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The influence of electron-hole dipole-dipole interactions(local fields) on the excitonic Rabi oscillations in an
isolated quantum dot(QD) has been theoretically investigated. An analysis for the QD interaction with mono-
chromatic field and ultrashort Gaussian pulse has been performed. On the basis of optical Bloch equations the
Rabi oscillation dynamics has been investigated. As a result, the bifurcation and essentially anharmonic re-
gimes in the Rabi oscillations in a QD exposed to the monochromatic field have been predicted. The strong
dependence of the period of Rabi oscillations on the QD depolarization has been revealed. For the Gaussian
pulse it has been shown that the final state of inversion as a function of the pulse peak strength demonstrates
step-like transitions.
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Research on the properties of quantum dots(QDs)—
nano-scale 3D confined narrow-gap insertions in a host
semiconductor—has continued to grow unabated owing to
the great potentiality of such structures in engineering appli-
cations, such as active media of a double heterostructure
laser.1,2 Ultrahigh material and differential gain, orders of
magnitude exceeding those in quantum well lasers, has been
experimentally confirmed. Recently QDs have been pro-
posed to serve as nodes of quantum networks that store and
process quantum information.3,4 An experimental obser-
vation of a single-QD absorber has been reported in Ref. 5.
The application of semiconductor QDs in cavity
electrodynamics6–8 and as potential quantum-light
emitters9,10 is now intensively discussed. Spontaneous emis-
sion in QDs11 and electromagnetic fluctuations are also in the
focus of interest. During the last decade, attempts have been
made to establish the correspondence and to reveal principal
differences between two-level atoms and excitons in semi-
conductors. Many analogies have been successfully investi-
gated, such as the excitonic optical Stark effect, photon ech-
oes in four-wave mixing experiments, excitonic Rabi
oscillations in quantum wells12 and QDs.13–15 A peculiarity
which, among others, distinguishes an exciton from an
atomic two-level system is that the exciton exists in a me-
dium and interacts with the medium inducing its polarization
(i.e., local fields). Especially pronounced manifestation of
local fields is expected in 3D confined systems, QDs. In the
present paper, we investigate the role of local fields in exci-
tonic Rabi oscillations in QDs.

As a result of the strong coupling between the incident
electromagnetic field and the atomic system, electron popu-
lation oscillates between excited and ground states at the
Rabi frequency.16,17 Rabi oscillations are well established in
a different physical systems such as cold trapped ions,18

Bose-Einstein condensate,19 semiconductor quantum wells.12

Among them, excitonic Rabi oscillations in QDs are very
promising: observed experimentally in Refs. 13–15 they cor-
respond to the one-qubit rotation that is the step towards the
QD application in quantum information processing.13 Exci-

tonic Rabi oscillations in a QD are to be distinguished from
those of an ordinary atom by the following two factors:(i)
oscillator strength in a QD is essentially larger;13 (ii ) Rabi
oscillation picture strongly depend on QD geometrical con-
figuration. The first factor gives us an opportunity to observe
the Rabi oscillations in the essentially smaller field, than for
ordinary atoms. The second factor opens the possibility for
the effect to control.

In previous investigations(see Refs. 20–26), the signifi-
cant role of electron-hole dipole-dipole interaction(local
field) in the electromagnetic response of different structures
has been predicted. General equations for the interaction of
quantum states of light with condensed matter influenced by
local fields has been formulated for bulk media in Ref. 26
and for a confined QD exciton in Ref. 25. However, the
application of these equations in Refs. 25, 26 were restricted
to the weak light-matter coupling regime. The local field
impact on the spontaneous emission decay of an excited two-
level atom in the linear dielectric host has been considered in
Ref. 26. In this paper it has been pointed out that the quan-
tum theory of local fields should incorporate both quantum
field theory and a many body problem. Local fields induce a
fine structure of the QD absorption(emission) spectrum:25

instead of a single line with the frequency corresponding to
the exciton transition, a doublet is appeared with one com-
ponent shifted to the blue(red). It has been demonstrated that
in the limiting cases of classical light and single-photon
states the doublet is reduced to a singlet shifted in the former
case and unshifted in the latter one. Consequently, one can
expect that local field effects enhanced by the strong
light-QD coupling will manifest themselves in a number of
observable modifications of the conventional picture of the
Rabi oscillations.

To describe the strong coupling regime between the atom
and the electromagnetic field, the Jaynes-Cummings(JC)
model is conventionally used.16,17 In our paper we present a
microscopic theory of strong light-QD coupling restricted to
the case of a classical electromagnetic field. The electron-
hole dipole-dipole interactions in QD are incorporated into
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the JC model of excitonic Rabi oscillations. Both a QD in-
teraction with a harmonic electromagnetic field and an ultra-
short Gaussian pulse are considered. QD is modeled as a
spatially confined two-level quantum oscillator. In the strong
confined regime for exciton in the QD(which is considered
as an electron-hole pair), the Coulomb interaction is assumed
to be negligible. In this paper a 3D Cartesian coordinate
systemua sa=x,y,zd is used, with the unit vectorux parallel
to the electron-hole pair dipole moment:m=mux. We inves-
tigate a single, arbitrary shaped QD exposed to a nonmono-
chromatic field linearly polarized alongm: Estd=E0xux

=RefEstdexps−ivtdgux, whereEstd is the slow-varying elec-
tric field amplitude, andv is the field carrier frequency. Ac-
cording to Ref. 25, in the two-level approximation the sys-
tem “QD+electromagnetic field” is described by the
Hamiltonian

H = seeae
+ae + egag

+agd − VP̂xE0x + DH, s1d

where ee,g are the energy eigenvalues of the excited and
ground states, respectively;ag,e

+ and ag,e stand for the cre-
ation and annihilation operators of an electron in the ground

and excited states;V is the QD volume; P̂x=V−1s−mb+

+m* bd is the polarization operator;b+=agae
+ and b=ag

+ae

are the creation and annihilation operators for the electron-
hole pair. The first term in(1) is the Hamiltonian of
the free electron-hole pair, the second term is the Hamil-
tonian of interaction of a pair with an electromagnetic field,
while DH is the correction to local fields. The latter one is
given by25

DH = 4pNxPxs− mb+ + m * bd, s2d

whereNx is the depolarization coefficient, andPx=kP̂xl is the
macroscopic polarization of the QD. Under the rotating wave
approximation, the optical Bloch equations,

]u

]t
= − gTu − VRw − dv − Dvsw + 1dv, s3d

]v
]t

= − gTv + du + Dvsw + 1du, s4d

]w

]t
= − gLsw + 1d + VRu, s5d

correspond to the Hamiltonian(1). In these equations phe-
nomenological parametersgT and gL are the dephasing and
the homogeneous broadening, respectively. ParameterDv
=4pNxumu2/"V (Ref. 22) is the frequency shift resulting from
the local field influence. Detuningd=v−v0−Dv is defined
corrected to the shift;v0 is the excitonic transition frequency.
ParameterVRstd=mEstd /" is the Rabi frequency,w is the
inversion, i.e., the difference between the excitonic popula-
tion in the excited and the ground states;u andv are the real
and imaginary parts of the nondiagonal element of the den-
sity matrix. Note that equations obtained contain nonlinear
terms[the last terms in(3) and(4)]. These terms may result
in appearing of nontrivial effects, such as the higher harmon-

ics generation of the Rabi frequency or bifurcation in the
oscillatory regime.

We assume that the QD is in the ground state att=0.
Then, initial conditions for Eqs.(3)–(5) are given by

us0d = vs0d = 0, ws0d = − 1. s6d

We start with the case of the undamped system exposed
to the monochromatic field atd=0. It should be noted
that the latter condition does not define the exact synchro-
nism regime. Indeed, in the strong light-QD coupling regime
the local fields lead to the substitutionv−v0→d+Dvsw
+1d in Eqs. (3)–(5). Therefore, the actual physical detuning
is not constant in time but oscillates together with the inver-
sion.

In the presence of local fields, the analytical solution for
the Bloch equations does not exist. Therefore, we have per-
formed the numerical integration of Eqs.(3)–(5) with initial
conditions(6), assumingEstd=const andgT=gL=0. Calcula-
tions of the inversion dynamics for different field amplitudes
defined by the parameterj=VR/Dv are shown in Fig. 1.
Here, the inversion is plotted as a function of the dimension-
less timeT=VRt /2p. The calculations performed demon-
strate that the Rabi frequency strongly depends on the depo-
larization parameterj.

At j!1 Rabi oscillations are practically absent:wstd
,const, that corresponds to weak coupling between QD and
electric field:sVR→0d. The increase inj leads to the appear-
ance of the Rabi oscillations. Following Figs. 2 and 3 dem-
onstrates the inversion calculations for finite values of the
parameterd. Thus, atj=0.2, small amplitude oscillations of

FIG. 1. Rabi oscillations of the inversion,d=0: (a) j=0.002;(b)
j=0.2; (c) j=0.5; (d) j=1; (e) j=3.
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the inversion are observed[see Fig. 2(a)]. At j=jcr=0.5 the
bifurcation in the oscillation dynamicsis predicted[compare
Figs. 2(b) and 2(c)], that separates two oscillatory regimes
with drastically different characteristics. In the vicinity of the
bifurcation, Rabi oscillations areessentially anharmonic[see
Figs. 2(c), 2(d)]. This means that in the frequency domain
the Mollow triplet17 (which characterizes the atomic Rabi
oscillations) is transformed to a more complicated spectrum
that contains satellites corresponding to higher orders of the
Rabi oscillations frequency. The anharmonism in the Rabi
oscillations disappears at the further increase inj; see Fig.
2(e). Whenj.1, inversion behavior satisfies the following

approximation:wstd>coss2pTd, that corresponds to the con-
ventional picture of the Rabi oscillations.16,17

In order to explain the bifurcation of the inversion, which
results from the influence of nonlinear terms in Eqs.(3) and
(4), we analyze the phase portrait of Eqs.(3)–(5). For gT
=gL=0 the system is conservative, and the integral of motion
is given byu2+v2+w2=1. As a result, from Eqs.(3)–(5) it
easily to obtain the expression as follows:

vswd =
1

2j
sw + 1dSw + 2j

d

VR
+ 1D , s7d

which describes the phase portrait picture.
The dimensionless period of Rabi oscillations is given by

the integral

T0 =
1

p
E

−1

w0 dw
Î1 − w2 − v2swd

, s8d

wherevswd is defined by Eq.(7) andw0 is the root of alge-
braic equationv2swd+w2=1 closest tow=−1. Figure 4 de-
picts the dependence of the Rabi periodT0 on the depolar-
ization parameterj for the cased=−Dv. Whenj=jcr=0.5,
T0→`. At small values ofj there exist small-period Rabi
oscillations, whileT0<1 at large values ofj sj.2d (that is
in agreement with previous results presented in Fig. 2). For-
mulas (7) also shows that the valuejcr=0.5 separates two
markedly different oscillatory regimes. Whenj,0.5, the in-
version of the system cannot cross the axisw=0 (because it
would contradict the integral of motion), while atj.0.5 the
inversion oscillates in the region −1,w,1. Two different
synchronism conditions correspond to these two regimes:
whenj.0.5 the exact synchronism regime is averaged over
the Rabi period; while atj,0.5 the averaged over the Rabi
period detuning takes a finite value that increases with thej
decrease.

Now, let us investigate the role of the detuning in mani-
festation of Rabi oscillations. Calculations performed dem-
onstratethe decrease injcr with the decrease inudu. When

FIG. 2. Rabi oscillations of the inversion,d=−Dv: (a) j=0.2;
(b) j=0.495;(c) j=0.5001;(d) j=0.51; (e) j=0.6.

FIG. 3. Rabi oscillations of the inversion. Influence of the de-
tuning sd=−0.5Dv ; j=0.1502d.

FIG. 4. The period of the Rabi oscillations as a function of the
depolarization parameterj for d=−Dv.
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d=−0.9Dv, the bifurcation in Rabi oscillations arises atjcr

=0.4, while d=−0.6Dv gives jcr=0.2. Figure 3 shows the
inversion dynamics atd=−0.5Dv; in this casejcr=0.15 and
oscillations are essentially anharmonic. Thus, the bifuraca-
tion arises in lower fields. It should be noted that the bifur-
cation disappears at the further decreaseudu: jcr→0.

Next, we consider a QD interacting with an optical pulse,
whose time durationt is much less than the relaxation
times in the system. Numerical calculations for the Gaussian
pulseE=E0 expf−st− t0d2/t2g have been carried out. We con-
sider the Rabi frequency to be associated with the peak field
strength of the Gaussian pulse:E0=mVR0/", so that j
=VR0/Dv. The inversion dynamics calculation is shown in
Fig. 5 for d=−Dv. Here, the inversion is plotted as a func-
tion of the dimensionless parametert /t for different values
of j. When jù1, inversion demonstrates two different
regimes. In the first regime[Fig. 5(a)], the inversion final
statewf is the excited statest→` , w→1d. In the second
regime[Fig. 5(b)], inversion returns back to the ground state
st→` , w→−1d. When jø1 (that corresponds to small
Rabi frequencies) only the second regime is manifested. It
should be emphasized that the spontaneous radiation which
is not considered in our model, leads to the decay of the final
state of inversion. However, the QD can stay in the excited
state for a rather long time. Indeed, the spontaneous radiation
life-time of spherical QD29 can be associated, according to
Eq. (80) from Ref. 25, with the resonant frequency shiftDv
by

Tsp.
1

4tDv
S l

4pRÎ«h
D3

. s9d

For a GaAs QD with the radiusR.3 nm, dielectric constant
«h=12 andtDv=15 at the wavelengthl=1.3 mm Eq. (9)
gives Tsp,1.33102. This result justifies neglecting in our
model of the decay of the inversion final state. Note that the
Bohr radius for such QDs is about 10 nm,28 so that the strong
confinement approximation used in our paper is valid. For
the QD considered, the estimate"Dv.1 meV follows from
Ref. 25. This corresponds to the value"VR.0.5 meV for

the casejcr=0.5. Such value ofVR is reachable in the pump-
probe and microcavities experiments.30

Now, let us consider the dependence of the inversion final
state on the parameterj. Numerical calculations performed
when d=−Dv show that atjù1 wf demonstrates step-like
transitions from the ground to the excited state withwf =1.
The width of the steps is strongly dependent on the pulse
duration. A similar effect for isotropic bulk media has been
predicted in Ref. 27. However, the medium in Ref. 27 is
considered as an undamped system when carrier field fre-
quency is resonant with atomic transition frequency. The in-
fluence of the detuning and damping significantly changes
the effect manifestation; see Fig. 6. Whend=−0.5Dv, step-
like transitions start atj.0.25 and are observed in the re-
gion −1,wf ,0.1 [Fig. 6(a)]. This result means that the
threshold value of the peak pulse strength of the first step-
like transition of the inversion can be sufficiently low(at
least for four times less as compared with the casejù1). For
the case of damped QD, the final state of inversion does not
reach a fully inverted stateswf =1d and does not return back
to the ground stateswf =−1d [Fig. 6(b)]. The latter result
qualitatively corresponds to that obtained in Ref. 15, where
the damping mechanism has been considered on the basis of
the microscopic theory of the QD phonon-electron coupling.
However, Ref. 15 does not take local fields into account.
Therefore, in order to elaborate a more complete theory de-
scribing shapes of that steps, the electron-phonon coupling
mechanism developed in Ref. 15 must be incorporated in our
local field theory.

Local field theory in anisotropic QDs23 predicts the polar-
ization dependence of the resonant shiftDv. Therefore, for
an anisotropic QD, effects predicted in the current paper are
strongly dependent on the incident field polarization that
may serve as a methodological basis for their experimental
observation.

In conclusion, local fields in QDs are predicted to entail

FIG. 5. Rabi oscillation dynamics of QD interacting with the
Gaussian pulse:t0=0.5t, tDv=15. Two different regimes of the
inversion:(a) j=1.0(solid line), j=1.26(dashed line), j=1.51(dot-
ted line); (b) j=1.13 (solid line), j=1.39 (dashed line), j=1.61
(dotted line). FIG. 6. The final state of inversion as a function of the peak

field strength of the Gaussian pulse defined by parameterj:
(a) undamped system,d=−0.5Dv, tDv=15; (b) damped system
sgT=gL=10−3Dvd, d=Dv, tDv=15 (solid line) andtDv=30 (dot-
ted line).
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the following effects:(i) The dependence of the Rabi oscil-
lations period on the frequency shift induced by local fields.
(ii ) The bifurcation in the QD inversion; in the vicinity of
that bifurcation Rabi oscillations are essentially anharmonic.
(iii ) The step-like transitions of the inversion as a function of
the ultrashort optical pulse peak strength. The latter result
can be used in quantum information processing: as the sys-
tem has two stable states: “0” and “1,” it can be switched

from one state to another. Therefore, the array of QDs con-
trolled by an applied field can be used as a basis for logic
operations.
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