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Magneto-optical response of CdSe nanostructures
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We present theoretical calculations of the Lamdéactors of semiconductor nanostructures using a time-
dependent empirical tight-binding method that allows a nonperturbative treatment of both the spin-orbit inter-
action and an external magnetic field. The electromagnetic field is incorporated into the tight-binding Hamil-
tonian in a gauge-invariant form. Eigenenergies and eigenfunctions of the band edge states are calculated as a
function of the external magnetic field, and thefactors are then extracted from the field-induced energy
splitting of the eigenstates. The size and aspect ratio dependence of both electron agdfauites are
investigated for CdSe nanostructures. We find that the elegtrfattors for single nanocrystals are weakly
dependent on nanocrystal size and are strongly anisotropic, where the extent of anisotropy depends on the
aspect ratio of the nanocrystal. The hgléactors are also anisotropic and are found to show more complex,
oscillatory behavior as a function of size, due to a size-dependent mixing between the heavy hole-light hole
components of the valence band edge states. The calculated elgdaotor values are seen to be in good
guantitative agreement with experimental measurements, suggesting that the rguhigifer values extracted
from time resolved Faraday rotation experiments may be due to distinguishable components of the glectron
factor tensor. Extension to the calculation of excitpfactors appears feasible with this approach.
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I. INTRODUCTION measurementgarried out for nanocrystals with 19 and 25 A

_ o _ oo . . 4
Spin dynamics in semiconductor nanostructures havé’ d|ametf('e).r'eveal o'nly a smglfe ﬁxc'togl fact?r.
been studied intensively in recent years, motivated by the NO definitive assignment of the multiplg factors mea-

emerging field of semiconductor spintronics and quantum inSUréd in TRFR has been made. It was suggested in Ref. 2

formation processing The most important time scale when that the lowest observegifactor be assigned to an isotropic

implementing the quantum computer is the decoherence tim@ €ctrong factor and all otheg factors be assigned to exci-
onic states. It was also speculated there that exciton spin

of the quantum degree of freedom which is intended to bé

used as the qubit. Typically the spin decoherence time in thBr€cession might only occur within a “quasispherical” re-
bulk semiconductor material is extremely short. However, ifgime where the expected anisotropy due to nanocrystal shape

is expected that the spin decoherence time should increa{frnCEIS the expected anisotropy due to the wurtzite crystal

substantially in nanostructures due to the three-dimension? ucture, resulting in an isotropic excitgnfactor and thus

i fi ¢ Thi tation i red by th ducing the overall number of observegdfactors. These
quantum confinement. This expectation 1S supported by g ments were partially based on effective mass estimates

optical orientation experiments of Guptet al* where &  fo'the g factors, with the hole contribution treated as a size-
nanosecond spin lifetime was measured for neutral CdSggependent fitting parameteRecent perturbative calcula-
nanostructures. This indicates that there will be plenty o%jons within a tight-binding description have shown a marked
time to perform quantum operations on the spin degree ofhape dependent anisotropy of the electgpfiactoff that
freedom in semiconductor nanostructure before the coheiyould yield multipleg factors from the electron alone, as
ence is lost. Consequently, spins in nanostructures are exceatell as evidence for quasispherical regime for certain aspect
lent candidates for qubits. On the other hand, both spin baseg@tio shapes. However, the perturbative nature of those cal-
guantum computation and spintronics require precise contrajulations precluded a direct quantitative comparison with the
of the spin. Since the control of the spin dynamics in nano-experimentally measuregl factors.

structures is strongly dependent on thtactors of electrons, The hole spin is initially aligned by the optical pumping
holes, and excitons in the nanostructure, it is imperative ton a TRFR experiment. It has been argued that a fast deco-
understand the behavior and magnitudey déctors. herence of the hole spin nevertheless makes it impossible to

Experimentally theg factors of CdSe nanocrystals with detect the holeg factor in TRFR? Unfortunately, the rate of
wurtzite lattice structure have been measured via time rehole decoherence in CdSe nanostructures is not known, with
solved Faraday rotatiofTRFR)>2 and magnetic circular di- neither experimental measurements nor theoretical estimates
chroism(MCD).* The TRFR experimental measurements re-available. While it is well established experiment&lgnd
vealed multipleg factors. Two or four distinag factor values theoretically that the hole spin decoherence time in the bulk
were extracted, depending on the size of the nanostructusemiconductor is extremely small, the three-dimensional
which ranged from~22 to ~80 A in diameter. The size quantum confinement might alter the hole spin decoherence
distribution of the samples was estimated as 5%-%5%. time in a nanostructure. Recent time resolved photolumines-
Samples from~22 to ~57 A have a size-dependent mean cence on InAs/GaAs quantum dtsuggests that neither
aspect ratio that ranges from 1.0 to 1.3, with a +0.2the electron nor the hole spin relax on the time scale of the
variation®°6 In contrast to the TRFR measurements, MCD lifetime of the exciton in this system. Although no estimation
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of the hole relaxation time could be made, this does suggegactors for CdSe nanocrystals. We observe that the elegtron
that the hole decoherence time becomes much longer ifactors show a weak monotonic decrease as a function of size
nanoconfined systems. It is thus not yet clear whether thand are strongly anisotropic. The magnitude of the calculated
hole g factor signature should appear in a TRFR experimentyalues agrees well with the experimental values extracted
and the possibility of this should not be ruled out. from TRFR measurements on CdSe nanocrystals of similar
In theoretical work, the size dependence of the elearon sjze and aspect ratio. We discuss the implications of this
fa_ctc_)r in se_miconductor nanostructures has _been C_a|CU|atQﬁ,|antitative agreement and the extent to which the elegfron
within the eight band Kane mod&**and within the tight-  factors can explain the TRFR experimental data. Detailed
binding model using a perturbative approdctiin general,  gnayvsis indicates that the calculated electgdactors show

the etffe(f:tlve mas? ap:proxm?tmn—tl;l/pe_ Z(g;%cgl%mn 'S;h'nad'a partial cancellation of anisotropy effects deriving from the
equate for nanostructures at small si as e \yurtzite structure and from the aspect ratio. However, for

atomic nature and surface effects become more dominant ijose g antitatively accurate calculations, it appears that

determining the details of the electronic states. Because of i . : : . . :

atomistic nature, the tight-binding model is well suited to&ier:gslsorr:ginsmti ;eglljg]seismhg?é;?sasf:r:wnwﬁﬁ dck?gg?tlgitlmoerlj

study the electronic and optical properties of nanostructure P 9 quasisp Y i '
in contrast to the previous expectations from effective rass

in this size range. e .
The results of the tight-binding study of Ref. 6 showed aa@nd the perturbative tight-binding approdchhe calculated

strong shape dependence in the elecgdactor. It was ob- hole g factors have very diﬁerent bghavior from thgt of the
served that a transition from anisotropic to isotropic electrorf!ectrons, showing marked oscillations as a function of the
g factor tensor occurs at aspect rati0.3, resulting in a  Size- This is shgwn to be a result_of mixing between the
quasispherical regime as originally suggested by Gupta aneavy hole and light hole states, which is strongly depgndent
co-workers? This previous tight-binding approach to calcu- ©N the nanocrystal size. The present paper does not include
lation of g factors was based on Stone’s formi§lwhich is d_|rect calculation of excitorg factors. _However, the same
derived from a double second-order perturbation analysis ifme-dependent approach can be easily extended to calculate
which both the spin-orbit interaction and the external mag&n excitong factor with the Coulomb interactions included
netic field, i.e., all spin-dependent components of the elechonperturbatively®t’ _
tronic Hamiltonian, are treated perturbatively. As mentioned 1he rest of the paper is organized as follows: In Sec. Il we
above, this perturbative analysis could not provide quantitaSummarize the empirical tight-binding Hamiltonian for CdSe
tively accurate estimates of the magnitude of ¢héactors. nanostructures. and its solution in finite magr)etlc f|elds.. We
This is not too surprising since the spin-orbit interaction isShow that the time-dependent approach provides an efficient
strong in CdS&\4=0.151 eV anchs.=0.320 eV}, and one  Way to achieve th_e hlgh_ energy resolutlon required to extract
therefore expects that this needs to be treated nonperturb@-factors from a finite field analysis. In Sec. Ill we present
tively in order to arrive at quantitatively accurate electronOUr numerical results for CdSe nanocrystals, including as
energy levels, whether in zero or finite magnetic field. Non-"éference points the total density of states and band gap,
perturbative treatment of spin-orbit terms not only provides defore presenting the electron and hglactors that consti-
more accurate estimation of the electrpffiactors for nano-  tute the main focus of this work. In Sec. IV we summarize
structures with strong spin-orbit interaction, but also allows g&nd draw conclusions from our results, and describe possible
systematic analysis of the hole and excitpfactors, in ad-  €xtensions to excitonic calculations.
dition to the electrorg factors.

It is also intriguing to investigate the possibility of a qua- Il. THEORY AND DETAILS OF NUMERICAL
sispherical regime within a more accurate calculation of the CALCULATIONS
electrong factor than is afforded by the perturbative ap-
proach. In this paper, we find that with a nonperturbative
treatment of both the spin-orbit and external magnetic field, We start from the empirical tight-binding model for the
the electrong factors are considerably more strongly aniso-bulk CdSe semiconductor with agp;s* basis. The CdSe
tropic than was found with the perturbative analysis in Ref. 6parameters for the wurtzite structtffere derived from the
and the magnitude of thgfactors is now in good agreement empirical parameters obtained by Lippens and LaAhtar
with the experimental measurements. This indicates that thieulk CdSe in the zinc-blende structure, assuming nearest-
effect of the spin-orbit interaction is too strong to be treatedheighbor interactions only. We construct the CdSe nanocrys-
perturbatively when quantitatively accurate valueggdhc-  tals with wurtzite structure corresponding to the typical CdSe
tors are required. nanostructures seen in transmission electron microscopy

This paper presents nonperturbative theoretical calculamages?® The constructed structures have approxim@se
tions of both the electron and hogefactors for CdSe nano- symmetry. The same structures have been used in previous
structures, employing a time-dependent implementation ofime-independent tight-binding studie&2*We remove the
empirical tight-binding theory. As mentioned above, both thedangling bonds on the surface by shifting the energies of the
spin-orbit interaction and the external magnetic field arecorresponding hybrid orbitals well above the conduction
taken into account nonperturbatively in this approach. §he band edggby about 100 eY. The spin-orbit interaction is
factors are extracted from the magnetic field induced energincluded in the zeroth order Hamiltonidh Spin-orbit cou-
shifts of the electron and hole eigenvalues. We analyze thpling constants are assigned to both types of atoms, with
size and aspect ratio dependence of the electron andgholexc4=0.151 eV ancs.=0.320 eV, respectivel# In order to

A. Tight-binding model of CdSe nanostructure
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reproduce théA-B splitting within thesp;s* basis, a crystal set to choose in the tight-binding framework is the direct
field of —40 meV is added to thg, local orbitals?! product set of all local site orbitals, atomic orbitals, and spin
states. Then

B. Time-dependent approach to calculation of energy levels E - i
SE-Ep=2 | dt€™(yeo(O)]then®)  (4)
- n I |

ito J -

We employ here a time-dependent approach to the calcu-

lation of the band edge energy states in zero and finite magﬁ/here ly.(0))=]site, orbital, spip. To achieve &-function

netic field. This method has been applied previously to th luti d dtoh he infinite | h d
calculation of electronic properties of CdSe nanocrystald€So!ution one would need to have the infinite length recor
of the correlation function(y(0)|y(t)). In practice only a

with zinc blende structur, and to excitonic properties of Si " ) ] " ) i
nanocrystal&? It is a spectral evolution approach that is use-finite length T of record is available, which gives rise to
ful when the properties of a few states are required, e.g@rtificial sidebands around a broaden@élinction approxi-
states near the band edges, to very high accuracy and pre&tation. The finite record length is taken into account by
sion. When all eigenvalues and eigenvectors are required tHBUltiplying the right hand side of Eq4) with the normal-
time-dependent approach is computationally equivalent t¢?€d Hamming window functionv(t) * where

direct diagonalization. One mair_1 advantage qf the tim_e- W(t)zl—COi{%), fo<t<T,

dependent approach for calculation of electronic properties
of semiconductor nanostructures is the ability to efficiently 0 ift>T 5)
incorporate electron-hole interactions, allowing straightfor- ' '

ward calculation of excitonic energies in situations where therhe window function will reduce the sidelobes of the broad-
time-independent approach would require significantly moresneds functions and generate a normalized peak height. The
expensive calculations as a result of the increase in basis seisulting spectrum is of the form

sizel® While efficient direct diagonalization methods for "

sparse matrices do allow high precision calculation of single >y F(E-E )= | dtedB'W(t)(i,(0)| o (1),

electron states, as has recently been demonstrated with cal- it Jo

culation of band edge states of InAs self-assembled quantum 6)

dots in finite magnetic fields, yielding electron and hgle

factors?® extending such time-independent calculations towhere W, represents the absolute spectral weight in eigen-
calculation ofg factors for exciton states does not appearstate|E,) and the line shape functiof(E-E,) is defined by
feasible at this time. In contrast, as we discuss below, the

degree of precision afforded by the time-dependent approach . (E - E,)=- -y = =
to eigenenergy calculations in the finite field calculatioryof (E-E)T 255 I(E-E)T+2sm

factors should also be achievable for exciton states possesl?-th total functi tion time T th
ing electron-hole correlation, e total wave function propagation time 15 the energy

The time-dependent method depends essentially on th{ so(ljutpn C'iSN.AE:Tr/T' If thedende'rgy d;ffe'rence betyveen
spectral decomposition for an arbitrary initial state. [Ep e desired eigenenerdy,, and adjacent eigenenergies, Is

be the complete set of eigenfunctions of the Hamiltonian.largertham/T’ the spectrum near energy can be approxi-

Any initial state|#(0)) can be expressed as the linear Com_mately_repre_sented WL (E~E,) with very high accuracy.
bination of the eigenfunctions Assuming this form, the value of the eigenvalue can be de-

termined with accuracy much higher thariT. To get the
|4(0)) = > by|E,). (1)  most accurate value possible it is desirable to perform the

n time integration of Eq(6) by direct integration instead of
using a discrete Fourier transform.

In order to use the spectral method one must be able to
calculate the time propagata 't efficiently. In order to
accomplish this we first break the time propagator into a
series of short time propagatoesHt=(e )N with t=Ndt
Projecting the wave function at tinteonto the initial wave  For the short time propagator we make use of the Baker-
function and performing the Fourier transform one finds  Hausdorff formul&® to obtain the expansion

o é‘Et E ) e—int — @i(Hy+-+H)dt
dt 0)|y(t)) = b,|*S(E-E,). 3 _ ) ) _
Jw <’//( )|¢()> . | | 5( ) ( ) ~ —lHldt...e_'Hndte_'Hndt---e_'Hndt+ O(dls). (8)

Thus the resulting Fourier spectrum can give us the spectrdlo implement this decomposition we first break the tight-
weight of the initial state in the eigenfunction basis and thebinding Hamiltonian into the on-site self-energy terms, the
eigenenergies of the eigenstates, provided that the eigenstatesal spin-orbit terms, the local Zeeman terms, and the hop-
have nonzero overlap with the initial state. To get the totaping terms. The on-site spin-orbit interaction is diagonalized
density of states one can sum over the spectral decomposind exponentiated analytically in the basis of the tight-
tions obtained using each wave function in a complete set asinding orbitals, i.e., the 8 6 matrix of thep orbitals with

the initial state in term. The natural and convenient completapin. For the hopping terms we further use the checkerboard

ei(E—En)T -1 1 ei(E—En)T+2577 -1

()

The wave function at a later tinteis

(D) = e™|y(0)) = 2 bre (Ey). )
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decompositiotf2 to divide these to different independent time, we can expect to be able to achieve a similar accuracy
directions. Note that in the zinc blende structure there ardor calculation of Zeeman shifts of excitonic states incorpo-
only four fundamental directions while in the wurtzite struc- rating electron-hole correlation.

ture there are seven fundamental directions. As a result of

this decomposition each term contributing to the short time C. Calculation of the g factors

propagator can be consequently evaluated analyti€alyd The g factors are obtained from a finite field analysis in
the time evolution of the state can be calculated very effiwhich the electron and hole eigenvalues are calculated as a
ciently. function of an applied external magnetic field. The full
The eigenfunctionE,) with eigenenergy, can be calcu- Hamiltonian is thus
lated from
H=Hq+gougs- B + ugl - B, (10
|En>°‘f dteEnt|y(t)), (9) where Hy is the tight-binding Hamiltonian including spin,
0 i.e., incorporating all spin-orbit interaction is the elec-

tron orbital angular momentum operator, ahthe electron

provided there is nonzero overlap between the initial wavespin operaton(g, is the free electrorg factor, andug the
function and the desired eigenfunction, i.5,|4(0))#0.  Bohr magnetop Noting that the spin-orbit coupling has al-
Typically when there is no magnetic fiel@=0), the initial  ready been incorporated in the zeroth order Hamiltonian as
state is taken as a uniform superposition of local orbitalslescribed abovéin contrast to the perturbative analysis in
with specific angular momentum indices. The resultaniRef. 6, we shall refer toB-dependent terms in E¢10) as
eigenfunctions are then used as the starting point to calculatee effective magnetic Hamiltoniaki,, i.e., Hy+H.
the eigenfunctions and eigenenergies when the magnetic When there is no external magnetic fi¢Bl=0) Kramer's
field is turned on. theorem guarantees that each eigenstate is at least twofold

If there are degenerate eigenstates, the right hand side g@égenerate. In bulk CdSe the heavy hole and light hole are
Eq. (9) will in general be some unknown linear combination also degenerate at tdepoint. In a CdSe nanostructure it is
of these eigenstates. However, if a set of exact or approxiexpected that the quantum confinement will lift this degen-
mate quantum numbers which can be used to label the deracy of heavy and light holes. Therefore, in this work ghe
generate eigenstates are known in advance, eigenfunctiofsctors obtained from finite field calculations will be defined
corresponding to definite quantum numbers can be derivedith respect to the zero field Kramer’s doublets. For a Kram-
by judiciously choosing an initial state having the sameer’s doublet the effective magnetic Hamiltonian has the form
quantum numbers. Typically the angular momentum index is

used in this work for this purpose. This property will be used Him(B) = ugB -G - S, (11)
to generate Kramer’s doublets in our calculations. More deyheresS is the effective spin operator which is defined with
tails of these procedures are given below and in Sec. lll.  regpect to the two Kramer’s state), andG is the 3x 3 g

There are three important energy scales in this problemyactor tensor. In the resulting basis of the Kramer’s pairs, the
The first energy scale is the energy difference between lowaffective spin operato® has the form

est conduction electron and higher energy conduction elec-
trons and the difference between highest valence hole and S, = TU _ TU S,= TU (12)
lower energy hole states. This energy scale is typically at the 2 Sy 27 27
order of 100 meV or larger. The second energy scale is the ) , i
energy difference between nearly degenerate hole states tH4f€€ m is an integer chosen so that the real spiand
correspond approximately to the heavy-hole and light-hol¢fTeCtive spinS are approximately equal. o _
states in the bulk limit. This energy scale is size dependent 1N€ eigenvectors of th& tensor define a principal axis
and is sensitive to the shape of the nanocrystals. In our calfaéme f'or the twofold degenerate space spanned by the
culation we find this energy scale to be 1—100 meV. TheKramers doublet.. It is important to clarlfy the definition and
third important energy scale is the magnetic field inducedN€ Sign convention for the factors derived from such a
splitting for a Kramer’s doublet from which thgfactors are  finite field analysis, especially when thegdactors are an-
extracted. Typically this energy scale ranges from a few tdSOtropic. Let&, i=1, 2, 3 be the principal axes. Then an
several hundregeV. external magnetic field

The ma_lximum total propagation time in_the_present cal- B=B,& + B, + B:&, (13)
culations is about 1,280,000 1/eV, resulting in an energy
resolution of 2.5ueV. This energy resolution is enough to Will give rise to a Zeeman splitting
single out the spectrum of band edge electron and hole states
from other higher energy states. It is also sufficient to resolve AE(B) = (E(B) - E(0)) = MBE 9iB;- (14)
the two nearly degenerate hole states at the band edge. Once '
a high resolution eigenfunction is generated, by using win\We will denote the valueg; as principalg factors. Individual
dow function Eqs(5) and(6) to suppress the contribution g; can be identified by varying the external magnetic figld
from adjacent eigenstates, the eigenenergies of band edgéong each of the principal directions in turn and calculating
states can be determined with accuracy up {@el. Since the corresponding field dependent Zeeman splitting in each
the accuracy is determined primarily by the total propagatiorcase.
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In order to carry out these calculations, one needs to germmagnetic field induced energy shift is positive or negative. In
erate the eigenvectors of tii& tensor within each Kramer's the bulk limit this procedure will correctly reproduce the
doublet. In a time-independent calculation, this would beheavy-hole and light-hole values.
done by making a degenerate perturbation theory analysis of A second complication for calculation of the halefac-
the Kramer’s doublets at zero field in order to find the correctors is the presence of strong mixing between heavy-hole and
basis for the effective spifs at a finite B field. Within the light-hole components in nanostructures, which is sensitive
time-dependent approach we first generate initial zero-fieldo both size and shape of the nanostructure. This mixing
states having definite total angular momentum indices = modifies the corresponding zero-field bases of the two
+| andj,, and then calculate the corresponding Zeeman eneoupled Kramer's doublets and may consequently induce
ergy shift for these. We can verify that the initial state is ashape and size dependence of thfactors for these states.
good zero-field eigenstate that evolves to the correct anguldrhe results presented in Sec. 11l B below show that for CdSe
momentum basis fo6 at finite field by checking that the nanocrystals the holg factor oscillates as a function of size
amplitude of the Zeeman-shifted spectral peak remains coras a result of this heavy-hole/light-hole mixing. We find that
stant at finiteB. Any substantial change in this amplitude calculation of the zero-field andy components for the hole
indicates the presence of an undesired componenj,dhat  states are considerably more affected by this basis mixing
will shift in the opposite direction as the field is turned on, than thez component, rendering the numerical determination
which leads to unreliability in the value of the extracted Zee-of a zero-field angular momentum eigenstate that adiabati-

man shift. cally evolves to a single finite field angular momentum
In the present calculations for CdSe nanocrystals we fingigenstate more difficuliSec. Il B).
that the conduction electron is primaritylike. In this situa- This size and shape dependent mixing of light and heavy

tion one can identify the effective spin opera®mwith the  hole states presents an additional difficulty for attempting
real spin operatos, and hence choose the initial wave func- any correlation with atomic and bulk limiting values of hole
tion to have a well defined real spin index. We find that theg factors. To our knowledge, there have been no estimates of
above procedure is extremely stable for calculation of thénole g factors for CdSe nanocrystals based on effective mass
electrong factors, and leads to unambiguous determinatiorthat may be compared with the present tight-binding results.
of the sign of theg factors. The results presented in Sec.
[l A show that the values for electrog factors calculated
with this procedure decrease as the nanocrystal size in-
creases. This same trend of a monotonic decrease was alsoSince in this work they factors will be determined via the
seen in estimates based on effective mass conéepts. energy splitting of the electron and hole states under the

In contrast, the hole wave function is primarijy”ke’ as external magnetic field, it is essential to cast the tight-
expected for a direct band gap 1I-VI semiconductor. Thisbinding model into a gauge invariant form. We use the
renders it difficult to link the effective spiB of a hole state  Peierls-coupling tight-binding scheme here to ensure gauge
to the real spirs, resulting in an ambiguity of the sign for the invariance in our tight-binding modéf-2%33In this scheme
hole g factors. In this situation it is more appropriate to ex-an electromagnetic field specified by the scalar potential
press the Zeeman splitting instead by the quadratic form  ®(r',t) and the vector potenti@(r,t) will modify the on-site

(a,Ri|H|a,R)) and off-site{a’,R{|H| e, R;) tight-binding pa-
AE’B) = (E(B)-E(0)*=uz2 o/B], (15  rameters, via
|

(a.Ri|H[a.R) — (a,Ri[H|a,R) - P(Ri,t)  (16)

D. Gauge invariance

in which the sign of the principa] factor is not well defined.
Typically, the sign convention of thg factor in the atomic and
and bulk limit could then be used as a reference convention
to assign a definite sign to thefactors in the nanostructure.
This is because in both these reference points there usually
exists a simple relation between the effective spin operator

. : . (17)
and real spin operator, which would enable us to determine
the corresponding sign of thg factor in the nanostructure. where a straight line should be taken for the integral over the
However, for bulk CdSe there are to our knowledge no exwvector potential.
perimental results for electron, hole, and excitpifactors. To impose gauge invariance, we thus only need to modify
Consequently, in this particular case it is not possible to simthe tight-binding hopping constartransfer integral be-
ply use bulk experimental results as a reference point otween nearest neighbors. Since there are only seven indepen-
guide to determine the sign of the nanocrysgafactors. dent hopping directions in a wurtzite structure, the gauge
(There do exist experimental results for the related materigbhase can be calculated and stored before performing the
CdS that will be useful in Sec. I).In order to assign the time propagation. A brief summary of the gauge phase in the
signs to the holg factors for CdSe we therefore adopt the wurtzite structure is given in the appendix.
following scheme. The hole wave function will be calculated To estimate the contribution to the Zeeman splitting that
by propagating an initial state that has definite angular moelerives from the gauge phase, we have calculated the Zee-
mentum indices, e.gj=3/2, j,=3/2, andj=3/2,j,=1/2.  man splitting without gauge phase for some of the nanocrys-
The sign of theg factor is then determined by whether the tals studied here. We find that the gauge phase is responsible

R .
<a',Ri'|H|a,Ri> N <a’,Ri'|H|a,Ri)e_i§f A(r,t)-dly

R
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TABLE |. Size, diameters, and aspect ratio of the nanostructures.

Number of atoms 66 108 144 237 336 384 450 561 758 768 777 1501
\s‘“LXLy(A) 13.38 13.38 16.92 21.85 21.85 25.39 26.76 22.85 34.55 27.42 20.44 43.01
L,(A) 11.38 18.38 18.38 14.88 21.88 24.38 21.88 35.88 35.88 39.38 49.88 42.88

Aspect ratio 0.85 1.37 1.09 0.68 1.00 0.99 0.82 1.64 1.04 1.44 2.44 0.99

for 10%—-40% of the Zeeman energy. Without the gaugeas initial values. For the larger nanostructures, we assign the
phase the Zeeman splitting increases and becomes moirgtial value of band edge energies by extrapolating the band
isotropic. edge energies of the smaller nanostructures.

To get the high resolution band edge eigenenergies and
eigenstates we first estimate the eigenenergies as described
above. A low resolution eigenstate is then generated using

We investigate CdSe nanostructures having 66—1501 asome judiciously chosen initial state. The initial state is set
oms. This roughly corresponds to the size range of 15-43 Aip to have nonzero overlap with the desired eigenfunction
in effective diameter. In our calculation we define the aspechnd to possess a well-defined value of some particular quan-
ratio to be the ratio between effective in-plane diametetym number such as trecomponent of the local total angu-
(VLyLy) and out-of-plane diametdt.,). The aspect ratio of |ar momentumj,. This low resolution eigenstate is then put
these nanostructures ranges from 0.68 to 1.64. These can figough the spectral weight analysis described in Sec. Il B
divided into three different aspect ratio groups. The firstyhich results in a higher resolution eigenenergy. The higher
group has aspect ratio well below one, ranging from 0.68 (Qegoution eigenenergy is then used together with the lower
0.85. The second group has aspect ratio approximately equalso|ytion eigenstate to generate a higher resolution eigen-
to one, ranging from 0.99 to 1.09. The third group has aspeiate. This process is iterated until the desired accuracy is
ratio well above one, ranging from l.37_to 1._64. AnanOStrUC'acquired and, in the case of the hole, until the near degen-
ture with aspect ratio 2.44 is also studied, in order to probgy4cy hetween heavy-hole-like and light-hole-like doublets is
the trends of factors in the quantum rod limit. In Table | we |ified. Once the CBE and VBE eigenenergies are found, the
summarize the in-plane diameter and out-of—plane diametglo g gap can be trivially calculated froBy,=Ecse—Evae.
values of the nanostructures. If the aspect ratio of the nanqp, Fig. 2 we plot the high resolution results for the size
structures deviates from 1.0 by less than 10% then it is aPdependent CBE energy, VBE energy, and band gap. These
propriate to use a single effective diameftelr,LyL,) to char-  egyits are all stable with respect to further iteration. Note
acterize the nanostructure. Note that the nanostructures usg¢ht the VBE consists of two nearly degenerate Kramer’s
in TRFR experiments to datéiave reported aspect ratios in doublets. As the size of the nanostructure increases, these

the range of 1.17-1.34. However, a sin_gle effective diametefyo doublets will converge, respectively, to the heavy and
was, nevertheless, used to characterize the nanostructurggnt hole doublets in bulk CdSe.

Furthermore, the TRFR sample possessed a 5%-15% size
distribution and +0.2 aspect ratio variation. Hence, one must
be cautious when making a quantitative comparison betweer s — — ——
the calculated and the experimental results.
To verify that the tight-binding model can reproduce the 7| 450 Atom CdSe Nanostructure ]
general features of conduction band, valence band, and ider
tifiable band gap for nanostructures we have calculated the ¢ | .
total density of stategTDOS) for smaller nanostructures
(66—450 atoms In Fig. 1 we plot the low resolution
(=50 me\) TDOS for a 450 atom CdSe nanostructure. It is
evident from the figure that the conduction band edZBE),
valence band edg@/BE), and band gap can be easily iden-
tified. It should be noted that the TDOS calculation is com- 3 |
putationally expensive because one has to sum over a conZ
plete set of initial states. However, only the states at the banc 2
edges are relevant to the optical orientation experiment. A
prior knowledge of the TDOS is not necessary for calcula- 1 M “ Eg
ﬂ

Ill. RESULTS

5

ber of States
S

tion of the band edge eigenstates. A reasonable initial gues

of the band edge eigenenergy is sufficient for calculation of o
high resolution band edge eigenenergies and eigenfunction
through an iterative procedure described below. For the
smaller nanostructures where we have calculated the TDOS, FIG. 1. Total density of states for a 450 atom CdSe
we use the band edge energies identified from the TDOS datanocrystal.

——

3 4 5 6

6 5 4 3 -2 -1 0 1 2
Energy (eV)
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FIG. 2. (8 Band gap(b) CBE energy(c) VBE energy as a FIG. 3. Zeeman shift of thé¥*X) component of the Kramer’s
function of the number of atoms. Note that the VBE consists of twogoyplet in the CBE wherg) the external field B is in the x-direc-
nearly degenerate levels in a CdSe nanocrystal, each correspondifign and (b) the +z direction.
to a perturbed Kramer’s doublet, i.e., four states in total.

the |'%) state with magnetic field in the direction, for a
A. Electron g factor 336 atom CdSe nanocrystal. Assuming the spec_tra_l peaks
have line shapes of the for®E-E(B)), the magnetic field

Although the CdSe nanostructures we studied here havéependent eigenenerds;,(B) can then be determined with
only approximateC,;, symmetry, we expect, nevertheless, very high accuracy. Thg factor is then extracted by fitting
that the principal axes are still located approximately along=,,(B) as a function oB.
thex, y, andz directions. This is supported by the result of a  Figure 4 shows the resulting electrgrfactors as a func-
perturbative time-independent tight-binding calculatiorgof tion of the length parametér,. The data are grouped accord-
factors for these same nanocrystals which it was found ing to the aspect ratio of the nanostructure. Grougdwn
that g,~g,#d,. As described in Sec. Il C, to accurately triangles has aspect ratio 0.68—0.85, grougapen squargs
identify the Zeeman splitting it is necessary to generate théas aspect ratio 0.99-1.09, and grougup triangle$ has
Kramer’s doublet which will evolve into the Zeeman eigen-aspect ratio 1.37—1.64. One calculation for a nanocrystal
states when we turn on the external magnetic field. For theith aspect ratio 2.44 is also includé¢dosed circlg. Theg
CBE states, the Kramer’s doublgf*?) for a magnetic field factor values derived from TRFR experiments on similar size
pointing in the #-direction can be generated via setting all CdSe nanocrystasare also plotted for comparisgaster-
local orbitals of the initial states to have spin equal to £1/2.isks). The 5%-15% size distribution of the experimental
The Kramer's doublet fox andy directions are then ob- sample is represented in the figure by the horizontal error
tained as| w*"}zé(w*z)iwfz)) and |¢iy>:%(|z/f+z>ii|¢_z>), bar. As noted above, the aspect ratio of the sample in TRFR
respectively. The external magnetic field is limited to be lesxperiment in this size range was estimated as 1.17-1.34,
than 10 T, which corresponds to the range of magnetic fielavith a +0.2 variation. The present calculations yiedd
in the typical experiment&? To make the connection to the =g,>g,, where equality is within the resolution for all
CBE in the bulk material, which is-like, we calculate the nanocrystals, as expected for structures possessing approxi-
spectral weight of thés,o=1/2) local orbitals of Cd and Se mate C;, symmetry. As a result, only two sets of data are
in the statg¢/*?). In Table Il we summarize the size depen- shown in the figure and the average vatue=(g,+9,)/2 is
dence of theses-orbital spectral weights. We find that the used to represent bot andg,, where the notatiog, refers
CBE electron in the nanostructure is still primariylike,  to the response to a field perpendicular to the hexagaal
with spectral weights greater than 0.75 for all sizes. Theaxis of the nanocrystal.
s-orbital contribution increases monotonically as the size in- Similar to Ref. 6, these results show a strong shape de-
creases. pendence of the electrapfactor. However, these nonpertur-

In Fig. 3 we plot the magnetic field dependent spectra foibative results show stronger anisotropy compared to the per-
the |¢) state with magnetic field in the direction and for  turbative results of Ref. 6 and also a qualitatively different

TABLE Il. Spectral weights of thés,o=1/2) local orbitals of Cd and Se in the stdig?).

Number of atoms 66 108 143 237 336 384 450 561 758 768 777 1501

|S,¢r:%) 075 079 081 083 08 086 086 0.88 0.87 0.88 0.89 0.90
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S AR AR AR AN AR AR AR ments in Ref. 2. This interpretation of observation of mul-
NG . tiple g factors deriving from an electrog factor anisotropy
_\V - 4 that is dependent on the shape and size of the CdSe nanoc-
| 9, @ rystals is different from the original experimental speculation
that one of the observeglfactors might be identified with an
e isotropic electrorg factor while the otheg factor might be
I 7 identified with an excitorg factor?
A — It is intriguing to look into the aspect ratio dependence of
L s . theg factors in more detail. We observe from Fig. 4 that both
: z® g, andg, increase as the aspect ratio increases, provided that
the aspect ratio is less than 1.64. We find thais more
sensitive to the aspect ratio and increases much more with
n this thang, . The g factors begin to saturate between aspect
g, 1 ratio 1.64 and 2.44. It is expected that if one continues to
) I A I I I I T I increase the aspect ratio thep should begin to decrease,
%20 2 30 35 40 45 50 since it eventually should approach the bulk value. On the
L, (Angstrom) other handg, should stay roughly constant after it saturates,
provided that the in-plane cross section is kept the same
when one increases the aspect ratio. It should be emphasized

: . that the aspect ratio is only a simple indicator for the shape
magnetic response along the hexagonal crystal axisganafers . .
. of the nanostructure. Two nanostructures with similar num-
to the average of, and g,. Crosses denote experimental values

from Ref. 2, all other symbols refer to the present nonperturbativé)%r of ?tohms and aspfect ra?o \;alueSlegh:hS“” bhave \t/_ery
tight-binding calculations. The closed triangles show the calculate&“b erer_l .S ?pe Orr] surtace S.rduc qre. rom ? observa |(?ns
values lying closest to the experimental results, which correspond t_@ ove itis clear that we can identify a range of aspect ratios

aspect ratios 1.37-1.64, in good agreement with the aspect ratios Bt Which the effect of anisotropy of the wurtzite structure and
the experimental sample. that of the shape of the nanocrystal partially cancel each

other so that the electrapfactors become more isotropic. In

aspect ratio dependence. This latter point will be addresseif€ cases studied here it appears that the cancellation is not
in more detail below. Bothy factors g, and g, decrease complete. It also appears unlikely from these exact calcula-

monotonically as a function of the nanocrystal size. Thelion of g factors that the cancellation will become more com-
value ofg, decreases rapidly, while the valuegf decreases plete for Iarge-5|_ze nanocrystals, since the dlfference_ be-
more gradually. We note that under certain growth conditiondW€€n g, and g, increases for larger nanocrystals having
it is possible to synthesis CdSe nanostructures with zin@SPect ratio approximately unity. As a result, a true quasi-
blende structuré! It is expected that for zinc blende CdSe SPherical regime as predicted by an analysis perturbative in

nanocrystals, if the shape of the nanostructure also has highir’*>in which the electrory factors become isotropic may
symmetry, there will be only one isotropig factor never be reached.

g-factors
Y

1.2
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BARPN
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FIG. 4. CdSe nanocrystal electrgrfactors as a function of the
nanocrystal length parametés. The termg, corresponds to the

componen?.z B. Hole g factor
Figure 4 shows a good agreement between the current '
calculations and the experimentally measured pair faic- We have calculated the hotgfactors for the two nearly

tor values over this size range. We note that due to variabldegenerate valence band edge doublets, which will be de-
orientations of the nanocrystal in the TRFR experiments ofhoted byh; andh,. We defineh; andh, to be the highest and
Ref. 2, quantitative comparison with the TRERactors re- second highest energy valence band states, respectively. In
quires making an average over allowed nanocrystal orientghe bulk limit, the energy difference of these states corre-
tions in order to obtain a time-dependent spin magnetizatiosponds to the A-B splitting of the semiconductor. To connect
to which empiricalg factors could be fit? Detailed compari-  the h; andh, states to the heavy and light hole states in the
son would require microscopic knowledge of the matrix en-bulk material we calculate the spectral weights of local or-
vironment of the nanocrystals, which is unfortunately notbitals possessing definite angular momentum quantum num-
well understood. Thus it is not clear to what extent the an-ber |j:§,jz> in h; and h,. These spectral weights are sum-
isotropy of the electrory factors predicted here for single marized in Tables Ill and IV.

nanocrystals will be reflected in an ensemble measurement. We find that for nanocrystals in the size range we are
The quantitative agreement between theory and experimeimterested in, the mixing between the +3/2 and +1/2 com-
in Fig. 4 is sufficiently striking that it appears possible thatponents is very strong. The mixing appears to be sensitive to
the two experimentally observed distingt factor values the size of the nanocrystal, without any clear trend emerging.
might derive from the electronic valugs andg,, even after We attribute this is to an additional sensitivity to nanocrystal
some averaging over nanocrystal orientations. We note thahape which is coupled with size for these atomistic repre-
the theoretical description of the nanocrystals employed hergentations of nanocrystals, as discussed elsevihese re-
provides a realistic representation of the nanocrystal shapsult of this mixing it becomes improper to rigorously identify
that is consistent with detailed transmission electron microsthe h,(h,) state with the heavylight)-hole states, respec-
copy analyses of the nanocrystals used for the TRFR expertively.
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TABLE lII. Spectral weights of the local orbital§=3/2,j,) in the h; state.

Number of atoms 66 108 144 237 336 384 450 561 758 768 777 1501

jZ:+% 0.47 003 0.27 082 006 030 081 0.06 087 037 051 0.88
jZ:+% 0.12 078 0.24 002 078 021 0.03 079 0.02 0.11 0.34 0.03
jZ——% 0.29 000 037 004 004 039 006 005 0.04 0.18 0.02 0.04
jz——g 0.01 003 0.02 000 004 002 0.02 0.02 0.00 0.25 0.00 0.00

For each nanocrystal we first look at the spectral weighty factors, but in addition the heavy-hole-likg also shows
of h; andh, states and determine which is more heavy holesome oscillation as a function of nanocrystal size. For the
like. Then to find the best zero-magnetic field eigenstate idight-hole-like states, we observe oscillations for bgthand
the twofold degenerate space spanned by the correspondigg but the general trend is not as clear as for the heavy-hole-
Kramer’s doublet, we proceed as followg*?) is generated like states.

by setting initially all local orbitals to havg=3/2, j, It is important to clarify how thesg factors should ap-
=+3/2 orj=3/2,j,=+1/2 and|4**) is generated by setting proach the relevant bulk values when the size of the nano-
initially all local orbitals to havej=3/2, j,=%+3/2 or j crystal increases further. In the bulk CdSe semiconductor,

=3/2, j,=+x1/2. Theg factor is extracted from the finite the valence band near tHé point can be described by the
field Zeeman shifts by setting=1 in Eq.(12). This defines Luttinger Hamiltoniar®®> The states [3/2,+3/2 and
the numerical scale of thgfactors for heavy- and light-hole- |3/2,+1/2 are associated with the heavy hole and light
like states to be equal, which is the preferred conventiorole, respectively. If the heavy hole and light hole are really
when there is strong mixing of these statsse discussion degenerate, then E@ll) is not actually appropriate, since
below). As described in Sec. Il C. above, the quality of thethen the full fourfold nature of th¢=3/2 angular momen-
zero-magnetic field eigenvector can be checked by examirtum state has to be taken into account. When the heavy-hole
ing the amplitude of the spectral peak resulting from thisand light-hole states are not degenerate and the mixing be-
initial state. Thus, if the peak amplitude remains very closaween |3/2,+1/2 and |3/2,+3/2 components is small,
to 1.0 when the magnetic field is turned on, then it is a validthen one can use E@ll) and setm=3 for the heavy hole
zero-magnetic field eigenvector. However, if the peak ampliandm=1 for the light hole in Eq(12). However, when this
tude deviates from 1.0, it indicates that the initial eigenvectomixing is strong, as in the nanocrystals studied here, it is
contains components of zero-magnetic field eigenvectors thatreferable to use a single valueroffor both states to facili-
will shift in opposite directions when the external magnetictate comparison. We now consider the relation of the Igole
field is turned on and the resulting spectrum is the sum ofactors in Figs. 5 and 6 to the corresponding bulk values. The
two line shape functions whose centers differ by the Zeemafinding thatg, for the heavy-hole-like state is close to zero
energy splitting. In this case, the Zeeman energy cannot bier all except the smallest size nanocrystals is consistent with
reliably extracted from the spectra. Of the nanocrystals studanalysis of the Luttinger Hamiltonian. It can readily be
ied in this work, we find thaty*) of light-hole-like states for shown from the form of this that, is negligible if the
nanocrystals with 450, 777, and 1501 atoms fail to generatheavy-hole/light-hole mixing and tHeé terms are neglected.
a reliable zero-magnetic field eigenstate. As discussed earliefhus the hole value of), appears to rapidly approach the
this is due to the large degree of mixing between the heavyexpected bulk value predicted by the Luttinger Hamiltonian
hole and light-hole-like states. as the nanocrystal size increases. Although the bdector

In Fig. 5 and Fig. 6 we plot the size-dependent hgle has not been measured for bulk CdSe, experimental measure-
factors for the two hole doublets. The data has been groupedents for the related material CdS show tbatis zero for
into heavy-hole-like and light-hole light states. Similarly to CdS in the hexagonal structdrand it is reasonable to expect
the electrong factors, the data for holg factors for these a similar value for CdSe.
sizes are also grouped by the nanocrystal aspect ratio. We We attribute the oscillations in the holg factors with
find that for the heavy-hole-like statg, is close to zero nanocrystal size to the irregular mixing of local orbitals evi-
except for the smallest nanocrystal for which it remains fi-dent in Tables Il and IV as a function of nanocrystal size.
nite. For the heavy-hole like states the parallel compoggnt From Table Il we observe that thg state becomes increas-
shows a similar same aspect ratio dependence as the electriogly heavy-hole-like for nanocrystals having more than 450

TABLE V. Spectral weights of local orbitalg=3/2,j,) in the h, state.

Number of atoms 66 108 144 237 336 384 450 561 758 768 777 1501

jZ:+g 0.02 046 0.04 046 064 040 036 053 037 037 035 0.04
jZ:+% 0.06 0.20 0.03 0.03 0.0 0.13 013 033 0.17 0.11 0.10 0.83
iz —% 0.08 0.13 037 035 009 017 041 0.02 037 0.19 043 0.02
jZ——g 0.68 0.07 043 000 008 022 001 0.01 0.01 0.23 0.06 0.06
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FIG. 5. CdSe nanocrystal heavy-hole-like hgldactors as a FIG. 6. CdSe nanocrystal light-hole-like hotg factors as a

function of the nanocrystal length paramelgr A.R. denotes the function of the nanocrystal length parametgr A.R. denotes the
nanocrystal aspect ratig, refers to the component parallel to the nanocrystal aspect ratig, refers to the component parallel to the
hexagonal crystal axis, armgl, to the component perpendicular to hexagonal crystal axis, argl, to the component perpendicular to
this. this.

.This approach allows an exact, nonperturbative analysis,

atoms, provided that the aspect ratio is close to one. It i high resolution of the Zeeman shifts for both electrons
expected that as the size of the nanocrystal increases furth%r

) nd holes.
the two hqle states will eventually_converge to the heavy- Application to CdSe nanocrystals of variable shape and
hole and light-hole states, respectively. One must then b, o 1ot simulate the experimentally accessible wurtzite
carefu_l when comparing the hotgfactor values c.alculated CdSe nanocrystals showed that the electrprfactor is
for finite nanocrystals by the present method with the bul

heavy-holeg factor, since as noted above the latter is usually; trongly anisotropic in these systems. In particular, we find
b ] : LY thatg, =g, > g, for all nanocrystal sizes, wheradenotes the
defined withm=3 in Eq.(12),'* while the value ofm in this 9=0y~ 0 y

K 1% I hol b f th wurtzite axis. This is consistent with the approximalg,
work is set to 1 for all hole states because of the Strongy ety of the nanocrystals. The magnitude of the aniso-

mixing between light-hole-like and heavy-hole-like statesy,, gpjitting is seen to increase for larger nanocrystals,

(see gbov)_e . ... while each of theg factor components decreases with in-
This evidence .Of mixing petween the heavy- anq light- reasing nanocrystal size. The stroggfactor anisotropy

hole states, and its sensitivity to the nanocrystal size an een here in these nonperturbative calculations provides con-

shape also implies that an exciton in a nanostructure withig4ti0n of the qualitative predictions of size-dependent an-

trlus Slz€ ragghe can?]otl be Sl_'rqulﬁ <I:on5|deredﬂ?s a suUm Qdntropy in electrorg factors seen in the perturbative calcu-
electron and heavy-hole or light-hole states. The excgon ,inns of Ref, 6. However, the nonperturbative calculations

factor will therefore also be sensitive to the size and shape gf provide quantitatively accurate values for the compo-

the nanocrystal. nents of theg tensor, unlike the previous perturbative analy-
sis. This improvement derives from the nonperturbative
IV. SUMMARY AND DISCUSSION treatment of the spin-orbit interaction, which is rela.tivelly
strong compared to the effect of the external magnetic field
We have calculated thg factors of the conduction band and which should therefore be treated nonperturbatively if
edge electrons and valence band edge holes in CdSe narmessible.
structures using the time-dependent tight-binding method We have investigated the dependence of the eleagron
and a finite field approach to the evaluation of theactors.  factors on the nanocrystal aspect ratio in considerable detail.
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We find that in general thg factors initially increase as a resolution obtained here=1 V) appears to be sufficient to
function of the aspect ratio, and thgtincreases more than resolve the exciton fine structure.

g.. The increase ofy factors saturates around a value of  Finally, we note that the size dependence of the aniso-
aspect ratio 1.62-2.44. It is expected thatvould then be-  tropic electrong factorsg, andg, shows quantitative agree-
gin to decrease again until it reaches the bulk value wdiile  ment with the pairs of values extracted from TRFR experi-

would stay roughly the same, if the aspect ratio were tQnental data over the same size range of nanocrystals. While
continue to increase further. The observed aspect ratio dggyme averaging over nanocrystal orientation would be re-

pendence allows us to identify a regime where the anisotropy,ireq in order to make unambiguous comparison with the
derived from the wurtzite structure and that derived from theexperimental observations, it appears possible that the two
shape of the nanocrystal partially cancel each other, resultin '

: ; i o gistinctg factors seen in the TRFR experiments may be de-
a more isotropic regime. However, a full cancellation is

never reached in the present calculations, unlike the previo%@ved fro”.‘ the tV\.IO comp_onentg;z .and g, of .the electrong
perturbative tight-binding analysis where a complete cancelf@ctor. This prowdes a different interpretation from _the ear-
lation over a finite size range was séefrom the present !|er sp_eculanons that one Of. the observgdactors is an
nonperturbative calculations it also appears unlikely that iSOtropic électrong factor Wg'le the other one should be
larger nanocrystals the cancellation would become complet@SSigned to an excitogifactor” In this context, extension of
since the difference betweepandg, for a unit aspect ratio the current calculation scheme to the evaluation of exaton
nanocrysta] is seen to increase as a function of the nanocry?Ctors in these nanostructures would be extremely desirable
tal size. and interesting, particularly since the only existing estimate
Unlike the perturbative approach, the time-dependent aptor an excitong factor relies upon a free parametrization of
proach allows direct calculation of holg factors, despite the hole contributior.
complications due to the valence band degeneracies which
require projecting out initial states of specific total angular ACKNOWLEDGMENTS
momentum and of itg projection. We find that the valence
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APPENDIX

that for the electrory factor g,, although the superimposed d,= %(2\5,0,— D, ds= a—gf’(— 212,0,- 9,
oscillations make it more difficult to describe the general
trend for the holes. 53: a_;(_ \‘5,\@7_ 1), d*G: a_;(&,_\;%,_ 1),

These results have implications for thdactors of exci-
tons, namely of electron-hole pairs correlated by the Cou- _ — . A
lomb interaction. Theg factor of an uncorrelated electron- d,= %(— V2,-16,- 1), d;= %0(\r’2,\s’6,— . (Al

hol i b imated l@;=0g.—gn. The mixi . . . .
ole pair may be approximated 1B=g,- gy € mpang 5—|erea0:2.625 A is the lattice constant. This convention en-

between the heavy- and light-hole states, and sensitivity t bl ¢ lculate th q dent i i
the nanocrystal size and shape, implies that an exciton in th s us 1o caiculate the gauge-dependent quantilies explic-

size range cannot be simply considered as a sum of electrdlY: -

and heavy-hole or electron and light-hole states. The exciton For a fixed external magnetic fieB=(B,,B,,B,) we as-
g factor must therefore also be sensitive to the size and shagggn the vector potential to bé=3BxF. We define a
of the nanocrystal. In addition, the Coulomb interaction canmagnetic-field-dependent gauge phase

also be expected to modify the simple sum of electron and Lo
hole contributions. As discussed above, it appears feasible to ¢(§a-adir) _ SfRa+ddirA _ 5I, (A2)
extend the current scheme to now calculate the correspond-

ing excitong factors, although this would not be possible .

with a standard time-independent approach based on diresthere R, represents the position vector of an anion. The
diagonalization. Since the exciton fine structure splitting ingauge phase for the cation can be easily calculated by taking
CdSe nanocrystal is of the order 1-10 mé&V¥he energy the appropriate complex conjugation of the phase of the cor-

Ra
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responding anion. With the line of integration taken to be abecomes
straight line, the integral can be calculated analytically. We . . .
denote |¥) to be the wave function of the system and € Vmda (AW (Ry)) + AW H(R)))

[¥,(R)) ([¥,(R))) to be the tight-binding local km)-
orbital wave functions for an aniofcation located atlia
(ﬁc) where Iia and Iic are nearest neighbors. Le4,
=(¥|W((Ry)) and Ap=(V| ¥ (Ry).

= (A COSVpulD) = i, SIN(V )& ¥Racan) [ (R,))

+ (A, COSVyrrdt) — iA, SIN(V,dt)e “Radan)| W, (R))),
(A3)

Using this notation the gauge-dependent short-time propawhereV,,, is the hopping constaritransfer integralin zero

gation of the electron hopping in some particular direction

magnetic field.
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