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The reduced dynamics of a central spin coupled to a bath ofN spin-12 particles arranged in a spin star
configuration is investigated. The exact time evolution of the reduced density operator is derived, and an
analytical solution is obtained in the limitN→` of an infinite number of bath spins, where the model shows
complete relaxation and partial decoherence. It is demonstrated that the dynamics of the central spin cannot be
treated within the Born-Markov approximation. The Nakajima-Zwanzig and the time-convolutionless projec-
tion operator technique are applied to the spin star system. The performance of the corresponding perturbation
expansions of the non-Markovian equations of motion is examined through a comparison with the exact
solution.
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I. INTRODUCTION

Solid state spin nanodevices are known as very promising
candidates for quantum computation1–4 and also for quantum
communication.5 They provide a scalable system that can
easily be integrated into standard silicon technology. A draw-
back of such systems compared to other proposals for quan-
tum computing, such as ion traps6 and cavity QED,7 are the
many degrees of freedom of the surrounding material caus-
ing dissipation and decoherence.8 The first step in overcom-
ing these disadvantages is to be able to model them.

An important contribution to quantum noise in solid state
systems arises from the nuclear spins, and recently much
work has been devoted to the modeling of spin bath
systems9–17 (for a review, see Refs. 18 and 19). The interac-
tion of a central spin with a bath of environmental spins
often leads to strong non-Markovian behavior. The usual
derivations of Markovian quantum master equations known,
e.g., from atomic physics20 and quantum optics21 therefore
fail for many spin bath models, and a detailed investigation
of methods is required that are capable of going beyond the
Markovian approximation.

In this paper, we examine the reduced dynamics of a
simple spin star system. The advantage of this model is that,
while showing several interesting features such as partial de-
coherence and strong non-Markovian behavior, it is exactly
solvable due to its high symmetry. The model therefore rep-
resents an appropriate example for a general discussion of
the performance of various non-Markovian methods. We
study here the Nakajima-Zwanzig22–24 and the time-
convolutionless projection operator technique25–28and derive
and analyze the perturbation expansions of the corresponding
non-Markovian master equations.

The paper is organized as follows. In Sec. II, we introduce
the model investigated, a spin star model involving a Heisen-
berg XY coupling (Sec. II A), and determine the exact time
evolution of the central spin(Sec. II B). In Sec. II C we
analyze the limit of an infinite number of bath spins, discuss
the behavior of the von Neumann entropy of the central spin,
and demonstrate that the model exhibits complete relaxation
and partial decoherence. Several non-Markovian approxima-

tion techniques are discussed in Sec. III. The dynamic equa-
tions found in second order in the coupling are introduced in
Sec. III A, where it is also demonstrated that the prominent
Born-Markov approximation is not applicable to the spin star
model. Employing a technique that enables the calculation of
the correlation functions of the spin bath, we derive in Sec.
III B the perturbation expansions corresponding to the
Nakajima-Zwanzig and to the time-convolutionless projec-
tion operator technique and compare these approximations
with the analytical solution for the dynamics of the central
spin. Finally, the conclusions are drawn in Sec. IV.

II. EXACT DYNAMICS

A. The model

We consider a “spin star” configuration,29 which consists
of N+1 localized spin-12 particles. One of the spins is located
at the center of the star, while the other spins, labeled by an
index i =1,2, . . . ,N, surround the central spin at equal dis-
tances on a sphere. In the language of open quantum
systems8 we regard the central spin with Pauli spin operator
s as an open system “living” in a two-dimensional Hilbert
spaceHS and the surrounding spins described by the spin
operatorsssid as a spin bath with Hilbert spaceHB, which is
given by an N-fold tensor product of two dimensional
spaces.

The central spins interacts with the bath spinsssid via a
HeisenbergXY interaction30 represented through the Hamil-
tonian

aH = 2ass+J− + s−J+d, s1d

where

J± ; o
i=1

N

s±
sid, s2d

and
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s±
sid ;

1

2
ss1

sid ± is2
sidd s3d

represents the raising and lowering operators of theith bath
spin. The HeisenbergXY coupling has been found to be an
effective Hamiltonian in many physical systems such as
quantum dots,31 cavity QED,32 two-dimensional electron
gases,33 and optical lattices.34 Equation(1) describes a very
simple time-independent interaction with equal coupling
strengtha for all bath spins. It is invariant under rotations
around thez axis. The operatorJ;1/2oi=1

N ssid represents the
total spin angular momentum of the bath(units are chosen
such that"=1). The central spin thus couples to the collec-
tive bath angular momentum.

We introduce an orthonormal basis in the bath Hilbert
spaceHB consisting of statesu j ,m,nl. These states are de-
fined as eigenstates ofJ3 (eigenvaluem) and of J2 [eigen-
value
js j +1d]. The indexn labels the different eigenstates in the
eigenspaceM j ,m belonging to a given pairs j ,md of quantum
numbers. As usual,j øN/2 and −j ømø j . The dimension of
M j ,m is given by the expression29,35

ns j ,Nd = S N

N/2 − j
D − S N

N/2 − j − 1
D . s4d

We further introduce the usual superoperator notation for
the Liouville operator

Lrstd ; − ifH,rstdg, s5d

whererstd denotes the density matrix of the total system in
the Hilbert spaceHS^ HB. The formal solution of the von
Neumann equation

d

dt
rstd = aLrstd s6d

can then be written as

rstd = expsaLtdrs0d. s7d

Our main goal is to derive the dynamics of the reduced den-
sity matrix

rSstd ; trBhrstdj, s8d

where trB denotes the partial trace taken over the Hilbert
spaceHB of the spin bath. The reduced density matrix is
completely determined in terms of the Bloch vector

vstd = 1v1std
v2std
v3std

2 ; trShsrSstdj s9d

through the relationship

rSstd =
1

2
S 1 + v3std v1std − iv2std

v1std + iv2std 1 − v3std
D , s10d

where trS denotes the partial trace over the Hilbert spaceHS
of the central spin. We note that the lengthrstd;uvstdu of the
Bloch vector is equal to 1 if and only ifrSstd describes a pure
state, and that the von Neumann entropySof the central spin

can be expressed as a function of the lengthrstd of the Bloch
vector:

S; trSh− rS ln rSj

= ln 2 −
1

2
s1 − rdlns1 − rd +

1

2
s1 + rdlns1 + rd. s11d

The initial state of the reduced system att=0 is taken to
be an arbitrary(possibly mixed) state

rSs0d =1
1 + v3s0d

2
v−s0d

v+s0d
1 − v3s0d

2
2 , s12d

while the spin bath is assumed to be in an unpolarized infi-
nite temperature state:

rBs0d = 2−NIB. s13d

Here,IB denotes the unit matrix inHB, and we have defined
the v± as linear combinations of the componentsv1,2 of the
Bloch vector:

v± =
v1 ± iv2

2
. s14d

The initial state of the total system is given by an uncorre-
lated product staterSs0d ^ rBs0d.

B. Reduced system dynamics

In this section, we will derive the exact dynamics of the
reduced density matrixrSstd for the model given above. One
possibility of obtaining the evolution of the central spin is to
substitute Eq.(7) into Eq. (8) and to expand the exponential
with respect to the coupling. This yields

rSstd ; trBhexpsaLtdrSs0d ^ rBs0dj

= o
k=0

`
satdk

k!
trBhLkrSs0d ^ 2−NIBj. s15d

It is easy to verify that we have

H2n = 4nfs+s−sJ−J+dn + s−s+sJ+J−dng s16d

and

H2n+1 = 2 · 4nfs+s−sJ+J−dn + s−s+sJ−J+dng. s17d

We note that such simple expressions are obtained since a
terms3J3 is missing in the interaction Hamiltonian. We sub-
stitute the last two equations into

Lnr = ino
k=0

n

s− 1dkSn

k
DHkrHn−k s18d

to get the formulas

trBhL2k−1rSs0d ^ 2−NIBj = 0 s19d

and
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trBhL2krSs0d ^ 2−NIBj

= s− 16dkQk
v3s0d

2
s3 + s− 4dkFo

l=0

k S2k

2l
DRl

k−lG
3fv−s0ds+ + v+s0ds−g, s20d

which hold for allk=1,2, . . ..Here, we have introduced the
bath correlation functions

Qk ;
1

2NtrBhsJ+J−dkj, s21d

Rl
k−l ;

1

2NtrBhsJ+J−dk−lsJ−J+dlj. s22d

We will come back to these correlation functions when we
discuss approximation techniques in Sec. III.

Using the formulas(19) and (20) in Eq. (15) we can ex-
press the components of the Bloch vector as follows,

v±std = f12stdv±s0d, s23d

v3std = f3stdv3s0d, s24d

where we have introduced the functions

f12std ; 2−NtrBhcosf2ÎJ+J−atgcosf2ÎJ−J+atgj, s25d

and

f3std ; 2−NtrBhcosf4ÎJ+J−atgj. s26d

Calculating the traces over the spin bath in the eigenbasis of
J3 andJ2 using

J7J±u j ,m,nl = s j 7 mds j ± m+ 1du j ,m,nl, s27d

we find

f12std ; o
j ,m

ns j ,Nd
cosf2hs j ,mdatgcosf2hs j ,− mdatg

2N

s28d

and

f3std ; o
j ,m

ns j ,Nd
cosf4hs j ,mdatg

2N , s29d

where we have introduced the quantityhs j ,md
;Îs j +mds j −m+1d.

Thus we have determined the exact dynamics of the re-
duced system: The density matrixrSstd of the central spin is
given through the components of the Bloch vector, which are
provided by the relations(23), (24), (28), and(29). We note
that the dynamics can be expressed completely through only
two real-valued functionsf12std and f3std. This fact is con-
nected to the rotational symmetry of the system.

The reduced system dynamics has been obtained above
with the help of an expansion of expsaLtd with respect to the
coupling constanta. It should be clear that, alternatively, the
behavior of the central spin may be found directly from the
solution of the Schrödinger equation for the composite sys-

tem. This solution can easily be constructed by making use
of the fact that the subspaces spanned by the statesu+l
^ u j ,m,nl and u−l ^ u j ,m+1,nl are invariant under the time
evolution, whereu± l denotes the eigenstate ofs3 belonging
to the eigenvalue ±1.

Sometimes it is useful to express the reduced dynamics in
terms of superoperators instead of the Bloch vector. To this
end, we introduce superoperatorsS± and S3, which are de-
fined by their action on an arbitrary operatorA:

S±A ; s±As7 −
1

2
hs7s±,Aj, s30d

S3A ; s3As3 − A. s31d

With these definitions we may write the reduced density ma-
trix as follows,

rSstd =
IS

2
+

1

2
FS1

2
f3std − f12stdDS3 − f3stdsS+ + S−dGrSs0d,

s32d

whereIS denotes the unit matrix inHS. Due to the nonuni-
tary behavior of the reduced system, the superoperator on the
right-hand side is not invertible for all times. This point will
become important later on when we discuss approximation
strategies.

C. The limit of an infinite number of bath spins

The explicit solution constructed in the previous section
takes on a relatively simple form in the limitN→` of an
infinite number of bath spins. It is demonstrated in the Ap-
pendix that for largeN the bath correlation functions ap-
proach the asymptotic expression

Qk < Rl
k−l <

k!

2kNk. s33d

Consequently, in Eq.(15) a term of the orderNk always
occurs together with a factor ofa2k. A nontrivial finite limit
N→` therefore exists if we rescale the coupling constant as
follows,

a → a

ÎN
. s34d

Using this approximation in Eq.(20) one obtains

trBhL2krSs0d ^ 2−NIBj

<
s− 8Ndkk!

2
fv3s0ds3 + v−s0ds+ + v+s0ds−g. s35d

If we insert this into Eq.(15) we get an infinite series which
yields the following expressions for the functionsf12std and
f3std:

f12std = 1 +gstd, f3std = 1 + 2gstd, s36d

where
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gstd ; − at exps− 2a2t2dÎp

2
erfisÎ2atd. s37d

Note that erfisxd is the imaginary error function. It is a real-
valued function defined by

erfisxd ;
erfsixd

i
, s38d

which leads to the Taylor series

erfisxd =
2

Îp
o
k=0

`
x2k+1

k ! s2k + 1d
. s39d

Figures 1 and 2 show that this approximation obtained in the
limit of an infinite number of bath spins is already reasonable
for N<200.

By contrast to erfsxd, the imaginary error function is not
bounded. However,gstd is bounded, and in the limitt→`
we havegstd→−1/2. Thus, in this limit the system is de-
scribed by the stationary density matrix

lim
t→`

lim
N→`

rSstd =1
1

2

v−s0d
2

v+s0d
2

1

2
2 . s40d

The three-component of the Bloch vector relaxes to zero,
while the off-diagonal elements of the density matrix show
partial decoherence, i.e., they assume half of their original
values. This behavior is also reflected in the von Neumann
entropy of the reduced system. Its dynamics depends on the

initial entropy parametrized byrs0d and onv3s0d, which is
obvious because the entropy is a scalar quantity and the sys-
tem is invariant under rotations around thez axis. Figure 3
shows the entropy as a function of time for different initial
conditions.

We remark that the solution for the dynamics of the cen-
tral spin in the limitN→`, as given by Eqs.(36) and (37),
can also be found with the help of a mean field-type
approximation.36 To this end one introduces the scaled bath
operatorsJ /ÎN into the Heisenberg equations of motion of
the total system and performs the limitN→`. As shown in
the Appendix, this limit exists in the sense that all moments
of the scaled bath operators in the unpolarized bath state
approach a well-defined finite limit. For an unpolarized bath
state the scaled bath operators can then be regarded as con-

FIG. 1. Comparison of the limitN→` [see Eqs.(36) and(37)]
with the exact functions forN=20 andN=200. The plot shows the
v± component of the Bloch vector.

FIG. 2. Comparison of the limitN→` [see Eqs.(36) and(37)]
with the exact functions forN=20 andN=200. The figure shows
the v3-component of the Bloch vector.

FIG. 3. von Neumann entropySstd of the reduced system for
different initial conditions in the limitN→`. Smax; ln 2 is the
maximal entropy for a qubit, representing a completely mixed state.
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stant and commuting quantities. The procedure leads to a
simple set of equations of motion which are independent of
N and from which one can easily determine the Bloch vector
of the central spin by use of the formulae given in the Ap-
pendix.

III. APPROXIMATION TECHNIQUES

In this section we will apply different approximation tech-
niques to the spin star model introduced and discussed in the
preceding section. Due to the simplicity of this model we can
not only integrate exactly the reduced system dynamics, but
also construct explicitly the various master equations for the
density matrix of the central spin and analyze and compare
their perturbation expansions. In the following discussion we
will stick to the Bloch vector notation. Each of the master
equations obtained can easily be transformed into an equa-
tion involving Lindblad superoperators[see Eqs.(30) and
(31)] using the translation rules

v3s3 = H1

2
S3 − S+ − S−JrS, s41d

v+s− + v−s+ = −
1

2
S3rS. s42d

A. Second-order approximations

The second order approximation of the master equation
for the reduced system is usually obtained within the Born
approximation.8 It is equivalent to the second order of the
Nakajima-Zwanzig projection operator technique, which will
be discussed systematically in Sec. III B. In our model the
Born approximation leads to the master equation

ṙSstd = −E
0

t

dstrBh†H,fH,rSssd ^ rBs0dg‡j

= − 8a2Q1E
0

t

dsfv+ssds− + v−ssds+ + v3ssds3g,

s43d

where the bath correlation function is found to be

Q1 =
1

2NtrBhJ+J−j =
1

2NtrBHo
i,j

s+
sids−

s jdJ
=

1

2NtrBHo
i

s+
sids−

sidJ =
N

2
. s44d

It is important to notice thatQ1, as well as all other bath
correlation functions are independent of time. This is to be
contrasted to those situation in which the bath correlation
functions decay rapidly and which therefore allow the deri-
vation of a Markovian master equation. The time indepen-
dence of the correlation functions is the main reason for the
non-Markovian behavior of the spin bath model.

The integrodifferential equation(43) can easily be solved
by a Laplace transformation with the solution

v±std
v±s0d

= coss2ÎNatd, s45d

v3std
v3s0d

= coss2Î2Natd. s46d

In many physical applications the integration of the integrod-
ifferential equation is much more complicated and one tries
to approximate the dynamics through a master equation
which is local in time. To this end, the termsv±ssd andv3ssd
under the integral in Eq.(43) are replaced byv±std andv3std,
respectively. We thus arrive at the time local master equation

d

dt
rSstd = − 4Na2E

0

t

dsfv+stds− + v−stds+ + v3stds3g

= − 4Nta2fv+stds− + v−stds+ + v3stds3g, s47d

which is sometimes referred to as Redfield equation. Also
this master equation is easily solved to give the expressions

v±std
v±s0d

= exps− 2Na2t2d, s48d

v3std
v3s0d

= exps− 4Na2t2d. s49d

The Redfield equation is equivalent to the second order of
the time-convolutionless projection operator technique,
which will also be discussed in detail in Sec. III B.

In order to obtain, finally, a Markovian master equation,
i.e., a time local equation involving a time-independent gen-
erator, one pushes the upper limit of the integral in Eq.(47)
to infinity, that is one studies the limitt→` of the master
equation. This limit leads to the Born-Markov approximation
of the reduced dynamics. In the present model, however, it is
not possible to perform this approximation because the inte-
grand does not vanish for larget. Thus, the Born-Markov
limit does not exist for the spin bath model investigated here
and the description of relaxation and decoherence processes
requires the usage of non-Markovian methods.

B. Higher-order approximations

A systematic approach to obtain approximate non-
Markovian master equation in any desired order is provided
by the projection operator techniques. We define a projection
superoperatorP through the relation

Pr = trBhrj ^ rB s50d

with the reference staterB;rBs0d and introduce the notation

kXl ; PX P s51d

for any superoperatorX. Note that the “moments”kX nl are
operators in the total Hilbert spaceHS^ HB of the combined
system.

There are two main projection operator methods: The
Nakajima-Zwanzig (NZ) technique and the time-
convolutionless(TCL) technique. In our model, the initial
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conditions factorize. The NZ and the TCL method therefore
lead to relatively simple, homogeneous equations of motion.
The NZ master equation is an integrodifferential equation for
the reduced density matrix with a memoryNst ,td, which
takes the form

ṙSstd ^ rB =E
0

t

dtNst,tdrSstd ^ rB, s52d

while the TCL master equation is a time-local equation of
motion with a time-dependent generatorKstd, which reads

ṙSstd ^ rB = KstdrSstd ^ rB. s53d

Both the NZ and the TCL master equation can of course be
expanded with respect to the coupling strengtha. Since the
interaction Hamiltonian is time independent, this expansion
yields

E
0

t

dtNst,tdrSstd = o
n=1

`

anInst,tdkLnlpcrSstd s54d

for the NZ master equation, and

Kstd = o
n=1

`

an tn−1

sn − 1d!
kLnloc s55d

for the TCL master equation, where we have introduced the
integral operator

Inst,td ; E
0

t

dt1E
0

t1

dt2 ¯ E
0

tn−3

dtn−2E
0

tn−2

dt s56d

for the ease of notion. The symbolkLnlpc denotes the partial
cumulants andkLnloc the ordered cumulants of ordern. Their
definitions can be found in Refs. 25–28. In our model we
have

kL2n+1lpc = kL2n+1loc = 0

and

kL2lpc = kL2l,

kL2loc = kL2l,

kL4lpc = kL4l − kL2l2,

kL4loc = kL4l − 3kL2l2,

kL6lpc = kL6l − 2kL2lkL4l + kL2l3,

kL6loc = kL6l − 15kL2lkL4l + 30kL2l3,

¯ .

In the time-independent case the ordered cumulants are
just the ordinary cumulants know from classical statistics. To
calculate these functions one can again use Eq.(20). The
functionsQk andRl

k−l are real polynomials inN of orderk. A
method of determining these polynomials is sketched in the
Appendix.

If we express the resulting master equations in terms of
v±std andv3std, we get for the TCL technique,

v̇±std = So
n=1

`

a2n s2nt
2n−1

s2n − 1d!Dv±std, s57d

v̇3std = So
n=1

`

a2n2q2nt
2n−1

s2n − 1d!Dv3std, s58d

and for the NZ method,

v̇±std = So
n=1

`

a2ns̃2nInst,tdDv±std, s59d

v̇3std = So
n=1

`

a2n2q̃2nInst,tdDv3std. s60d

The quantitiess2n, s̃2n, q2n, andq̃2n represent real polynomi-
als in N of the ordern. For example, we have

q2 = − 4N, q4 = − 32N2,

q6 = − 1024N + 1536N2 − 1536N3,

¯

q̃2 = − 4N, q̃4 = 32N2,

q̃6 = − 1024N + 1536N2 − 1280N3,

¯

s2 = − 4N, s4 = − 48N + 16N2,

s6 = − 1024N − 384N2 + 384N3,

¯

s̃2 = − 4N, s̃4 = − 48N + 48N2,

s̃6 = − 1024N + 2112N2 − 1216N3,

¯ .

The s2ndth-order approximation of the master equations
(denoted by TCL2n and NZ2n, respectively) is obtained by
truncating the sums in Eqs.(57) and (58) and in Eqs.(59)
and (60) after thenth term. In the TCL case, the resulting
ordinary differential equations can be integrated very easily.
The equation of motion of the NZ method can be solved with
the help of a Laplace transformation. However, it may be
very involved to carry out the inverse transformation for
higher orders. For example, the solution of the twelfth order
of the NZ equation as obtained by standard computer algebra
tools is filling some hundred pages, whereas the solution of
the TCL equation can be written in a single line.

The solutions of the master equations in second and
fourth order are plotted in Figs. 4 and 5, together with the
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exact solutions. We observe that both methods lead to a good
approximation of the short-time behavior of the components
of the Bloch vector. We further see that the TCL technique is
not only easier to solve, but also provides a better approxi-
mation of the dynamics within a given order.

Since the TCL and the NZ method lead to expansions of
the equations of motion and not of their solutions, the solu-
tions of the truncated equations may contain terms of arbi-
trary order in the coupling strength. For example, even
though TCL2 is a second-order approximation, the corre-
sponding solution given by Eqs.(48) and (49) contains infi-
nitely many orders. Of course, the expansion of the exact
solution coincides with the expansion of the approximations
obtained with TCL2n or NZ2n within the s2ndth order. The
error of TCL2 or NZ2, for example, is therefore a term of
ordera4, as is illustrated in Fig. 6.

Concerning the long-time behavior, both the TCL and the
NZ methods may lead to very bad approximations. For ex-
ample, in the fourth-order approximation ofv±std (see Fig. 4)
the TCL as well as the NZ solution leave the Bloch sphere,
i.e., for times larger than some critical time these solutions
do not represent true density matrices anymore.

If we look at higher orders, the NZ method is seen to be
better than the TCL method as far as the three-component of
the Bloch vector is concerned. An example is shown in Fig.
7, where we plot the tenth-order approximations. We observe
that the solutionv3std of the TCL equation(58) is always
greater than zero. This fact is obviously connected to the
structure of this equation, which takes the formv̇3std
=K3stdv3std with a real function K3std. If the three-
componentv3 of the Bloch vector vanishes at the timet= t0,

then a time-local equation of motion of this form can only be
fulfilled if v̇3st0d is also zero. In our case, however, the exact
solution passes zero with a nonvanishing time derivative. It
is a well-known fact8 that the perturbation expansion of the
TCL generator only exists, in general, for short and interme-
diate times and /or coupling strengths. This is reflected in the
fact that the superoperator on the right-hand side of Eq.(32)
cannot be inverted for all times, i.e., it is not always possible
to expressv3s0d in terms of v3std. A similar situation also
occurs in open systems interacting with a bosonic reservoir,
e.g., in the damped Jaynes Cummings model which describes
the interaction of a qubit with a bosonic reservoir at zero
temperature. The NZ technique does not lead to such prob-
lems. However, since the componentsv±std do not vanish,
the corresponding high-order TCL approximation is still

FIG. 5. Comparison of the TCL and the NZ technique with the
exact solution. The plot shows the second- and the fourth-order
approximations as well as the exact solution ofv3std [see Eqs.(24)
and (29)] for a bath of 100 spins.

FIG. 6. Error of TCL2 and NZ2: The plot shows the deviation
estd;uv±std−v±

approxstdu of the exact solutionv±std from the approxi-
mate solutionv±

approxstd for small at.

FIG. 4. Comparison of the TCL and the NZ technique with the
exact solution. The plot shows the approximations to second and
fourth order ina and the exact solution ofv±std [see Eqs.(23) and
(28)] for a bath of 100 spins.

NON-MARKOVIAN DYNAMICS IN A SPIN STAR… PHYSICAL REVIEW B 70, 045323(2004)

045323-7



more accurate than the NZ approximation, as may be seen
from Fig. 7.

IV. CONCLUSION

With the help of a simple analytically solvable model of a
spin star system, we have discussed the performance of pro-
jection operator techniques for the dynamics of open systems
and the resulting perturbation expansions of the equations of
motion. The model consists of a central spin surrounded by a
bath of spins interacting with the central spin through a
HeisenbergXY coupling, and shows complete relaxation and
partial decoherence in the limit of an infinite number of bath
spins. Due to its high symmetry the model allows a direct
comparison of the Nakajima-Zwanzig(NZ) and of the time-
convolutionless(TCL) projection operator methods with the
exact solution in analytical terms.

While the Born-Markov limit of the equation of motion
does not exist in the model, the dynamics of the central spin
exhibits a pronounced non-Markovian behavior. It has been
demonstrated that both the NZ and the TCL techniques pro-
vide good approximations of the short-time dynamics. In
practical applications the TCL method is usually to be pre-
ferred since it leads to time-local equations of motion in any
desired order with a much easier mathematical structure,
whose integration is much simpler than that of the nonlocal
equations of the NZ technique.

It should be kept in mind, however, that the expansion
based on the TCL method converges, in general, only for
short and intermediate interaction times. For large times the
perturbation expansion may break down, which has been il-
lustrated in our model to be connected to zeros of the com-

ponents of the Bloch vector. It turns out that the NZ equation
of motion yields a better approximation of the exact dynam-
ics in this regime.

In view of the heuristic approach to the Born and to the
Redfield equation(see Sec. III A) it is sometimes conjec-
tured that a nonlocal equation of motion should be generally
better than a time-local one. The results of Sec. III B show
that this conjecture is, in general, not true. The fact that in a
given order the time-local TCL equation is at least as good
(and much simpler to deal with), if not better than the non-
local NZ equation has also been observed in other specific
system-reservoir models8 and has been confirmed by general
mathematical arguments.37 However, care must be taken
when applying a certain projection operator method to a spe-
cific model: The quality of the corresponding perturbation
expansion of the equation of motion may strongly depend on
the specific properties of the model, e.g., the interaction
Hamiltonian, the interaction time, the environmental state
and the spectral density.

For example, in our particular model the TCL expansion
to fourth order turns out to be more accurate than the fourth-
order NZ expansion. However, there is no reason why TCL
should be generally better then NZ. To clarify further this
point we consider the Taylor series of the three-component of
the Bloch vector:

v3std = a0 + a2satd2 + a4satd4 + O„satd6
…. s61d

The corresponding expansion obtained from TCL2 is given
by

v3std = a0 + a2satd2 +
a2

2

2a0
satd4 + O„satd6

…, s62d

while NZ2 gives the expansion

v3std = a0 + a2satd2 +
a2

2

6a0
satd4 + O„satd6

…. s63d

In our model the exact coefficients of the expansion(61) are
found to be

a0 = 1, a2 = − 4N, a4 =
16

3
N2. s64d

Of course, the second order coefficienta2 is the same in all
expansions, while in general neither TCL2 nor NZ2 repro-
duce correctly the fourth order coefficienta4. However, in
our model it turns out that the TCL2 approximation is more
accurate because the fourth order coefficient

a2
2

2a0
=

16

2
N2 s65d

found from the solution of the TCL equation is closer to the
correct fourth-order coefficienta4 than the corresponding co-
efficient

a2
2

6a0
=

16

6
N2 s66d

of the NZ equation(see Fig. 6). Thus we see that it depends
crucially on the value ofa4 whether TCL2 or NZ2 is better.

FIG. 7. The TCL and the NZ approximation of the components
of the Bloch vector in tenth order for a bath of 100 spins.
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Choosing an appropriate interaction Hamiltonian and ini-
tial state, one can easily construct examples where NZ2 is
better than TCL2. For example, ifv3std was a cosine function
a0 cossatd, then NZ2 would already give the exact solution.
On the other hand, ifv3std was a Gaussian function
a0 exps−a2t2d, then TCL2 would reproduce the exact solu-
tion because the higher cumulants of a Gaussian function
vanish.

The features discussed above should be taken into account
in applications of projection operator methods to specific
open systems. In the general case in which an analytical
solution is not known a careful analytical or numerical in-
vestigation of the higher orders of the respective expansions
is thus indispensable to judge the quality of the TCL or the
NZ method, the influence of initial correlations, or to esti-
mate the time scale over which one can trust the approxima-
tion obtained within a given order.

APPENDIX: BATH CORRELATION FUNCTIONS

In this appendix we outline how to calculate the bath cor-
relation functions

Qk ;
1

2NtrBhsJ+J−dkj, sA1d

Rl
k−l ;

1

2NtrBhsJ+J−dk−lsJ−J+dlj. sA2d

The trace can be computed in the eigenbasis ofJ3 andJ2 (see
Sec. II B) yielding a sum of polynomials inj andm. How-
ever, it turns out that it is easier to use the computational
basis of the spin bath consisting of the states

us1l ^ us2l ^ ¯ ^ usNl, sA3d

where thesi take on the values 0 or 1 and

s3
sidusil = s− 1dsiusil. sA4d

With the help of these states the problem is reduced to a
combinatorial one. Since

J± = o
i=1

N

s±
sid sA5d

we have

sJ+J−dk = o
i1,. . .,i2k

s+
si1ds−

si2ds+
si3ds−

si4d
¯ s+

si2k−1ds−
si2kd, sA6d

where the summation is taken over all possible combinations
of the indicesi1, i2, . . . ,i2k. Under the trace over the bath we
can sort these indices, without interchanging the operators
belonging to the same index, and calculate the partial traces
over the various bath spins separately.

Let us denote the partial trace over the Hilbert space of
the ith bath spin by tri. For example, we have fork=2:

trBhs+
s1ds−

s3ds+
s4ds−

s1dj = tr1hs+
s1ds−

s1djtr3hs−
s3djtr4hs+

s4dj2N−3 = 0,

sA7d

since trihs±
sidj=0. Note that the factor 2N−3 appears due to

sN−3d factors of trihIj=2. These factors arise from the partial

traces of the unit matricesI in the spin spaces, which we did
not write explicitly. As a further example, we have fork=4:

trBhs+
s1ds−

s3ds+
s1ds−

s1ds+
s3ds−

s1dj

= tr1hs+
s1ds+

s1ds−
s1ds−

s1djtr3hs−
s3ds+

s3dj2N−2 = 0, sA8d

because ofs±
sids±

sid=0. An example of a nonvanishing term is
given by

trBhs+
s1ds−

s2ds+
s2ds−

s1dj = tr1hs+
s1ds−

s1djtr2hs−
s2ds+

s2dj2N−2 = 2N−2,

sA9d

where we have used the fact that trihs7
sids±

sidj=1.
In view of these considerations we are now left with the

combinatorial problem of determining all nonzero summands
for the given values ofk and l. As an example, let us calcu-
late explicitly the correlation functionQ2. From its definition
we have

Q2 =
1

2NtrBhJ+J−J+J−j =
1

2N o
i1,i2,i3,i4

trBhs+
si1ds−

si2ds−
si3ds+

si4dj.

sA10d

The nonzero summands in this expression have the following
structure:

s+
sids−

sids+
sids−

sid → N possibilities,

s+
sids−

sids+
s jds−

s jd → NsN − 1d possibilities,

s+
sids−

s jds+
s jds−

sid → NsN − 1d possibilities,

wherei Þ j in the second and the third line. Collecting these
results we find

Q2 =
1

2NfN 3 2N−1 + 2NsN − 1d 3 2N−2g =
N2

2
. sA11d

A similar procedure must be carried out to calculateRl
k−l. We

state some results:

Q3 =
1

2
N −

3

4
N2 +

3

4
N3,

Q4 = − 2N + 5N2 − 4N3 +
3

2
N4,

¯

R1
1 = −

1

2
N +

1

2
N2,

R2
1 =

1

2
N −

5

4
N2 +

3

4
N3,

R3
1 = −

5

2
N +

23

4
N2 −

19

4
N3 +

3

2
N4,

¯ .

It should be clear that the above method of determining the
correlation functions is easily translated into a numerical
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code from which one obtains theQk and theRl
k−l in any

desired order.
For Nùk, the term of leading order inN of the polyno-

mials Qk and Rl
k−l is represented by the summands with a

maximal number ofk different indices, because these terms
have the largest combinatorial weight. After sorting the spin
operators, these terms will have the following form,

s+
si1ds−

si1ds+
si2ds−

si2d
¯ s+

sikds−
sikd. sA12d

There are sk
Nd different ways of assigning the indices

i1, i2, . . . ,ik to this term. For a fixed set of indices, there are
k! ·k! different terms in the sum(A6) which lead to the
sorted expression(A12), corresponding to a permutation of

the labels of alls+ operators and of alls− operators. The
trace of the expression(A12) yields 2N−k. Hence, the term of
leading order of the polynomialQk is found to be

2−NSN

k
Dk ! · k ! 2N−k <

Nkk!

2k . sA13d

A similar proof holds forRl
k−l. Thus, we have forN→` and

k fixed:

Qk < Rl
k−l <

k!

2kNk, sA14d

which has been used in Sec. II C.
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