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Modification of electron-hole excitations for a quantum well embedded in an asymmetric
dielectric structure
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Starting from the conventional quantum electrodynamical formulation in Coulomb gauge we show that the
Coulomb interaction of an electronhole in a quantum wé€W) embedded in an asymmetric dielectric
structure with different dielectric constants in barrier regions yields a nondiagonal term of electron-hole pair
excitation and the electron-hole vacuum state cannot be longer than the ground state of the system. A Bogo-
liubov transformation with a representation of new quasiparticles is provided to eliminate the nondiagonal
term. The linear response function describing the modified exciton-polariton effect of the system is obtained.
Analytical expressions are found for the effective mass of quasiparticles, the modified band gap, and the
exciton coupling potential for a quasi-electron-hole pair. The exciton-polariton coupling turns out to contain an
additional term originating from intraband processes. It is shown that the effect is significant for QW'’s with
small thicknesses and for semiconductors with narrow band gaps.
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I. INTRODUCTION electron-hole vacuum state cannot be longer than the ground
) ) _ ~ state of the system. A Bogoliubov transformation with a rep-

In recent years the theory of excitonpolaritons in semiconyesentation of new quasiparticles is provided to eliminate the
ductor microstructures has attracted considerable interest f‘i’fondiagonal term. Using the effective-mass approximation
many optical device applicatiortdn the early works of ex-  for quasiparticles we obtain the linear response function of
citon polariton in quantum well@QW's) the background di-  the system describing the modified exciton-polariton effect
electric constant has been taken to be the same for QW ang the system. It is shown that the effect is significant for

barrier regions. Keldyshis the first who showed that the Qw's of small thicknesses and for semiconductors with nar-
different dielectric constants in the QW and barrier regionsow pand gaps.

cause an image charge effect which significantly modifies the
coupling potential of the electron-hole pair. Later on, this
effect was studied in detail by M. Kumqgai al:3 and Tran _ Il. HAMILTONIAN MODEL
Thoat for the general case of different dielectric constants in
each barrier region. Recently, the effect of dielectric confine- We start with the Hamiltonian describing the electromag-
ment has been shown experimentally in semiconductonetic interaction for a material system consisting of a two-
nanostructure3.This effect of near-surface quantum wells band semiconductor QW embedded in a medium with space-
has also been studied for the cases of magnetoex&téns. dependent dielectric constant
The starting Hamiltonian used in these works to describe the 227
dielectric confinement effect represents only the exciton H=J\P+(r){——+u|(r)+uc(r) W(r)dr
model with an electron-hole Coulomb coupling potential 2my
modified by the inhomogeneous background dielectric con- 1
stant via the Poisson equation. -= f A(r) - J(r)dr + Hg+ > hwqcaxcqx- (1)
In the present paper a more general approach is provided c aA

to study the full electromagnetic interaction of a material . . . !
i . The Coulomb interactiomd. concerning QW electron field
system consisting of a QW embedded in a space—dependeg erator¥(r) may be presented in Coulomb gauge as fol-

dielectric. Following the conventional electrodynamical for-

mulation in Coulomb gaudeve consider the dielectric as a lows

part of the material system and introduce its own current and 1 WHr)W(r')

charge density,(r) and g,(r), respectively. It is suggested He= Eezf f lI’Jr(r)w‘l’(f)dr dr’

that a suitable constitutive relation should be held for them to

yield the corresponding dielectric constat). We confine v 0p(r") ,

ourselves to the case of a medium with different dielectric te v (r)|r _r,|llf(r)dr dr. (2)

constants for left and right barrier regions. The electron field

operator for a two-band semiconductor QW is formulatedThe vector potential can be expanded in terms of the photon
using the envelope function approach in the-p  creation(destruction operatorscy, (Cq):

approximation'%!! We show that for an asymmetric dielec- 1

tric structure, the Coulomb interaction in QW'’s yields a non- A==, A(qg)e,

diagonal term of electron-hole pair excitation and the Vi
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2mhV . spectively, responsible for the background dielectric constant
Al@=>c Teq)\(cqx +Clg))- €(2). The latter one is a piecewise function as follows:
A q
We would like to emphasize that here we have the bare pho- 2)=¢, for- l| <7< }| (QW region,
tons whose definition is independent of the presence of the 2 2

material system including the dielectric. The periodic poten-

tial of the perfect bulk semiconductor is denotedér), 1

while U(r) is the additional confining potential due to the €2)=¢ forz<- 5' (left barrier region,
heterostructure¥>! The electron-hole field operator of the

two-band quantum well semiconductd(r) is represented

1
as 2)=ex forz> 5 (right barrier regio 7)

W(r) =2 [ag ex (1) + b o ()], )
K

whereay (ay), bk (by) are the electron and hole destruction Il EQUATIONS OF MOTION

(creatioo_ operators, respectively. Here, and.in _the following  \ne can derive now the Heisenberg equations of motion
the capital lettersR,K,..., are used to indicate two-
dimensional (2D) vectors parallel to the plane of layers
(x,y): R is the 2D part ofr, K is the respective part d{.
Within the framework of the envelope function description
and thek-p approximation the wave functiongg(r),(s R R
=c,v) may be written a8 [HeX]=e f {T ()P )W (r),X]*

VFx(r)-v
E.(0) - E,(0)

for any operato§< representing a linear combination of the
electron- and hole destruction and creation operators. To this
aim we have to write out the commutator

ek (1) = Fe (Nuc(0,r) —ifa u,(0,r), —[WH(r),X]*d(r)W(r)}dr . (8)

Here[A,B]*=AB+BA and ®(r) is defined as

~ . VF(r) -V
(ﬂvK(r) - FuK(r)uU(O,r) + IﬁEC(O) _ EU(O) UC(O,I’), (D(r) :J e\I’+(r’)‘I’(r r) + Qb(r,)dr/ (9)
r—r’
o r-r]
F(r)= gS(Z)r_g' (4)  The charge density operatgg(r) responsible for the back-
N

ground dielectric constant is connected with the electric field
Here E{(k) andug(k,r) are the band energies and the peri-operator by the following constitutive relation:

odic parts of the Bloch functions for the perfect bulk semi-

conductor, respectively, while the vectoris the interband ou(N) =—divP(r), jur)= ip(r),

matrix element of the velocity. The envelope functions at

{{(2),(s=c,v) are eigenfunctions of

ﬁZ (72 _ E(Z) -1 _ t
[— P + Ui(z)]gs(z) = £ {(2). (5) P(r)= T4 E(r), E(r)=-V®(r)+E(r). (10
We will confine ourselves to type-l heterostructutese.,  Here the transverse electric field opera(r) is defined as
the ¢(2)’s are localized solutions for both conduction and
valence bands. For the conduction band=c,m. tpy = L t( ) @ldT
i ~t E'(r)==2 EYq)éd",
=m,>0,¢, is the lowest level of Eq(5). For the valence ") % (@)
band,s=v,m,=-m,<0,¢, is the highest level of Eq5).
The bare electron and hole energies are defined as . > N .
EYq) =i2, V2mhwgey)(Coy — Coy) - 11
Eo(K) = e+ Eo(K), En(-K) =5, - E,(K). A e )

The current density is taken to be Substituting Eq(10) into Eq.(9) and performing the integra-

J()=j(r) +ju(r), tion we can findd(r) presented as follows:
where
" d(r) =ej G(r|r")¥*(r")®(r')dr’ +F(r),
H Ine + +
J(f)=—ﬁ{‘1’ (N VW(r)-[V¥*(N]w()}  (6)
represents the electron current in two-band semiconductor G(rlr") :EE G(z,z'|Q)eiQ-R-R’,
andj,(r) and gy(r) are the current and charge density, re- SQ
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F(r)= EF(le QR (12)

The expressions cIB(z,z’|Q) andF(ZQ) for the QW region
are found to be

e

G z,Z Q‘Z_Z ‘ + 5 e‘Q(Z"'Z’)
( |Q) WQ< 1- 5L5Re_2QI[ L

+ 5ReQ(Z+Z/) + 5L 5Re_Q|(e_Q(Z_ZI) + eQ(Z_Z,))])

€w~ €n

5= -L,R),
S e, (n )
1 Eyq)
FEQ) = EE 156

( e —i01/2 4 e'qz|/25 e QI)e Q(z+1/2)

( gia25 g Q4 dadi2)gQE12) | (13)

We have the following result for the left barrier region:

4
Qe+ €)(1 - 5.6

X [eQz7)

G(z,Z|Q) =

Et( )eQ (z+/2)
E Eilqe?=?

F(Z|Q): - 550 —2QI[ e—qu|/25L(1+5Re—2Q|)

+ e'qZ"zaR(l +8)e?] (14
and for the right barrier region

47 [e_Q(Z_
Qlew+ €r)(1 — 5.5z 2

+ 5 e Qg 7],

G(zz|Q) =

(q)e Q(z-1/12)

el A e
(N

F(ZQ) = 2

+ ein"ZéR(l +6.e72M)]. (15)

Equation (9) is the Poisson’s equation written in integral
form. The expressiond 2)—15) represent its solution for the

special case of charge densigy(r) defined by Eq(10). The
potentiald(r) turns out to be connected with tlzecompo-
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this work. With Eqs(12) and(13) substituted into Eq8) we
can find the result as follows:

[Hoak] = Na(3) + &by,  [Hebo]=Ny(3) — s — Apbo,

(16)
:——E f [ (Nax-oli(2)
= bl .®(n)d— a@a@} e QRgr,
Nb(3>:§§ f {cb(r)b_K_Qé(z)

~asP(nd §C(Z)§U(Z)} "R,

ezdz

f f ,;2(2)[_@(2 z IQ)] {(2)¢,(2)dzdzZ,

e
M=g2 f f {(26(2.2|Q)¢ (7 )dzdZ,
Q

ihv
E.(0) -E,(0)

Here A, represents the Coulomb correction to the hole en-

ergy. Na(3) and Nb(3) are composed of the terms containing
normal ordered products of electron-hole creation or annihi-
lation operators with the potential operatb(r).

It is not difficult to see that disappears for a symmetric
structure wheng =eg and the functiongc(z)gv(z),gi(z) are
even ofz. In the present paper we consider the cgsg eg.

For simplicity the envelope functiofi(z) is taken to be the
same for both conduction and valence bands and the function
[?(z) is suggested to be even. The expressior ohay be
represented as follows:

e2d
e=——>(5k— )W), wn=35,
€,

d

17

_ z+7
w ne’” COS"( 7/|—>
I(M)=fd2f dZ’JO dni%(23Z) 1-pe?r

(18

nent of the transverse field. Formally, it is due to the fact that

the constitutive relatioql0) is connected with the total elec- |\, o AgIPARTICLE REPRESENTATION AND MODIFIED

tric field. It is not a surprising fact because the Iong_ltudlna_l EXCITON CONSTITUTIVE RELATION

and transverse fields are strictly separated only for isotropic

and homogeneous media. For the case of anisotropic and With ¢ different from zero the equations of motigh6)
inhomogeneous medium they may not be independent conshow that the electron-hole vacuum state is not a stationary
ponents. However, this interdependence gives no contributene and cannot be the ground state of the system. One can
tion to the linear constitutive relation which is the purpose ofapply a Bogoliubov canonical transformation similar to the
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one used in Refs. 12 and 13 to eliminate the nondiagonal _ ~ = 1 1 1
term related withe. The new creatioia*, ) and annihila-  Eo=Ee(0) +Ex(0), Eq= VEj+4e7, mom p
tion (a, B) operators for quasiparticles are introduced by re- "
lations (23
. Our aim is to establish the constitutive relation connecting
ax =ak cosy +bZy sin J, the current density(j(r,t)) with the total electric field
(E(r’,t")). The expressiol®) of the current density contains
B =—ay sin 9 + b’y cos V. (19 different products of quasiparticle operators such as

a*a, BB andBa, o Bt. However, it is shown in Ref. 14 that
The Bogoliubov transformatioil9) may be interpreted as only the polarization functions of quasiparticle pair excita-
using new basic set of one particle functions being lineation (Ba) and({a*B") are responsible for the linear process.
combinations of the electron-hole eigenfunctigdsto pro-  Using the formalism suggested in our previous p&pere
vide the quantization of electron field operat8). The pa-  derive the Heisenberg equation of motion for these functions
rameterdy is a free one. These new oneparticle functionsthat yields the following linear constitutive relation:
now cease to be eigenfunctions of the electron-hole free part
of Hamiltonian[the first term in Eq(1)]. In the new repre- . _ , , ' o
sentation this part of the Hamiltonign) will be nondiago- (Mr,t))-fdr fdt oy (A (1),
nal. Its nondiagonal term affects the Heisenberg equation of
motion to provide a term similar to the one containn®f ' PV
Eg. (16). The choice of parameta¥, now is made from the oy (rAr',t') = (932
requirement that the total nondiagonal term arising in ® (OR-R cioft—t!) 4
Heisenberg equations should be cancelled. The coefficients Xéz fz[oij(Q,w)e € +cjl,
of transformation are found to be Q

2 Zﬁez Ui(»,R)U; (¥R)g=o
tan 20y = - —————. (20) 0 (Q,w) = > — ,
© EK)+E(-K) ” B V-, g
2M
The quasiparticle energies are determined as follows:
1 Eo(K) + En(- K)T? _ ke do,(R) B —_—
E(K) = —(Ee(K) CEy(-K) + OB K] 2) UrR) =uiglR) =i~ 0=, Eg= A+ VEG+e2,
2 V[Ee(K) + Ep(- K)2+ 4e m'Ey
(24)
Eg(K)=An+ l(_ Eo(K) + En(— K) The eigenfunctionsp,(R) and eigenenergieg, of the 2D
2 exciton states are solutions of the equation

4 LELK) +Er(- K)* + 8¢2 )

ﬁZ
EK) T ECK)Pras? (2Y) [— >R+ V(R)} ¢,(R) =E,¢,(R),

Using the effective mass approximation we can represent the

quasiparticles energies as V(R) = (1 —ﬁd%>Vo(R),
h2K2 Eo J
E(K) =E,(0) + ,
2m,

a

=- —E f f A(2G(2,2'|Q) %z )éRdzdZ.

1 1 1]|E 4g?
—:—+—, - 1+~— -1 , (25)
m, me 2m'|E, E2

HereV,(R) represents the Coulomb coupling potential modi-
fied by the dielectric heterostructure which is identical with
h the one defined by Tran Tho&im andM are the reduced
Eg(K) =Eg0) + —— o . :
mg’ and total masses of the quasiparticle pair, respectively. In the
case of symmetric structure=0) Eq. (25) reduces to the
1 1 1 (e 462 one used in the Ref. 4 to determine exciton energies. The
— =+ °(1——> —-11. (22) classical Maxwell equation may also be derived from the
mg my, 2m Eo E0 Hamiltonian (1) and together with the established constitu-
tive relation form a closed set of equations describing the
Here the following notation has been introduced: exciton-polaritons of the systet.
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V. DISCUSSION model of infinite barriers. We notice here that the asymmetric

In the present paper we have used the band electron fungﬁeCt (e#0) may also be provided in the case when the

tions (4) including two-band mixture within k-p poter_ltial of confinement)y(z) in Eqg. (5) is not a symmetric
approximation->11|t gives rise to a coupling of the polariza- fun_(r::]lon ofz ic effect idered in th ; .
tion with the longitudinal induced field that yields a consti- 1€ asymmetric efiect considered in the present paper 1s
tutive relation connecting with the total electric fiéf. provided entirely from the Coulomb interaction written in

. : : . oulomb gaugg?) and is not connected with the photon
hMec;;eover, it also provides the asymmetric effect COnSIdere%eld. Formally, if the photon field is eliminated from Eq4)

Equation(16) gives the same result as if we had inCIudedand(lO), the effect will still stand as it follows directly from
from the start in the Coulomb Hamiltoniaf. a termh. of  °ur result. The constitutive relatiof24) then connects the
the form ¢ ¢ current density with the induced longitudinal field only.

In the present paper the conventional quantum electrody-

he= 2, [~ e(b_cax +agb®) + Apbi by ]. (26)  hamical formulation in Coulomb gauge is suggested to de-

K scribe the electromagnetic interaction of the material system

) ) ) consisting of QW embedded in a space-dependent dielectric.

The nondiagonal term related with describe an electron-  pqr g ch a system, an alternative formalism has been devel-
hole pair ex0|tat_|on. This effect may be mterpret_ed.as th%ped by Vogel and Welséh treating the electromagnetic

coupling of the interband dipoled, with the electric field  fig|q and the background dielectric together as a subsystem.

resulting from the dielectric inhomogenetfy. In this formalism the scalar potentid}’(r) and the vector

The parametee is of the ordere?d,/I2. With | ~4 nm A : , :
I ’ otential A’ (r) are introduced with the special gauge
d,~2 nm we have:~ 10! eV. The characteristic parameter P ") P gaug

£=¢lE, defines the degree of modification for exciton state. div[e(2)A’(r)]=0 (29
The modification is significant when the band d&pis com- ) ) ] )
parable withs. Several semiconductors may satisfy this con-1he scalar potentiab’(r) is defined by the relation
dition (see, e.g., Ref. 37

The band gafE, is redefined from Eq(24) taking into d'(r) :fG(r|r’\If+(r)\P(r)dr, (29
account the well-known Coulomb shift as well as the quasi-
particle modification. The modification of the exciton state is
twofold [see Eq(25)]: it changes the reduce massand the
coupling potentiaM(R) determining the bound state The div[e(2) V G(r|r')]=—4mé(r —r") (30)
reduce mass turns out to increase as follows:

where the Green’s functio@(r|r’) satisfies

with the well known electrostatics-boundary conditions.

1 1 1 ,\J’E§+82 The Hamiltonian part describing the electromagnetic in-
mem my mEme— (27)  teraction has been shown to be of the form
o B 0

An additional term appears in the coupling potentiéR) to
broke its symmetry: the coupling 2D potential is no longer
isotropic. It now depends on the direction of 2D veator

= (ed,,ed,) representing the projection of the interband di- 1 J A'(r)-j(r)dr, (31)
pole on the layer plane. For the case of small paranietas c

additional term may be seen as a perturbation. Applying th%v
standard procedure of perturbation theory one can find the
negative shiftét for the lowest exciton energy levél,. A
crude estimation gives

Him:%f\If*(r)\lf*(r’)G(r|r’)‘If(r’)\lf(r)drdr’

herej(r) is defined by Eq(6).

With &(z) defined by Eq(7) one can solve Eq.30) and
find exactly the same expressiofi3)—(15) for the Green’s
function. Using this result and the expressi@) for the

SE (4 dl)z electron-hole field operatoP(r) one can find the relation
e, \ %) 1
whereay is the Bohr radius. The symmetry breaking of the He = 2 J WOV )GLr|r )W ()W (r)drdr
perturbation may also lead to the removal of degeneracy for 1
some eXCIth |eve|S.. - . . - = J :q,+(r)q,+(r/)G(r|r r)q,(r/)\l,(r):drdrr + hc:
The exciton-polariton coupling presented in the constitu- 2
tive relation (24) is modified as follows: the term (32)

viv;|@,(R)[?r=0 is replaced byJ;(v,R)U; (v,R)|r=o. The ad-

ditional terms appear as a result of the Bogoliubov transforwhere the symbolAB, ...,:denotes the normal ordered prod-

mation (19) involving the intraband terms to define the cur- uct of operatorAB, ..., andh, is defined by Eq(26).

rent density(6). H_ yields the same result as E@.6) with ®(r) replaced
The study provided in our paper, for simplicity, has beenby ®'(r). Applying the Bogoliubov transformatiofi9) one

confined to the case when the electron-hole envelope fun@an arrive at the same result of linear constitutive relation

tions are strictly localized in the QW region. It implies a (24) as presented in the previous section.
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It may be shown tha®’ andA’ with the gaugg?28) are  this matrix element only in the coupling with photon field,
obtained as a result of the following Gauge transformation:while to omit it in the Coulomb interaction. Some aspect of
this question has been discussed in our previous payee.
notice here that the exciton model used in Refs. 3 and 4
considers only bound states of an electron-hole pair due to
the coupling potential which is modified by the inhomoge-
neous background dielectric constant via the Poisson equa-

whered andA are the scalar potential and the vector poten_tion. This approach does not take into account all aspect of

tial of Coulomb gauge, respectively, defined in the presen‘ihe Coulomb interaction in the system and the linear consti-
work andF(r) is determined from Eqg13)~(15). tutive relation(24) cannot be established from this theory.

The asymmetric effect is due to the fact that we take into
account the terms containing transition dipole matrix element
ed in the Coulomb interaction while they are neglected in  One of us (N.V.T.) thanks the Max-Planck Institute,
many other works. We think that it is not consistent to keepStuttgart, for financial support.

10 10
P -P-=—A, A'=A+VA, =—A=F(),
cat cat

(33)
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