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Our understanding of localization in the integer quantum Hall effect is informed by a combination of
semiclassical models and percolation theory. Motivated by the effect of correlations on classical percolation we
study numerically electron localization in the lowest Landau level in the presence of a power-law correlated
disorder potential. Careful comparisons between classical and quantum dynamics suggest that the extended
Harris criterion is applicable in the quantum case. This leads to a prediction of localization quantum critical
points in integer quantum Hall systems with power-law correlated disorder potentials. We demonstrate the
stability of these critical points to addition of competing short-range disorder potentials, and discuss possible
experimental realizations.
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I. INTRODUCTION

One of the hallmarks of the quantum Hall effect is the
appearance of plateaus in the Hall resistance of a two-
dimensional electron gas as a function of applied magnetic
field. Transitions between plateaus have been associated with
a quantum critical point.1 This critical point corresponds to a
localization-delocalization transition for the electron’s wave
function. Unlike the Anderson metal-insulator transition here
the transition is between two insulating states: extended
wave functions emerge at a single value of the magnetic field
corresponding to the center of a Landau band. Experiments
and numerical simulations have revealed many important
properties of this critical point,2 such as the value of the
correlation length exponent,nq<2.3. Attempts at formulat-
ing an analytically tractable theory of the transition have by
and large failed.

A very fruitful approach to unraveling the physics of pla-
teau transitions has been the semiclassical description of
electron dynamics in the lowest Landau level.3 Classically
the electron’s motion can be described as a fast cyclotron
rotation in the plane accompanied by a slowE3B drift of
the center of the circular orbit along lines of constant random
potential, Vsxd=const. Quantum mechanics adds tunneling
and interference to the mix.

The purpose of this work is to understand the relation
between classical and quantum dynamics of electrons in the
lowest Landau level, in the presence of a random potential.
In particular we investigate the effect of the fractal geometry
of the classical orbits on the critical properties of the quan-
tum localization-delocalization transition, such as the value
of nq. One of our main results is that we have identified a
family of random potentials for which the classical electron
orbits have continuously varying fractal properties, while the
quantum critical point remains unchanged. These random po-
tentials are characterized by decaying power-law correlations

in space. When the decay of correlations is not too fast we
find quantum critical points which are the quantum analogs
of correlated percolation.4

Previously, a real-space renormalization group treatment
of correlated quantum percolation appeared in Ref. 5. Pre-
liminary results of our numerical approach were reported in
Ref. 6. Here we provide a detailed account of the numerical
methods used to study the effect of power-law correlated
disorder potentials on the integer quantum Hall transition
(IQHT), as well as theoretical arguments supporting them.
We also describe results on the stability of these quantum
critical points to the presence of short-range correlated dis-
order. The stability analysis provides connections with
experiments7 where these quantum critical points might be
observed.

The work presented here addresses two different aspects
of the problem. On one side motivation is provided by the
role of disorder in determining the transport properties of
quantum Hall systems. On the other side, we are motivated
by the possibility of extending classical correlated percola-
tion to the quantum regime.

A. Disorder and the quantum Hall effect

The role of disorder in the quantum Hall effect was rec-
ognized shortly after its discovery. From scaling theory it is
known that electron wave functions are localized by poten-
tial disorder in two dimensions.8 This remains true in the
presence of a strong perpendicular magnetic field for states
in the tails of the Landau bands, and leads to the observed
plateaus in the Hall resistance.9 Toward the center of a Lan-
dau band the localization length increases signaling the ap-
pearance of delocalized states. This results in the observed
transition between plateaus in the Hall resistance and the
peak in the longitudinal resistance.
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The precise nature of the disordered potential experienced
by electrons in quantum Hall systems remains poorly under-
stood. The canonical picture(say, for GaAs heterostructures)
is that ionized donors located between the two-dimensional
electron gas and the sample surface are responsible for the
random potential. Important experimental progress has come
from scanning techniques which provide a map of the elec-
trostatic potential seen by electrons in a semiconductor
heterostructure.10 Interestingly enough the experiment mea-
sures random potential fluctuations that extend over dis-
tances that are more than 1 order of magnitude larger than
the typical spacing between the impurities and the electron
gas, suggesting that the potential might be longer ranged that
previously thought. Scanning techniques and the ability to
manipulate single atoms on surfaces also opens up the pos-
sibility of engineering the random potential so as to produce
specifically designed transport effects. For example, an en-
hancement of the conductivity(compared to the Drude
value) of a two-dimensional electron gas was observed in
Ref. 7 due to the presence of a random magnetic field. In this
case the random field was produced by a thin film of rough
magnetic material brought into close proximity to the elec-
tron gas. The fluctuations of the field were inherited from the
height fluctuations of the film surface.

Inspired by these experimental advances here we describe
how power-law correlated disorder can lead to exotic critical
behavior of the electron gas in the integer quantum Hall set-
ting. We also analyze the effect of competing disorders,
which are necessarily present in semiconductor heterostruc-
tures, on the stability of these critical points.

B. Quantum percolation

The classical percolation problem provides one of the
most intuitive examples of a critical point. Lattice sites are
occupied with some probabilityp. Nearest neighboring sites,
which are occupied, form clusters with a typical sizej. As p
is tuned to its critical valuepc, which depends on the lattice
type, the correlation lengthj diverges asj,upc−pu−nc. nc is
the correlation length exponent, and in two dimensionsnc
=4/3 independent of the lattice type.11

An analogous picture has been put forward to describe the
localization transition in the integer quantum Hall system.3

For a smooth random potential(one that varies little on the
scale of the magnetic length) the electron wave function is
localized along the level lines. For random potential symmet-
ric around V=0 level lines away from the zero level are
closed and have a typical sizej, which is identified with the
localization length. As the electron’s energy is tuned to the
center of the Landau band, the corresponding level line ap-
proachesV=0 andj diverges. If the random potential has
short range correlations in space this is precisely the classical
percolation problem12 and one would predict a localization
length exponentnq=nc=4/3.

Experiments that measure a localization length exponent
in the integer quantum Hall system findnq<2.3, signaling a
breakdown of the simple percolation picture. The essential
physics that has been left out is one of electron tunneling,
which readily occurs at the saddle points of the random po-

tential, as well as quantum interference. This was beautifully
demonstrated by Chalker and Coddington, who proposed a
lattice model which takes into account these purely quantum
effects, by describing electron dynamics as hopping from
one saddle point to the next with scattering matrices associ-
ated with each saddle.13 The saddle points themselves oc-
cupy the vertexes of a square lattice. Computer measure-
ments of the localization exponent for this model yield
values in agreement with the experimental results. Moreover,
taking a classical limit of the network model, in which the
scattering matrices become classical probabilities for the two
possible outcomes of a scattering event at a vertex, leads to
classical percolation and a localization length exponent of
4/3.14 This provides an intriguing connection between the
critical points of classical and quantum percolation. Here we
investigate the nature of this connection when power-law
correlations are introduced in the random potential. In the
classical case it was shown that this can lead to different
critical points if the power-law decay is not too fast. We
show that a similar effect occurs for the quantum version of
percolation provided by electron localization in the lowest
Landau level.

The paper is organized as follows. In Sec. II we discuss
the physics of classical and quantum electron motion in two
dimensions, in the presence of a disordered potential and a
strong perpendicular magnetic field. We present scaling ar-
guments that show how the value of the critical exponentn
can be extracted from the time dependent mean square dis-
placement(classical motion) and the time dependent wave-
packet spread(quantum motion). In Sec. III we describe in
detail the numerical methods used to obtain the value ofn in
the classical and quantum setting. As evidence for the suit-
ability of these methods, we present results for short-range
correlated disorder potentials that are in good quantitative
agreement with previous experimental and theoretical
works.2,13,14 Section IV contains the numerical results ob-
tained for classical and quantum electron motion in power-
law correlated disorder potentials. In Sec. V we propose a
framework based on the classical Harris criterion15 and its
extension16 that provides the theoretical support for our nu-
merical results.

Finally, in Sec. VI we present results on classical and
quantum localization in the presence of competing short-
range and power-law correlated disorders. In experiments,7

which we believe have a good chance of observing the quan-
tum critical points discovered, both types of disordered po-
tentials are present. The key question here is whether corre-
lated quantum percolation is stable to the addition of short-
range correlated disorder.

II. CLASSICAL AND QUANTUM MOTION IN THE
LOWEST LANDAU LEVEL

The methods and tools used to describe the localization-
delocalization transition in the lowest Landau level(LLL ) in
the classical regime are considerably different from the ones
used in the quantum regime. In this section, we review both
scenarios and present the arguments leading to the connec-
tion between the localization exponentn and electron dy-
namics.
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A. Classical motion

The two-dimensional semiclassical motion of an electron
in a disorder potential under the influence of a large constant
magnetic field(along theẑ axis), is described by the drift
motion of the electron’s guiding center along equipotential
lines:

dr

dt
=

c

eB
¹ Vsr d 3 ẑ; s1d

where r is the position vector for the guiding center in the
sx̂, ŷd plane. This equation is derived in the adiabatic ap-
proximation, i.e., under the assumption that the cyclotron
radius is much smaller than the typical distance over which
the potential changes.17 Therefore the localization-
delocalization transition in the LLL in the classical regime
implies the study and characterization of the trajectories de-
termined by this equation.

Equation(1) was extensively studied in two different al-
beit related contexts. Evers18 used this equation in numerical
studies of classical motion along the hulls of percolation
clusters. He demonstrated interesting scaling behavior of the
time-dependent density-density correlation function close to
the percolation critical point.

Gurarie and Zee19 arrived at Eq.(1) from the classical
limit of the Liouvillian equation of motion for electrons in
the lowest Landau level of the integer quantum Hall regime.
In both cases, the authors considered smooth random poten-
tials with short-range correlations in space.

One goal of this work is to study numerically properties
of closed trajectories determined by Eq.(1), whereVsr d is
power-law correlated in space. In particular, we focus on the
scaling law, and its associated critical exponentn, which
describes how the size of a closed trajectory grows as the
energy approaches its critical value.

To make explicit the connection betweenn and the dy-
namics of a particle moving in a two-dimensional random
potential, let us briefly review the argument presented in Ref.
19. For a fixed constant value ofVsr d=V0, there is a set of
equipotentials associated with closed electron trajectories.
These trajectories are the outer boundaries(hulls) of perco-
lation clusters, with the occupation probabilityp of the per-
colation problem determined byV0. In particular, the critical
value of pc=1/2 corresponds toV0=0 in the units chosen.
Several studies18–20 have shown that the mean squared dis-
placement between two points on a given trajectoryDr 2 (r is
the position vector for the particle on the trajectory), when
averaged over all trajectories for fixedV0, follows a diffusive
law:

kDr 2stdlV0
= D t st ! t*d. s2d

Here t* is a characteristic time that depends onV0.
Away from the percolation critical point particle trajecto-

ries are closed, and in the long-time limit the mean squared
displacement reaches a constant value

kDr 2stdlV0
= j2 st @ t*d, s3d

wherejsV0d is the localization length.

These considerations lead to a scaling form(at fixedV0)
for the mean squared displacement

kDr 2stdlV0
= D t fSDt

j2 D , s4d

where f is a scaling function. The classical result from per-
colation theory20 for the correlation length,j~ up−pcu−nc,
leads to the expressionj~V0

−nc, which in turn implies

kDr 2stdlV0
= D t fS D t

V0
−2nc

D . s5d

Finally, by averaging this equation over all values ofV0
one obtains the scaling relation

kDr 2stdl , tu, s6d

where u=1−1/2nc is the anomalous diffusion exponent.
From simulationskDr 2stdl can be computed, which leads to a
value for u and, via the scaling relation just derived, to a
value for the localization length exponentnc in the classical
regime.

B. Quantum motion

One approach to study the localization-delocalization
transition in disordered quantum systems is based on the
different contributions that extended and localized electron
wave functions make to the frequency dependent electrical
conductivity.21 Localized states appear in the electrical con-
ductivity through the retarded density-density Green’s func-
tion, a quantity that has an intuitive interpretation when writ-
ten in terms of wave functions. When the electron is
represented by a localized wave packet at positionr and time
t=0, the Green’s function gives the value of the wave packet
spread at timet. Since this wave packet describes the prob-
ability of finding the electron at a given position and time, its
spread is a measure of the uncertainty of the electron’s posi-
tion, and as such it is an indicator of localization.

In most studies of localization, the Green’s function is
calculated in the momentum-frequency domain and studied
in detail in the limit of large momenta or small frequency.2,22

The purpose of this section is to show explicitly how the
critical exponentnq can be extracted from the Green’s func-
tion using instead the real time domain, as proposed by Si-
novaet al.23

Within this approach, one studies the disorder averaged
density-density correlation function projected onto the LLL,
i.e., the focus is on the unconstrained spectral function. As
pointed out in Ref. 19, the applicability of the method rests
upon the assumption that delocalized states in the IQH tran-
sition are isolated from each other and located at the centers
of the Landau bands. Thus, when the density-density corre-
lation function is restricted to one Landau level(the lowest
being considered for simplicity), the contribution of delocal-
ized states in that level dominates the sum over states in the
small sq,vd limit. Equivalently, the integral of the spectral
function over all energies is dominated by the contribution
from the critical energy in that limit. For our purposes, the
main advantage of this approach is that it clearly spells out a
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numerical scheme for studying the effect of power-law cor-
related disorder potentials on localization in the lowest Lan-
dau level.

In order to make connections with electron motion in the
classical regime and also to fix the notation used in the rest
of the paper, we review some of the main points of the ap-
proach.

Consider 2d spinless electrons(the electron spin is fixed
by the magnetic field) in the x-y plane, under the combined
effects of a magnetic fieldB=Bẑ, perpendicular to the plane
and a random potentialVsr d due to the presence of impuri-
ties. The electron-impurity interaction is given by

H = o
k

V−k rk , s7d

whererk =eik·r is the one-particle density operator andVk is
the Fourier transform of the disorder potential. At high
enough magnetic fields(or low enough temperatures), the
kinetic energy is quenched to the value of the lowest Landau
band and the sum is reduced to a sum over states in the LLL.

Let H̄ and r̄ be the Hamiltonian and one-particle density
operator projected onto the LLL. Then,

H̄ = o
k

V−k r̄k , s8d

with the projected one-particle density operator taking the
form:

r̄k = e−,c
2k2/4eık·C s9d

with C, the position vector for the guiding center of a one-
particle orbit, defined as24

Cx = x −
c

eB
Py,

Cy = y +
c

eB
Px, s10d

and ,c
2="c/eB. Here P=p+se/cdA and sx,yd are the ca-

nonical momentum and position operators for one particle.
The formalism used to project the density operatorrq

=e−iq·r onto the LLL was developed in Refs. 25 and 26.
There it was shown that the commutation relation for the
projected density operator obeys a closed algebra(the mag-
netic translation operator algebra):

fr̄k, r̄qg = 2 i sinS,c
2

2
k 3 qD3es−,c

2/2dq·krk+q, s11d

with k3q=sk 3qd ·ẑ. This property implies that the equation
of motion for the density operator

ı "
]

] t
r̄ = fH̄,r̄g s12d

is closed and can, in principle, be solved exactly.
Following the same line of argument, one can show that

similar results also hold for the correlation function of the
projected density operator:

Gsr ,td = Trsr̄sr ,tdr̄s0,0dd. s13d

Note that the trace extends over states in the lowest Landau
level only. The density-density correlation functionG in k
space satisfies the equation23

ı "
]

] t
Gsk,td = o

q
2 i sinS,c

2

2
k 3 qDVsk − qd

3expF−
,c

2

2
sk2 − k ·qdGGsq,td, s14d

which follows from Eq. (11). This is a Schröedinger-like
equation where the effective Hamiltonian is the Liouvillian
matrix:

Lkq = 2 ı sinS,c
2

2
k 3 qD Vsk − qdexpF−

,c
2

2
sk2 − k ·qdG .

s15d

The name Liouvillian is used because of the analogy with the
Liouvillian operator in classical mechanics. Actually, the
procedure outlined here reduces to the study of the time evo-
lution of the width of a wave packet made with all localized
and delocalized states which has been employed
previously.27,28

An interesting feature of Eq.(14) is that for a fixed value
of the magnetic field, the magnetic length,cs,c

2="c/eBd
vanishes in the classical limit"→0. In units ofc/eB=1, Eq.
(14) gives19

]

] t
Gsr ,td = ei j]iVsr d] jGsr ,td. s16d

A solution of this equation isGsr ,td=dsr −r stdd where

dr

dt
= ¹ Vsx,yd 3 ẑ. s17d

In other words, Eq.(16) describes the classical motion of the
electron’s guiding center along equipotentials ofVsr d.24

As argued above, the Liouvillian driving the quantum dy-
namics of an electron in the LLL contains information about
localization and the value of the critical exponentnq. The
following scaling argument provides a numerical algorithm
for extracting the localization exponent from the time depen-
dent projected density-density correlation function.(We
would like to draw attention to a close analogy between the
present argument and the ideas presented in Sec. II A)

Let us start with Eq.(8), and assume that all eigenvalues
and eigenstates, localized and delocalized, are known. We
construct a wave packet at timet=0 using only localized
states with energies in theD neighborhoodE8Þ0, and then
we let the wave packet evolve in time. The state vector cor-
responding to such wave packets is

ucE8stdl = o
i

cistduil s18d

whereuil are eigenvectors of the Hamiltonian projected onto
the LLL [see Eq.(8)]. The sum runs over all(localized)
states with energies within the rangefE8−D ,E8+Dg.
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At very short times, the spread of the wave packet as a
function of time is ballistic(see Appendix for derivation).
However, after some crossover time and before the localiza-
tion length corresponding to the energyE8 is reached, the
spread of the wave packet averaged over disorder realiza-
tions is diffusive:

,Dr2std.E8 = D t st ! t*sE8dd. s19d

At times much longer thant* ,j2, the localization length is
reached and

,Dr2std.E8 = j2sE8d st @ t*sE8dd. s20d

In close analogy with the classical argument, a scaling
form for the average dispersion of the wave packet follows:

,Dr2std.E8 = D t f8S D t

j2sE8d
D , s21d

where f8 is the appropriate scaling function. Now, if a local-
ized wave packet at timet=0 is constructed with all the
eigenstates(including delocalized states at the center of the
LLL ), its wave vector can be written as:

ucstdl = o
E8

ucE8stdl, s22d

where the sum runs over all states with energies in the range
s−` ,0g. The dispersion of the wave packet can be computed
as

kDr2stdl = o
E8,E9

kcE9stduDr2ucE8stdl, s23d

Using this decomposition:

kDr2stdl = o
i

o
j

ci
*s0dcjs0deisEi−Ejdtki ux2u jl, s24d

where the sums run over all the eigenvectors of the Hamil-
tonian. For a fixed(and sufficiently large) time t= t* , there
are two different contributions to this expression: one com-
ing from the states with energies within a rangeDE8ø t* /"
with slowly time-varying phases and the other coming from
the rest of the states with much faster phase variations. Thus,
for a given timet* a window of states, close to the critical
one, is selected. The contribution of this set of states will
dominate over the other term due to phase randomization,
and Eq.(23) can be approximated by

kDr2stdl . E
−`

0

dE8gsE8dkDr2stdlE8
¯ , s25d

wheregsE8d is the density of states. ReplacingkDr2stdlE8
¯ by

Eq. (21), using the fact that the density of states is nonsin-
gular, and thatj is related toE8 by jsE8d,sE8d−nq, we obtain

kDr2stdl . E
−`

0

dE8 gsE8dD t f8S Dt

E8−2nq
D . s26d

Finally, an appropriate rescaling gives

kDr2stdl , tu; u = 1 − 1/2nq, s27d

and we conclude, as in the classical case, that the spread of
the wave packet is subdiffusive with an anomalous diffusion
exponentu.

Therefore, by computingkDr2stdl, the value ofn can be
obtained. An alternative derivation of this result has been
proposed in Ref. 29, where the energy integrated Liouvillian
propagator is analyzed in the finitesq,vd regime and the
limits of q→0 and smallv are taken.

III. SHORT-RANGE DISORDER POTENTIAL

We introduce next the numerical procedures used to cal-
culate the value of the critical exponentn. We do this first in
the case of a short-range correlated disorder potential, where
we test the effectiveness of these numerical techniques by
rederiving previously known results. We begin by introduc-
ing the method used for analyzing classical localization,
where the connection to percolation theory provides a testing
ground for our numerics. In Sec. III B we describe how the
Liouvillian approach is implemented following the method
introduced in Ref. 30 to analyze quantum localization. The
numerical values thus obtained compare favorably to experi-
mental results and previous numerical calculations.

A. Classical motion

To study the classical motion of the electron’s guiding
center along the equipotentials ofVsr d we make use of a
lattice model, used previously to compute geometrical expo-
nents for contour loops of rough interfaces.31

Consider a square latticeL with N sites and periodic
boundary conditions. Each site in the lattice has assigned to
it a random number that represents the value of the disorder
potentialVsr d at that point in space. Its dual latticeL* is the
set of points that describe the positions of the electron in this
potential landscape. Thus, an electron originally located at a
site r 0 of L* will move along a path that joins points on this
lattice. The trajectories are contour loops of the disorder po-
tential. They are generated by first randomly selecting the
initial position r 0 from the set of points inL* . The choice of
the initial position of the trajectory also fixes the value of the
level V0. V0 is computed as the average of the values forVsr d
at the four vertexes(sites inL) that surround the initial po-
sition r 0. OnceV0 is determined, all the lattice sites ofL can
be labeled by + or −, depending on whether they are at a
potential higher or lower thanV0. The numerical algorithm
updates the electron’s position by selecting the bond on the
dual lattice that connects the pointr 0 with one of its nearest
neighbor points, with the additional property that it crosses a
+− bond on the latticeL. With this construction, the contour
loop is a directed walk along the bonds of the dual latticeL*

that separates potentials lying above(below) V0 on the inside
(outside) of the loop(see Fig. 1).

At each step, the square of the displacement vector be-
tween the current and original positions on the dual lattice is
calculated. The procedure is repeated for different starting
points r 0, and different disorder realizations. All the calcu-
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lated quantities are averaged over all trajectories and over all
disorder realizations.

A technical subtlety of this procedure is the existence of
saddle-point plaquettes, with +−+− labeled vertexes around
them. In this case, two contours(four links) meet at the cen-
ter and it is necessary to add an additional rule to resolve the
connectivity, so as to convert this pattern into two 90° turns
that are not quite touching. A physically sensible rule makes
use of the average potentialVplaq of the four potentials
around the saddle-point plaquette. IfVplaq,V0, the center of
the plaquette is at a lower potential than the contour loop and
the connectivity is resolved by having the + sites inside the
90° turns. In the opposite case,Vplaq.V0, the + sites are
outside of the 90° turns(see Fig. 1).

As in Ref. 19 we find from simulations that the average
time for an electron to traverse a certain distance onL* is
proportional to the distance. This observation justifies using
the number of steps alongL* to measure the time elapsed. In
this way time is rendered dimensionless.

The computations were carried out on two-dimensional
square lattices with system sizesN=256, 512, and 1024. The
values for the short-range correlated potential were chosen
independently from site to site from a uniform distribution
over the rangef−0.5,0.5g. This choice leads toV=0 for the
value of the critical equipotential energy. Figure 2 shows
results for a 102431024 lattice obtained by averaging over
33104 trajectories and 1000 different disorder realizations.

As discussed above, the diffusive(slopeu=1), short-time
st, t* ,10d, behavior is followed by a crossover to a critical
regime where the value of the slopeu is a measure of the
critical exponentnc;u=1−1/2nc. By fitting the critical re-
gion to a line on a log-log graph we find

nc = 1.25 ± 0.05, s28d

where the error bars reflect the uncertainty associated with
choosing the critical region.

This value compares well with the exact result from per-
colation theorync=4/3.11 The critical regime extends until
finite size effects become dominant andkDr2l saturates, as
observed in Fig. 2 fort.23104.

B. Quantum motion

Following the ideas presented in Sec. II B, we studied
numerically the role played by quantum effects on electron
dynamics in the lowest Landau level and in the presence of a
short-range correlated random potential.

We use the approach proposed in Ref. 19 and use the
eigenstates of the Hamiltonian for an electron on a torus
geometry as the basis of states for the LLL. The correspond-
ing wave functions written in the Landau gauge are:

casx,yd = F o
m=−`

`

expS2psx + ıydsN m+ ad

−
sNm+ ad2

N
pDGe−pNx2

, s29d

wherem takes integer values,N is the number of flux quanta
through the torus, and the indexa goes from 0 toN−1,
labeling theN states in the LLL. These wave functions are
periodic functions in the intervalsx,ydP f0,1d3 f0,1d, and
are centered along narrow strips(of width ,c) around the
lines x=a /N. In Eq. (29) sx,yd are dimensionless variables
expressed in units in which the magnetic length is,c
=1/2pN.

The electron density operatorrsk1,k2d=exps2pisk1x
+k2ydd projected onto the LLL using this basis, is a matrix of
the form:

FIG. 1. Classical trajectory of the electron’s guiding center, in
the presence of a random potential whose values are indicated.V0 is
the average potential around the plaquette surrounding the initial
point of the trajectory. The resolution of a saddle point is deter-
mined by the average potential around the plaquette surrounding the
saddle.

FIG. 2. Averaged mean square displacement for a classical par-
ticle drifting along equipotentials of a random short-range corre-
lated potential. Distance is measured in units of lattice spacing and
time in number of lattice steps. System size is 102431024. n is
related to the slope in the critical regionu, by u=1−1/2n.
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r̄sk1,k2d = expS−
k1

2 + k2
2

2N
pDLsk1,k2d, s30d

where k1,k2 are integersssk1,k2dÞ s0,0dd, and the matrix
Lsk1,k2d is given in terms of two unitary unimodularN3N
matrices:

Lsk1, k2d = ek1 k2/2fk1hk2,

h =1
0 1 ... ... 0

0 0 1 ... 0

.... ... ... ... ...

1 0 ... ... 0
2 ,

f = diags1,e, . . . ,eN−1d,

with e=exps2pi /Nd; note thath is a cyclic permutation ma-
trix. These matrices satisfy:h f=e f h and hN= fN=1. The
explicit expression for the matrix elements ofLsk1,k2d is:

fLsk1,k2dga,b = ek1 k2/2+k1sa−1dda,b−k2
umod N. s31d

Since the basis of states is restricted to the LLL, the kinetic
energy is a constant and the projected Hamiltonian reduces
to:

H̄ = o
k1,k2

Vs− k1,− k2dr̄sk1,k2d,

= o
k1,k2

Vs− k1,− k2dexpS−
k1

2 + k2
2

2N
pDLsk1,k2d, s32d

where the sum runs over all integer values ofsk1,k2d, and
Vs0,0d=0 (this choice amounts to fixing the critical energy
at zero).

In this basis, the Hamiltonian is a randomN3N matrix
that can be diagonalized exactly. Notice that the projection
operation introduces the exponential factor in Eq.(32) that
effectively reduces the amplitude of the largesk1,k2d Fourier
components of the potential(it acts as a soft large-
momentum cutoff). The presence of this factor seems to in-
dicate that the transition is driven by the small momenta
components of the disorder potential. It is important to note
that even when a finite precision numerical calculation fails
to detect the contribution coming from momenta components
higher than a maximum value forsk1

2+k2
2d /2N (numerically,

the Hamiltonian matrix becomes a banded matrix), it is in-
correct to replace the exponential factor by a hard cutoff,
since the commutation relations of the projected density
operator25 would not be conserved.(In numerical calcula-
tions, this translates into having results that are extremely
sensitive to the value of the hard cutoff chosen.)

The values for the Fourier components of the disorder
potential in Eq.(32) are chosen randomly from a flat distri-
bution over the intervalf−0.5,0.5g.

We diagonalize the Hamiltonian to obtain allN eigenval-
ues and eigenfunctions. Figure 3 shows examples of a local-
ized state at the tail of the Landau band, and a delocalized
one close to the band center, obtained with a basis ofN
=1000 states.

A localized wave packet is constructed with all the eigen-
states for a given disorder realization and, as it evolves, its
spread is computed as a function of time. The wave packets
are chosen from among the basis states, Eq.(29), which are
localized in thex direction and completely spread out in the
y direction (see Fig. 1 in Ref. 6). Thus, the contribution to
the total spread from they direction is a constant propor-
tional to the system size.

The procedure is repeated for different initial positions for
the localized wave packet and different disorder realizations.
The spread is averaged over all initial positions and disorder
realizations. A typical result for a basis of 1000 states and
1000 disorder realizations is plotted in Fig. 4.

As in the classical case, three regimes can be identified.
For long enough times(t.10 in Fig. 4) the spread of the
wave packet reaches a constant value, indicating the influ-
ence of the finite system size. The critical region corresponds
to intermediate timess0.4, t,10d, and the value ofnq (“q”
for quantum) can be related to the slope of the line, which is
the anomalous diffusion exponentu [see Eq.(27)]. As seen
in the inset to Fig. 4, the slope in the critical region shows a

FIG. 3. Squared amplitude of a localized eigenstate with energy
E=9.6 stopd, and a delocalized one withE=0.011 sbottomd, in the
lowest Landau level with degeneracyN=1000. The disorder poten-
tial is short ranged.
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strong dependence on the system size. To take into account
these finite size effects, we determined the slope for systems
sizes ranging fromN=200 to N=1500 and compute the
value for an infinite sized system by linear extrapolation to
obtainnq=2.33±0.09.

Our result compares favorably to the values measured in
experimentssn=2.3±0.1d32 and previous numerical simula-
tions sn=2.35±0.05d.2 This provides an important check on
the numerical method.

Our data show that at very short times the slopeu.2,
which implies ballistic spreading of the wave packet. In the
Appendix we present a calculation based on perturbation
theory that shows that this is a result of averaging the evo-
lution equation over random disorder, at short enough times.

IV. POWER-LAW CORRELATED DISORDER
POTENTIAL

In this section we address the central question raised by
the present work: how does a change in the spatial correla-
tions of the disorder potential affect the nature of localization
in the lowest Landau level? The numerical procedure out-
lined in previous sections allows us to investigate this ques-
tion in a straightforward manner, for both the classical and
the quantum regime. Basically, it amounts to an appropriate
modification of the probability distribution for the Fourier
components for the random potential in Eq.(32). Since we
are interested in the effect of power-law correlations on lo-
calization properties of the Hamiltonian in Eq.(32), the Fou-
rier components are chosen independently with a Gaussian
distribution with zero mean, and variance

uVskdu2 ~ 1/uk u2−a. s33d

Inverse Fourier transforming to real space leads to power-
law correlations

Vsr dVs0d , 1/ur ua. s34d

The constant in Eq.(33) is fixed so that the variance ofVsrd
is normalized to one. Long-range correlations strongly
modify the real-space configuration of the equipotential lines
as can be seen in Fig. 5 where a comparison between a
short-range and a power-law correlated potential witha
=0.5 is given.

A. Classical motion

In the classical limit of the IQH transition, the effect of
power-law correlations in the disorder potential can be de-
scribed in terms of a purely geometric effect: they change the
fractal geometry of the equipotential contours modifying the
electron’s path, and correspondingly, the anomalous diffu-
sion law for its mean squared displacement.

To study this regime numerically, we repeated the proce-
dure described in Sec. III A, and computedkDr 2stdl for val-
ues ofa ranging from 0.33 to 1.8. Figure 6 shows the curves
obtained for a system of 5123512 lattice sites. As in the
case of short-range correlations, three regimes can be identi-
fied with the onset of each of them depending on the value of
a. From the figure, a qualitative change in the spread of the

FIG. 4. Spread of wave packet as a function of time, in the
presence of short-range correlated disorder potential with a basis of
N=1000 states. The spread at intermediate times is subdiffusive.
The inset shows the anomalous diffusion exponentu as a function
of basis sizeN. The intercept gives the infinite-system-size value of
u, which leads to the quoted value of the localization exponent
nsn=1/s2−2udd.

FIG. 5. Contour plot of a typical realization of a short-range
correlated potential(top) and a power-law correlated one with ex-
ponenta=0.5 sbottomd.
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electrons position in time is observed. Namely, in the critical
regime (typically for 30, t,1100), the value of the slope
becomes dependent ona when aø1.5. As the value ofa
decreases(correlations increase) below a critical value of
ac

* .1.5 (c is for “classical”), the slopeu in the critical re-
gion increases andn becomes an increasing function ofa
tending to infinity asa approaches zero.

B. Quantum motion

In contrast to the classical regime, the effect of power-law
correlations in the disorder potential on the properties of
quantum localization does not have a simple geometrical in-
terpretation. In particular, we find that changing the fractal
properties of the equipotentials does not always lead to a
change in the quantum critical exponents.

The numerical procedure introduced in Sec. III B is easily
extended to the present case allowing us to study the prob-
lem in detail. The Fourier components of the random poten-
tial are taken from the same distribution as in the classical
case and the corresponding quantum Hamiltonian[Eq. (32)]
is diagonalized. Then,kDx2l is computed as a function of
time for values ofa ranging from 0.1 to 1.9. A typical set of
results obtained with a basis of 1000 states is shown in Fig.
7 together with the curve obtained for a short-range corre-
lated potential. As in the short-range case, the exponentu
was calculated for different system sizes ranging fromN
=300 toN=1000.

As in the classical case, a qualitative difference in the
slopes of the critical regime develops asa changes. A careful
comparison among the different curves shows that the value
of the slope in the critical region starts to increase below a
critical value ofaq

* .0.85. A detailed quantitative analysis of
these results together with a comparison to the classical case
is the subject of Sec. V.

V. EXTENDED HARRIS CRITERION

The effect of a random disorder potential on the properties
of continuous phase transitions in classical systems is sum-

marized by the Harris criterion.15 Basically, the criterion
states that critical exponents of the disordered and the corre-
sponding clean system remain equal as long as the value for
the correlation length exponentn satisfies the inequality:
dn−2ù0, whered is the dimensionality of the classical sys-
tem under consideration. The criterion is derived by requir-
ing that the variance of the thermodynamic quantity, which
couples to the disorder within a volume set by the correlation
length j, does not grow faster than its average value as the
transition is approached andj→`. The Harris criterion has
been proven rigorously and generalized to a wider class of
systems if an appropriate definition for the correlation length
is adopted.33 An extension of the criterion to power-law cor-
related disorder was proposed by Weinrib and Halperin.16

In the case of two-dimensional percolation with power-
law correlations in the occupation probabilities, with the
power-law exponenta, the extended Harris criterion states:

a . ac
* = 3/2 nc =

4

3
,

a , ac
* = 3/2 nc =

2

a
. s35d

As a numerical check on Eq.(35), we computed the val-
ues of the anomalous diffusion exponentu for classical elec-
tron motion. The values ofu were obtained from fitting the
data in Fig. 6, in the critical region, to a line using a least-
squares method;u is the slope of the line. Fromu we com-
putedn and plotted it as a function ofa in Fig. 8. We see that
the data are well described by the theoretical prediction:
aboveac

* =3/2, 1/nc=2/3 isconstant, while below this value
it varies as 1/n=a /2. Similar results were obtained previ-
ously by Prakashet al.34

Analogous results hold true for the quantum case; in Fig.
9 we plot 1/n as a function ofa. The anomalous diffusion
exponentu was computed using the data in Fig. 7 and the
value of 1/n was computed following the same procedure as

FIG. 6. Classical motion: averaged mean square displacement as
a function of time for 5123512 system size. Distances are mea-
sured in units of lattice spacing and time in number of lattice steps.

FIG. 7. kDx2l as a function of time for various values of the
power-law correlated disorder exponent. Anomalous diffusion ap-
pears at intermediate times. The top four curves have been multi-
plied by a factor of 10 for clarity.
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in the classical case. The values plotted are the extrapolation
corresponding to an infinite system size. We see that the
numerical results presented in Fig. 9 are in good agreement
with the extended Harris criterion which now reads:

a . aq
* < 0.85 nq < 2.33,

a , aq
* < 0.85 nq =

2

a
. s36d

Support for the validity of the extended Harris criterion
for quantum critical points was also provided by studies of
quantum random magnets.35

In the case of quantum percolation(i.e., localization in the
lowest Landau level) the extended Harris criterion can be
argued for in close analogy to the classical case.16 Namely,
consider the average size of the fluctuations of the electron’s
energy in an area set by the localization lengthj. Like the
electron’s energy, it is also determined by the random disor-
der potential, and can be approximated as:

E2̄ < S 1

j2E
j2

d2xVsxdD2

,
1

j
E

j2
d2xuxu−a, s37d

where in deriving the second equation we have made use of
kVsxdVsx8dl,1/ux−x8ua.

For the quantum critical point associated with localization
in the lowest Landau level to be stable to the introduction of
power-law correlations in the random potential, the fluctua-
tions in the electron’s energy should be small when com-
pared to its energyE. Using Eq.(37), and the scaling relation
E,j−1/n we arrive at the estimates

E2̄

E2 , 5E2n−2 ln

E2n−2 : a . 2

sEd−n : a = 2

Ean−2 : a , 2.

s38d

The quantum percolation critical point is expected to be
unaffected by the introduction of power-law correlations if

E2̄/E2→0 whenE→0, or, equivalently, whenj→`. Since
n.1 this is always the case whenaù2.

However for a,2 there are two regimes to consider.

When 2.a.2/n, E2̄/E2→0 and the localization critical
point due to short-ranged potential disorder is again stable to
introduction of power-law correlations in the random poten-
tial. In contrast, for values ofa,2/n a power-law correlated
potential produces large fluctuations in the energy, thus de-
stabilizing the critical point.

The usual expectation is that this relevant perturbation
leads to a quantum critical point characterized by a value of
n. This is confirmed by our numerical results.

An important consequence of the present result regards
the validity of the expression put forward in Ref. 36, that
relates the values ofnq andnc as follows:

nq = nc + 1. s39d

According to the analysis presented above, a quantum sys-
tem with a long-range correlated potential has the same criti-
cal exponent as one with short-range correlations as long as
aù0.85. However, a classical system with potential correla-
tions with a value fora in the region 0.85,a,1.5, has a
continuously varying critical exponentn according to Eq.
(35). For instance, a value ofa=1 givesnq=2.33, whilenc
=2.0. This analysis suggests that the relation given by Eq.
(39) (whatever the argument used to support it) is inconsis-
tent with the Harris criterion.

VI. COMPETING DISORDERS

In this section we undertake a numerical study of the ef-
fect of competing disorders on localization in the LLL. We
investigate first the classical regime, which is in the univer-
sality class of correlated percolation. Analytical calculations4

have shown that in these systems the classical critical point
generated by a long-range correlated potential is stable
against perturbations produced by a short-range correlated
potential. As shown below, our numerical results in this re-
gime, provide support for this picture.

In the quantum case we investigate the effect of compet-
ing power-law correlated and short-range correlated disor-

FIG. 8. Classical regime: inverse critical exponent 1/n as a
function of power-law correlated disorder exponenta. The horizon-
tal line represents the theoretical value of 1/n=0.75 corresponding
to the value ofnc=4/3 obtained from “classical” percolation theory.
The linear function 1/n=a /2 is predicted by the extended Harris
criterion, Eq.(35).

FIG. 9. Quantum regime: inverse critical exponent 1/n as a
function of the exponenta, which determines the power-law corre-
lations of the disorder. The lines are predictions of the extended
Harris criterion[Eq. (36)] using the valuenq=2.33 for the quantum
localization length exponent, in the case of short-range correlated
disorder.
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ders on localization. Numerical studies of this particular case
are relevant for experiments attempting to measure proper-
ties of the correlated quantum percolation critical point.
Namely, since short-range correlated potentials are always
present in experimental setups, it is important to understand
quantitatively how their presence affects the values of the
localization length exponents described in the previous sec-
tions.

To proceed with the appropriate numerical model we first
establish the following conventions. The total disorder poten-
tial is defined as a weighted sum of two potentials: one with
short-range correlationsVssr d and one with long-range cor-
relationsVlsr d. The units chosen are such that the mean val-
ues of short- and long-range correlated potentials are set
equal to zero while their variances are normalized to one. In
this way, the maximum amplitudes of both potentials are
comparable. In order to vary the relative strength of each
potential we introduce a parameterk with values in the range
0økø1 such that the total potential is:

Vef fsr d = k Vssr d + s1 − kdVlsr d. s40d

Note that whenk=0 the total potential has power-law corre-
lations only, while the short-ranged part is increasingly
dominant as the value ofk increases toward 1. This defini-
tion ensures that the variance of the total potentialVef f re-
mains fixed ask changes andkVef f

2 sr dl=1.
The numerics were performed with short-range correlated

potentials constructed from random Fourier components
Vskd sampled from a uniform distribution, or from a Gauss-
ian distribution with variance,uk ua−2 with a.a* . In real
space this leads to delta correlations and power-law correla-
tions with exponenta, respectively. Long-range correlated
potentials were generated with power-law correlations with
exponentb,a* , for which the extended Harris criterion pre-
dicts a localization length exponentn=2/b. The properties
of the total potential and its components are summarized in
Table I.

A note on the evaluation of errors: as it will be shown in
the following sections, the effect of tuningkÞ0 depends on
system size for both classical and quantum regimes. Hence,
it was not possible to carry out the finite-size study similar to
the one done previously, where there is only one type of
disorder present. As a consequence, the errors have been es-
timated from the largest systematic error involved in the pro-
cedure, which appears in the determination of the slope of
the critical region.

A. Classical regime

Computations were carried out for system sizesN=256,
512 andN=1024. The values of the anomalous diffusion
exponentu were extracted from the critical region of the
spread of the classical position of the electron, as in Sec.
IV A. Values of u were obtained for a range of values of the
parameterk. Figure 10 shows result that correspond to a
combination of a power-law correlated potential with expo-
nent b=0.5 (for the long-range part) and a=1.8 (for the
short-range piece).

The figure shows that, as the system size increases the
value ofu (and hence ofn) remains closer to the pure long-
range value up to fairly large values ofk (roughly
55% –60%). The increasing sharpness of the crossover with
increasing system sizes suggests a very sharp crossover in
the thermodynamic limit. In the language of the renormaliza-
tion group, this is an indication of the stability of the long-
range critical point when perturbed with a short-range corre-
lated potential. Notice, as it was pointed out above, that this
crossover is strongly dependent on the system size, rendering
useless the finite-size scaling analysis used previously. An
interesting effect is observed in the raw data that points to
the way the crossovers occur in finite size systems. Between
the initial crossover from diffusive to subdiffusive motion
and the final crossover from subdiffusive motion to satura-
tion, there are two clearly distinguishable regimes. At the
earlier times, the slope is determined by the short-range cor-
related potential. Only at the latest times(and before satura-
tion effects dominate) does a new slope appear, that corre-
sponds to the value ofu determined by the exponent of the
power-law(long-range) correlated potential.

B. Quantum regime

In contrast to the classical regime, to date there is no
experimental or theoretical work to our knowledge that at-
tempted to investigate the influence of mixed long-range and
short-range correlated disorder potentials on the integer
quantum Hall transitions. The numerical strategy used in
Sec. IV B, provides us with a framework to study this situa-
tion and allows us to examine the stability of the quantum
critical points found in previous sections.

TABLE I. Statistical properties of the short-range and long-
range correlated potentials used in Sec. VI.

Vef fsr d = k Vssr d+s1−kdVlsr d
kVssr dl=kVlsr dl = 0

kVs
2sr dl=kVl

2sr dl = 1

kVssr dVssr 8dl ~ ur −r 8u−a , dsr −r 8d
kVlsr dVlsr 8dl ~ ur −r 8u−b

FIG. 10. Classical regime: slopeu as a function of parameterk.
k=0s1d indicates a pure long-range(short-range) correlated
potential.
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Computations for quantum systems were carried out with
a basis ofN=500, 700, andN=1000 states. The values of the
slopeu were extracted from the critical region and plotted as
a function of the parameterk, as in the classical regime. The
results shown in Fig. 11 were obtained with power-law cor-
related potentialsVs and Vl with exponentsa=1.8 andb
=0.5, respectively.

As the figure shows, data for the quantum regime is
noisier than its classical counterpart. Finite size effects are
also more prominent as can clearly be observed in the varia-
tion of the values of the slopeu. However, the trend ob-
served is in agreement with the expected behavior in the
thermodynamic limit. It suggests that the quantum correlated
critical points are indeed stable against the perturbation in-
troduced by a short-range correlated potential. This opens up
the possibility of measuring the varying localization length
exponentsnq in experiments in which random disorder with
power-law correlations is introduced. The idea would be to
engineer a random potential with desired properties which
would compete with the short-range disorder due to the im-
purities always present in the semiconductor heterostructure.
An example of such a system was described in Ref. 7 where
a thin magnetic film was placed in close proximity to the
two-dimensional electron gas resulting in a random magnetic
field. By controlling the height fluctuations of the film one
can, in principle, engineer a random potential with desired
correlations.

VII. CONCLUSIONS

We have analyzed the effect of spatial correlations of the
disorder potential on the localization-delocalization transi-
tion in the integer quantum Hall system. The main purpose
of the analysis was to understand separately the role played
by quantum effects and disorder on the critical properties of
the transition by comparing classical and quantum localiza-
tion.

The analysis of electron localization in the classical case
reveals that the localization length exponent is completely
determined by the statistical properties of the level lines of
the random potential. Using the tools of percolation theory,
we were able to implement well established numerical meth-

ods to perform a detailed check of the validity of the Harris
criterion. We found numerical support for the extended ver-
sion of the criterion, confirming previous theoretical
arguments.4

The quantum regime was analyzed by studying the real
time density-density propagator as proposed in Ref. 23. This
method, originally introduced as an alternative way to calcu-
late the critical exponentn for a short-range correlated po-
tential, proved to be an excellent testing ground to analyze
the role of disorder. We obtained(following a rather simplis-
tic finite size analysis) a value forn=2.33±0.09 remarkably
close to experimentally measured values and numerically
calculated ones. We also found that when the decay of
power-law correlations of the random potential is slow
enough, this can destabilize the quantum critical point and
lead to exotic critical behavior, as predicted by the extended
Harris criterion.

Comparison between classical and quantum regimes with
long-range correlated disorder potentials indicate that the ef-
fect of disorder correlations are qualitatively similar for
quantum and classical systems. The main difference between
these two cases seems to be the critical value ofa (the ex-
ponent determining the long-range correlations) below which
the value ofn is changed. The value ofaq

* .0.85 is smaller
compared to its classical counterpartac

* =1.5. This suggests
that quantum fluctuations can be thought of as effectively
smearing out the correlations in the random potential, thus
shifting a* .

An immediate consequence of these results is that in the
quantum case, there is no direct connection between the sta-
tistical properties of equipotential lines and the localization
length exponent. Specifically, we were able to show that the
fractal geometry of the equipotential lines can be continu-
ously varied while the quantum localization length exponent
does not change.

The detailed numerical study of the variation of the criti-
cal exponentn with the power-law exponenta, led us to
propose a precise statement for the quantum version of the
extended Harris criterion. These numerical results are sup-
ported by a scaling argument, in close analogy with the clas-
sical case. Let us remark that previous works37,38 have ad-
dressed the related issue of variable potential correlations on
generalized Chalker-Coddington models to study the effect
of classical percolation on the IQHT. In that case, however, it
was concluded that the only effect was an increment of the
microscopic length scale, with no further influence on the
value of the critical exponents.

In order to address the experimentally relevant situation
of samples with disorder potentials of different origins and
likely, different correlations, we analyzed the effect of com-
peting disorder potentials on the IQHT. In the classical limit,
our numerical results give support to previous theoretical
arguments for the stability of the correlated-percolation criti-
cal points. In the quantum regime we observed that, while
the value of the critical exponentn varies as the short-range
correlated potential is introduced, the trend is similar to the
one observed in the classical regime. As a consequence, our
results show no qualitative difference between classical and
quantum regimes regarding the stability of these critical
points. More importantly, they point to the possibility of ob-

FIG. 11. Quantum regime: slopeu as a function of parameterk.
k=0 indicates a purely long-range correlated potential andk=1
corresponds to a purely short-range correlated potential.
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serving effects of the correlated quantum percolation critical
points in experiments on two-dimensional electron gases in
semiconductor heterostructures where short-range disorder
due to impurities is unavoidable.
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APPENDIX

In this Appendix we present a calculation based on per-
turbation theory that shows that at short times the wave
packet has a ballistic spread, as was observed numerically. If
ucstdl is the wave function of the wave packet at timet, the
spread is given by

kcstduDx2ucstdl=kcstdux2ucstdl − kcstduxucstdl2. sA1d

Here we analyze the first term in detail, while the second
one can be dealt with in a similar way.

In the Heisenberg representation

kcstdux2ucstdl=kcs0dux2stducs0dl, sA2d

where

x2std = eiHtx2s0de−iHt . sA3d

Using the well known operator identity

kcstdux2ucstdl = kcs0dux2s0ducs0dl+ i t kcs0dufH,x2s0dgucs0dl

+
si td2

2!
kcs0dufH,fH,x2s0dggucs0dl + Ost3d.

sA4d

The probability distribution of energies is determined by
the probability distribution of the disorder potential, which is
chosen to be symmetric around the valueV=0. Since the
wave packet contains all eigenstates, averaging over disorder
(average over energies) eliminates the linear term in the ex-
pansion above. Thus, the first nonvanishing contribution at
short times is given by the quadratic term, which results in
the ballistic spread of the wave packet.
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