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Starting from the conventional quantum electrodynamical formulation in Coulomb gauge we show that the
Coulomb interaction of an electronhole in a quantum well(QW) embedded in an asymmetric dielectric
structure with different dielectric constants in barrier regions yields a nondiagonal term of electron-hole pair
excitation and the electron-hole vacuum state cannot be longer than the ground state of the system. A Bogo-
liubov transformation with a representation of new quasiparticles is provided to eliminate the nondiagonal
term. The linear response function describing the modified exciton-polariton effect of the system is obtained.
Analytical expressions are found for the effective mass of quasiparticles, the modified band gap, and the
exciton coupling potential for a quasi-electron-hole pair. The exciton-polariton coupling turns out to contain an
additional term originating from intraband processes. It is shown that the effect is significant for QW’s with
small thicknesses and for semiconductors with narrow band gaps.
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I. INTRODUCTION

In recent years the theory of excitonpolaritons in semicon-
ductor microstructures has attracted considerable interest for
many optical device applications.1 In the early works of ex-
citon polariton in quantum wells(QW’s) the background di-
electric constant has been taken to be the same for QW and
barrier regions. Keldysh2 is the first who showed that the
different dielectric constants in the QW and barrier regions
cause an image charge effect which significantly modifies the
coupling potential of the electron-hole pair. Later on, this
effect was studied in detail by M. Kumagaiet al.3 and Tran
Thoai4 for the general case of different dielectric constants in
each barrier region. Recently, the effect of dielectric confine-
ment has been shown experimentally in semiconductor
nanostructures.5 This effect of near-surface quantum wells
has also been studied for the cases of magnetoexcitons.6–8

The starting Hamiltonian used in these works to describe the
dielectric confinement effect represents only the exciton
model with an electron-hole Coulomb coupling potential
modified by the inhomogeneous background dielectric con-
stant via the Poisson equation.

In the present paper a more general approach is provided
to study the full electromagnetic interaction of a material
system consisting of a QW embedded in a space-dependent
dielectric. Following the conventional electrodynamical for-
mulation in Coulomb gauge9 we consider the dielectric as a
part of the material system and introduce its own current and
charge densityj bsr d and %bsr d, respectively. It is suggested
that a suitable constitutive relation should be held for them to
yield the corresponding dielectric constantesr d. We confine
ourselves to the case of a medium with different dielectric
constants for left and right barrier regions. The electron field
operator for a two-band semiconductor QW is formulated
using the envelope function approach in thek ·p
approximation.10,11 We show that for an asymmetric dielec-
tric structure, the Coulomb interaction in QW’s yields a non-
diagonal term of electron-hole pair excitation and the

electron-hole vacuum state cannot be longer than the ground
state of the system. A Bogoliubov transformation with a rep-
resentation of new quasiparticles is provided to eliminate the
nondiagonal term. Using the effective-mass approximation
for quasiparticles we obtain the linear response function of
the system describing the modified exciton-polariton effect
of the system. It is shown that the effect is significant for
QW’s of small thicknesses and for semiconductors with nar-
row band gaps.

II. HAMILTONIAN MODEL

We start with the Hamiltonian describing the electromag-
netic interaction for a material system consisting of a two-
band semiconductor QW embedded in a medium with space-
dependent dielectric constant

H =E C+sr dF−
"2D

2m0
+ Ulsr d + Ucsr dGCsr ddr

−
1

c
E Asr d ·Jsr ddr + Hc + o

q,l
"vqcql

+ cql. s1d

The Coulomb interactionHc concerning QW electron field
operatorCsr d may be presented in Coulomb gauge as fol-
lows:

Hc =
1

2
e2E E C+sr d

C+sr 8dCsr 8d
ur − r 8u

Csr ddr dr 8

+ eE E C+sr d
%bsr 8d
ur − r 8u

Csr ddr dr 8. s2d

The vector potential can be expanded in terms of the photon
creation(destruction) operatorscql

+ scqld:

Asr d =
1

V
o
q

Asqdeiq·r ,
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Asqd = o
l

cÎ2p"V

vq
eqlscql + c−ql

+ d.

We would like to emphasize that here we have the bare pho-
tons whose definition is independent of the presence of the
material system including the dielectric. The periodic poten-
tial of the perfect bulk semiconductor is denoted asUlsr d,
while Ucsr d is the additional confining potential due to the
heterostructures.10,11 The electron-hole field operator of the
two-band quantum well semiconductorCsr d is represented
as

Csr d = o
K

faKccKsr d + b−K
+ cvKsr dg, s3d

whereaKsaK
+ d ,bKsbK

+ d are the electron and hole destruction
(creation) operators, respectively. Here, and in the following
the capital lettersR ,K , . . ., are used to indicate two-
dimensional (2D) vectors parallel to the plane of layers
sx,yd: R is the 2D part ofr , K is the respective part ofk.
Within the framework of the envelope function description
and thek ·p approximation the wave functionscsKsr d ,ss
=c,vd may be written as10,11

ccKsr d = FcKsr ducs0,r d − i"
¹FcKsr d ·v

Ecs0d − Evs0d
uvs0,r d,

cvKsr d = FvKsr duvs0,r d + i"
¹FvKsr d ·v*

Ecs0d − Evs0d
ucs0,r d,

FsKsr d = zsszd
eiK ·R

ÎS
. s4d

Here Esskd and ussk ,r d are the band energies and the peri-
odic parts of the Bloch functions for the perfect bulk semi-
conductor, respectively, while the vectorv is the interband
matrix element of the velocity. The envelope functions
zsszd ,ss=c,vd are eigenfunctions of

F−
"2

2ms

]2

] z2 + Uc
sszdGzsszd = «szsszd. s5d

We will confine ourselves to type-I heterostructures,11 i.e.,
the zsszd’s are localized solutions for both conduction and
valence bands. For the conduction band,s=c,mc
;me.0,«c is the lowest level of Eq.(5). For the valence
band,s=v ,mv;−mh,0,«v is the highest level of Eq.(5).
The bare electron and hole energies are defined as

EesK d ; «c + EcsK d, Ehs− K d ; − «v − EvsK d.

The current densityJ is taken to be

Jsr d = j sr d + j bsr d,

where

j sr d = −
i"e

2mo
hC+sr d ¹ Csr d − f¹C+sr dgCsr dj s6d

represents the electron current in two-band semiconductor
and j bsr d and %bsr d are the current and charge density, re-

spectively, responsible for the background dielectric constant
eszd. The latter one is a piecewise function as follows:

eszd = ew for −
1

2
l , z,

1

2
l sQW regiond,

eszd = eL for z, −
1

2
l sleft barrier regiond,

eszd = eR for z.
1

2
l sright barrier regiond s7d

III. EQUATIONS OF MOTION

We can derive now the Heisenberg equations of motion

for any operatorX̂ representing a linear combination of the
electron- and hole destruction and creation operators. To this
aim we have to write out the commutator

fHc,X̂g = eE hC+sr dFsr dfCsr d,X̂g+

− fC+sr d,X̂g+Fsr dCsr djdr . s8d

Here fA,Bg+;AB+BA andFsr d is defined as

Fsr d =E eC+sr 8dCsr 8d + %bsr 8d
ur − r 8u

dr 8. s9d

The charge density operator%bsr d responsible for the back-
ground dielectric constant is connected with the electric field
operator by the following constitutive relation:

%bsr d = − div Psr d, j bsr d =
]

] t
Psr d,

Psr d =
eszd − 1

4p
Esr d, Esr d = − ¹ Fsr d + Etsr d. s10d

Here the transverse electric field operatorEtsr d is defined as

Etsr d =
1

V
o
q

Etsqdeiq·r ,

Etsqd = io
l

Î2p"vqeqlscql − c−ql
+ d. s11d

Substituting Eq.(10) into Eq.(9) and performing the integra-
tion we can findFsr d presented as follows:

Fsr d = eE Gsr ur 8dC+sr 8dCsr 8ddr 8 + Fsr d,

Gsr ur 8d =
1

S
o
Q

Gsz,z8uQdeiQ·R−R8,
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Fsr d =
1

S
o
Q

FszuQdeiQ·R. s12d

The expressions ofGsz,z8uQd andFszuQd for the QW region
are found to be

Gsz,z8uQd =
2p

ewQ
Se−Quz−z8u +

e−Ql

1 − dLdRe−2Ql fdLe−Qsz+z8d

+ dReQsz+z8d + dLdRe−Qlse−Qsz−z8d + eQsz−z8ddgD
dn ;

ew − en

ew + en
sn = L,Rd,

FszuQd =
1

L
o
qz

Ez
tsqd

1 − dLdRe−2Ql

3FdL

Q
s− e−iqzl/2 + eiqzl/2dRe−Qlde−Qsz+l/2d

+
dR

Q
s− e−iqzl/2dLe−Ql + eiqzl/2deQsz−l/2dG . s13d

We have the following result for the left barrier region:

Gsz,z8uQd =
4p

Qsew + eLds1 − dLdRe−2Qld

3feQsz−z8d + dRe−QleQsz+z8dg,

FszuQd =
1

L
o
qz

Ez
tsqdeQsz+l/2d

1 − dLdRe−2Ql f− e−iqzl/2dLs1 + dRe−2Qld

+ eiqzl/2dRs1 + dLde−Qlg s14d

and for the right barrier region

Gsz,z8uQd =
4p

Qsew + eRds1 − dLdRe−2Qld
fe−Qsz−z8d

+ dLe−Qle−Qsz+z8dg,

FszuQd =
1

L
o
qz

Ez
tsqde−Qsz−l/2d

1 − dLdRe−2Ql f− e−iqzl/2dLs1 + dRde−Ql

+ eiqzl/2dRs1 + dLe−2Qldg. s15d

Equation (9) is the Poisson’s equation written in integral
form. The expressions(12)–(15) represent its solution for the
special case of charge density%bsr d defined by Eq.(10). The
potentialFsr d turns out to be connected with thez compo-
nent of the transverse field. Formally, it is due to the fact that
the constitutive relation(10) is connected with the total elec-
tric field. It is not a surprising fact because the longitudinal
and transverse fields are strictly separated only for isotropic
and homogeneous media. For the case of anisotropic and
inhomogeneous medium they may not be independent com-
ponents. However, this interdependence gives no contribu-
tion to the linear constitutive relation which is the purpose of

this work. With Eqs.(12) and(13) substituted into Eq.(8) we
can find the result as follows:

fHc,aKg = N̂as3d + «b−K
+ , fHc,b−Kg = N̂bs3d − «aK

+ − Dhb−K ,

s16d

N̂as3d = −
e

S
o
Q
E FFsr daK−Qzc

2szd

− b−K+Q
+ Fsr dd

]

] r
zcszdzvszdGe−iQ·Rdr ,

N̂bs3d =
e

S
o
Q
E FFsr db−K−Qzv

2szd

− aK+Q
+ Fsr dd

]

] r
zcszdzvszdGe−iQ·Rdr ,

« =
e2dz

S
o
Q
E E zv

2szdF ]

] z8
Gsz,z8uQdGzcsz8dzvsz8ddzdz8,

Dh =
e2

S
o
Q
E E zv

2szdGsz,z8uQdzv
2sz8ddzdz8,

d ;
i"v

Ecs0d − Evs0d
. s17d

Here Dh represents the Coulomb correction to the hole en-

ergy. N̂as3d andN̂bs3d are composed of the terms containing
normal ordered products of electron-hole creation or annihi-
lation operators with the potential operatorFsr d.

It is not difficult to see that« disappears for a symmetric
structure wheneL=eR and the functionszcszdzvszd ,zv

2szd are
even ofz. In the present paper we consider the caseeLÞeR.
For simplicity the envelope functionzszd is taken to be the
same for both conduction and valence bands and the function
z2szd is suggested to be even. The expression of« may be
represented as follows:

« =
e2dz

ewl2
sdR − dLdIsmd, m ; dLdR,

Ismd =E dzE dz8E
0

`

dhz2szdz2sz8d
he−h coshSh

z+ z8

l
D

1 − me−2h .

s18d

IV. QUASIPARTICLE REPRESENTATION AND MODIFIED
EXCITON CONSTITUTIVE RELATION

With « different from zero the equations of motion(16)
show that the electron-hole vacuum state is not a stationary
one and cannot be the ground state of the system. One can
apply a Bogoliubov canonical transformation similar to the
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one used in Refs. 12 and 13 to eliminate the nondiagonal
term related with«. The new creationsa+,b+d and annihila-
tion sa ,bd operators for quasiparticles are introduced by re-
lations

aK = aK cosqK + b−K
+ sin qK ,

b−K
+ = − aK sin qK + b−K

+ cosqK . s19d

The Bogoliubov transformation(19) may be interpreted as
using new basic set of one particle functions being linear
combinations of the electron-hole eigenfunctions(4) to pro-
vide the quantization of electron field operator(3). The pa-
rameterqK is a free one. These new oneparticle functions
now cease to be eigenfunctions of the electron-hole free part
of Hamiltonian[the first term in Eq.(1)]. In the new repre-
sentation this part of the Hamiltonian(1) will be nondiago-
nal. Its nondiagonal term affects the Heisenberg equation of
motion to provide a term similar to the one containing« of
Eq. (16). The choice of parameterqK now is made from the
requirement that the total nondiagonal term arising in
Heisenberg equations should be cancelled. The coefficients
of transformation are found to be

tan 2qK = −
2«

EesK d + Ehs− K d
. s20d

The quasiparticle energies are determined as follows:

EasK d =
1

2SEesK d − Ehs− K d +
fEesK d + Ehs− K dg2

ÎfEesK d + Ehs− K dg2 + 4«2D ,

EbsK d = Dh +
1

2S− EesK d + Ehs− K d

+
fEesK d + Ehs− K dg2 + 8«2

ÎfEesK d + Ehs− K dg2 + 4«2D . s21d

Using the effective mass approximation we can represent the
quasiparticles energies as

EasK d = Eas0d +
"2K2

2ma

,

1

ma

=
1

me
+

1

2m8FE0

Ẽ0
S1 +

4«2

Ẽ0
2 D − 1G ,

EbsK d = Ebs0d +
"2K2

2mb

,

1

mb

=
1

mh
+

1

2m8FE0

Ẽ0
S1 −

4«2

Ẽ0
2 D − 1G . s22d

Here the following notation has been introduced:

E0 ; Ees0d + Ehs0d, Ẽ0 ; ÎE0
2 + 4«2,

1

m8
;

1

me
+

1

mh
.

s23d

Our aim is to establish the constitutive relation connecting
the current densitykj sr ,tdl with the total electric field
kEsr 8 ,t8dl. The expression(6) of the current density contains
different products of quasiparticle operators such as
a+a ,b+b andba ,a+b+. However, it is shown in Ref. 14 that
only the polarization functions of quasiparticle pair excita-
tion kbal and ka+b+l are responsible for the linear process.
Using the formalism suggested in our previous paper15 we
derive the Heisenberg equation of motion for these functions
that yields the following linear constitutive relation:

k j isr ,tdl =E dr 8E dt8si jsr ,tur 8,t8dkEjsr 8,t8dl,

si jsr ,tur 8,t8d = z2szdz2sz8d

3
1

S
o
Q
E dv

2p
fsi jsQ,vdeiQ·R−R8e−ivst−t8d + cjg,

si jsQ,vd = i
2"e2

Ẽ0

o
n

Uisn,RdUj
*snRdR=0

"v − Eg −
"2Q2

2M
− En

,

Uisn,Rd = viwnsRd − i
"«

m8Ẽ0

] wnsRd
] Ri

, Eg ; Dh + ÎE0
2 + «2.

s24d

The eigenfunctionswnsRd and eigenenergiesEn of the 2D
exciton states are solutions of the equation

F−
"2

2m
DR + VsRdGwnsRd = EnwnsRd,

VsRd ; S1 −
4«

Ẽ0

d
]

] RDV0sRd,

V0sRd = −
e2

S
o
Q
E E z2szdGsz,z8uQdz2sz8deiQ·Rdzdz8.

s25d

HereV0sRd represents the Coulomb coupling potential modi-
fied by the dielectric heterostructure which is identical with
the one defined by Tran Thoai.4 m and M are the reduced
and total masses of the quasiparticle pair, respectively. In the
case of symmetric structures«=0d Eq. (25) reduces to the
one used in the Ref. 4 to determine exciton energies. The
classical Maxwell equation may also be derived from the
Hamiltonian (1) and together with the established constitu-
tive relation form a closed set of equations describing the
exciton-polaritons of the system.15
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V. DISCUSSION

In the present paper we have used the band electron func-
tions (4) including two-band mixture within k ·p
approximation.10,11 It gives rise to a coupling of the polariza-
tion with the longitudinal induced field that yields a consti-
tutive relation connecting with the total electric field.15

Moreover, it also provides the asymmetric effect considered
here.

Equation(16) gives the same result as if we had included
from the start in the Coulomb HamiltonianHc a termhc of
the form

hc = o
K

f− «sb−KaK + aK
+ b−K

+ d + DhbK
+ bKg. s26d

The nondiagonal term related with« describe an electron-
hole pair excitation. This effect may be interpreted as the
coupling of the interband dipoleedz with the electric field
resulting from the dielectric inhomogeneity.16

The parameter« is of the ordere2dz/ l
2. With l ,4 nm,

dz,2 nm we have«,10−1 eV. The characteristic parameter
j;« /E0 defines the degree of modification for exciton state.
The modification is significant when the band gapE0 is com-
parable with«. Several semiconductors may satisfy this con-
dition (see, e.g., Ref. 17).

The band gapEg is redefined from Eq.(24) taking into
account the well-known Coulomb shift as well as the quasi-
particle modification. The modification of the exciton state is
twofold [see Eq.(25)]: it changes the reduce massm and the
coupling potentialVsRd determining the bound staten. The
reduce mass turns out to increase as follows:

1

m
;

1

ma

+
1

mb

, m= m8
ÎE0

2 + «2

E0
. s27d

An additional term appears in the coupling potentialVsRd to
broke its symmetry: the coupling 2D potential is no longer
isotropic. It now depends on the direction of 2D vectord'

;sedx,edyd representing the projection of the interband di-
pole on the layer plane. For the case of small parameterj this
additional term may be seen as a perturbation. Applying the
standard procedure of perturbation theory one can find the
negative shiftdE for the lowest exciton energy levelEn. A
crude estimation gives

dE

En

, S4j
d'

a0
D2

,

wherea0 is the Bohr radius. The symmetry breaking of the
perturbation may also lead to the removal of degeneracy for
some exciton levels.

The exciton-polariton coupling presented in the constitu-
tive relation (24) is modified as follows: the term
viv j

* uwnsRdu2uR=0 is replaced byUisn ,RdUj
*sn ,RduR=0. The ad-

ditional terms appear as a result of the Bogoliubov transfor-
mation (19) involving the intraband terms to define the cur-
rent density(6).

The study provided in our paper, for simplicity, has been
confined to the case when the electron-hole envelope func-
tions are strictly localized in the QW region. It implies a

model of infinite barriers. We notice here that the asymmetric
effect s«Þ0d may also be provided in the case when the
potential of confinementUc

sszd in Eq. (5) is not a symmetric
function of z.

The asymmetric effect considered in the present paper is
provided entirely from the Coulomb interaction written in
Coulomb gauge(2) and is not connected with the photon
field. Formally, if the photon field is eliminated from Eqs.(1)
and(10), the effect will still stand as it follows directly from
our result. The constitutive relation(24) then connects the
current density with the induced longitudinal field only.

In the present paper the conventional quantum electrody-
namical formulation in Coulomb gauge is suggested to de-
scribe the electromagnetic interaction of the material system
consisting of QW embedded in a space-dependent dielectric.
For such a system, an alternative formalism has been devel-
oped by Vogel and Welsch18 treating the electromagnetic
field and the background dielectric together as a subsystem.
In this formalism the scalar potentialF8sr d and the vector
potentialA8sr d are introduced with the special gauge

divfeszdA8sr dg = 0 s28d

The scalar potentialF8sr d is defined by the relation

F8sr d =E Gsr ur 8C+sr dCsr ddr , s29d

where the Green’s functionGsr ur 8d satisfies

divfeszd ¹ Gsr ur 8dg = − 4pdsr − r 8d s30d

with the well known electrostatics-boundary conditions.
The Hamiltonian part describing the electromagnetic in-

teraction has been shown to be of the form

Hint =
1

2
E C+sr dC+sr 8dGsr ur 8dCsr 8dCsr ddrdr 8

−
1

c
E A8sr d · j sr ddr , s31d

wherej sr d is defined by Eq.(6).
With eszd defined by Eq.(7) one can solve Eq.(30) and

find exactly the same expressions(13)–(15) for the Green’s
function. Using this result and the expression(3) for the
electron-hole field operatorCsr d one can find the relation

Hc8 ;
1

2
E C+sr dC+sr 8dGsr ur 8dCsr 8dCsr ddrdr 8

=
1

2
E :C+sr dC+sr 8dGsr ur 8dCsr 8dCsr d:drdr 8 + hc,

s32d

where the symbol :AB, . . .,: denotes the normal ordered prod-
uct of operatorsAB, . . ., andhc is defined by Eq.(26).

Hc8 yields the same result as Eq.(16) with Fsr d replaced
by F8sr d. Applying the Bogoliubov transformation(19) one
can arrive at the same result of linear constitutive relation
(24) as presented in the previous section.
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It may be shown thatF8 andA8 with the gauge(28) are
obtained as a result of the following Gauge transformation:

F8 → F −
1

c

]

] t
L, A8 → A + ¹ L,

1

c

]

] t
L ; Fsr d,

s33d

whereF andA are the scalar potential and the vector poten-
tial of Coulomb gauge, respectively, defined in the present
work andFsr d is determined from Eqs.(13)–(15).

The asymmetric effect is due to the fact that we take into
account the terms containing transition dipole matrix element
ed in the Coulomb interaction while they are neglected in
many other works. We think that it is not consistent to keep

this matrix element only in the coupling with photon field,
while to omit it in the Coulomb interaction. Some aspect of
this question has been discussed in our previous paper.15 We
notice here that the exciton model used in Refs. 3 and 4
considers only bound states of an electron-hole pair due to
the coupling potential which is modified by the inhomoge-
neous background dielectric constant via the Poisson equa-
tion. This approach does not take into account all aspect of
the Coulomb interaction in the system and the linear consti-
tutive relation(24) cannot be established from this theory.
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