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Our understanding of localization in the integer quantum Hall effect is informed by a combination of
semiclassical models and percolation theory. Motivated by the effect of correlations on classical percolation we
study numerically electron localization in the lowest Landau level in the presence of a power-law correlated
disorder potential. Careful comparisons between classical and quantum dynamics suggest that the extended
Harris criterion is applicable in the quantum case. This leads to a prediction of localization quantum critical
points in integer quantum Hall systems with power-law correlated disorder potentials. We demonstrate the
stability of these critical points to addition of competing short-range disorder potentials, and discuss possible
experimental realizations.
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I. INTRODUCTION in space. When the decay of correlations is not too fast we

One of the hallmarks of the quantum Hall effect is thefind quantum critical points which are the quantum analogs
appearance of plateaus in the Hall resistance of a two@f correlated percolatiof. o
dimensional electron gas as a function of applied magnetic Previously, a real-space renormalization group treatment
field. Transitions between plateaus have been associated wigth correlated quantum percolation appeared in Ref. 5. Pre-
a quantum critical point.This critical point corresponds to a liminary results of our numerical approach were reported in
localization-delocalization transition for the electron’s waveRef. 6. Here we provide a detailed account of the numerical
function. Unlike the Anderson metal-insulator transition heremethods used to study the effect of power-law correlated
the transition is between two insulating states: extendeglisorder potentials on the integer quantum Hall transition
wave functions emerge at a single value of the magnetic fieldlQHT), as well as theoretical arguments supporting them.
corresponding to the center of a Landau band. Experimenté/e also describe results on the stability of these quantum
and numerical simulations have revealed many importangritical points to the presence of short-range correlated dis-
properties of this critical poirt,such as the value of the order. The stability analysis provides connections with
correlation length exponent,~2.3. Attempts at formulat- experiment where these quantum critical points might be
ing an analytically tractable theory of the transition have byobserved.
and large failed. The work presented here addresses two different aspects

A very fruitful approach to unraveling the physics of pla- of the problem. On one side motivation is provided by the
teau transitions has been the semiclassical description ¢@le of disorder in determining the transport properties of
electron dynamics in the lowest Landau leVellassically —quantum Hall systems. On the other side, we are motivated
the electron’s motion can be described as a fast cyclotroRy the possibility of extending classical correlated percola-
rotation in the plane accompanied by a sl&i B drift of ~ tion to the quantum regime.
the center of the circular orbit along lines of constant random
potential, V(x)=const. Quantum mechanics adds tunneling
and interference to the mix.

The purpose of this work is to understand the relation The role of disorder in the quantum Hall effect was rec-
between classical and quantum dynamics of electrons in thegnized shortly after its discovery. From scaling theory it is
lowest Landau level, in the presence of a random potentiaknown that electron wave functions are localized by poten-
In particular we investigate the effect of the fractal geometrytial disorder in two dimensiorfsThis remains true in the
of the classical orbits on the critical properties of the quanpresence of a strong perpendicular magnetic field for states
tum localization-delocalization transition, such as the valuen the tails of the Landau bands, and leads to the observed
of v4. One of our main results is that we have identified aplateaus in the Hall resistan&@oward the center of a Lan-
family of random potentials for which the classical electrondau band the localization length increases signaling the ap-
orbits have continuously varying fractal properties, while thepearance of delocalized states. This results in the observed
guantum critical point remains unchanged. These random pdransition between plateaus in the Hall resistance and the
tentials are characterized by decaying power-law correlationpeak in the longitudinal resistance.

A. Disorder and the quantum Hall effect
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The precise nature of the disordered potential experiencential, as well as quantum interference. This was beautifully
by electrons in quantum Hall systems remains poorly underdemonstrated by Chalker and Coddington, who proposed a
stood. The canonical pictulsay, for GaAs heterostructupes lattice model which takes into account these purely quantum
is that ionized donors located between the two-dimensionatffects, by describing electron dynamics as hopping from
electron gas and the sample surface are responsible for tlome saddle point to the next with scattering matrices associ-
random potential. Important experimental progress has comated with each saddfé. The saddle points themselves oc-
from scanning techniques which provide a map of the eleceupy the vertexes of a square lattice. Computer measure-
trostatic potential seen by electrons in a semiconductoments of the localization exponent for this model yield
heterostructuré? Interestingly enough the experiment mea- values in agreement with the experimental results. Moreover,
sures random potential fluctuations that extend over distaking a classical limit of the network model, in which the
tances that are more than 1 order of magnitude larger thascattering matrices become classical probabilities for the two
the typical spacing between the impurities and the electropossible outcomes of a scattering event at a vertex, leads to
gas, suggesting that the potential might be longer ranged thatassical percolation and a localization length exponent of
previously thought. Scanning techniques and the ability ta4/31* This provides an intriguing connection between the
manipulate single atoms on surfaces also opens up the postitical points of classical and quantum percolation. Here we
sibility of engineering the random potential so as to producenvestigate the nature of this connection when power-law
specifically designed transport effects. For example, an ercorrelations are introduced in the random potential. In the
hancement of the conductivitycompared to the Drude classical case it was shown that this can lead to different
valug) of a two-dimensional electron gas was observed ircritical points if the power-law decay is not too fast. We
Ref. 7 due to the presence of a random magnetic field. In thishow that a similar effect occurs for the quantum version of
case the random field was produced by a thin film of roughpercolation provided by electron localization in the lowest
magnetic material brought into close proximity to the elec-Landau level.
tron gas. The fluctuations of the field were inherited from the The paper is organized as follows. In Sec. Il we discuss
height fluctuations of the film surface. the physics of classical and quantum electron motion in two

Inspired by these experimental advances here we descriltémensions, in the presence of a disordered potential and a
how power-law correlated disorder can lead to exotic criticalstrong perpendicular magnetic field. We present scaling ar-
behavior of the electron gas in the integer quantum Hall setguments that show how the value of the critical exponent
ting. We also analyze the effect of competing disorderscan be extracted from the time dependent mean square dis-
which are necessarily present in semiconductor heterostruplacement(classical motiop and the time dependent wave-
tures, on the stability of these critical points. packet spreagquantum motion In Sec. Il we describe in

detail the numerical methods used to obtain the valueiof
the classical and quantum setting. As evidence for the suit-
B. Quantum percolation ability of these methods, we present results for short-range

The classical percolation problem provides one of thecorrelated disc_)rder pot.entials that_are in good quantita.tive
most intuitive examples of a critical point. Lattice sites are@dreement with previous experimental and theoretical
occupied with some probability. Nearest neighboring sites, Works?*>!* Section IV contains the numerical results ob-
which are occupied, form clusters with a typical sizés p tained for classu_:al and quantum electron motion in power-
is tuned to its critical valug,, which depends on the lattice law correlated disorder potentials. In Sec. V we propose a
type, the correlation lengt diverges ast~|p.—p| ™. v is framevyork based on the classical Harrls critetfoand its
the correlation length exponent, and in two dimensiops exte.nsmﬁ6 that provides the theoretical support for our nu-
=4/3 independent of the lattice tyge. merical results. _

An analogous picture has been put forward to describe the Finally, in Sec. VI we present results on classical and
localization transition in the integer quantum Hall sysfem. quantum localization in the presence of competing short-
For a smooth random potenti@ne that varies little on the range and power-law correlated disorders. In e_xper|m7ents,
scale of the magnetic lengtithe electron wave function is Which we believe have a good chance of observing the quan-
localized along the level lines. For random potential symmetfum critical points discovered, both types of disordered po-
ric aroundV=0 level lines away from the zero level are tentials are present. Th_e ke_y guestion here is \_/v_hether corre-
closed and have a typical sizewhich is identified with the lated quantum perf:olanon is stable to the addition of short-
localization length. As the electron’s energy is tuned to the@nge correlated disorder.
center of the Landau _band, the corresponding Ieve! line ap- Il. CLASSICAL AND QUANTUM MOTION IN THE
proachesv=0 and g_ dlve_rges. If th(_a r_andom_ potential has LOWEST LANDAU LEVEL
short range correlations in space this is precisely the classical
percolation probled? and one would predict a localization The methods and tools used to describe the localization-
length exponeni,=v.=4/3. delocalization transition in the lowest Landau leyelL ) in

Experiments that measure a localization length exponerthe classical regime are considerably different from the ones
in the integer quantum Hall system fing~2.3, signaling a used in the quantum regime. In this section, we review both
breakdown of the simple percolation picture. The essentiadcenarios and present the arguments leading to the connec-
physics that has been left out is one of electron tunnelingtion between the localization exponentand electron dy-
which readily occurs at the saddle points of the random ponamics.
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A. Classical motion These considerations lead to a scaling faahfixed V)

The two-dimensional semiclassical motion of an electronfOf the mean squared displacement

in a disorder potential under the influence of a large constant Dt
magnetic field(along thez axis), is described by the drift (Ar?(t)y,=D't f(_2>v (4)
motion of the electron’s guiding center along equipotential 3
lines: wheref is a scaling function. The classical result from per-
colation theory® for the correlation lengthge«|p—pd ",
z—r: iBVV(r) X 7 (1) leads to the expressiafe V", which in turn implies
t e
wherer is the position vector for the guiding center in the (Ar?(t))y,=D't f(vzyc>- %)
0

(Xx,9) plane. This equation is derived in the adiabatic ap-
proximation, i.e., under the assumption that the cyclotron Finally, by averaging this equation over all values\Gf
radius is much smaller than the typical distance over whictone obtains the scaling relation
the potential changéd. Therefore the localization- —_

izati tion i | ical regi (Ar%() ~t* (6)
delocalization transition in the LLL in the classical regime '

implies the study and characterization of the trajectories degshere 9=1-1/2v. is the anomalous diffusion exponent.
termined by this equation. o _ From simulationgAr?(t)) can be computed, which leads to a
Equation(1) was extensively studied in two different al- \4jye for ¢ and, via the scaling relation just derived, to a

beit related contexts. Evéfsused this equation in numerical y5jye for the localization length exponentin the classical
studies of classical motion along the hulls of percolaﬂonregime_

clusters. He demonstrated interesting scaling behavior of the
time-dependent density-density correlation function close to _
the percolation critical point. B. Quantum motion
Gurarie and Ze¥ arrived at Eq.(1) from the classical One approach to study the localization-delocalization
limit of the Liouvillian equation of motion for electrons in transition in disordered quantum systems is based on the
the lowest Landau level of the integer quantum Hall regime different contributions that extended and localized electron
In both cases, the authors considered smooth random potefave functions make to the frequency dependent electrical
tials with short-range correlations in space. conductivity?! Localized states appear in the electrical con-
One goal of this work is to study numerically properties ductivity through the retarded density-density Green’s func-
of closed trajectories determined by Hd), whereV(r) is  tion, a quantity that has an intuitive interpretation when writ-
power-law correlated in space. In particular, we focus on thgen in terms of wave functions. When the electron is
scaling law, and its associated critical exponentwhich  represented by a localized wave packet at positiand time
describes how the size of a closed trajectory grows as the=0, the Green’s function gives the value of the wave packet
energy approaches its critical value. spread at time. Since this wave packet describes the prob-
To make explicit the connection betweenand the dy- ability of finding the electron at a given position and time, its
namics of a particle moving in a two-dimensional randomspread is a measure of the uncertainty of the electron’s posi-
potential, let us briefly review the argument presented in Reftion, and as such it is an indicator of localization.
19. For a fixed constant value ®r)=V,, there is a set of In most studies of localization, the Green’s function is
equipotentials associated with closed electron trajectoriesalculated in the momentum-frequency domain and studied
These trajectories are the outer bounda(fedls) of perco- in detail in the limit of large momenta or small frequercy.
lation clusters, with the occupation probabilipyof the per-  The purpose of this section is to show explicitly how the
colation problem determined BY,. In particular, the critical  critical exponenty, can be extracted from the Green’s func-
value of p,=1/2 corresponds td/,=0 in the units chosen. tion using instead the real time domain, as proposed by Si-
Several studié§—2° have shown that the mean squared dis-novaet al23
placement between two points on a given trajectory (r is Within this approach, one studies the disorder averaged
the position vector for the particle on the trajectorwhen  density-density correlation function projected onto the LLL,
averaged over all trajectories for fixéfd, follows a diffusive  i.e., the focus is on the unconstrained spectral function. As
law: pointed out in Ref. 19, the applicability of the method rests
) B . upon the assumption that delocalized states in the IQH tran-
(Ar (t)>Vo =Dt (t<t). 2 sition are isolated from each other and located at the centers
of the Landau bands. Thus, when the density-density corre-
lation function is restricted to one Landau lev#ie lowest
geing considered for simplicijythe contribution of delocal-
ized states in that level dominates the sum over states in the
small (q,w) limit. Equivalently, the integral of the spectral

Heret" is a characteristic time that depends\gpn

Away from the percolation critical point particle trajecto-
ries are closed, and in the long-time limit the mean square
displacement reaches a constant value

(Ar?()), =& (t>1), (3) function over all energies is dominated by the contribution
0 from the critical energy in that limit. For our purposes, the
where &(Vy) is the localization length. main advantage of this approach is that it clearly spells out a
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numerica_l scheme for _studying thg effgct _of power-law cor- G(r,t) = Tr(p(r,1)p(0,0)). (13)
related disorder potentials on localization in the lowest Lan- _
dau level. Note that the trace extends over states in the lowest Landau

In order to make connections with electron motion in thel€vel only. The density-density correlation functi@in k
classical regime and also to fix the notation used in the restPace satisfies the equatidn
of the paper, we review some of the main points of the ap- P 02
proach. 15—Gkk,t) =2 2] sin(—ck X q)V(k -q)
Consider 2 spinless electronghe electron spin is fixed at q 2
by the magnetic fieldin the x-y plane, under the combined 02
effects of a magnetic fiel8=BZ perpendicular to the plane Xexp[— —(k?-k -q)]G(q,t), (14
and a random potential(r) due to the presence of impuri- 2

ties. The electron-impurity interaction is given by which follows from Eq.(11). This is a Schréedinger-like

equation where the effective Hamiltonian is the Liouvillian
H= 2 V—k Pk s (7) matrix:
k

2 2
Wherepk=_e“"r is the one-particle _density operator avidis _ Lig=21 sin(ﬁk % q) V(k - q)exp{— ﬁ(kz_ K - q)} _
the Fourier transform of the disorder potential. At high 2 2

enough magnetic fieldéor low enough temperaturgsthe (15)
kinetic energy is quenched to the value of the lowest Landau

band and the sum is reduced to a sum over states in the LLLhe name Liouvillian is used because of the analogy with the

Let ﬁand?be the Hamiltonian and one-particle density Liouvillian operator in classical mechanics. Actually, the
operator projected onto the LLL. Then procedure outlined here reduces to the study of the time evo-

lution of the width of a wave packet made with all localized
H= DAV (8 and delocalized states which has been employed
K previously?’:28

) . ) . . An interesting feature of Eq14) is that for a fixed value
with the projected one-particle density operator taking they the magnetic field, the magnetic Iengﬂa(€§:hc/e8)

form: vanishes in the classical limit— 0. In units ofc/eB=1, Eq.
i 9
= o (Ak2agk-C 9) (14) gives
with C, the position vector for the guiding center of a one- iG(r,t) = &; V(1) d;G(r ). (16)
particle orbit, defined &8 dt
c A solution of this equation i&(r,t)=48(r —r(t)) where
Cy=x-—lly,
eB dr N
— = VV(xy) Xz (17)
dt
c
Cy=y+—ll, (100 In other words, Eq(16) describes the classical motion of the
eB , L ; . o1
electron’s guiding center along equipotentials\vif).
and €§=hc/eB. Here II=p+(e/c)A and (x,y) are the ca- As argued above, the Liouvillian driving the quantum dy-

nonical momentum and position operators for one particle. namics of an electron in the LLL contains information about
The formalism used to project the density opergigr localization and the value of the critical exponent The
=e'9" onto the LLL was developed in Refs. 25 and 26.following scaling argument provides a numerical algorithm
There it was shown that the commutation relation for thefor extracting the localization exponent from the time depen-
projected density operator obeys a closed alg¢ihve mag- dent projected density-density correlation functioiwe

netic translation operator algebra would like to draw attention to a close analogy between the
02 present argument and the ideas presented in Seq. Il A
—1_oi -212)q- Let us start with Eq(8), and assume that all eigenvalues
, pal =20 sin| =k X >><e< GRaakp o (A1 . s :
[px pal (2 g Pia (1) and eigenstates, localized and delocalized, are known. We

construct a wave packet at tinte0 using only localized
states with energies in th& neighborhoodE’ # 0, and then
we let the wave packet evolve in time. The state vector cor-
responding to such wave packets is

[ () = 2 ci(V]i) (18)

with kX q=(k X g) -z. This property implies that the equation
of motion for the density operator

(9 _ J—
I i—p=[H,p] (12)
at
is closed and can, in principle, be solved exactly.
Following the same line of argument, one can show thatvhereli) are eigenvectors of the Hamiltonian projected onto
similar results also hold for the correlation function of thethe LLL [see Eq.(8)]. The sum runs over alflocalized

projected density operator: states with energies within the rangie’ —A,E’ +A].
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At very short times, the spread of the wave packet as a (Ar3t)) ~t?% #=1- 1/2v,, (27)

function of time is ballistic(see Appendix for derivation

However, after some crossover time and before the localiz2nd We conclude, as in the classical case, that the spread of
tion length corresponding to the energy is reached, the the wave packet is subdiffusive with an anomalous diffusion

spread of the wave packet averaged over disorder realiz&xPonento. _

tions is diffusive: Therefore, by computingAr?(t)), the value ofv can be
. obtained. An alternative derivation of this result has been
<Ar’()>g =Dt (t<t'(E")). (19 proposed in Ref. 29, where the energy integrated Liouvillian

. . o . propagator is analyzed in the fini{g,») regime and the
At times much longer thati ~ £, the localization length is limits of q— 0 and smalke are taken.

reached and

<Arf()>g =&E') (t>t(E)). (20) IIl. SHORT-RANGE DISORDER POTENTIAL

In close analogy with the classical argument, a scaling We introduce next the numerical procedures used to cal-
form for the average dispersion of the wave packet followsculate the value of the critical exponemtWe do this first in
the case of a short-range correlated disorder potential, where
<Ar?(t)>p =D't f/( th > (21)  we test the effectiveness of these numerical techniques by
§(E') rederiving previously known results. We begin by introduc-

whre i he approprate scaing uncion. Now, i ocal- 19,12 el used o analyeng dassca loclzaton
ized wave packet at timé=0 is constructed with all the P yp 9

eigenstategincluding delocalized states at the center of theg_round_ for our numerics. In Sec. lll B we dgscrlbe how the
LLL), its wave vector can be written as: Liouvillian approach is implemented following the method

introduced in Ref. 30 to analyze quantum localization. The
() = D | e (0) (22) numerical values thus obtained compare favorably to experi-
EI

mental results and previous numerical calculations.

where the sum runs over all states with energies in the range

(=20,0]. The dispersion of the wave packet can be computed A. Classical motion

as To study the classical motion of the electron’s guiding
center along the equipotentials ¥fr) we make use of a
(Ar(t))= >, (hen(V)| AT i (1)), (23) lattice model, used previously to compute geometrical expo-
E'E" nents for contour loops of rough interfacés.

Consider a square latticé with N sites and periodic
boundary conditions. Each site in the lattice has assigned to
Ay =SS ¢ (0)c (0)eEENi X)) (24) it a random number that represents the value of the disorder

i j )
i

Using this decomposition:

potentialV(r) at that point in space. Its dual latti® is the

set of points that describe the positions of the electron in this
where the sums run over all the eigenvectors of the Hamilpotential landscape. Thus, an electron originally located at a
tonian. For a fixedand sufficiently largetime t=t', there  siter, of £* will move along a path that joins points on this
are two different contributions to this expression: one comiattice. The trajectories are contour loops of the disorder po-
ing from the states with energies within a ran§E’ <t /% tential. They are generated by first randomly selecting the
with slowly time-varying phases and the other coming frominitial positionr, from the set of points irC*. The choice of
the rest of the states with much faster phase variations. Thuge initial position of the trajectory also fixes the value of the
for a given timet' a window of states, close to the critical |evelV,. V,is computed as the average of the values/ian
one, is selected. The contribution of this set of states Wlllat the four Vertexessites |n£) that surround the initial po-
dominate over the other term due to phase randomizatiorsitionr,. OnceV, is determined, all the lattice sites Gfcan

and Eq.(23) can be approximated by be labeled by + or —, depending on whether they are at a
0 potential higher or lower thak,. The numerical algorithm

m:f dE’g(E’)(ArZE))E,, (25)  updates the electron’s position by selecting the bond on the
—o0 dual lattice that connects the poinf with one of its nearest

_ neighbor points, with the additional property that it crosses a
whereg(E’) is the density of states. Replacifr?(t))e: by  +— bond on the lattice. With this construction, the contour
Eq. (21), using the fact that the density of states is nonsindoop is a directed walk along the bonds of the dual latti¢e
gular, and that is related tcE’ by £ E’) ~ (E’) "9, we obtain  that separates potentials lying abgbelow) V, on the inside

(outsidg of the loop(see Fig. 1
) (26) At each step, the square of the displacement vector be-
tween the current and original positions on the dual lattice is
calculated. The procedure is repeated for different starting
Finally, an appropriate rescaling gives pointsr, and different disorder realizations. All the calcu-

0
(Ar¥(t)) = f dE’ g(E")D t f’<E,_zyq
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FIG. 2. Averaged mean square displacement for a classical par-
FIG. 1. Classical trajectory of the electron’s guiding center, inticle drifting along equipotentials of a random short-range corre-
the presence of a random potential whose values are indid4fésl. |ated potential. Distance is measured in units of lattice spacing and
the average potential around the plaquette surrounding the initigime in number of lattice steps. System size is 1824024. v is
point of the trajectory. The resolution of a saddle point is deter-ejated to the slope in the critical regiah by 6=1-1/2.
mined by the average potential around the plaquette surrounding the

saddle. . .
This value compares well with the exact result from per-

lated quantities are averaged over all trajectories and over aolation theoryr,=4/31! The critical regime extends until
disorder realizations. finite size effects become dominant a(ir?) saturates, as

A technical subtlety of this procedure is the existence ofobserved in Fig. 2 fot>2x 10%
saddle-point plaquettes, with +—+— labeled vertexes around
them. In this case, two contougfur links) meet at the cen-
ter and it is necessary to add an additional rule to resolve the B. Quantum motion
connectivity, so as to convert this pattern into two 90° turns
that are not quite touching. A physically sensible rule makes Following the ideas presented in Sec. Il B, we studied
use of the average potentiad,,, of the four potentials numerically the role played by quantum effects on electron
around the saddle-point plaquette Vifi,o< Vo, the center of  dynamics in the lowest Landau level and in the presence of a
the plaquette is at a lower potential than the contour loop anghort-range correlated random potential.
the ConnectiVity iS resol\{ed by haVing the + SiteS. inSide the We use the approach proposed in Ref 19 and use the
90° turns. In the opposite Cas®p.q>Vo, the + sites are  gjgenstates of the Hamiltonian for an electron on a torus

outside of the 90° turngsee Fig. 1~ geometry as the basis of states for the LLL. The correspond-
As in Ref. 19 we find from simulations that the averagejnqy wave functions written in the Landau gauge are:
time for an electron to traverse a certain distance£oris '

proportional to the distance. This observation justifies using

the number of steps along’ to measure the time elapsed. In %

this way time is rendered dimensionless. by =| > exp<27r(x+ 1yY)(N m+ a)
The computations were carried out on two-dimensional m=—c

square lattices with system sizds 256, 512, and 1024. The 2
values for the short-range correlated potential were chosen - MW> e (29)
independently from site to site from a uniform distribution N

over the rang¢-0.5,0.5. This choice leads t&=0 for the

value of the critical equipotential energy. Figure 2 shows

results for a 102% 1024 lattice obtained by averaging over Wherem takes integer valuesy is the number of flux quanta

3% 10* trajectories and 1000 different disorder realizations. through the torus, and the index goes from 0 toN-1,
As discussed above, the diffusiyglope #=1), short-time  labeling theN states in the LLL. These wave functions are

(t<t"~10), behavior is followed by a crossover to a critical periodic functions in the intervelx,y) [0,1) X[0, 1), and

regime where the value of the slopeis a measure of the are centered along narrow stripsf width €.) around the

critical exponenty,; §=1-1/2v,. By fitting the critical re-  linesx=a/N. In Eq. (29) (x,y) are dimensionless variables
gion to a line on a log-log graph we find expressed in units in which the magnetic length €is
v.=1.25+0.05, (28) =1/2aN.

The electron density operatop(ky,k,)=exp2mi(kyx
where the error bars reflect the uncertainty associated wittikoy)) projected onto the LLL using this basis, is a matrix of
choosing the critical region. the form:
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_ K2 + K2
P(kl,kz):ex4_ > 277) L(ky, ko), (30)
2N
where k;,k, are integers((k;, k) # (0,0)), and the matrix :
L(ky,ky) is given in terms of two unitary unimoduldyd X N _ ot |
matrices:

B
L(k1, k2) = €1 k2fkipke, el g Jl

0 1 0
0 0 1 0

h = 1
1 0 0

f=diagl,e, ..., eV ),

with e=exp(27i/N); note thath is a cyclic permutation ma-
trix. These matrices satisfjh f=¢ f h and h(N=fN=1. The
explicit expression for the matrix elementsldak, k) is:

[L(Ky, ko) o= € k2/2+kl(a_l)5a,ﬂ—k2|mod N- (31) 08

Since the basis of states is restricted to the LLL, the kinetic
energy is a constant and the projected Hamiltonian reduce,, 0.4-

to: <
— _ 0.2
H= 2 V(- ki, — kz)P(klykz),
kq,ko
OJ &
K2+ K2 ¢
=> V(- k1,—k2)exp(— 1 zw)L(kl,kz), (32) r
Kk 2N

where the sum runs over all integer values(kf, k), and
V(0,0)=0 (this choice amounts to fixing the critical energy
at zerg. FIG. 3. Squared amplitude of a localized eigenstate with energy

In this basis, the Hamiltonian is a randd#x N matrix ~ E=9.6 (top), and a delocalized one wih=0.011 (bottom, in the
that can be diagonalized exactly. Notice that the projectionowest Landau level with degeneraby= 1000. The disorder poten-
operation introduces the exponential factor in E2R) that tial is short ranged.
effectively reduces the amplitude of the laide, k,) Fourier
components of the potentialit acts as a soft large- A localized wave packet is constructed with all the eigen-
momentum cutoff The presence of this factor seems to in-states for a given disorder realization and, as it evolves, its
dicate that the transition is driven by the small momentaspread is computed as a function of time. The wave packets
components of the disorder potential. It is important to noteare chosen from among the basis states,(Z8), which are
that even when a finite precision numerical calculation faillocalized in thex direction and completely spread out in the
to detect the contribution coming from momenta componenty direction (see Fig. 1 in Ref. 6 Thus, the contribution to
higher than a maximum value fék2+k3)/2N (numerically, the total spread from thg direction is a constant propor-
the Hamiltonian matrix becomes a banded matrikis in-  tional to the system size.
correct to replace the exponential factor by a hard cutoff, The procedure is repeated for different initial positions for
since the commutation relations of the projected densitythe localized wave packet and different disorder realizations.
operatof® would not be conservedIn numerical calcula- The spread is averaged over all initial positions and disorder
tions, this translates into having results that are extremelyealizations. A typical result for a basis of 1000 states and
sensitive to the value of the hard cutoff chogen. 1000 disorder realizations is plotted in Fig. 4.

The values for the Fourier components of the disorder As in the classical case, three regimes can be identified.
potential in Eq.(32) are chosen randomly from a flat distri- For long enough timegt>10 in Fig. 4 the spread of the
bution over the interval-0.5,0.5. wave packet reaches a constant value, indicating the influ-

We diagonalize the Hamiltonian to obtain &lleigenval-  ence of the finite system size. The critical region corresponds
ues and eigenfunctions. Figure 3 shows examples of a locate intermediate time§0.4<t<10), and the value of, ("
ized state at the tail of the Landau band, and a delocalizefbr quantum can be related to the slope of the line, which is
one close to the band center, obtained with a basi® of the anomalous diffusion exponeéit[see Eq(27)]. As seen
=1000 states. in the inset to Fig. 4, the slope in the critical region shows a
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FIG. 4. Spread of wave packet as a function of time, in the
presence of short-range correlated disorder potential with a basis of
N=1000 states. The spread at intermediate times is subdiffusive.
The inset shows the anomalous diffusion exponeas a function
of basis sizeN. The intercept gives the infinite-system-size value of
6, which leads to the quoted value of the localization exponent
v(v=1/(2-26)).

strong dependence on the system size. To take into account
these finite size effects, we determined the slope for systems
sizes ranging fromN=200 to N=1500 and compute the
value for an infinite sized system by linear extrapolation to
obtain »,=2.33+0.09.

Our result compares favorably to the values measured in
e_xperlments(v=2.3120.])3_'2 and prewous_ numerical simula- FIG. 5. Contour plot of a typical realization of a short-range
tions (v:2:3510.05. This provides an important check on correlated potentialtop) and a power-law correlated one with ex-
the numerical method. _ ponenta=0.5 (bottom.

Our data show that at very short times the slape?2,
which implies ballistic spreading of the wave packet. In the -

Appendix we present a calculation based on perturbation V(r)V(0) ~ 1/[r|*. (34)
theory that shows that this is a result of averaging the eVOs1 o constant in Eq33) is fixed so that the variance r)

lution equation over random disorder, at short enough times. . .
IS normalized to one. Long-range correlations strongly

IV. POWER-LAW CORRELATED DISORDER modify the real-space configuration of the equipotential lines
POTENTIAL as can be seen in Fig. 5 where a comparison between a
short-range and a power-law correlated potential with

In this section we address the central question raised by
the present work: how does a change in the spatial correla-
tions of the disorder potential affect the nature of localization
in the lowest Landau level? The numerical procedure out-
lined in previous sections allows us to investigate this ques- In the classical limit of the IQH transition, the effect of
tion in a straightforward manner, for both the classical andpoower-law correlations in the disorder potential can be de-
the quantum regime. Basically, it amounts to an appropriatscribed in terms of a purely geometric effect: they change the
modification of the probability distribution for the Fourier fractal geometry of the equipotential contours modifying the
components for the random potential in E§2). Since we electron’s path, and correspondingly, the anomalous diffu-
are interested in the effect of power-law correlations on lo-sion law for its mean squared displacement.

0.5 is given.

A. Classical motion

calization properties of the Hamiltonian in E82), the Fou- To study this regime numerically, we repeated the proce-

rier components are chosen independently with a Gaussiature described in Sec. Il A, and computésr %(t)) for val-

distribution with zero mean, and variance ues ofa ranging from 0.33 to 1.8. Figure 6 shows the curves
Wo‘ 1/|k[2=. (33) obtained for a system of 522512 lattice sites. As in the

case of short-range correlations, three regimes can be identi-
Inverse Fourier transforming to real space leads to powerfied with the onset of each of them depending on the value of
law correlations a. From the figure, a qualitative change in the spread of the
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FIG. 7. W as a function of time for various values of the
power-law correlated disorder exponent. Anomalous diffusion ap-
FIG. 6. Classical motion: averaged mean square displacement &ars at intermediate times. The top four curves have been multi-
a function of time for 51X 512 system size. Distances are mea- plied by a factor of 10 for clarity.
sured in units of lattice spacing and time in number of lattice steps.
marized by the Harris criteriol?. Basically, the criterion
states that critical exponents of the disordered and the corre-
sponding clean system remain equal as long as the value for

dgcreaseicorrelations increagebelow a critical value of the cc;rrelathon IepgtLl e"_pone'?‘ salt_lsflefs hthellnequallllty:
a.=1.5(c is for “classical’, the sloped in the critical re- dv—-2=0, whered is the dimensionality of the classical sys-

gion increases ana becomes an increasing function af €M under consideration. The criterion is derived by requir-

t

electrons position in time is observed. Namely, in the critical
regime (typically for 30<t<1100, the value of the slope
becomes dependent anwhen a<1.5. As the value ofx

tending to infinity ase approaches zero. ing that the variance of the thermodynamic quantity, which
couples to the disorder within a volume set by the correlation
B. Quantum motion length ¢, does not grow faster than its average value as the

In contrast to the classical regime, the effect of power-lawtransition is approached argd- . The Harris criterion has
correlations in the disorder potential on the properties ofoeen proven rigorously and generalized to a wider class of
guantum localization does not have a simple geometrical insystems if an appropriate definition for the correlation length
terpretation. In particular, we find that changing the fractalis adopted® An extension of the criterion to power-law cor-
properties of the equipotentials does not always lead to eelated disorder was proposed by Weinrib and Halp¥rin.
change in the quantum critical exponents. In the case of two-dimensional percolation with power-

The numerical procedure introduced in Sec. lll B is easilylaw correlations in the occupation probabilities, with the
extended to the present case allowing us to study the prolpower-law exponent, the extended Harris criterion states:
lem in detail. The Fourier components of the random poten-
tial are taken from the same distribution as in the classical
case and the corresponding quantum Hamiltoifigon (32)]
is diagonalized. Then({Ax?) is computed as a function of
time for values ofw ranging from 0.1 to 1.9. A typical set of . 2
results obtained with a basis of 1000 states is shown in Fig. a<a,=3/2 v.=—. (39)

7 together with the curve obtained for a short-range corre- «

lated potential. As in the short-range case, the expodlent  As a numerical check on E@35), we computed the val-
was calculated for different system sizes ranging frlim ues of the anomalous diffusion exponérfor classical elec-
=300 toN=1000. tron motion. The values of were obtained from fitting the

As in the classical case, a qualitative difference in thedata in Fig. 6, in the critical region, to a line using a least-
slopes of the critical regime develops@shanges. A careful squares methodj is the slope of the line. From we com-
comparison among the different curves shows that the valuputed» and plotted it as a function af in Fig. 8. We see that
of the slope in the critical region starts to increase below ahe data are well described by the theoretical prediction:
critical value ofa,,=0.85. A detailed quantitative analysis of aboveagzsl 2, 1/v.=2/3 isconstant, while below this value
these results together with a comparison to the classical castevaries as 1/=«/2. Similar results were obtained previ-
is the subject of Sec. V. ously by Prakaslet al3*

Analogous results hold true for the quantum case; in Fig.
V. EXTENDED HARRIS CRITERION 9 we plot 1/v as a function ofa. The anomalous diffusion

The effect of a random disorder potential on the propertieexponentd was computed using the data in Fig. 7 and the

of continuous phase transitions in classical systems is sunvalue of 1/» was computed following the same procedure as

* 4
a>a,=3/2 VC=§,
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FIG. 8. Classical regime: inverse critical exponentvlds a
function of power-law correlated disorder exponenihe horizon-
tal line represents the theoretical value o£0.75 corresponding
to the value ofv.=4/3 obtained from “classical” percolation theory.
The linear function 1#=«/2 is predicted by the extended Harris
criterion, Eq.(35).

E?=

PHYSICAL REVIEW B 70, 045309(2004
( 1

2
ng dsz(x)> ~§J d?|x|™, (37
¢ &

where in deriving the second equation we have made use of
(VX)V(X')) ~ 1/ |x=x"]=

For the quantum critical point associated with localization
in the lowest Landau level to be stable to the introduction of
power-law correlations in the random potential, the fluctua-
tions in the electron’s energy should be small when com-
pared to its energi. Using Eq.(37), and the scaling relation
E~ ¢ we arrive at the estimates

_2 E2V‘2 a > 2
=i E>2In(E)™ a=2 (38)
Ew2 . a<?2.

The quantum percolation critical point is expected to be
unaffected by the introduction of power-law correlations if

. . 272 . .

in the classical case. The values plotted are the extrapolatidn /E”—0 whenE—0, or, equivalently, wheg— <. Since
corresponding to an infinite system size. We see that th&~ 1 this is always the case wher=2. _
numerical results presented in Fig. 9 are in good agreement However for a<2 there are two regimes to consider.

with the extended Harris criterion which now reads:

a> ay~0.85 vy~ 2.33,

* 2
a<a,=~085 yy=—. (36)
a

Support for the validity of the extended Harris criterion

for quantum critical points was also provided by studies of;

quantum random magnets.

In the case of quantum percolati@re., localization in the
lowest Landau leveglthe extended Harris criterion can be
argued for in close analogy to the classical c&sdamely,

consider the average size of the fluctuations of the electron

energy in an area set by the localization lengttike the

When 2>a>2/v, E?/E?—0 and the localization critical
point due to short-ranged potential disorder is again stable to
introduction of power-law correlations in the random poten-
tial. In contrast, for values ak<2/v a power-law correlated
potential produces large fluctuations in the energy, thus de-
stabilizing the critical point.

The usual expectation is that this relevant perturbation
leads to a quantum critical point characterized by a value of
v. This is confirmed by our numerical results.

An important consequence of the present result regards
he validity of the expression put forward in Ref. 36, that
relates the values of,; and v as follows:

vg= v+ 1. (39

éccording to the analysis presented above, a quantum sys-
tem with a long-range correlated potential has the same criti-

electron’s energy, it is also determined by the random disor(_:al exponent as one with short-range correlations as long as

der potential, and can be approximated as:

i

0.5 T

e

04
0.3
Z
— 02

0.1

0

FIG. 9. Quantum regime: inverse critical exponentvlds a
function of the exponen&, which determines the power-law corre-

a=0.85. However, a classical system with potential correla-
tions with a value fore in the region 0.85X«<1.5, has a
continuously varying critical exponent according to Eq.
(39). For instance, a value af=1 givesv,=2.33, whilev,
=2.0. This analysis suggests that the relation given by Eq.
(39) (whatever the argument used to supportstinconsis-
tent with the Harris criterion.

VI. COMPETING DISORDERS

In this section we undertake a numerical study of the ef-
fect of competing disorders on localization in the LLL. We
investigate first the classical regime, which is in the univer-
sality class of correlated percolation. Analytical calculatfons
have shown that in these systems the classical critical point
generated by a long-range correlated potential is stable
against perturbations produced by a short-range correlated

lations of the disorder. The lines are predictions of the extendedpotential. As shown below, our numerical results in this re-

Harris criterion[Eq. (36)] using the values,=2.33 for the quantum

gime, provide support for this picture.

localization length exponent, in the case of short-range correlated In the quantum case we investigate the effect of compet-

disorder.

ing power-law correlated and short-range correlated disor-
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TABLE |. Statistical properties of the short-range and long- 0.9 1 T T T T T
range correlated potentials used in Sec. VI. R “&m‘“iﬁ T8y i
g,
Verd) = e V1) +(L= V(1) 081 By ]
(Vs(r)=(Vi(r)) = 0 o(aaN Lo R
(VA1) =(VA(r) = 1 @ o7 o R
(VrVA(r ") e r-r/fe, Sr-r) I £y
MOWVI(r")) o r=r'|7# TR T s 41
061 AN 0=0625 o
ders on localization. Numerical studies of this particular case o5l 1 11 1]
are relevant for experiments attempting to measure proper- 0 02 04 06 08 1

ties of the correlated quantum percolation critical point.
Namely, since short-range correlated potentials are always FIG. 10. Classical regime: slopas a function of paramete:
present in experimental setups, it is important to understand=0(1) indicates a pure long-ranggshort-rangg correlated
quantitatively how their presence affects the values of theotential.
localization length exponents described in the previous sec-
tions. A. Classical regime

To proceed with the appropriate numerical model we first . . .
establish the following conventions. The total disorder poten- 15"”‘3‘;}?2%”234 w%r]e carlned Ol]ft Lor systeml S'N;f’ff?&.
tial is defined as a weighted sum of two potentials: one witP12 andN= - The values of the anomalous diffusion
short-range correlationg,(r) and one with long-range cor- exponentd were extracted from the critical region of the

relationsV,(r). The units chosen are such that the mean val—SpreaOI of the classical position of the electron, as in Sec.

ues of short- and long-range correlated potentials are séy A. Values of ¢ were obtained for a range of values of the

. . h . arameterx. Figure 10 shows result that correspond to a
equal to zero while their variances are normalized to one. IR 9 P

this way, the maximum amplitudes of both potentials arecomb|nat|on of a power-law correlated potential with expo-

comparable. In order to vary the relative strength of eachnentﬁ:O.S (for the long-range partand a=1.8 (for the

. . . . short-range piege
gitinﬂall \;vl,lecwttrl’(]);tut(lz’]eeatoa:ﬁ)n;?etﬁt'}val_ﬁsv'alues in the range The figure shows that, as the system size increases the

value of 8 (and hence o¥) remains closer to the pure long-
range value up to fairly large values of (roughly
Vi) = i V(1) + (1 = 0)V(r). (40)  95%—60%. The increasing sharpness of the crossover with
increasing system sizes suggests a very sharp crossover in
the thermodynamic limit. In the language of the renormaliza-
Note that whenx=0 the total potential has power-law corre- tion group, this is an indication of the stability of the long-
lations only, while the short-ranged part is increasinglyrange critical point when perturbed with a short-range corre-
dominant as the value of increases toward 1. This defini- lated potential. Notice, as it was pointed out above, that this
tion ensures that the variance of the total poter¥igl re-  crossover is strongly dependent on the system size, rendering
mains fixed asc changes andVv2(r))=1. useless the finite-size scaling analysis used previously. An

The numerics were performed with short-range correlatednteresting effect is observed in the raw data that points to
potentials constructed from random Fourier componentéhe way the crossovers occur in finite size systems. Between
V(k) sampled from a uniform distribution, or from a Gauss-the initial crossover from diffusive to subdiffusive motion
ian distribution with variance~|k|*2 with a>a". In real  and the final crossover from subdiffusive motion to satura-
space this leads to delta correlations and power-law correldion, there are two clearly distinguishable regimes. At the
tions with exponenty, respectively. Long-range correlated €arlier times, the slope is determined by the short-range cor-
potentials were generated with power-law correlations wittrelated potential. Only at the latest tim@sd before satura-
exponent3< ', for which the extended Harris criterion pre- tion effects dominatedoes a new slope appear, that corre-
dicts a localization length exponent2/B3. The properties Sponds to the value of determined by the exponent of the
of the total potential and its components are summarized iRoOWwer-law(long-range correlated potential.

Table 1.

A note on the evaluation of errors: as it will be shown in
the following sections, the effect of tuning# 0 depends on In contrast to the classical regime, to date there is no
system size for both classical and quantum regimes. Hencexperimental or theoretical work to our knowledge that at-
it was not possible to carry out the finite-size study similar totempted to investigate the influence of mixed long-range and
the one done previously, where there is only one type obhort-range correlated disorder potentials on the integer
disorder present. As a consequence, the errors have been gsantum Hall transitions. The numerical strategy used in
timated from the largest systematic error involved in the pro-Sec. IV B, provides us with a framework to study this situa-
cedure, which appears in the determination of the slope ofion and allows us to examine the stability of the quantum
the critical region. critical points found in previous sections.

B. Quantum regime
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AR ‘% CT ' ods to perform a detailed check of the validity of the Harris
A . criterion. We found numerical support for the extended ver-
I i Hﬂ sion of the criterion, confirming previous theoretical
0951 arguments.
B { { The quantum regime was analyzed by studying the real
o r ¥ {f time density-density propagator as proposed in Ref. 23. This
i method, originally introduced as an alternative way to calcu-
0.85 |~ [*eN=1000 late the critical exponent for a short-range correlated po-
o-aN=700 . -
 [a-aN=500 tential, proved to be an excellent testing ground to analyze
08 __—9=0786 the role of disorder. We obtaingtbllowing a rather simplis-
L i tic finite size analysisa value fory=2.33+0.09 remarkably
075l close to experimentally measured values and numerically

" calculated ones. We also found that when the decay of
power-law correlations of the random potential is slow
enough, this can destabilize the quantum critical point and
lead to exotic critical behavior, as predicted by the extended
Harris criterion.

Comparison between classical and quantum regimes with

Computations for quantum systems were carried out witHong-range correlated disorder potentials indicate that the ef-
a basis oN=500, 700, andN=1000 states. The values of the fect of disorder correlations are qualitatively similar for
sloped were extracted from the critical region and plotted asquantum and classical systems. The main difference between
a function of the parametex, as in the classical regime. The these two cases seems to be the critical value ¢he ex-
results shown in Fig. 11 were obtained with power-law cor-Ponent determining the long-range correlatiomsiow which
related potentiald/, and V, with exponentsa=1.8 andp the value ofv is changed. The value*quzo.85 is smaller
=0.5, respectively. compared to its classical counterpagt=1.5. This suggests

As the figure shows, data for the quantum regime isthat quantum fluctuations can be thought of as effectively
noisier than its classical counterpart. Finite size effects arémearing out the correlations in the random potential, thus
also more prominent as can clearly be observed in the varighifting « .
tion of the values of the slopé. However, the trend ob- An immediate consequence of these results is that in the
served is in agreement with the expected behavior in thguantum case, there is no direct connection between the sta-
thermodynamic limit. It suggests that the quantum correlatedistical properties of equipotential lines and the localization
critical points are indeed stable against the perturbation inlength exponent. Specifically, we were able to show that the
troduced by a short-range correlated potential. This opens uffactal geometry of the equipotential lines can be continu-
the possibility of measuring the varying localization lengthOusly varied while the quantum localization length exponent
exponentsy, in experiments in which random disorder with does not ch'ange. ' o -
power-law correlations is introduced. The idea would be to The detailed numerical study of the variation of the criti-
engineer a random potential with desired properties whicl§al exponentv with the power-law exponent, led us to
would compete with the short-range disorder due to the imPropose a precise statement for the quantum version of the
purities always present in the semiconductor heterostructur&xtended Harris criterion. These numerical results are sup-
An example of such a system was described in Ref. 7 whergorted by a scaling argument, in close analogy with the clas-
a thin magnetic film was placed in close proximity to the Sical case. Let us remark that previous wéfk8 have ad-
two-dimensional electron gas resulting in a random magneti€ressed the related issue of variable potential correlations on
field. By controlling the height fluctuations of the film one generalized Chalker-Coddington models to study the effect

can, in princip]e, engineer a random potentia| with desired)f classical percolation on the IQHT. In that Qase, however, it
correlations. was concluded that the only effect was an increment of the

microscopic length scale, with no further influence on the
value of the critical exponents.

In order to address the experimentally relevant situation

We have analyzed the effect of spatial correlations of thesf samples with disorder potentials of different origins and
disorder potential on the localization-delocalization transi-likely, different correlations, we analyzed the effect of com-
tion in the integer quantum Hall system. The main purposeeting disorder potentials on the IQHT. In the classical limit,
of the analysis was to understand separately the role playesur numerical results give support to previous theoretical
by quantum effects and disorder on the critical properties orguments for the stability of the correlated-percolation criti-
the transition by comparing classical and quantum localizaeal points. In the quantum regime we observed that, while
tion. the value of the critical exponentvaries as the short-range

The analysis of electron localization in the classical caseorrelated potential is introduced, the trend is similar to the
reveals that the localization length exponent is completelyone observed in the classical regime. As a consequence, our
determined by the statistical properties of the level lines ofesults show no qualitative difference between classical and
the random potential. Using the tools of percolation theoryguantum regimes regarding the stability of these critical
we were able to implement well established numerical methpoints. More importantly, they point to the possibility of ob-

FIG. 11. Quantum regime: slopkas a function of paramete:
«=0 indicates a purely long-range correlated potential and
corresponds to a purely short-range correlated potential.

VIl. CONCLUSIONS
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serving effects of the correlated quantum percolation critical In the Heisenberg representation
points in experiments on two-dimensional electron gases in
semiconductor heterostructures where short-range disorder (0 [ X2y 1))=(g(0)|x2(t) |/ D)), (A2)
due to impurities is unavoidable.
where
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APPENDIX o1 ((0)|[H,[H,x*(0)]]|41(0)) + O(t°)
In this Appendix we present a calculation based on per- (A4)

turbation theory that shows that at short times the wave The probability distribution of energies is determined by
packet has a ballistic spread, as was observed numerically. fe probability distribution of the disorder potential, which is
A1) is the wave function of the wave packet at titighe  chosen to be symmetric around the vaMg0. Since the
spread is given by wave packet contains all eigenstates, averaging over disorder
2 _ 2 _ 2 (average over energigsliminates the linear term in the ex-
COIAAD)=(UOIAD) ~ (UOK D). (A1) pansion above. Thus, the first nonvanishing contribution at
Here we analyze the first term in detail, while the secondshort times is given by the quadratic term, which results in

one can be dealt with in a similar way. the ballistic spread of the wave packet.
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