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We present theoretical calculations of the Landég factors of semiconductor nanostructures using a time-
dependent empirical tight-binding method that allows a nonperturbative treatment of both the spin-orbit inter-
action and an external magnetic field. The electromagnetic field is incorporated into the tight-binding Hamil-
tonian in a gauge-invariant form. Eigenenergies and eigenfunctions of the band edge states are calculated as a
function of the external magnetic field, and theg factors are then extracted from the field-induced energy
splitting of the eigenstates. The size and aspect ratio dependence of both electron and holeg factors are
investigated for CdSe nanostructures. We find that the electrong factors for single nanocrystals are weakly
dependent on nanocrystal size and are strongly anisotropic, where the extent of anisotropy depends on the
aspect ratio of the nanocrystal. The holeg factors are also anisotropic and are found to show more complex,
oscillatory behavior as a function of size, due to a size-dependent mixing between the heavy hole-light hole
components of the valence band edge states. The calculated electrong factor values are seen to be in good
quantitative agreement with experimental measurements, suggesting that the multipleg factor values extracted
from time resolved Faraday rotation experiments may be due to distinguishable components of the electrong
factor tensor. Extension to the calculation of excitong factors appears feasible with this approach.
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I. INTRODUCTION

Spin dynamics in semiconductor nanostructures have
been studied intensively in recent years, motivated by the
emerging field of semiconductor spintronics and quantum in-
formation processing.1 The most important time scale when
implementing the quantum computer is the decoherence time
of the quantum degree of freedom which is intended to be
used as the qubit. Typically the spin decoherence time in the
bulk semiconductor material is extremely short. However, it
is expected that the spin decoherence time should increase
substantially in nanostructures due to the three-dimensional
quantum confinement. This expectation is supported by the
optical orientation experiments of Guptaet al.2 where a
nanosecond spin lifetime was measured for neutral CdSe
nanostructures. This indicates that there will be plenty of
time to perform quantum operations on the spin degree of
freedom in semiconductor nanostructure before the coher-
ence is lost. Consequently, spins in nanostructures are excel-
lent candidates for qubits. On the other hand, both spin based
quantum computation and spintronics require precise control
of the spin. Since the control of the spin dynamics in nano-
structures is strongly dependent on theg factors of electrons,
holes, and excitons in the nanostructure, it is imperative to
understand the behavior and magnitude ofg factors.

Experimentally theg factors of CdSe nanocrystals with
wurtzite lattice structure have been measured via time re-
solved Faraday rotation(TRFR)2,3 and magnetic circular di-
chroism(MCD).4 The TRFR experimental measurements re-
vealed multipleg factors. Two or four distinctg factor values
were extracted, depending on the size of the nanostructure
which ranged from,22 to ,80 Å in diameter. The size
distribution of the samples was estimated as 5%–15%.3,5

Samples from,22 to ,57 Å have a size-dependent mean
aspect ratio that ranges from 1.0 to 1.3, with a ±0.2
variation.3,5,6 In contrast to the TRFR measurements, MCD

measurements(carried out for nanocrystals with 19 and 25 Å
in diameter) reveal only a single excitong factor.4

No definitive assignment of the multipleg factors mea-
sured in TRFR has been made. It was suggested in Ref. 2
that the lowest observedg factor be assigned to an isotropic
electrong factor and all otherg factors be assigned to exci-
tonic states. It was also speculated there that exciton spin
precession might only occur within a “quasispherical” re-
gime where the expected anisotropy due to nanocrystal shape
cancels the expected anisotropy due to the wurtzite crystal
structure, resulting in an isotropic excitong factor and thus
reducing the overall number of observedg factors. These
arguments were partially based on effective mass estimates
for theg factors, with the hole contribution treated as a size-
independent fitting parameter.2 Recent perturbative calcula-
tions within a tight-binding description have shown a marked
shape dependent anisotropy of the electrong factor6 that
would yield multiple g factors from the electron alone, as
well as evidence for quasispherical regime for certain aspect
ratio shapes. However, the perturbative nature of those cal-
culations precluded a direct quantitative comparison with the
experimentally measuredg factors.

The hole spin is initially aligned by the optical pumping
in a TRFR experiment. It has been argued that a fast deco-
herence of the hole spin nevertheless makes it impossible to
detect the holeg factor in TRFR.2 Unfortunately, the rate of
hole decoherence in CdSe nanostructures is not known, with
neither experimental measurements nor theoretical estimates
available. While it is well established experimentally8 and
theoretically9 that the hole spin decoherence time in the bulk
semiconductor is extremely small, the three-dimensional
quantum confinement might alter the hole spin decoherence
time in a nanostructure. Recent time resolved photolumines-
cence on InAs/GaAs quantum dots10 suggests that neither
the electron nor the hole spin relax on the time scale of the
lifetime of the exciton in this system. Although no estimation
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of the hole relaxation time could be made, this does suggest
that the hole decoherence time becomes much longer in
nanoconfined systems. It is thus not yet clear whether the
holeg factor signature should appear in a TRFR experiment,
and the possibility of this should not be ruled out.

In theoretical work, the size dependence of the electrong
factor in semiconductor nanostructures has been calculated
within the eight band Kane model,11–13 and within the tight-
binding model using a perturbative approach.6,14 In general,
the effective mass approximation-type calculation is inad-
equate for nanostructures at small sizessø30 Åd as the
atomic nature and surface effects become more dominant in
determining the details of the electronic states. Because of its
atomistic nature, the tight-binding model is well suited to
study the electronic and optical properties of nanostructures
in this size range.

The results of the tight-binding study of Ref. 6 showed a
strong shape dependence in the electrong factor. It was ob-
served that a transition from anisotropic to isotropic electron
g factor tensor occurs at aspect ratio<0.3, resulting in a
quasispherical regime as originally suggested by Gupta and
co-workers.2 This previous tight-binding approach to calcu-
lation of g factors was based on Stone’s formula15 which is
derived from a double second-order perturbation analysis in
which both the spin-orbit interaction and the external mag-
netic field, i.e., all spin-dependent components of the elec-
tronic Hamiltonian, are treated perturbatively. As mentioned
above, this perturbative analysis could not provide quantita-
tively accurate estimates of the magnitude of theg factors.
This is not too surprising since the spin-orbit interaction is
strong in CdSe(lCd=0.151 eV andlSe=0.320 eV), and one
therefore expects that this needs to be treated nonperturba-
tively in order to arrive at quantitatively accurate electron
energy levels, whether in zero or finite magnetic field. Non-
perturbative treatment of spin-orbit terms not only provides a
more accurate estimation of the electrong factors for nano-
structures with strong spin-orbit interaction, but also allows a
systematic analysis of the hole and excitong factors, in ad-
dition to the electrong factors.

It is also intriguing to investigate the possibility of a qua-
sispherical regime within a more accurate calculation of the
electron g factor than is afforded by the perturbative ap-
proach. In this paper, we find that with a nonperturbative
treatment of both the spin-orbit and external magnetic field,
the electrong factors are considerably more strongly aniso-
tropic than was found with the perturbative analysis in Ref. 6
and the magnitude of theg factors is now in good agreement
with the experimental measurements. This indicates that the
effect of the spin-orbit interaction is too strong to be treated
perturbatively when quantitatively accurate values ofg fac-
tors are required.

This paper presents nonperturbative theoretical calcula-
tions of both the electron and holeg factors for CdSe nano-
structures, employing a time-dependent implementation of
empirical tight-binding theory. As mentioned above, both the
spin-orbit interaction and the external magnetic field are
taken into account nonperturbatively in this approach. Theg
factors are extracted from the magnetic field induced energy
shifts of the electron and hole eigenvalues. We analyze the
size and aspect ratio dependence of the electron and holeg

factors for CdSe nanocrystals. We observe that the electrong
factors show a weak monotonic decrease as a function of size
and are strongly anisotropic. The magnitude of the calculated
values agrees well with the experimental values extracted
from TRFR measurements on CdSe nanocrystals of similar
size and aspect ratio. We discuss the implications of this
quantitative agreement and the extent to which the electrong
factors can explain the TRFR experimental data. Detailed
analysis indicates that the calculated electrong factors show
a partial cancellation of anisotropy effects deriving from the
wurtzite structure and from the aspect ratio. However, for
these quantitatively accurate calculations, it appears that
there is no size regime in which a complete cancellation
corresponding to a quasispherical system would be obtained,
in contrast to the previous expectations from effective mass2

and the perturbative tight-binding approach.6 The calculated
hole g factors have very different behavior from that of the
electrons, showing marked oscillations as a function of the
size. This is shown to be a result of mixing between the
heavy hole and light hole states, which is strongly dependent
on the nanocrystal size. The present paper does not include
direct calculation of excitong factors. However, the same
time-dependent approach can be easily extended to calculate
an excitong factor with the Coulomb interactions included
nonperturbatively.16,17

The rest of the paper is organized as follows: In Sec. II we
summarize the empirical tight-binding Hamiltonian for CdSe
nanostructures and its solution in finite magnetic fields. We
show that the time-dependent approach provides an efficient
way to achieve the high energy resolution required to extract
g factors from a finite field analysis. In Sec. III we present
our numerical results for CdSe nanocrystals, including as
reference points the total density of states and band gap,
before presenting the electron and holeg factors that consti-
tute the main focus of this work. In Sec. IV we summarize
and draw conclusions from our results, and describe possible
extensions to excitonic calculations.

II. THEORY AND DETAILS OF NUMERICAL
CALCULATIONS

A. Tight-binding model of CdSe nanostructure

We start from the empirical tight-binding model for the
bulk CdSe semiconductor with ansp3s* basis. The CdSe
parameters for the wurtzite structure18 are derived from the
empirical parameters obtained by Lippens and Lannoo19 for
bulk CdSe in the zinc-blende structure, assuming nearest-
neighbor interactions only. We construct the CdSe nanocrys-
tals with wurtzite structure corresponding to the typical CdSe
nanostructures seen in transmission electron microscopy
images.20 The constructed structures have approximateC3V
symmetry. The same structures have been used in previous
time-independent tight-binding studies.6,18,21We remove the
dangling bonds on the surface by shifting the energies of the
corresponding hybrid orbitals well above the conduction
band edge(by about 100 eV). The spin-orbit interaction is
included in the zeroth order Hamiltonian.21 Spin-orbit cou-
pling constants are assigned to both types of atoms, with
lCd=0.151 eV andlSe=0.320 eV, respectively.34 In order to
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reproduce theA-B splitting within thesp3s* basis, a crystal
field of −40 meV is added to thepz local orbitals.21

B. Time-dependent approach to calculation of energy levels

We employ here a time-dependent approach to the calcu-
lation of the band edge energy states in zero and finite mag-
netic field. This method has been applied previously to the
calculation of electronic properties of CdSe nanocrystals
with zinc blende structure,16 and to excitonic properties of Si
nanocrystals.22 It is a spectral evolution approach that is use-
ful when the properties of a few states are required, e.g.,
states near the band edges, to very high accuracy and preci-
sion. When all eigenvalues and eigenvectors are required the
time-dependent approach is computationally equivalent to
direct diagonalization. One main advantage of the time-
dependent approach for calculation of electronic properties
of semiconductor nanostructures is the ability to efficiently
incorporate electron-hole interactions, allowing straightfor-
ward calculation of excitonic energies in situations where the
time-independent approach would require significantly more
expensive calculations as a result of the increase in basis set
size.16 While efficient direct diagonalization methods for
sparse matrices do allow high precision calculation of single
electron states, as has recently been demonstrated with cal-
culation of band edge states of InAs self-assembled quantum
dots in finite magnetic fields, yielding electron and holeg
factors,23 extending such time-independent calculations to
calculation ofg factors for exciton states does not appear
feasible at this time. In contrast, as we discuss below, the
degree of precision afforded by the time-dependent approach
to eigenenergy calculations in the finite field calculation ofg
factors should also be achievable for exciton states possess-
ing electron-hole correlation.

The time-dependent method depends essentially on the
spectral decomposition for an arbitrary initial state. LetuEnl
be the complete set of eigenfunctions of the Hamiltonian.
Any initial state ucs0dl can be expressed as the linear com-
bination of the eigenfunctions

ucs0dl = o
n

bnuEnl. s1d

The wave function at a later timet is

ucstdl = e−iHtucs0dl = o
n

bne
−iEntuEnl. s2d

Projecting the wave function at timet onto the initial wave
function and performing the Fourier transform one finds

E
−`

`

dteiEtkcs0ducstdl = o
n

ubnu2dsE − End. s3d

Thus the resulting Fourier spectrum can give us the spectral
weight of the initial state in the eigenfunction basis and the
eigenenergies of the eigenstates, provided that the eigenstates
have nonzero overlap with the initial state. To get the total
density of states one can sum over the spectral decomposi-
tions obtained using each wave function in a complete set as
the initial state in term. The natural and convenient complete

set to choose in the tight-binding framework is the direct
product set of all local site orbitals, atomic orbitals, and spin
states. Then

o
n

dsE − End = o
i,s
E

−`

`

dteiEtkci,ss0duci,sstdl s4d

where ucilss0dl= usite,orbital,spinl. To achieved-function
resolution one would need to have the infinite length record
of the correlation functionkcs0d ucstdl. In practice only a
finite length T of record is available, which gives rise to
artificial sidebands around a broadenedd-function approxi-
mation. The finite record length is taken into account by
multiplying the right hand side of Eq.(4) with the normal-
ized Hamming window functionwstd,24 where

wstd = 1 − coss 2pt
T d, if 0 ø t ø T,

=0, if t . T. s5d

The window function will reduce the sidelobes of the broad-
enedd functions and generate a normalized peak height. The
resulting spectrum is of the form

o
n

WnLsE − End = o
i,s
E

0

`

dteiEtwstdkci,ss0duci,sstdl,

s6d

whereWn represents the absolute spectral weight in eigen-
stateuEnl and the line shape functionLsE−End is defined by

LsE − End =
eisE−EndT − 1

isE − EndT
−

1

2 o
s=±1

eisE−EndT+2sp − 1

isE − EndT + 2sp
. s7d

If the total wave function propagation time isT, the energy
resolution is,DE=p /T. If the energy difference between
the desired eigenenergyEn, and adjacent eigenenergies, is
larger thanp /T, the spectrum near energyEn can be approxi-
mately represented byWnLsE−End with very high accuracy.
Assuming this form, the value of the eigenvalue can be de-
termined with accuracy much higher thanp /T. To get the
most accurate value possible it is desirable to perform the
time integration of Eq.(6) by direct integration instead of
using a discrete Fourier transform.

In order to use the spectral method one must be able to
calculate the time propagatore−iHt efficiently. In order to
accomplish this we first break the time propagator into a
series of short time propagatorse−iHt =se−iHdtdN with t=Ndt.
For the short time propagator we make use of the Baker-
Hausdorff formula25 to obtain the expansion

e−iHdt = e−isH1+¯+Hnddt

< e−iH1dt
¯ e−iHndte−iHndt

¯ e−iHndt + Osdt3d. s8d

To implement this decomposition we first break the tight-
binding Hamiltonian into the on-site self-energy terms, the
local spin-orbit terms, the local Zeeman terms, and the hop-
ping terms. The on-site spin-orbit interaction is diagonalized
and exponentiated analytically in the basis of the tight-
binding orbitals, i.e., the 636 matrix of thep orbitals with
spin. For the hopping terms we further use the checkerboard
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decomposition16,26 to divide these to different independent
directions. Note that in the zinc blende structure there are
only four fundamental directions while in the wurtzite struc-
ture there are seven fundamental directions. As a result of
this decomposition each term contributing to the short time
propagator can be consequently evaluated analytically16 and
the time evolution of the state can be calculated very effi-
ciently.

The eigenfunctionuEnl with eigenenergyEn can be calcu-
lated from

uEnl ~ E
0

`

dteiEntucstdl, s9d

provided there is nonzero overlap between the initial wave
function and the desired eigenfunction, i.e.,lEnucs0dlÞ0.
Typically when there is no magnetic fieldsB=0d, the initial
state is taken as a uniform superposition of local orbitals
with specific angular momentum indices. The resultant
eigenfunctions are then used as the starting point to calculate
the eigenfunctions and eigenenergies when the magnetic
field is turned on.

If there are degenerate eigenstates, the right hand side of
Eq. (9) will in general be some unknown linear combination
of these eigenstates. However, if a set of exact or approxi-
mate quantum numbers which can be used to label the de-
generate eigenstates are known in advance, eigenfunctions
corresponding to definite quantum numbers can be derived
by judiciously choosing an initial state having the same
quantum numbers. Typically the angular momentum index is
used in this work for this purpose. This property will be used
to generate Kramer’s doublets in our calculations. More de-
tails of these procedures are given below and in Sec. III.

There are three important energy scales in this problem.
The first energy scale is the energy difference between low-
est conduction electron and higher energy conduction elec-
trons and the difference between highest valence hole and
lower energy hole states. This energy scale is typically at the
order of 100 meV or larger. The second energy scale is the
energy difference between nearly degenerate hole states that
correspond approximately to the heavy-hole and light-hole
states in the bulk limit. This energy scale is size dependent
and is sensitive to the shape of the nanocrystals. In our cal-
culation we find this energy scale to be 1–100 meV. The
third important energy scale is the magnetic field induced
splitting for a Kramer’s doublet from which theg factors are
extracted. Typically this energy scale ranges from a few to
several hundredmeV.

The maximum total propagation time in the present cal-
culations is about 1,280,000 1/eV, resulting in an energy
resolution of 2.5meV. This energy resolution is enough to
single out the spectrum of band edge electron and hole states
from other higher energy states. It is also sufficient to resolve
the two nearly degenerate hole states at the band edge. Once
a high resolution eigenfunction is generated, by using win-
dow function Eqs.(5) and (6) to suppress the contribution
from adjacent eigenstates, the eigenenergies of band edge
states can be determined with accuracy up to 1meV. Since
the accuracy is determined primarily by the total propagation

time, we can expect to be able to achieve a similar accuracy
for calculation of Zeeman shifts of excitonic states incorpo-
rating electron-hole correlation.

C. Calculation of the g factors

The g factors are obtained from a finite field analysis in
which the electron and hole eigenvalues are calculated as a
function of an applied external magnetic field. The full
Hamiltonian is thus

H = H0 + g0mBs ·B + mBl ·B, s10d

where H0 is the tight-binding Hamiltonian including spin,
i.e., incorporating all spin-orbit interactions,17 l is the elec-
tron orbital angular momentum operator, ands the electron
spin operator(g0 is the free electrong factor, andmB the
Bohr magneton). Noting that the spin-orbit coupling has al-
ready been incorporated in the zeroth order Hamiltonian as
described above(in contrast to the perturbative analysis in
Ref. 6), we shall refer toB-dependent terms in Eq.(10) as
the effective magnetic Hamiltonian,Hm, i.e., H0+Hm.

When there is no external magnetic fieldsB=0d Kramer’s
theorem guarantees that each eigenstate is at least twofold
degenerate. In bulk CdSe the heavy hole and light hole are
also degenerate at theG point. In a CdSe nanostructure it is
expected that the quantum confinement will lift this degen-
eracy of heavy and light holes. Therefore, in this work theg
factors obtained from finite field calculations will be defined
with respect to the zero field Kramer’s doublets. For a Kram-
er’s doublet the effective magnetic Hamiltonian has the form

HmsBd = mBB ·G ·S, s11d

whereS is the effective spin operator which is defined with
respect to the two Kramer’s statesuc±l, andG is the 333 g
factor tensor. In the resulting basis of the Kramer’s pairs, the
effective spin operatorS has the form

Sx =
m

2
sx, Sy =

m

2
sy, Sz =

m

2
sz, s12d

where m is an integer chosen so that the real spins and
effective spinS are approximately equal.

The eigenvectors of theG tensor define a principal axis
frame for the twofold degenerate space spanned by the
Kramer’s doublet. It is important to clarify the definition and
the sign convention for theg factors derived from such a
finite field analysis, especially when theseg factors are an-
isotropic. Let êi, i =1, 2, 3 be the principal axes. Then an
external magnetic field

B = B1ê1 + B2ê2 + B3ê3 s13d

will give rise to a Zeeman splitting

DEsBd ; „EsBd − Es0d… = mBo
i

giBi . s14d

We will denote the valuesgi as principalg factors. Individual
gi can be identified by varying the external magnetic fieldB
along each of the principal directions in turn and calculating
the corresponding field dependent Zeeman splitting in each
case.
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In order to carry out these calculations, one needs to gen-
erate the eigenvectors of theG tensor within each Kramer’s
doublet. In a time-independent calculation, this would be
done by making a degenerate perturbation theory analysis of
the Kramer’s doublets at zero field in order to find the correct
basis for the effective spinS at a finite B field. Within the
time-dependent approach we first generate initial zero-field
states having definite total angular momentum indicesj =s
+ l and jz, and then calculate the corresponding Zeeman en-
ergy shift for these. We can verify that the initial state is a
good zero-field eigenstate that evolves to the correct angular
momentum basis forS at finite field by checking that the
amplitude of the Zeeman-shifted spectral peak remains con-
stant at finiteB. Any substantial change in this amplitude
indicates the presence of an undesired component of −jz that
will shift in the opposite direction as the field is turned on,
which leads to unreliability in the value of the extracted Zee-
man shift.

In the present calculations for CdSe nanocrystals we find
that the conduction electron is primarilys-like. In this situa-
tion one can identify the effective spin operatorS with the
real spin operators, and hence choose the initial wave func-
tion to have a well defined real spin index. We find that the
above procedure is extremely stable for calculation of the
electrong factors, and leads to unambiguous determination
of the sign of theg factors. The results presented in Sec.
III A show that the values for electrong factors calculated
with this procedure decrease as the nanocrystal size in-
creases. This same trend of a monotonic decrease was also
seen in estimates based on effective mass concepts.2

In contrast, the hole wave function is primarilyp-like, as
expected for a direct band gap II–VI semiconductor. This
renders it difficult to link the effective spinS of a hole state
to the real spins, resulting in an ambiguity of the sign for the
hole g factors. In this situation it is more appropriate to ex-
press the Zeeman splitting instead by the quadratic form

DE2sBd ; „EsBd − Es0d…2 = mB
2o

i

gi
2Bi

2, s15d

in which the sign of the principalg factor is not well defined.
Typically, the sign convention of theg factor in the atomic
and bulk limit could then be used as a reference convention
to assign a definite sign to theg factors in the nanostructure.
This is because in both these reference points there usually
exists a simple relation between the effective spin operator
and real spin operator, which would enable us to determine
the corresponding sign of theg factor in the nanostructure.
However, for bulk CdSe there are to our knowledge no ex-
perimental results for electron, hole, and excitong factors.
Consequently, in this particular case it is not possible to sim-
ply use bulk experimental results as a reference point or
guide to determine the sign of the nanocrystalg factors.
(There do exist experimental results for the related material
CdS7 that will be useful in Sec. III.) In order to assign the
signs to the holeg factors for CdSe we therefore adopt the
following scheme. The hole wave function will be calculated
by propagating an initial state that has definite angular mo-
mentum indices, e.g.,j =3/2, jz=3/2, and j =3/2, jz=1/2.
The sign of theg factor is then determined by whether the

magnetic field induced energy shift is positive or negative. In
the bulk limit this procedure will correctly reproduce the
heavy-hole and light-hole values.

A second complication for calculation of the holeg fac-
tors is the presence of strong mixing between heavy-hole and
light-hole components in nanostructures, which is sensitive
to both size and shape of the nanostructure. This mixing
modifies the corresponding zero-field bases of the two
coupled Kramer’s doublets and may consequently induce
shape and size dependence of theg factors for these states.
The results presented in Sec. III B below show that for CdSe
nanocrystals the holeg factor oscillates as a function of size
as a result of this heavy-hole/light-hole mixing. We find that
calculation of the zero-fieldx andy components for the hole
states are considerably more affected by this basis mixing
than thez component, rendering the numerical determination
of a zero-field angular momentum eigenstate that adiabati-
cally evolves to a single finite field angular momentum
eigenstate more difficult(Sec. III B).

This size and shape dependent mixing of light and heavy
hole states presents an additional difficulty for attempting
any correlation with atomic and bulk limiting values of hole
g factors. To our knowledge, there have been no estimates of
holeg factors for CdSe nanocrystals based on effective mass
that may be compared with the present tight-binding results.

D. Gauge invariance

Since in this work theg factors will be determined via the
energy splitting of the electron and hole states under the
external magnetic field, it is essential to cast the tight-
binding model into a gauge invariant form. We use the
Peierls-coupling tight-binding scheme here to ensure gauge
invariance in our tight-binding model.27–29,33In this scheme
an electromagnetic field specified by the scalar potential
FsrW ,td and the vector potentialAsrW ,td will modify the on-site
ka ,RiuHua ,Ril and off-siteka8 ,Ri8uHua ,Ril tight-binding pa-
rameters, via

ka,RiuHua,Ril → ka,RiuHua,Ril − FsRi,td s16d

and

ka8,Ri8uHua,Ril → ka8,Ri8uHua,Rile−i
e
"E

Ri

Ri8
AW srW,td·dlW,

s17d

where a straight line should be taken for the integral over the
vector potential.

To impose gauge invariance, we thus only need to modify
the tight-binding hopping constant(transfer integral) be-
tween nearest neighbors. Since there are only seven indepen-
dent hopping directions in a wurtzite structure, the gauge
phase can be calculated and stored before performing the
time propagation. A brief summary of the gauge phase in the
wurtzite structure is given in the appendix.

To estimate the contribution to the Zeeman splitting that
derives from the gauge phase, we have calculated the Zee-
man splitting without gauge phase for some of the nanocrys-
tals studied here. We find that the gauge phase is responsible
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for 10%–40% of the Zeeman energy. Without the gauge
phase the Zeeman splitting increases and becomes more
isotropic.

III. RESULTS

We investigate CdSe nanostructures having 66–1501 at-
oms. This roughly corresponds to the size range of 15–43 Å
in effective diameter. In our calculation we define the aspect
ratio to be the ratio between effective in-plane diameter
sÎLxLyd and out-of-plane diametersLzd. The aspect ratio of
these nanostructures ranges from 0.68 to 1.64. These can be
divided into three different aspect ratio groups. The first
group has aspect ratio well below one, ranging from 0.68 to
0.85. The second group has aspect ratio approximately equal
to one, ranging from 0.99 to 1.09. The third group has aspect
ratio well above one, ranging from 1.37 to 1.64. A nanostruc-
ture with aspect ratio 2.44 is also studied, in order to probe
the trends ofg factors in the quantum rod limit. In Table I we
summarize the in-plane diameter and out-of-plane diameter
values of the nanostructures. If the aspect ratio of the nano-
structures deviates from 1.0 by less than 10% then it is ap-
propriate to use a single effective diametersÎLxLyLzd to char-
acterize the nanostructure. Note that the nanostructures used
in TRFR experiments to date2 have reported aspect ratios in
the range of 1.17–1.34. However, a single effective diameter
was, nevertheless, used to characterize the nanostructures.
Furthermore, the TRFR sample possessed a 5%–15% size
distribution and ±0.2 aspect ratio variation. Hence, one must
be cautious when making a quantitative comparison between
the calculated and the experimental results.

To verify that the tight-binding model can reproduce the
general features of conduction band, valence band, and iden-
tifiable band gap for nanostructures we have calculated the
total density of states(TDOS) for smaller nanostructures
s66–450 atomsd. In Fig. 1 we plot the low resolution
s<50 meVd TDOS for a 450 atom CdSe nanostructure. It is
evident from the figure that the conduction band edge(CBE),
valence band edge(VBE), and band gap can be easily iden-
tified. It should be noted that the TDOS calculation is com-
putationally expensive because one has to sum over a com-
plete set of initial states. However, only the states at the band
edges are relevant to the optical orientation experiment. A
prior knowledge of the TDOS is not necessary for calcula-
tion of the band edge eigenstates. A reasonable initial guess
of the band edge eigenenergy is sufficient for calculation of
high resolution band edge eigenenergies and eigenfunctions
through an iterative procedure described below. For the
smaller nanostructures where we have calculated the TDOS,
we use the band edge energies identified from the TDOS data

as initial values. For the larger nanostructures, we assign the
initial value of band edge energies by extrapolating the band
edge energies of the smaller nanostructures.

To get the high resolution band edge eigenenergies and
eigenstates we first estimate the eigenenergies as described
above. A low resolution eigenstate is then generated using
some judiciously chosen initial state. The initial state is set
up to have nonzero overlap with the desired eigenfunction
and to possess a well-defined value of some particular quan-
tum number such as thez component of the local total angu-
lar momentum,jz. This low resolution eigenstate is then put
through the spectral weight analysis described in Sec. II B
which results in a higher resolution eigenenergy. The higher
resolution eigenenergy is then used together with the lower
resolution eigenstate to generate a higher resolution eigen-
state. This process is iterated until the desired accuracy is
acquired and, in the case of the hole, until the near degen-
eracy between heavy-hole-like and light-hole-like doublets is
lifted. Once the CBE and VBE eigenenergies are found, the
band gap can be trivially calculated fromEgap=ECBE−EVBE.
In Fig. 2 we plot the high resolution results for the size
dependent CBE energy, VBE energy, and band gap. These
results are all stable with respect to further iteration. Note
that the VBE consists of two nearly degenerate Kramer’s
doublets. As the size of the nanostructure increases, these
two doublets will converge, respectively, to the heavy and
light hole doublets in bulk CdSe.

TABLE I. Size, diameters, and aspect ratio of the nanostructures.

Number of atoms 66 108 144 237 336 384 450 561 758 768 777 1501

ÎLxLysÅd 13.38 13.38 16.92 21.85 21.85 25.39 26.76 22.85 34.55 27.42 20.44 43.01

LzsÅd 11.38 18.38 18.38 14.88 21.88 24.38 21.88 35.88 35.88 39.38 49.88 42.88

Aspect ratio 0.85 1.37 1.09 0.68 1.00 0.99 0.82 1.64 1.04 1.44 2.44 0.99

FIG. 1. Total density of states for a 450 atom CdSe
nanocrystal.
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A. Electron g factor

Although the CdSe nanostructures we studied here have
only approximateC3v symmetry, we expect, nevertheless,
that the principal axes are still located approximately along
thex, y, andz directions. This is supported by the result of a
perturbative time-independent tight-binding calculation ofg
factors for these same nanocrystals6 in which it was found
that gx<gyÞgz. As described in Sec. II C, to accurately
identify the Zeeman splitting it is necessary to generate the
Kramer’s doublet which will evolve into the Zeeman eigen-
states when we turn on the external magnetic field. For the
CBE states, the Kramer’s doubletuc±zl for a magnetic field
pointing in the +z-direction can be generated via setting all
local orbitals of the initial states to have spin equal to ±1/2.
The Kramer’s doublet forx and y directions are then ob-
tained asuc±xl= 1

Î2suc+zl± uc−zld and uc±yl= 1
Î2suc+zl± i uc−zld,

respectively. The external magnetic field is limited to be less
than 10 T, which corresponds to the range of magnetic field
in the typical experiments.2,3 To make the connection to the
CBE in the bulk material, which iss-like, we calculate the
spectral weight of theus,s=1/2l local orbitals of Cd and Se
in the stateuc+zl. In Table II we summarize the size depen-
dence of theses-orbital spectral weights. We find that the
CBE electron in the nanostructure is still primarilys-like,
with spectral weights greater than 0.75 for all sizes. The
s-orbital contribution increases monotonically as the size in-
creases.

In Fig. 3 we plot the magnetic field dependent spectra for
the uc+xl state with magnetic field in thex direction and for

the uc+zl state with magnetic field in thez direction, for a
336 atom CdSe nanocrystal. Assuming the spectral peaks
have line shapes of the formL(E−EnsBd), the magnetic field
dependent eigenenergyEnsBd can then be determined with
very high accuracy. Theg factor is then extracted by fitting
EnsBd as a function ofB.

Figure 4 shows the resulting electrong factors as a func-
tion of the length parameterLz. The data are grouped accord-
ing to the aspect ratio of the nanostructure. Group 1(down
triangles) has aspect ratio 0.68–0.85, group 2(open squares)
has aspect ratio 0.99–1.09, and group 3(up triangles) has
aspect ratio 1.37–1.64. One calculation for a nanocrystal
with aspect ratio 2.44 is also included(closed circle). Theg
factor values derived from TRFR experiments on similar size
CdSe nanocrystals2 are also plotted for comparison(aster-
isks). The 5%–15% size distribution of the experimental
sample is represented in the figure by the horizontal error
bar. As noted above, the aspect ratio of the sample in TRFR
experiment in this size range was estimated as 1.17–1.34,
with a ±0.2 variation. The present calculations yieldgx
.gy.gz, where equality is within the resolution for all
nanocrystals, as expected for structures possessing approxi-
mateC3v symmetry. As a result, only two sets of data are
shown in the figure and the average valueg'=sgx+gyd /2 is
used to represent bothgx andgy, where the notationg' refers
to the response to a field perpendicular to the hexagonalscd
axis of the nanocrystal.

Similar to Ref. 6, these results show a strong shape de-
pendence of the electrong factor. However, these nonpertur-
bative results show stronger anisotropy compared to the per-
turbative results of Ref. 6 and also a qualitatively different

FIG. 2. (a) Band gap(b) CBE energy(c) VBE energy as a
function of the number of atoms. Note that the VBE consists of two
nearly degenerate levels in a CdSe nanocrystal, each corresponding
to a perturbed Kramer’s doublet, i.e., four states in total.

TABLE II. Spectral weights of theus,s=1/2l local orbitals of Cd and Se in the stateuc+zl.

Number of atoms 66 108 143 237 336 384 450 561 758 768 777 1501

us,s= 1
2l 0.75 0.79 0.81 0.83 0.85 0.86 0.86 0.88 0.87 0.88 0.89 0.90

FIG. 3. Zeeman shift of theuC+xl component of the Kramer’s
doublet in the CBE when(a) the external field B is in the +x direc-
tion and(b) the +z direction.
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aspect ratio dependence. This latter point will be addressed
in more detail below. Bothg factors gz and g' decrease
monotonically as a function of the nanocrystal size. The
value ofgz decreases rapidly, while the value ofg' decreases
more gradually. We note that under certain growth conditions
it is possible to synthesis CdSe nanostructures with zinc
blende structure.31 It is expected that for zinc blende CdSe
nanocrystals, if the shape of the nanostructure also has high
symmetry, there will be only one isotropicg factor
component.32

Figure 4 shows a good agreement between the current
calculations and the experimentally measured pairs ofg fac-
tor values over this size range. We note that due to variable
orientations of the nanocrystal in the TRFR experiments of
Ref. 2, quantitative comparison with the TRFRg factors re-
quires making an average over allowed nanocrystal orienta-
tions in order to obtain a time-dependent spin magnetization
to which empiricalg factors could be fit.30 Detailed compari-
son would require microscopic knowledge of the matrix en-
vironment of the nanocrystals, which is unfortunately not
well understood. Thus it is not clear to what extent the an-
isotropy of the electrong factors predicted here for single
nanocrystals will be reflected in an ensemble measurement.
The quantitative agreement between theory and experiment
in Fig. 4 is sufficiently striking that it appears possible that
the two experimentally observed distinctg factor values
might derive from the electronic valuesg' andgz, even after
some averaging over nanocrystal orientations. We note that
the theoretical description of the nanocrystals employed here
provides a realistic representation of the nanocrystal shape
that is consistent with detailed transmission electron micros-
copy analyses of the nanocrystals used for the TRFR experi-

ments in Ref. 2. This interpretation of observation of mul-
tiple g factors deriving from an electrong factor anisotropy
that is dependent on the shape and size of the CdSe nanoc-
rystals is different from the original experimental speculation
that one of the observedg factors might be identified with an
isotropic electrong factor while the otherg factor might be
identified with an excitong factor.2

It is intriguing to look into the aspect ratio dependence of
theg factors in more detail. We observe from Fig. 4 that both
g' andgz increase as the aspect ratio increases, provided that
the aspect ratio is less than 1.64. We find thatgz is more
sensitive to the aspect ratio and increases much more with
this thang'. The g factors begin to saturate between aspect
ratio 1.64 and 2.44. It is expected that if one continues to
increase the aspect ratio thengz should begin to decrease,
since it eventually should approach the bulk value. On the
other hand,g' should stay roughly constant after it saturates,
provided that the in-plane cross section is kept the same
when one increases the aspect ratio. It should be emphasized
that the aspect ratio is only a simple indicator for the shape
of the nanostructure. Two nanostructures with similar num-
ber of atoms and aspect ratio values might still have very
different shape or surface structure. From the observations
above it is clear that we can identify a range of aspect ratios
in which the effect of anisotropy of the wurtzite structure and
that of the shape of the nanocrystal partially cancel each
other so that the electrong factors become more isotropic. In
the cases studied here it appears that the cancellation is not
complete. It also appears unlikely from these exact calcula-
tion of g factors that the cancellation will become more com-
plete for large-size nanocrystals, since the difference be-
tween gz and g' increases for larger nanocrystals having
aspect ratio approximately unity. As a result, a true quasi-
spherical regime as predicted by an analysis perturbative in
spin6,13 in which the electrong factors become isotropic may
never be reached.

B. Hole g factor

We have calculated the holeg factors for the two nearly
degenerate valence band edge doublets, which will be de-
noted byh1 andh2. We defineh1 andh2 to be the highest and
second highest energy valence band states, respectively. In
the bulk limit, the energy difference of these states corre-
sponds to the A-B splitting of the semiconductor. To connect
the h1 andh2 states to the heavy and light hole states in the
bulk material we calculate the spectral weights of local or-
bitals possessing definite angular momentum quantum num-
ber u j = 3

2 , jzl in h1 and h2. These spectral weights are sum-
marized in Tables III and IV.

We find that for nanocrystals in the size range we are
interested in, the mixing between the ±3/2 and ±1/2 com-
ponents is very strong. The mixing appears to be sensitive to
the size of the nanocrystal, without any clear trend emerging.
We attribute this is to an additional sensitivity to nanocrystal
shape which is coupled with size for these atomistic repre-
sentations of nanocrystals, as discussed elsewhere.6 As a re-
sult of this mixing it becomes improper to rigorously identify
the h1sh2d state with the heavy(light)-hole states, respec-
tively.

FIG. 4. CdSe nanocrystal electrong factors as a function of the
nanocrystal length parameterLz. The termgz corresponds to the
magnetic response along the hexagonal crystal axis, andg' refers
to the average ofgx and gy. Crosses denote experimental values
from Ref. 2, all other symbols refer to the present nonperturbative
tight-binding calculations. The closed triangles show the calculated
values lying closest to the experimental results, which correspond to
aspect ratios 1.37–1.64, in good agreement with the aspect ratios of
the experimental sample.
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For each nanocrystal we first look at the spectral weight
of h1 andh2 states and determine which is more heavy hole-
like. Then to find the best zero-magnetic field eigenstate in
the twofold degenerate space spanned by the corresponding
Kramer’s doublet, we proceed as follows:uc±zl is generated
by setting initially all local orbitals to havej =3/2, jz
= ±3/2 or j =3/2, jz= ±1/2 anduc±xl is generated by setting
initially all local orbitals to havej =3/2, jx= ±3/2 or j
=3/2, jx= ±1/2. The g factor is extracted from the finite
field Zeeman shifts by settingm=1 in Eq.(12). This defines
the numerical scale of theg factors for heavy- and light-hole-
like states to be equal, which is the preferred convention
when there is strong mixing of these states(see discussion
below). As described in Sec. II C. above, the quality of the
zero-magnetic field eigenvector can be checked by examin-
ing the amplitude of the spectral peak resulting from this
initial state. Thus, if the peak amplitude remains very close
to 1.0 when the magnetic field is turned on, then it is a valid
zero-magnetic field eigenvector. However, if the peak ampli-
tude deviates from 1.0, it indicates that the initial eigenvector
contains components of zero-magnetic field eigenvectors that
will shift in opposite directions when the external magnetic
field is turned on and the resulting spectrum is the sum of
two line shape functions whose centers differ by the Zeeman
energy splitting. In this case, the Zeeman energy cannot be
reliably extracted from the spectra. Of the nanocrystals stud-
ied in this work, we find thatucxl of light-hole-like states for
nanocrystals with 450, 777, and 1501 atoms fail to generate
a reliable zero-magnetic field eigenstate. As discussed earlier,
this is due to the large degree of mixing between the heavy-
hole and light-hole-like states.

In Fig. 5 and Fig. 6 we plot the size-dependent holeg
factors for the two hole doublets. The data has been grouped
into heavy-hole-like and light-hole light states. Similarly to
the electrong factors, the data for holeg factors for these
sizes are also grouped by the nanocrystal aspect ratio. We
find that for the heavy-hole-like state,g' is close to zero
except for the smallest nanocrystal for which it remains fi-
nite. For the heavy-hole like states the parallel componentgz
shows a similar same aspect ratio dependence as the electron

g factors, but in addition the heavy-hole-likegz also shows
some oscillation as a function of nanocrystal size. For the
light-hole-like states, we observe oscillations for bothg' and
gz, but the general trend is not as clear as for the heavy-hole-
like states.

It is important to clarify how theseg factors should ap-
proach the relevant bulk values when the size of the nano-
crystal increases further. In the bulk CdSe semiconductor,
the valence band near theG point can be described by the
Luttinger Hamiltonian.35 The states u3/2, ±3/2l and
u3/2, ±1/2l are associated with the heavy hole and light
hole, respectively. If the heavy hole and light hole are really
degenerate, then Eq.(11) is not actually appropriate, since
then the full fourfold nature of thej =3/2 angular momen-
tum state has to be taken into account. When the heavy-hole
and light-hole states are not degenerate and the mixing be-
tween u3/2, ±1/2l and u3/2, ±3/2l components is small,
then one can use Eq.(11) and setm=3 for the heavy hole
andm=1 for the light hole in Eq.(12). However, when this
mixing is strong, as in the nanocrystals studied here, it is
preferable to use a single value ofm for both states to facili-
tate comparison. We now consider the relation of the holeg
factors in Figs. 5 and 6 to the corresponding bulk values. The
finding thatg' for the heavy-hole-like state is close to zero
for all except the smallest size nanocrystals is consistent with
analysis of the Luttinger Hamiltonian. It can readily be
shown from the form of this thatg' is negligible if the
heavy-hole/light-hole mixing and thek3 terms are neglected.
Thus the hole value ofg' appears to rapidly approach the
expected bulk value predicted by the Luttinger Hamiltonian
as the nanocrystal size increases. Although the holeg factor
has not been measured for bulk CdSe, experimental measure-
ments for the related material CdS show thatg' is zero for
CdS in the hexagonal structure7 and it is reasonable to expect
a similar value for CdSe.

We attribute the oscillations in the holeg factors with
nanocrystal size to the irregular mixing of local orbitals evi-
dent in Tables III and IV as a function of nanocrystal size.
From Table III we observe that theh1 state becomes increas-
ingly heavy-hole-like for nanocrystals having more than 450

TABLE III. Spectral weights of the local orbitalsu j =3/2,jzl in the h1 state.

Number of atoms 66 108 144 237 336 384 450 561 758 768 777 1501

jz=+3
2 0.47 0.03 0.27 0.82 0.06 0.30 0.81 0.06 0.87 0.37 0.51 0.88

jz=+1
2 0.12 0.78 0.24 0.02 0.78 0.21 0.03 0.79 0.02 0.11 0.34 0.03

jz=−1
2 0.29 0.00 0.37 0.04 0.04 0.39 0.06 0.05 0.04 0.18 0.02 0.04

jz=−3
2 0.01 0.03 0.02 0.00 0.04 0.02 0.02 0.02 0.00 0.25 0.00 0.00

TABLE IV. Spectral weights of local orbitalsu j =3/2,jzl in the h2 state.

Number of atoms 66 108 144 237 336 384 450 561 758 768 777 1501

jz=+3
2 0.02 0.46 0.04 0.46 0.64 0.40 0.36 0.53 0.37 0.37 0.35 0.04

jz=+1
2 0.06 0.20 0.03 0.03 0.10 0.13 0.13 0.33 0.17 0.11 0.10 0.83

jz=−1
2 0.08 0.13 0.37 0.35 0.09 0.17 0.41 0.02 0.37 0.19 0.43 0.02

jz=−3
2 0.68 0.07 0.43 0.00 0.08 0.22 0.01 0.01 0.01 0.23 0.06 0.06

MAGNETO-OPTICAL RESPONSE OF CdSe NANOSTRUCTURES PHYSICAL REVIEW B70, 045311(2004)

045311-9



atoms, provided that the aspect ratio is close to one. It is
expected that as the size of the nanocrystal increases further,
the two hole states will eventually converge to the heavy-
hole and light-hole states, respectively. One must then be
careful when comparing the holeg factor values calculated
for finite nanocrystals by the present method with the bulk
heavy-holeg factor, since as noted above the latter is usually
defined withm=3 in Eq.(12),14 while the value ofm in this
work is set to 1 for all hole states because of the strong
mixing between light-hole-like and heavy-hole-like states
(see above).

This evidence of mixing between the heavy- and light-
hole states, and its sensitivity to the nanocrystal size and
shape also implies that an exciton in a nanostructure within
this size range cannot be simply considered as a sum of
electron and heavy-hole or light-hole states. The excitong
factor will therefore also be sensitive to the size and shape of
the nanocrystal.

IV. SUMMARY AND DISCUSSION

We have calculated theg factors of the conduction band
edge electrons and valence band edge holes in CdSe nano-
structures using the time-dependent tight-binding method
and a finite field approach to the evaluation of theg factors.

This approach allows an exact, nonperturbative analysis,
with high resolution of the Zeeman shifts for both electrons
and holes.

Application to CdSe nanocrystals of variable shape and
size that simulate the experimentally accessible wurtzite
CdSe nanocrystals showed that the electrong factor is
strongly anisotropic in these systems. In particular, we find
thatgx.gy.gz for all nanocrystal sizes, wherez denotes the
wurtzite axis. This is consistent with the approximateC3v
symmetry of the nanocrystals. The magnitude of the aniso-
tropy splitting is seen to increase for larger nanocrystals,
while each of theg factor components decreases with in-
creasing nanocrystal size. The strongg factor anisotropy
seen here in these nonperturbative calculations provides con-
firmation of the qualitative predictions of size-dependent an-
isotropy in electrong factors seen in the perturbative calcu-
lations of Ref. 6. However, the nonperturbative calculations
now provide quantitatively accurate values for the compo-
nents of theg tensor, unlike the previous perturbative analy-
sis. This improvement derives from the nonperturbative
treatment of the spin-orbit interaction, which is relatively
strong compared to the effect of the external magnetic field
and which should therefore be treated nonperturbatively if
possible.

We have investigated the dependence of the electrong
factors on the nanocrystal aspect ratio in considerable detail.

FIG. 5. CdSe nanocrystal heavy-hole-like holeg factors as a
function of the nanocrystal length parameterLz. A.R. denotes the
nanocrystal aspect ratio,gz refers to the component parallel to the
hexagonal crystal axis, andg' to the component perpendicular to
this.

FIG. 6. CdSe nanocrystal light-hole-like holeg factors as a
function of the nanocrystal length parameterLz. A.R. denotes the
nanocrystal aspect ratio,gz refers to the component parallel to the
hexagonal crystal axis, andg' to the component perpendicular to
this.
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We find that in general theg factors initially increase as a
function of the aspect ratio, and thatgz increases more than
g'. The increase ofg factors saturates around a value of
aspect ratio 1.62–2.44. It is expected thatgz would then be-
gin to decrease again until it reaches the bulk value whileg'

would stay roughly the same, if the aspect ratio were to
continue to increase further. The observed aspect ratio de-
pendence allows us to identify a regime where the anisotropy
derived from the wurtzite structure and that derived from the
shape of the nanocrystal partially cancel each other, resulting
a more isotropic regime. However, a full cancellation is
never reached in the present calculations, unlike the previous
perturbative tight-binding analysis where a complete cancel-
lation over a finite size range was seen.6 From the present
nonperturbative calculations it also appears unlikely that in
larger nanocrystals the cancellation would become complete,
since the difference betweengz andg' for a unit aspect ratio
nanocrystal is seen to increase as a function of the nanocrys-
tal size.

Unlike the perturbative approach, the time-dependent ap-
proach allows direct calculation of holeg factors, despite
complications due to the valence band degeneracies which
require projecting out initial states of specific total angular
momentum and of itsz projection. We find that the valence
band edge for these size nanocrystals consists of two nearly
degenerate Kramer’s doublets that may be assigned to pairs
of light-hole-like and heavy-hole-like states, respectively.
However, this assignment should be understood as an ap-
proximation, due to the strong heavy-hole/light-hole mixing.
The holeg factors for these states can be calculated once
projections onto well-defined states ofj and jz are estab-
lished. We find that the value ofg' for the heavy-hole-like
states is mostly close to zero, which is consistent with analy-
sis of the Luttinger Hamiltonian for bulk and with measure-
ments for the related material CdS in the bulk. All other hole
g factor components show marked oscillations as a function
of the nanocrystal size. This is attributed to a strong, size-
dependent mixing of the two pairs of hole states deriving
from light- and heavy-hole pairs. Forgz, the aspect ratio
dependence of heavy-hole-like states behaves similarly to
that for the electrong factor gz, although the superimposed
oscillations make it more difficult to describe the general
trend for the holes.

These results have implications for theg factors of exci-
tons, namely of electron-hole pairs correlated by the Cou-
lomb interaction. Theg factor of an uncorrelated electron-
hole pair may be approximated bygx=ge−gh. The mixing
between the heavy- and light-hole states, and sensitivity to
the nanocrystal size and shape, implies that an exciton in this
size range cannot be simply considered as a sum of electron
and heavy-hole or electron and light-hole states. The exciton
g factor must therefore also be sensitive to the size and shape
of the nanocrystal. In addition, the Coulomb interaction can
also be expected to modify the simple sum of electron and
hole contributions. As discussed above, it appears feasible to
extend the current scheme to now calculate the correspond-
ing exciton g factors, although this would not be possible
with a standard time-independent approach based on direct
diagonalization. Since the exciton fine structure splitting in
CdSe nanocrystal is of the order 1–10 meV21 the energy

resolution obtained heres<1 mVd appears to be sufficient to
resolve the exciton fine structure.

Finally, we note that the size dependence of the aniso-
tropic electrong factorsg' andgz shows quantitative agree-
ment with the pairs of values extracted from TRFR experi-
mental data over the same size range of nanocrystals. While
some averaging over nanocrystal orientation would be re-
quired in order to make unambiguous comparison with the
experimental observations, it appears possible that the two
distinct g factors seen in the TRFR experiments may be de-
rived from the two componentsgz andg' of the electrong
factor. This provides a different interpretation from the ear-
lier speculations that one of the observedg factors is an
isotropic electrong factor while the other one should be
assigned to an excitong factor.2 In this context, extension of
the current calculation scheme to the evaluation of excitong
factors in these nanostructures would be extremely desirable
and interesting, particularly since the only existing estimate
for an excitong factor relies upon a free parametrization of
the hole contribution.2
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APPENDIX

In the wurtzite structure there are seven independent elec-
tron hopping directions. In this calculation these seven hop-

ping directions are denoted bydWp, p=1. . .7, and areassigned
to be the following vectors:

dW1 =
a0

3 s0,0,3d,

dW2 =
a0

3 s2Î2,0,− 1d, dW5 =
a0

3 s− 2Î2,0,− 1d,

dW3 =
a0

3 s− Î2,Î6,− 1d, dW6 =
a0

3 sÎ2,−Î6,− 1d,

dW4 =
a0

3 s− Î2,−Î6,− 1d, dW7 =
a0

3 sÎ2,Î6,− 1d. sA1d

Herea0=2.625 Å is the lattice constant. This convention en-
ables us to calculate the gauge-dependent quantities explic-
itly.

For a fixed external magnetic fieldBW =sBx,By,Bzd we as-

sign the vector potential to beAW = 1
2BW 3 rW. We define a

magnetic-field-dependent gauge phase

fsRW a,dWdird =
e

"
E

RW a

RW a+dWdir
AW ·dW l , sA2d

where RW a represents the position vector of an anion. The
gauge phase for the cation can be easily calculated by taking
the appropriate complex conjugation of the phase of the cor-
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responding anion. With the line of integration taken to be a
straight line, the integral can be calculated analytically. We
denote uCl to be the wave function of the system and

uC,sRW adl suCmsRW cdld to be the tight-binding local l(m)-

orbital wave functions for an anion(cation) located atRW a

sRW cd where RW a and RW c are nearest neighbors. LetA,

=kC uC,sRW adl andAm=kC uC,sRW cdl.
Using this notation the gauge-dependent short-time propa-

gation of the electron hopping in some particular direction

becomes

e−V̂,m,dirdtsAluClsRW adl + AmuCmsRW cdld

= sA, cossV,mdtd − iAm sinsV,mdtde+ifsRW a,dWdirdduClsRW adl

+ sAm cossV,mdtd − iA, sinsV,mdtde−ifsRW a,dWdirdduCmsRW cdl,

sA3d

whereV,m is the hopping constant(transfer integral) in zero
magnetic field.
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