 1KLL + 30(L2)3, ordinary differential equations can be integrated very easily.

The equation of motion of the NZ method can be solved with
the help of a Laplace transformation. However, it may be
very involved to carry out the inverse transformation for
In the time-independent case the ordered cumulants atgigher orders. For example, the solution of the twelfth order
just the ordinary cumulants know from classical statistics. Toof the NZ equation as obtained by standard computer algebra
calculate these functions one can again use (2. The tools is filling some hundred pages, whereas the solution of
functionsQ, andR, I are real polynomials itN of orderk. A the TCL equation can be written in a single line.
method of determining these polynomials is sketched in the The solutions of the master equations in second and
Appendix. fourth order are plotted in Figs. 4 and 5, together with the
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FIG. 5. Comparison of the TCL and the NZ technique with the

exact solution. The plot shows the approximations to second anexact solution. The plot shows the second- and the fourth-order

fourth order ina and the exact solution af.(t) [see Eqs(23) and
(28)] for a bath of 100 spins.

exact solutions. We observe that both methods lead to a goq
approximation of the short-time behavior of the component
of the Bloch vector. We further see that the TCL technique i
not only easier to solve, but also provides a better approxiz
mation of the dynamics within a given order.

approximations as well as the exact solutiorveft) [see Eqs(24)
and(29)] for a bath of 100 spins.

ﬂen a time-local equation of motion of this form can only be

ulfilled if v4(t) is also zero. In our case, however, the exact
solution passes zero with a nonvanishing time derivative. It
is a well-known fact that the perturbation expansion of the

Since the TCL and the NZ method lead to expansions ofl CL generator only exists, in general, for short and interme-
the equations of motion and not of their solutions, the solydiate times and /or coupling strengths. This is reflected in the

tions of the truncated equations may contain terms of arbifact that the superoperator on the right-hand side of(&2).
trary order in the coupling strength. For example, everfannot be inverted for all times, i.e., it is not always possible
though TCL2 is a second-order approximation, the correl0 expressvs(0) in terms ofvs(t). A similar situation also

sponding solution given by Eq&48) and(49) contains infi-

occurs in open systems interacting with a bosonic reservoir,

nitely many orders. Of course, the expansion of the exac®-9- in the damped Jaynes Cummings model which describes
solution coincides with the expansion of the approximationgh€ interaction of a qubit with a bosonic reservoir at zero

obtained with TCL2 or NZ2n within the (2n)th order. The

temperature. The NZ technique does not lead to such prob-

error of TCL2 or NZ2, for example, is therefore a term of leéms. However, since the componentgt) do not vanish,

ordero?, as is illustrated in Fig. 6.

Concerning the long-time behavior, both the TCL and the
NZ methods may lead to very bad approximations. For ex-
ample, in the fourth-order approximationofit) (see Fig. 4
the TCL as well as the NZ solution leave the Bloch sphere,
i.e., for times larger than some critical time these solutions
do not represent true density matrices anymore.

If we look at higher orders, the NZ method is seen to be
better than the TCL method as far as the three-component of
the Bloch vector is concerned. An example is shown in Fig.
7, where we plot the tenth-order approximations. We observe
that the solutionw(t) of the TCL equation(58) is always
greater than zero. This fact is obviously connected to the
structure of this equation, which takes the forim(t)
=K5(tvg(t) with a real function IC5(t). If the three-
component; of the Bloch vector vanishes at the tirtret,,
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w0 T TCL 10 ponents of the Bloch vector. It turns out that the NZ equation
T e exact of motion yields a better approximation of the exact dynam-
1 - - NZ 10 ics in this regime.
In view of the heuristic approach to the Born and to the
05 Redfield equationsee Sec. lll A it is sometimes conjec-

tured that a nonlocal equation of motion should be generally
better than a time-local one. The results of Sec. Ill B show

S at

005 01 0.2 that this conjecture is, in general, not true. The fact that in a
05 AN given order the time-local TCL equation is at least as good
Y (and much simpler to deal withif not better than the non-
- 4 local NZ equation has also been observed in other specific
system-reservoir modélsnd has been confirmed by general
v T TCL 10 mathematical argumenté.However, care must be taken
) — exact when applying a certain projection operator method to a spe-
1 - NZ 10 cific model: The quality of the corresponding perturbation
expansion of the equation of motion may strongly depend on
05 the specific properties of the model, e.g., the interaction
T Hamiltonian, the interaction time, the environmental state
AN ot and the spectral density.
0.05 013y 015 02 For example, in our particular model the TCL expansion
-0.5 } to fourth order turns out to be more accurate than the fourth-
‘\.l order NZ expansion. However, there is no reason why TCL
-1 i should be generally better then NZ. To clarify further this

o point we consider the Taylor series of the three-component of
FIG. 7. The TCL and the NZ approximation of the componentsia Bloch vector:

of the Bloch vector in tenth order for a bath of 100 spins.
va(t) = 89+ ay(at)? + ay(at)* + O((at)®). (61)

][norngccgrate than the NZ approximation, as may be seefne corresponding expansion obtained from TCL2 is given
rom Fig. 7. by

2
a
IV. CONCLUSION va(t) = ag+ aat)? + jo(at)4 +0((a)®), (62

.With the help of a simple gnalytically solvable model of a\vhile NZ2 gives the expansion
spin star system, we have discussed the performance of pro-
jection operator techniques for the dynamics of open systems a
and the resulting perturbation expansions of the equations of va(t) = ag + ay(at)’ + éo(at)“ +O((at)?). (63)
motion. The model consists of a central spin surrounded by a
bath of spins interacting with the central spin through aln our model the exact coefficients of the expansiét) are
HeisenbergXY coupling, and shows complete relaxation andfound to be
partial decoherence in the limit of an infinite number of bath 16
spins. Due to its high symmetry the model allows a direct ay=1, a,=-4N, a,=—N2 (64
comparison of the Nakajima-Zwanz{§lZ) and of the time- 3
convolutionles§TCL) projection operator methods with the Of course, the second order coefficientis the same in all
exact solution in analytical terms. expansions, while in general neither TCL2 nor NZ2 repro-

While the Born-Markov limit of the equation of motion duce correctly the fourth order coefficieas. However, in

does not exist in the model, the dynamics of the central spigur model it turns out that the TCL2 approximation is more
exhibits a pronounced non-Markovian behavior. It has beeRccurate because the fourth order coefficient

demonstrated that both the NZ and the TCL techniques pro- )
vide good approximations of the short-time dynamics. In &_ENZ (65)

2

practical applications the TCL method is usually to be pre- 28, 2

ferred since it leads to time-local equations of motion in any . L
desired order with a much easier mathematical structurd®Und from the solution of the TCL equation is closer to the

whose integration is much simpler than that of the nonlocaf©/Tect fourth-order coefficier, than the corresponding co-
equations of the NZ technique. efficient

It should be kept in mind, however, that the expansion a3 16 )
based on the TCL method converges, in general, only for o EN (66)
short and intermediate interaction times. For large times the o
perturbation expansion may break down, which has been ilef the NZ equatior(see Fig. . Thus we see that it depends
lustrated in our model to be connected to zeros of the comerucially on the value of, whether TCL2 or NZ2 is better.
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Choosing an appropriate interaction Hamiltonian and ini-traces of the unit matricdsin the spin spaces, which we did
tial state, one can easily construct examples where NZ2 isot write explicitly. As a further example, we have for 4:
better than TCL2. For example,d§(t) was a cosine function (1) 5D 5195 D

: : i
ap cog at), then NZ2 would already give the exact solution.
On the other hand, ifv(t) was a Gaussian function =tr{o Mo Vo Vo Dltry{oPod}2N2=0, (A8)
ay exp(—a?t?), then TCL2 would reproduce the exact solu-

tr{0'0'0'0'

() (I)_
tion because the higher cumulants of a Gaussian functloRecause of, o,’=0. An example of a nonvanishing term is
vanish. given by
The features discussed above should be taken into accounttrg{o'Y¢?¢'? 'V} = tr {o'Y e Wltr{o? g P}2N-2 = 2N-2,
in applications of projection operator methods to specific (A9)

open systems. In the general case in which an analytical o

solution is not known a careful analytical or numerical in- where we have used the fact tha{dga‘g)}:l_

vestigation of the higher orders of the respective expansions |n view of these considerations we are now left with the
is thus indispensable to judge the quality of the TCL or thecombinatorial problem of determining all nonzero summands
NZ method, the influence of initial correlations, or to esti- for the given values ok andl. As an example, let us calcu-
mate the time scale over which one can trust the approximaate explicitly the correlation functio®,. From its definition

tion obtained within a given order. we have
APPENDIX: BATH CORRELATION FUNCTIONS 1 1 i
. . _ Q= trefdid I} = X tre{alVaPeldole),
In this appendix we outline how to calculate the bath cor- 2 |1i2,i3|4
relation functions (A10)
Q= iNtrB{(JJ_)k}, (A1)  The nonzero summands in this expression have the following
structure:

1 DoVeDe) — N possibilities,
R = tre{(3.3010.30)'}. (A2)
2 ooVl — N(N - 1) possibilities,
The trace can be computed in the eigenbasil ahdJ? (see

Sec. Il B) yielding a sum of polynomials if and m. How- ooWeVo s N(N - 1) possibilities,
ever, it turns out that it is easier to use the computational

basis of the spin bath consisting of the states wherei # j in the second and the third line. Collecting these

results we find

s @) ® - ®sy), (A3) L \?
where thes take on the values 0 or 1 and Q2= @[N X 2V 1+ 2N(N - 1) x 2V2] = EX (A11)
sy = (- 1)Ss
o3l = (= D3[s). (A4) A similar procedure must be carried out to calculgfe. We
With the help of these states the problem is reduced to &tate some results:
combinatorial one. Since 1 3 3
N Q3= ZN=-—N?+—N3,
_ o) 2 4 4
Je = E o (A5)

i=1
we have

(3,J)k= E O.(ll)a. 0('3)0.04) S.izk—l)o-gzk), (AB)

3
Qs=-2N+5N?-4N3+ EN4,

i ink
where the summation is taken over all possible combinations Rl=— EN + }Nz
of the indicesq,i,, ... iy Under the trace over the bath we 2 2
can sort these indices, without interchanging the operators
belonging to the same index, and calculate the partial traces ;1 5., 3 3
: ; R;==N-—N°+—N°,
over the various bath spins separately. 27 5 4 4
Let us denote the partial trace over the Hilbert space of
theith bath spin by {r For example, we have fd=2: 5 23 19 3
(1), (3) 54 ;D) 1 (1) &) (@1oN-3 Rs=— N+ —N?= N3+ >N¢,
trg{oy’ o o oy = ti{o o Mr{ o {0120 0 = 0, 2 4 4 2

(A7)

since tr{ag)}:o. Note that the factor 2 appears due to It should be clear that the above method of determining the
(N-3) factors of tf{l}=2. These factors arise from the partial correlation functions is easily translated into a numerical
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code from which one obtains th®, and theR,"‘I in any the labels of allo, operators and of alb_ operators. The

desired order. trace of the expressiai12) yields 2YK. Hence, the term of
For N=k, the term of leading order il of the polyno- leading order of the polynomid&), is found to be

mials Q, and R is represented by the summands with a )

maximal number ok different indices, because these terms 2—N<N)k! Sk 12Nk N_k' (A13)

have the largest combinatorial weight. After sorting the spin 2K

operators, these terms will have the following form,

ol gl

o o A similar proof holds forR‘™'. Thus, we have foN— o and
l2gl2 ... gl (A12)  kfixed:

There are ({2‘) different ways of assigning the indices el ‘
i1,ip, ... i to this term. For a fixed set of indices, there are Q=R ok T
k!-k! different terms in the sun{A6) which lead to the

sorted expressiofA12), corresponding to a permutation of which has been used in Sec. Il C.

(A14)
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