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We have investigated the conductance of a quantum dot system suffering an anti-symmetric ac gate voltage
which induces the transition between dot levels in the linear regime at zero temperature in the rotating wave
approximation. Interesting Fano resonances appear on one side of the displaced resonant tunnelling peaks for
the nonresonant case or the peak splitting for the resonant case. The line shape of conductance(vs Fermi
energy) near each level of the quantum dot can be decomposed into two profiles: a Breit-Wigner peak and a
Fano profile, or a Breit-Wigner peak and a dip in both cases.
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In recent years much attention has been drawn to the elec-
tron transport in quantum dots(QDs), in which the quantum
coherence, Coulomb on-site repulsion and the discrete levels
play the important role at low temperatures.1 When there are
levels in the energy window of the leads, electrons can go
through the QD. One can tune the bias voltage or the gate
voltage to modify the level number of the QD sandwiched by
the chemical potentials of the leads, therefore the transport
properties are altered. Many interesting physical phenomena
arise from the system, such as Coulomb blockade,2,3 photon-
assistant tunnelling,4 quantum pump,5,6 Kondo effect,7–9

Fano resonance,10 etc.
Fano resonance11 is a very interesting phenomenon in

electron transport physics. If an absorbed impurity, stub or
any other structure producing localized levels exists in an
electron wave guide or a quantum wire, Fano resonance
takes place,12–14which is caused by the interference between
the propagating path and localized orbital. Recently, a few
theoretical and experimental works of Fano resonance in QD
have been made in the static case.10,15–17Racecet al.16 found
that the conductance of a QD can be decomposed into two
parts: a resonant one described by a Fano profile with a com-
plex asymmetry parameter and a noncoherent background.
Xiong et al.15 investigated the resonant transmission of elec-
trons through a multilevel QD in the Coulomb blockade re-
gime and found that the quantum interference between the
path through the resonant level and the paths via nonresonant
levels results in the Fano peaks. Göreset al. have observed
asymmetric Fano resonances in a single-electron transistor
device.10 On the other hand, the electron tunnelling through
different time-dependent mesoscopic structures has been dis-
cussed in many papers. Wagner pointed out the transmission
quenching18 and Kim et al. reported the Fano resonance19,20

of one or two time-dependent quantum wells. Aguadoet al.21

studied the resonant tunnelling of photon sidebands within
the transfer Hamiltonian framework, using two different
models with classic and quantum electromagnetic fields illu-
minating the quantum well structure, because experimental
realization of time-dependent heterostructure with high fre-
quency often resorts to the infrared electromagnetic field.22

Oosterkampet al. observed the electron resonant tunnelling
via photon sideband of the states in a QD in their
experiment.22 Sun et al.23 theoretically explained the result

of it based on the model proposed in Ref. 24, a widely
adopted model(often called adiabatic model), in which all
the levels of the QD and leads are all varied with time cosi-
noidally but no inter-level transition occurs. According to the
Tien and Gordon theory,25 each time-dependent level can be
viewed as many sidebands with the weightJn

2sV/"vd in the
energy space, whereJns¯d is thenth order Bessel function,
andV is the fluctuation magnitude of the levels. Many recent
works are based on this model which can give reasonable
results as compared with recent experiments.4,22 It is possible
that the adiabatic model breaks down if the gates of the QD
are configurated symmetrically and applied with an anti-
symmetric time-dependent gate voltage as in Fig. 1. This
configuation allows electrons to transit between levels in the
QD. When the gate voltage frequency matches the level span
of QD approximately(i.e., the resonant or small detune
case), the transition takes place apparently and the transport
properties will be affected dramatically.

In this paper we investigate the conductance through the
QD depicted in Fig. 1 in the linear regime at zero tempera-
ture by only considering the two lowest levels using the ro-
tating wave approximation(RWA). We find that the conduc-
tance in the case of nonresonance shows a Fano resonance
beside each resonant tunnelling peak which is displaced
slightly, and in the case of resonance it shows a dip at the
resonant tunnelling peak center. When the width of the peak
is small (compared with some parameters) it splits into two
individual peaks with different or identical widths for the
nonresonant or resonant case. The inter-level transition-

FIG. 1. Schematic configuration of the considered system. The
QD experiences a dc gate voltage in addition to the anti-symmetric
ac gate voltage, which allows electron transit between levels in the
QD.
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induced Fano resonance and peak splitting have not been
investigated in the works mentioned in the previous para-
graph. The Hamiltonian of the system is

H = o
k,aPL/R

ek,ack,a
+ ck,a + o

k,a;n
sVk,a;nck,a

+ dn + h.c.d

+ o
n=1,2

endn
+dn + M cosvtsd1

+d2 + d2
+d1d, s1d

whereck,a
+ sck,ad and dn

+ sdnd are the creation(annihilation)
operators of electrons with momentumk in lead a and of
electrons at leveln in the dot.M is a parameter introduced to
interpret phenomenologically the inter-level coupling in the
QD, which is proportional tosV/ddkf1urWuf2l, whereV is the
magnitude of the ac gate voltage andd is the distance be-
tween the two gates,rW is the position vector of the electron in
QD andfn are electron orbital functions in QD. In the above
equation we neglect the spin of and interaction between elec-
trons in the dot, which leads to Coulomb oscillation2,3 and
the famous Kondo effect7–9 below the Kondo temperature,
but these important effects are not our interest in this Letter.

Using the Keldysh formalism and equation of motion
method the time-dependent current from the left lead into the
dot is24

JLstd = −
2e

"
E

−`

t

dt8E de

2p
Im Trheiest−t8d/"GLsed

3fG,st,t8d + fLsedGrst,t8dgj, s2d

where the boldfaced letters represent 232 matrixes.GLsed,
Gr/ast ,t8d andG,st ,t8d are the coupling matrix, the retarded/
advanced and Keldysh Green’s functions of the QD, whose
matrix elements are defined as

Gmn
L sed = 2po

k

Vk,L;m
* Vk,L;ndse − ek,Ld, s3d

Gmn
r/ast,t8d = 7 ius± t 7 t8dkhdmstd,dn

+st8djl, s4d

Gmn
, st,t8d = ikdn

+st8ddmstdl. s5d

The time average current isJ̄L=s1/Tde0
T Jstddt, where T

=2p /v is the period. In this work we use an alternative
method to obtain the average current. Integrating Eq.(3)
over t, J̄ is obtained directly:

J̄L =E
−`

`

JL dt = −
2e

h
E de Im Tr Gsed

3fGrse,ed + fLsedG,se,edg. s6d

The time average current through the right contact has the

same form and is equal toJ̄L. At the first sight, Eq.(6) cannot
give a correct result because a nonzero constant as integrated
over infinity cannot converge at any finite quantity. For ex-
ample,edt C eietue=0=C·2pdse−0due=0. Although if one gets
rid of 2pds¯d, it converges correctly. So one must omit
2pds¯d hidden in the Green’s functionsGrse ,ed and
G,se ,ed to obtain the correct result. After some simple alge-
bra and ignoring terms of the orderOsM2/D2d, the average

conductance at zero temperature in the linear regime can be
obtained, which is just the Landauer type formula,

G =
e2

h
TrfGLsEFdGasEF,EFdGRsEFdGrsEF,EFdg. s7d

If the spin degeneracy is picked up, the conductance is
doubled. To obtain an explicit result we assume the fre-
quency is near the resonant point(i.e., "v /D.1, whereD
=e2−e1) andM is small compared with the difference of the
levels of the dot(i.e., M /D!1). This case allows us to em-
ploy the RWA. In the wide-band limit(i.e., GL/R is indepen-
dent of energy) and the symmetric case, we have

GL = GR = F g1 g12

g21 g2
G; s8d

the retarded and advanced Green’s functions with the same
energy index are

Gr/ase,ed = 31
se − e1

+dse − e1
−d

e − e2 + "v
0

0
se − e2

+dse − e2
−d

e − e1 − "v
2 ±

i

2
G4

−1

,

s9d

where G=GL+GR, e1
±=e1−d /2±Îd2+M2/2 and e2

±=e2
+d /2±Îd2+M2/2 are the dressed levels of the QD, where
d="v−se2−e1d is the detune. The derivation of the above
equation will be given in the Appendix. Substitute Eq.(9)
into Eq.(7) we get the average conductance. The solid curve
in Fig. 2 is the average conductance vs Fermi energy with
parametersg1=g2=0.1,g12=g21=Îg1g2, M =0.1, e1=1, e2
=2 and"v=0.8. One can see there are two individual peaks
near the energiese1 and e2 where the resonant tunnelling
peaks are localized. Interestingly, there exist two sharp Fano
resonances besides these peaks.

When the spacing between levels is much larger than the
width of the individual peak, the conductance near each peak
is little affected by the other, so when the Fermi energy is
near e1, we can reduce the conductance to a more simple
form,

FIG. 2. Average conductance in units ofe2/h as a function of
Fermi energy in arbitrary units with parameterse1=1, e2=2, M
=0.1, g1=g2=g12=g21=0.1, and "v=0.8 for both curves. The
dashed curve is obtained using Eq.(10).
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G =
e2

h

g1
2sEF − e2 + "vd2

sEF − e1
+d2sEF − e1

−d2 + g1
2sEF − e2 + "vd2 . s10d

In the following we will discuss in detail the features of the
conductance curve based on the above equation in the case of
d,0. The dashed line in Fig. 2 is the curve obtained using
Eq. (10) with the parameters just the same as for the solid
line. One can see that the two lines coincide with each other
nearEF=e1. According to the above equation, whenEF=e1

±

the conductance reaches its maximum and between the peaks
it dives to zero whenEF=e2−"v. The conductance profile
neare1 can be decomposed into a Breit-Wigner and a Fano
profile for the nonresonant case(see Fig. 3). The function of
the Breit-Wigner profile is

GB-W =
e2

h

g1
2

se − e1
−d2 + g1

2 . s11d

It is just the resonant tunnelling peak without ac gate voltage
but the center of it is displaced toe1

−. The parameters of Fano
resonance also can be worked out easily from Eq.(10), but
we do not address them here for their complication and they
will be demonstrated in the Appendix. The distance between
the maxima of the two resonances ise1

+−e1
−=Îd2+M2. When

M goes down, the Breit-Wigner peak remains almost un-
changed, but the Fano peak gets more sharp and vanishes if
M→0. Whend reduces, the Fano peak moves towards the
Breit-Wigner peak and becomes more dispersed. Ifd goes to
zero, a dip forms atEF=e1. The line shape neare1 can be
decomposed into a Breit-Wigner peak(the long dashed line
in Fig. 4) with the center ate1 and a dip(the short dashed
line in Fig. 4) at the same energye1. The dip’s line shape is
described by

GDip =
e2

h

se − e1d2

se − e1d2 + sM2/s4g1dd2 . s12d

When g1 is smaller than the distance between the maxima
localized ate1

±, these maxima evolve into two individual
peaks with peak widths,

W1
± = g1 ·

Î1 + M2/d2 7 1
Î1 + M2/d2

. s13d

One can see that the width of the peak ate1
− is wider than that

at e1
+ and the latter vanishes ifM goes to zero. When reso-

nating, the widths of the two peaks become identical and are
only half of the width of the resonant tunnelling peak with-
out ac gate voltage.

When Fermi energy is in the vicinity ofe2, one can easily
draw conclusions according to Fig. 2 and the analysis of the
context. For thed.0 case, the maxima of the Breit-Wigner
peak and Fano peak in Fig. 3 are localized ate2

+ and e2
−

instead ofe1
− ande1

+, which means the Fano peak is at the left
side of the Breit-Wigner peak. In the asymmetric barrier case
(i.e., GLÞGR) the conductance is simply reduced but no new
peak is introduced.

In fact, electron transport through ultra-small semicon-
ductor QD is often dominated by Coulomb blockade effects.
One extra electron added to the dot will constitute the charge
energyU, which is inversely proportional to the total capaci-
tance of the dot. It may be much larger than thermal fluctua-
tion andD, just as in the experiment of Oosterkampet al. (U
is about 10 timesD).22 Therefore, the large-U limit is valid
and electrons can only tunnel sequentially through the dot. If
we redefinee1 and e2, respectively, as the energies of the
top-most occupied level and the lowest empty level in the
dot, when the Coulomb blockade is taken into account, the
two sets of Breit-Wigner and Fano peaks in Fig. 2 localized
approximately ate1 and e2+U instead ofe1 and e2, but the
line shapes of them are little affected. Adopting the param-
eters in Ref. 22,g1 and g2 are about 0.015 meV,D is
0.13 meV, and the corresponding frequency of the ac voltage
is about 50 GHz. To induce a considerable transition be-
tween levels of the QD the ac voltage in that experiment
should be magnified about 102,103 times. The detailed de-
scription of the device has been in Ref. 22. This paper does
not give an explanation to the result in it, since in our model
the ac voltage is anti-symmetric.

Finally, let us examine all our conclusions following a
heuristic argument. When an isolated QD is subjected to an
anti-symmetric ac gate voltage, each level splits into two
sublevels of which the separation is much smaller than that
of levels. Therefore, near each level there are two resonant

FIG. 3. Average conductance(solid line), Breit-Wigner and
Fano profiles(long dashed and short dashed lines) in units of e2/h
as functions of Fermi energy with arbitrary units according to Eq.
(10). All parameters are the same as in Fig. 2.

FIG. 4. Conductance(solid line), Breit-Wigner and dip line
shapes(long dashed and short dashed lines) in units of e2/h as
functions of Fermi energy with arbitrary units."v=1 and all other
parameters are the same as in Fig. 2.
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maxima. The widened sublevels(due to the coupling to the
leads) overlap each other severely, which leads to the inter-
ference between the two sublevels through which electrons
penetrate the QD, so interference effects are observed such
as Fano resonance and dip. Of course, more detailed features
should rely on the calculations as in this paper.

In summary we have investigated the time-average con-
ductance of QD with anti-symmetric gate voltage configura-
tion in linear regime at zero temperature using RWA. We
have observed a Fano resonance accompanying the displaced
resonant tunnelling peak in the nonresonant case and the
splitting of the resonant tunnelling peak in the resonant case.
In the case that the width of the resonant tunnelling peak is
small enough, it splits into two individual peaks which are
different from each other in the nonresonant case and are
identical in the resonant case.
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APPENDIX A: GREEN’S FUNCTION OF THE QD

The Green’s function in energy space of an isolated QD is

G0se,e8d

= 3
2pdse − e8dse − e2 + "vd

se − e1
+dse − e1

−d
2pdse − e8 + "vdM/2

se − e1
+dse − e1

−d
2pdse − e8 − "vdM/2

se − e2
+dse − e2

−d
2pdse − e8dse − e1 − "vd

se − e2
+dse − e2

−d
4

= g0 + g8, sA1d

whereg0 andg8 are the diagonal and anti-diagonal parts of
G0. The infinitesimal in Green’s function is ignored because
the self-energy will bring a finite imaginary part. The total
retarded(advanced) Green’s function of the QD can be de-
rived from Dyson’s equation,

Gr/a = G0 + G0Sr/aG0 + ¯

= fsg0 + g0Sr/ag0 + ¯ d + OsM2/D2dge=e8

+ fOsM/DdgeÞe8. sA2d

Here Sr/a= 7 isGL+GRd /2 is the retarded(advanced) self-
energy. The physical origin of fOsM /DdgeÞe8 and
fOsM2/D2dge=e8 is the photon-assistant transition and the
combination of it and the effective coupling between two
levels of the QD. Because they are much smaller than the
term in the curved bracket they are omitted, which produces
divarication of the orderOsM2/D2d in the conductance. So
the Green’s function with the same energy index is

Gr/ase,ed = sg0
−1 − Sr/ad−1. sA3d

Getting rid of 2pdse ,e8d in the above equation, we obtain
Eq. (9) in the text.

APPENDIX B: PARAMETERS OF FANO RESONANCE

The asymmetric Fano function11 is described by

GFano=
e2

h

Afmse − td + qg2

m2se − td2 + 1
, sB1d

whereA is a normalization constant,t is the center of Fano
line shape,m is the magnification coefficient andq is the
Fano factor. Expanding the numerator and denominator in
Eq. (10) aroundt and setting the coefficient of the first-order
expansion of denominator be zero, we obtain the Fano reso-
nance center,

t = e1
+ −

a g1
2

d2 + M2 + g1
2 , sB2d

where a=d /2+Îd2+M2/2. Substituting Eq.(B2) into Eq.
(10), one can work out all the parameters in Eq.(B1),

q =
Îd2 + M2

g1
2 , sB3d

m=
d2 + M2 + g1

2

a g1
Îd2 + M2

, sB4d

A =
g1

2

d2 + M2 + g1
2 . sB5d

The line shape of Eq.(B1) is just the short-dashed line in
Fig. 3.
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