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Frequency-dependent third cumulant of current in diffusive conductors
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We calculate the frequency dispersion of the third cumulant of current in diffusive-metal contacts. The
cumulant exhibits a dispersion at the inverse time of diffusion across the contact, which is typically much
smaller than the inversRC time. This dispersion is much more pronounced in the case of strong electron-
electron scattering than in the case of purely elastic scattering because of a different symmetry of the relevant
second-order correlation functions.
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I. INTRODUCTION The zero-frequency third cumulant of current for a diffu-

Measurements of nonequilibrium noise provide valuablesive Wire was first calculated by Lee, Levitov, and Yakobets
information about the properties of a system, which cannofof noninteracting electrons in the zero-temperature limit.
be extracted from measurements of average quantities. F&tecently this calculation has been extended to finite tem-
example, measurements of shot noise give the magnitude @eratures and to the case of strong electron-electron scatter-
the quasiparticle charge in the case of a tunnel contact arifig by Gutman and Gefenin this paper we calculate the
the effective temperature of electrons in the case of a diffufrequency dependence of this quantity both for the case of
sive contact. Recently, Reulett al? performed first mea- noninteracting electrons and for the hot-electron regime and
surements of the third cumulant of current, which may giveshow that the latter case is more convenient for the experi-
even more interesting information. For example, this cumuimental observation of this effect, since the dispersion of the
lant is very sensitive to the presence of electron-electroithird cumulant is much stronger.
scattering in a diffusive contact. Electron-electron scattering We present a calculation based on the cascaded
changes the shot noise in a diffusive contact only by severdoltzmann-Langevin approachin the Appendix, we also
percent*but it changes the third cumulant of current almostderive the full generating functional for the frequency-
by an order of magnitude. dependent current fluctuations of a metallic wire for both the

Of special interest is the frequency dependence of thelastic and hot-electron regimes based on the stochastic path-
third cumulant. Very recently, it was shown that third cumu-integral approach to full counting statistit&The third cu-
lants of current in a chaotic cavity whose contacts have difmulant of current may be expressed in terms of the func-
ferent transparencies may exhibit a frequency dispersiotional derivatives of this functional.
much more complicated than that of the shot noise. Unlike

Fhe conventi_onal shot nois.e that ha§ a dispersion only_ at the Il. MODEL AND BASIC EQUATIONS
inverseRC timeof the cavity? the third cumulant of noise _ _ _ _ - _
may also exhibit a dispersion at the inverseell timeof an Consider a quasi-one-dimensional diffusive wire of length

electron on the Cavitym most cases, this time is much L and COﬂdUCtiVityO'. To epricitIy describe its electric envi-
longer than theRC time that describes charge relaxation in ronment, the wire is chosen in the shape of a cylinder with a
the cavity, and therefore the corresponding dispersion takediameter 2, and is embedded in a perfectly grounded me-
place at experimentally accessible frequencies. This dispeflium, which is separated from the wire by a thin insulating
sion is due to slow fluctuations of the distribution function film of thicknesss, and with a dielectric constaet (see Fig.

that do not violate electroneutrality and are akin to fluctua-1)- All dimensions are assumed to be much larger than the
tions of local temperature. These fluctuations do not directlyelastic mean free path and the screening length in the metal.
contribute to the current and therefore are not seen in conSince electron-phonon scattering is suppressed at low tem-
ventional noise, but they modulate the intensity of noisePeratures, we may also assume that dimensions are much
sources and therefore manifest themselves in higher correlgmaller than the electron-phonon scattering length such that
tions of current.

Another important example of a system with a long dwell L
time is a diffusive contact. In this work we investigate the ] | ‘ [
frequency dependence of the third cumulant of a metallic 13,
diffusive wire. Like a chaotic cavity, it also has a long dwell |2ro
time. In addition, the metallic diffusive wire is of interest | ‘
because its impedance can be easily matched to that required R/ 1 [=Vi2

by current experimental detection scherhgsurthermore,
the measuring frequencies in this case are in the range where FIG. 1. The geometry of the system considered. White areas
the frequency dispersion takes place for the system at handhow the diffusive metal and dark areas the insulator.
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dissipation takes place only in the reservoirs. Electron-

phonon scattering renders fluctuations purely Gaussiad op= eN:(f dedf(e) + €5¢>> (4)
suppresses the dispersion effects to be discussed in this pa-

per. The electrodes are assumed to be perfect conductors, and where\r is the Fermi density of states. In the case of a
the third cumulant of current is not affected by the externalquasi-one-dimensional contact, the solution of EBg(4) is
circuit-13 We also restrict ourselves to sufficiently high of the form’

voltages or temperatures; hence the quantum dispersion of

.this qui{]tity does not show up in the freqqency range of Sh(x, ) = i(V2+inC/L2)‘1i f &, 5i4r), (5)
interest:* We emphasize that despite the particular choice of So dX

metr r results are valid for an i-one-dimensional . : .
gﬁ‘fisi?/teyégrlljtatisu ts are valid for any quasi-one-dimensio Qvherex is the coordinate along the contastz€?NgD is the

onductivity of the metalSO:Trr(z) is the cross-section area of

With the above assumptions, the noise of current may brﬁq _ = 5 .
described using the semiclassical Boltzmann-Langevir © contact,C=Legfo/24 and R=L/aToo are the capaci-
tance and the resistance of the contact, and

approach® The frequency dependence of shot noise in dif-
fusive contacts with account taken of electrical screening ‘

was calculated in Refs. 16 and 17. To calculate the frequency H'=eN: f de SF'™P. (6)
dependence of the third cumulant of current, we use the cas-

cade extension of this approatifhe key idea of this exten- A fluctuation of the total current density is given by

sion is a large separation between the time scales describing  cext

the individual scattering events and the evolution of the dis- G =8 -0V g, (7)
tribution function of electrons in the contact. The resultingzng a fluctuation of the total current at the left end of the
expressions may be also obtained by considering the corregntact thus equals

sponding stochastic path integial® for the diffusive

Boltzmann-Langevin equatiofsee the Appendix The cas- : 5 J0P(X,w)
cade expansion corresponds to a systematic expansion of the A=o [ dT, IX

saddle-point equations of this path integral in powers of the ] .
counting field. Note that we define current fluctuations to the left as pos-

The quantity we are going to calculate is the Fouriersible. Making use of the correlation function of extraneous
transform of the third-order current correlation function de-SOUrCes,
fined as

(8)

x=-L/2

(SFI(e, 1) SFFP(e" 1)), = 2N2F5(r -1 8e-¢')

P3(w1,w2):fd(tl—t2)fd(tz—tg)exdiwl(tl—tg) X S8,5f(e,1)[1 = f(e,r)],
9

one easily obtains the second-order correlation function for
the fluctuations of the current as a functional of the distribu-
tion function f.1°

Consider now the third cumulant of current. As the direct
contribution to this quantity from the third cumulant of ex-
traneous sources is negligibly small in a diffusive métlis
quantity is dominated by an indirect contribution of the sec-
ond cumulant of these sources, which results from the modu-
lation of their intensity by fluctuations of the distribution
function. It may be written in the form

+iwy(ty — t3) (Al (ty) 8l (ty) 8l (t3)). (1)

The starting point for our calculations is the stochastic diffu-
sion equation for the fluctuation$f(e,r) of the distribution
function f(e,r):

d - of .
(5 - DV2>6‘f = Olge= —e5¢>$ — V oFMP— sFee (2)

where D is the diffusion coefficientdl.. is the linearized
electron-electron collision integral, anii]:"“_p and 6F¢¢ are (81(t1) 81 (ty) Al (t3)) = Prod Ao, (10)
random extraneous sources associated with electron-impurity

and electron-electron scattering. This equation is obtainedhere

from the standard Boltzmann-Langevin equation by defining 81(t) A ()
the electron energy as=p?/2m+ed(r ,t)—ep and isolating Am:fdtj ds | gor=2—2=2r
the isotropic part of the distribution function in momentum of(e,r,t)
space. The fluctuation of the electric potenté# that ap- (11

pears in this equation should be calculated self-consistently ) _ )
from the Poisson equation andP,,; denotes a summation over all inequivalent permu-

tations of indiceq123).
Equationg6) and(8) suggest that the second cumulant of

<5f(8!r!t)6l (t3)>

V26¢ =~ dmdp, () current exhibits a dispersion at frequencies of the order of
(RO™. Typically such high frequencies are beyond the ex-
where the fluctuation of charge densidg, is given by perimentally accessible range. Therefore in what follows we
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will assume that the frequencies,, w,, and w; are much 0.04
smaller than(RCO)™%. Hence the pileup of charge in the con-

tact may be neglected and the fluctuation of current may be
considered as coordinate independent. In this case, 0.02 }

(8l(wp) 8l (wp) = 48wy + wy)(RL) ™

0

<d¢ol>

dexf def(e,x)[1-f(e,x)], (12

and the only possible dispersion in Ed.l) is due to the
dynamics of a fluctuatiodf, so that the expression for the -0.02f
third cumulant assumes the form

P3(w1,wy) = P(wy) + P(wy) + P(- w1 — wp),

%5 0 05
L/2 x/L
Plw)=— dxf de[1 - 2f(e,x)](5f(£,x) ),
RLJ L2 FIG. 2. The coordinate dependence of the zero-frequency cor-

(13) relator(8¢(x)dl),, normalized toeV for the elastic casesolid line)
and the hot-electron regim@ashed ling

The quantityP(w) has to be calculated in different ways for

the case of purely elastic scattering and for the hot-electron 2 9
regime. <5q§(x)5l>w:[(V2)'1 Rjds f(a-f)|. (18
IIl. PURELY ELASTIC SCATTERING ]EJsintg the well-known expression for the average distribution
unction
For purely elastic scattering) *¢ and 5F¢¢in Eq. (2) van- 1 1
ish, and a fluctuation of the di_stribution _functioﬂﬁ may be f_g,x) = <_ + §)f0(8 +eVi2) + <_ - é)fo(S -eV2),
presented as a sum of a part induced directly by an extrane- 2 L 2 L
ous source, (19)
o 10 FoXt wheref, is the equilibrium Fermi distribution and is the
Ste(e,x w) = (V- +iw/D) Iy (14 voltage drop across the contact, we obtain
. . . : 1x X2 eV
and a part induced by fluctuations of the electric potential, (8p(X) A1), = oL 1-4||evVeoth =] -2T|.
“ 6L L 2T
df(e,x
of y(e,%,) = — (V2 + iw/D)‘l{%e&l)(x, w)] . (20)
&

The correlator 8¢(x) 8l) vanishes av=0 and is an odd
(15) function of x at nonzeroV (see Fig. 2 Upon inverting the
The existence of the ter15) indicates that the dynamics of operator(V?+iw/D) in Egs.(16) and (17) and performing
charged electrons differs from the dynamics of neutral parthe spatial integration in Eq13), we arrive at an expression
ticles even at frequencies much smaller tRe€)™2. for P(w) in terms ofq,=(iw/D)*2 which is our final goal.
By multiplying these equations with the fluctuation of Because of its length, we give here only its low-temperature
current(8) and making use of the correlation functie®, we  and low-voltage limits
obtain 42\
Pef(@) = = 2 "o [a,L(@L* + 30sin(q,L) = 8(dL* + 6)

€ =- ¢ ) 19 € -f(e
(Oe(e 20000 == 2 (7= 16Dy 75 {fe XL =Tl xcostiq,L) + 26212+ 48[ LSsintiq,L)] (1)

(16) and

and - i _
P (@) = ge%vz coshiqu;)3 qu sinh(q,L) 2_ 22
— 2 _; /D)—l &f(S,X)e<5 ( )5|> qu Smr(qwl_)
(fg(e X)), =iV -0 de P, |- At =0 these expressions give (:H45e’V/R and
(17) -(1/9e?V/R, which corresponds to P3(0,0
=—(1/15€?V/R and P5(0,00=-(1/3)€’V/R. These zero-
At low frequencies, one easily obtains from E¢R). and(8) frequency results are in agreement with Refs. 5 and 8. At
that finite frequency, Eqs(21) and(22) become complex valued
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0 -1
- ed(x
f(s,x):[1+ex;<£—¢()>] . (23)
Te(¥)
-0.02F :
I,I.’(,:f" If the frequencyw is smaller than the rate of electron-
_ooap i i charged electron collisions, a fluctuatiosf can be expressed in terms
= B of fluctuations of these quantities:
Al I
D ooef i -
a ik € Seur w):af(s,r)5¢+&f(s,r)51_ (24)
&J ~0.08 -,” "' f uncharged - I¢ 0Te °
,’ C| A substitution of Eq(24) into Eqg.(13) and integration over
-0af': g the energy readily gives
Li2
% 20 20 %0 30 100 Phol®) = — J dx(STe(x) ), (25)
O)TD RLJ 12

To calculate the correlator in E¢25), we have to obtain a
frequencywry (7p=L2/D) for purely elastic scattering aV>T  Langevin-type equation fosT,. To this end, we multiply Eq.
(solid line), hot-electron regime a&V> T (dashed ling purely elas-  (2) by e and integrate it oves, as was done when deriving
tic scattering ateV<T (dotted ling, and hot-electron regime at the equation of heat balance in Refs. 3 and 4. This gives
eV<T (dash-dotted ling Inset: charged and uncharged fluctuations

of the distribution functionf. Charged fluctuations have a short K] ) P 5 _ imp
relaxation time and contribute to fluctuations of curreht Un- E -DV ETeﬁTe - DVX&po¢) = — | dee V oF™.
charged fluctuations do not contribute db directly but affect the

intensity of noise sources. They decay only via slow diffusion and (26)
result in the low-frequency dispersion of the third cumulant.

FIG. 3. The real part of the rati®(w)/(e’l) vs normalized

Multiplying Eqgs.(26) and(8) and averaging the product with
and tend to zero a¥ w at w— . The real and imaginary ]Ehﬁ Tielrﬁ)<%f1_E5?>'(9) ][etzultfs rlnman equation for the correlation
parts of P(w) are shown in Figs. 3 and 4. unctio e/ OT thE 10

, o\l 7
IV. HOT-ELECTRON LIMIT vi-ig €T6<5Te(x)51>w

Consider now the limit of strong electron-electron inter-
action. In this case, the distribution function may be assumed = - VK 5p(x) ), ] + &5 f desf(1-f).
to have a Fermi shape with a coordinate-dependent tempera- L dx
ture To(x) and electric potentiad(x): 27)

The integral over the energy on the right-hand side of Eq.
(27) equalse¢T,, and making use of Eq.18), one easily
obtains the solution of Eq27) in a symbolic form

0.06 T T T T
— elastic, T=0
- = inelastic, T=0
..... elastic, V—0
.=.. inelastic, V= 0

0.05p

6€1 9 (PTe)
004 4 o< T dl), = —S—=(V?—iw/D){ —=
=", (BT = 5 ( w>{ -
Nq) il
< o003} ¥
I (9T
(a !,: - V2|: ¢(V2)—1(_9):| } ’ (28)
E oafd 9%
j;' where the operatorg? andV2-iw/D are inverted with zero
o.mi boundary conditions. According to Ref. 3, the mean potential
is given by ¢(x)=V x/L and the mean effective temperature
By 2 % % 8'0 w DY
T
D — 3 ) 1 X2 1/2
— |72
Te) =| T+ —(eV) (Z —L—2> : (29)

FIG. 4. The imaginary part of the ratiB(w)/(€?l) vs normal-
ized frequencywry (15=L2/D) for purely elastic scattering @&V
>T (solid line), hot-electron regime a¢V>T (dashed ling and
purely elastic scattering aV<T (dotted ling, and hot-electron
regime ateV<T (dash-dotted ling

As gand?e are odd and even functions of coordinate, the
resulting correlator is an even function gf In the zero-

frequency limit it is given by

045304-4



FREQUENCY-DEPENDENT THIRD CUMULANT OE. PHYSICAL REVIEW B 70, 045304(2004)

1 NG 1 quantum noisé’ which results from sharp singularities in
(6Te(x) 1), = ﬁezv(_ a’ - 23t S the energy dependence of the distribution function.
va© - 4L Mathematically, the different shape of the frequency de-
by i X [ 2x pendence for purely elastic scattering and interacting elec-
X1 (@ - 1)< - 3a-arcsin — trons at high voltages can be explained as follows. In the
case of hot electrons, bo#{812)/ 5T4(x) and(ST.(x)dl),, are
+6[a2arcsir<l) . az——l]x—z}) (30) even functions of the coordinate (measured from the
a) " Lzl ) middle of the contagt On the contrary, for purely elastic
scattering aff=0 both &81%)/ 6f(e,x) and(5f(e,x)d), are
where a?=1+(47?/3)T?/(eW)% This correlation function odd functions ofx. The functions acted upon by the inverse
vanishes a¥=0 and is negative at positive voltages—i.e., if diffusion operator(V2-iw/D)™* in Egs. (28) and (16) are
the increment of total current through the contact is negativealso even and odd, respectively. At low frequencies, the in-
This fact has a very simple physical meaning: an increase inerse diffusion operator is essentially nonlocal in space and
the total current results in an increase of the Joule heatingpplying it results in an effective averaging of the argument
and hence an increase of the temperature. on the scale of the order &f. In the elastic case, this aver-
An integration of Eq.(28) with respect tox gives the aging involves both negative and positive values, and this is

low-frequency third cumulant for arbitrary temperatures andVhy the elastic third cumulant is suppressed at low frequen-
voltages cies as compared to the hot-electron value. However, at high

frequencies, the inverse diffusion operator becomes almost
B > 1, I local in space; therefore, there is no averaging of negative
P3(0,0 = 2Rl12 2%7 5(53 —2va-1 and positive values and both cumulants become of nearly the
same magnitude. This absence of spatial averaging partially
% arcsir<}> + }a“arcsir?(})} (31) compensates for the increasing frequency and makes the fre-
4 ) quency dependence of the “elastic” cumulant more flat.
Therefore the different shape of the frequency dependence in
Its limiting values P5(0,0)=—(3/7%)€?V/R at eV<T and  the elastic and hot-electron limits may be traced back to the
P3(0,0=—(8/7-9/16)€?V/R at eV>T coincide with the different symmetry of relevant second-order correlation
results of Gutman and Gefén. functions.

In the case of nonzero frequencies, it is possible to obtain To show that the low-frequency dispersion in diffusive
analytical results only in the limiting cases eV<T and  wires is experimentally accessible, we need to compare the
eV>T. |In the high-temperature ||m|t, one may S-_Q(X):T bandwidth of lGHZ fOI’I the. measuremen.t Of' the thlrd
in Eq. (28); hence ¢(x) is the only coordinate-dependent cumulant to typical diffusion times across diffusive wires.
quantity, and the term in curly brackets equs(&/L. Then ~ We use the experimental parameters of Ref.(@iffusion

the diffusion operator is easily inverted and the integratiorcOnstaniD=40 cnf/s, contact widthV=40 nm, sheet resis-
overx gives tance R7=9Q)) and assume for the length of the wite

=1 um, for the dielectric constanty=1, and for the thick-
_ 12¢V 1 2 g.L ness of the dielectric layef,=10 nm. We then find for the
Phot(w) = = ??W 1- q—Ltan (32 RCtime RC=10"3s and for the diffusion timd2/D=2.5
¢ ¢ X 1071%s. These are very prudent estimates. We emphasize
In the zero-temperature limit, the term in curly brackets inthat noise in the hot-electron regime has been measured in
Eq. (28) may be expanded in a Fourier series in[¢&S  wires as long as. =100 um 2223 For such wires, the low-
+1)7x/L] and the operatoV>—iw/D is easily inverted. The frequency dispersion thus lies clearly inside the experimental

3eV| 7 13

2

final result is obtained as a sum of an infinite series bandwidth.
P (w)= 1_2e2_\/§: Jo(mk + m2)[Iy(ark + 7/2) = (= 1)¥] VI. SUMMARY
ot @7 R & (2k+ D[ a2k + 12 +iwl2D] In summary, we have shown that diffusive contacts ex-
(33) hibit a nontrivial internal dynamics even at frequencies much

smaller than the inverse charge-relaxation time. Though this

whereJ, andJ; are Bessel functions of order 0 and 1. dynamics is not affected by the electric environment of the

contact, it differs from the dynamics of charge-neutral par-

ticles and manifests itself as a low-frequency dispersion of

the third cumulant of current. In view of the fact that both the
Our results for the noninteracting reginiégs. (21) and  dynamic conductance and shot noise of metallic conductors

(22)] and for the hot-electron reginj&qgs.(32) and(33)] are  depend only on th&Ctime, this frequency dispersion of the

displayed in Figs. 3 and 4. It is clearly seen that both real anthird cumulant on the scale of the dwell time is a very inter-

imaginary parts of the third cumulant have the most pro-esting result.

nounced dispersion in the case of a high temperature or for

strong electron-electron scattering—i.e., when the local dis- ACKNOWLEDGMENTS
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APPENDIX: STOCHASTIC PATH-INTEGRAL (5]: p) ) ' (A3)

REPRESENTATION

where the prime stands fof 9x. The dynamics of the poten-

In this appendix, we derive a stochastic path-integrakial fluctuations5¢ can be expressed by a secofidunc-
representatiof?'® for the full current statistics of diffusive  tional which enforces charge neutrality:

conductors. In contrast to the cascade fulgsplied in the

main body of the paper, such a representation is not restricted _

to the calculation of specific cumulants, but allows for the 5{ 0'5¢"—eN,:fd8(§F'mp)'}

calculation of the full probability distribution of frequency-

dependent fluctuations of current. Here, the stochastic path- _

integral representation serves to verify the calculation of the :fpi exp{i f dtd)@((rb‘(ﬁ”—eN,:Jds(éF'mp)’>}.
third-order current correlation function. We give first a de-

tailed derivation of the case without electron-electron scat- (A4)
tering. For simplicity, we restrict ourselves to quasi-one-

dimensional wires and consider only slow dynamics due torhe fieldsk and ¢ can be understood as Lagrange multipli-
the longitudinal diffusion modes. In this case, the kineticers. Combining EqsAl), (A3), and(A4), we construct the

transport equation for the fluctuating contributiéf(e,x,t) probability P to find a certain realization of extraneous cur-
to the electron occupation functioh=f_(6 X)+ of (€, x,1) is rents SF'™P under the constraint of current conservation and

given by the one-dimensional equivalent of K@). The charge neutrality:

mean distribution functioffi is defined in Eq(19). Since we

restricted ourselves to the regime of slow diffusive dynam- P SF™P] :fp5¢par5[---]é[---]P[5F‘mp]. (A5)

ics, we may assume charge neutralityj)/9x=0 where the

fluctuations of the electrical current density are given by EQs. e are now in a position to calculate the generating func-

(6) and(7). Finally, we make use of the fécthat the extra-  tional Jiy] of current fluctuationsl = 5j(x=-L/2) at the left
neous sources of noise are Gaussian random varidfies  contactxe L /2-

related in time, space, and energy and described by%&qg.

In order to construct a path-integral representation of this
Boltzmann-Langevin equation, we define the probability eSEI[iX]:f’DéFimth[éFimp]exp{ifdt)(él}_ (AB)
functional P which gives the probability to find a certain

realization of extraneous current&™(s,x,t). This func- _ ) ) S )
tional may be written as a path integral This equation may be considerably simplified. In a first step,

we can integrate out the the extraneous curréRtg° as well
as the fields introduced in Eq(Al). We are then left with
four functional integrations oveif, ¢, \, andé. In a second

P[5F'mp]:JD7l eXD{J dthdB[‘iﬂ&:'mpJ“H(")]}’ step, we evaluate this integrations in the saddle-point ap-
proximation. As the diffusive conductor is essentially semi-

(A1) classical, the corrections to the saddle-point action are
smalll® After rescalingh—eN:=\, we are left with the gen-
taking Fourier transforms of the generating function erating functional
g
D [x:\, & 6f, 6 ]=Jdtd><{a S "+fde[—)\é‘f"+0'f(l
H=-f - (A2) Shoh& o100 ¢ e
F

.9f .
-\’ +§’)2—el\l,:)\<5f +ea_5d’>”'
Since the Fourier transforms are independently taken for €
each point in space, time, and energy, El) indeed char- (A7)

acterizes white noise. The electron occupation funcfief
+6f is considered to be a slowly changing variable whic
modulates the instantaneous noise intensity. Its evolution is

determined by the kinetic equati¢®) which we represent as Su_y %_
a & functional expressed by a path integral: NS¢ '

phWhich has to be evaluated at the saddle point given by
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oS oS _ A8 fluctuations. Using the identitzﬁé;&l:Déng[, we solve the dif-

s 8(8p) (A8) fusion equation by inverting the diffusion operator and find
Note that we performed a complex continuation Eon L X(w)
iN— A iE— €, andiy— x. We are therefore left with purely Ay (w) = (8fe(e,x) A1), D’ (A15)
real quantities. The saddle-point equations are supplemented
with boundary conditions: the three field$, 5¢, and\ van- x(@)
ish at both boundaries. The external counting figlis in- b‘ff(w) =(0f 4(&,x) 1), ~——. (A16)
corporated into the boundary conditions for D

f-L2)=y, &L12)=0. (A9) The two correlators are defined in E¢$6) and(17), respec-

tively. They can now be inserted into Eg\12) to obtain the
The frequency-dependent third cumulant under considerthird-order correlation functio{13). We thus derived the
ation in this paper is obtained from the third functional de-cascade rules applied in the main body of this paper from the

rivative: stochastic path-integral formalism.
5 The derivation of an action describing the hot-electron
(8l(w1) 8l (w2) 8l (w3)) = S _ regime requires only a minor additional effort. Here we cite
Ox(w1) Sx(wy) Sx(w3) | =0 directly the result which has been derived by one of the

(A10)  authors for the zero-frequency limit in a different contéxt:

We calculate this cumulant by a systematic expansion of the _ : N
action (A7), saddle-point equation@8), and fields: Shor= | dt | dx) =NeATeTe+ 06" M)A N

5f:8f1+5f2+..., 5¢:5¢1+..., cee (All) R ¢I
-o(¢& )\')B( ) .

in orders of the external fielg. It can be straightforwardly
shown by inserting the saddle-point equatiéA8) back into

the action(A7) that the third-order contribution to the action In this action, we introduced the local electron_tempera_ture
has the form Tao(X,1)=To(x) + 8To(X,1) and the local electrostatic potential

d(x,t)=p(x+ 6¢(x,t). The boundary conditions for these
- P "2 fields are the potentials and temperatures of the left and right
Serx] Uf dtf dxf de(1-20)df(¢)" (A1) reservoirs. As for the case of noninteracting electrons, the
Lagrange multiplieré ensures charge neutrality and obeys

It remains to solve the saddle-point equations to first order in,o boundary conditiofA9). The field \ is linked to the
x. For the Lagrange multipliers we find conservation of energy current and is zero at the boundaries.

N +&=0, thusi;=0, &=-x(¥L-1/2). The matrixA describes the local noise created by the extra-
(A13)  Neous sources of nois#"":

(A17)

Their dynamics is trivial, since they follow instantaneously A=T (1 ¢ ) (A18)
the external fieldy. The interesting dispersion effect stems \o ($P+7°TU3ed) )

from the saddle-point equation for the occupation function -

which takes the form of an inhomogeneous diffusion equalhe second matri is the linear response tensor

tion . 1 0
. B= . A19
5, — D& = - 2eD[fo(1 - fo) &)’ <¢> 772Te/3e2) (A19)
afo . In complete analogy to the derivation of Egp12), we
B ZeDE f delfo(1 -fo)&l". (A14) may again collect all third-order terms which contribute to
the action(A17) and find
This diffusion equation has a very appealing interpretation:
When we integrate the equation over energy, we find that the _ f f "2
two source terms on the right-hand side cancel. The left-hand Shotalx] =0 | dt | dxoTe (€)%, (A20)
side becomes a homogeneous diffusion equation for the fluc- _ _ . )
tuations of the charge densit§lp,=e [ de5f,, which has the Where the variatiodTe, can be identified with
tr|V|_aI solgtlon op1=0. This is nothing t_har_l the ch:_alrge neu- STe 1= (5Te(X) ), (A21)
trality which we demanded in the beginning of this section.
The second source term which is due to variations of thésee Eq.(28)]. The total-third order contributior$,q, sl x]
electrostatic potential thus compensates the first term in sudherefore corresponds exactly to £85).
a way that all fluctuations of the occupation functiéiy are The main results of this appendix are the dynamic gener-
charge neutral. We decompose the total variatby= Sff ating functionals(A7) and (A17). These functionals permit
+6f¢ into a contributionsf] due to free fluctuations of the the calculation of the full probability distribution of
occupation function and a contributio?f‘f due to potential frequency-dependent fluctuations of current.
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