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We calculate the frequency dispersion of the third cumulant of current in diffusive-metal contacts. The
cumulant exhibits a dispersion at the inverse time of diffusion across the contact, which is typically much
smaller than the inverseRC time. This dispersion is much more pronounced in the case of strong electron-
electron scattering than in the case of purely elastic scattering because of a different symmetry of the relevant
second-order correlation functions.
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I. INTRODUCTION

Measurements of nonequilibrium noise provide valuable
information about the properties of a system, which cannot
be extracted from measurements of average quantities. For
example, measurements of shot noise give the magnitude of
the quasiparticle charge in the case of a tunnel contact and
the effective temperature of electrons in the case of a diffu-
sive contact.1 Recently, Reuletet al.2 performed first mea-
surements of the third cumulant of current, which may give
even more interesting information. For example, this cumu-
lant is very sensitive to the presence of electron-electron
scattering in a diffusive contact. Electron-electron scattering
changes the shot noise in a diffusive contact only by several
percent,3,4 but it changes the third cumulant of current almost
by an order of magnitude.5

Of special interest is the frequency dependence of the
third cumulant. Very recently, it was shown that third cumu-
lants of current in a chaotic cavity whose contacts have dif-
ferent transparencies may exhibit a frequency dispersion
much more complicated than that of the shot noise. Unlike
the conventional shot noise that has a dispersion only at the
inverseRC timeof the cavity,6 the third cumulant of noise
may also exhibit a dispersion at the inversedwell timeof an
electron on the cavity.7 In most cases, this time is much
longer than theRC time that describes charge relaxation in
the cavity, and therefore the corresponding dispersion takes
place at experimentally accessible frequencies. This disper-
sion is due to slow fluctuations of the distribution function
that do not violate electroneutrality and are akin to fluctua-
tions of local temperature. These fluctuations do not directly
contribute to the current and therefore are not seen in con-
ventional noise, but they modulate the intensity of noise
sources and therefore manifest themselves in higher correla-
tions of current.

Another important example of a system with a long dwell
time is a diffusive contact. In this work we investigate the
frequency dependence of the third cumulant of a metallic
diffusive wire. Like a chaotic cavity, it also has a long dwell
time. In addition, the metallic diffusive wire is of interest
because its impedance can be easily matched to that required
by current experimental detection schemes.2 Furthermore,
the measuring frequencies in this case are in the range where
the frequency dispersion takes place for the system at hand.

The zero-frequency third cumulant of current for a diffu-
sive wire was first calculated by Lee, Levitov, and Yakovets8

for noninteracting electrons in the zero-temperature limit.
Recently this calculation has been extended to finite tem-
peratures and to the case of strong electron-electron scatter-
ing by Gutman and Gefen.5 In this paper we calculate the
frequency dependence of this quantity both for the case of
noninteracting electrons and for the hot-electron regime and
show that the latter case is more convenient for the experi-
mental observation of this effect, since the dispersion of the
third cumulant is much stronger.

We present a calculation based on the cascaded
Boltzmann-Langevin approach.9 In the Appendix, we also
derive the full generating functional for the frequency-
dependent current fluctuations of a metallic wire for both the
elastic and hot-electron regimes based on the stochastic path-
integral approach to full counting statistics.10 The third cu-
mulant of current may be expressed in terms of the func-
tional derivatives of this functional.

II. MODEL AND BASIC EQUATIONS

Consider a quasi-one-dimensional diffusive wire of length
L and conductivitys. To explicitly describe its electric envi-
ronment, the wire is chosen in the shape of a cylinder with a
diameter 2r0 and is embedded in a perfectly grounded me-
dium, which is separated from the wire by a thin insulating
film of thicknessd0 and with a dielectric constant«d (see Fig.
1). All dimensions are assumed to be much larger than the
elastic mean free path and the screening length in the metal.
Since electron-phonon scattering is suppressed at low tem-
peratures, we may also assume that dimensions are much
smaller than the electron-phonon scattering length such that

FIG. 1. The geometry of the system considered. White areas
show the diffusive metal and dark areas the insulator.
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dissipation takes place only in the reservoirs. Electron-
phonon scattering renders fluctuations purely Gaussian5 and
suppresses the dispersion effects to be discussed in this pa-
per. The electrodes are assumed to be perfect conductors, so
the third cumulant of current is not affected by the external
circuit.11–13 We also restrict ourselves to sufficiently high
voltages or temperatures; hence the quantum dispersion of
this quantity does not show up in the frequency range of
interest.14 We emphasize that despite the particular choice of
geometry, our results are valid for any quasi-one-dimensional
diffusive contact.

With the above assumptions, the noise of current may be
described using the semiclassical Boltzmann-Langevin
approach.15 The frequency dependence of shot noise in dif-
fusive contacts with account taken of electrical screening
was calculated in Refs. 16 and 17. To calculate the frequency
dependence of the third cumulant of current, we use the cas-
cade extension of this approach.9 The key idea of this exten-
sion is a large separation between the time scales describing
the individual scattering events and the evolution of the dis-
tribution function of electrons in the contact. The resulting
expressions may be also obtained by considering the corre-
sponding stochastic path integral10,18 for the diffusive
Boltzmann-Langevin equation(see the Appendix). The cas-
cade expansion corresponds to a systematic expansion of the
saddle-point equations of this path integral in powers of the
counting field.

The quantity we are going to calculate is the Fourier
transform of the third-order current correlation function de-
fined as

P3sv1,v2d =E dst1 − t2d E dst2 − t3dexpfiv1st1 − t3d

+ iv2st2 − t3dgkdIst1ddIst2ddIst3dl. s1d

The starting point for our calculations is the stochastic diffu-
sion equation for the fluctuationsdfs« ,r d of the distribution
function fs« ,r d:

S ]

] t
− D¹2Ddf − dIee= − edḟ

] f

] «
− ¹ dFimp − dFee, s2d

where D is the diffusion coefficient,dIee is the linearized
electron-electron collision integral, anddFimp and dFee are
random extraneous sources associated with electron-impurity
and electron-electron scattering. This equation is obtained
from the standard Boltzmann-Langevin equation by defining
the electron energy as«=p2/2m+efsr ,td−«F and isolating
the isotropic part of the distribution function in momentum
space. The fluctuation of the electric potentialdf that ap-
pears in this equation should be calculated self-consistently
from the Poisson equation

¹2df = − 4pdr, s3d

where the fluctuation of charge density,dr, is given by

dr = eNFSE d«dfs«d + edfD s4d

and whereNF is the Fermi density of states. In the case of a
quasi-one-dimensional contact, the solution of Eqs.(2)–(4) is
of the form17

dfsx,vd =
1

S0s
s¹2 + ivRC/L2d−1 ]

] x
E d2r'd jx

extsr d, s5d

wherex is the coordinate along the contact,s=e2NFD is the
conductivity of the metal,S0=pr0

2 is the cross-section area of
the contact,C=L«dr0/2d0 and R=L /pr0

2s are the capaci-
tance and the resistance of the contact, and

dj ext= eNFE d«dFimp. s6d

A fluctuation of the total current density is given by

dj = dj ext− s ¹ df, s7d

and a fluctuation of the total current at the left end of the
contact thus equals

dI = sE d2r'U ] dfsx,vd
] x

U
x=−L/2

. s8d

Note that we define current fluctuations to the left as pos-
sible. Making use of the correlation function of extraneous
sources,

kdFa
imps«,r ddFb

imps«8,r 8dlv = 2
D

NF
dsr − r 8dds« − «8d

3 dabfs«,r df1 − fs«,r dg,

s9d

one easily obtains the second-order correlation function for
the fluctuations of the current as a functional of the distribu-
tion function f.19

Consider now the third cumulant of current. As the direct
contribution to this quantity from the third cumulant of ex-
traneous sources is negligibly small in a diffusive metal,9 this
quantity is dominated by an indirect contribution of the sec-
ond cumulant of these sources, which results from the modu-
lation of their intensity by fluctuations of the distribution
function. It may be written in the form

kdIst1ddIst2ddIst3dl = P123hD123j, s10d

where

D123=E dtE d«E d3r
dkdIst1ddIst2dl

dfs«,r ,td
kdfs«,r ,tddIst3dl

s11d

andP123 denotes a summation over all inequivalent permu-
tations of indices(123).

Equations(6) and(8) suggest that the second cumulant of
current exhibits a dispersion at frequencies of the order of
sRCd−1. Typically such high frequencies are beyond the ex-
perimentally accessible range. Therefore in what follows we
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will assume that the frequenciesv1, v2, and v3 are much
smaller thansRCd−1. Hence the pileup of charge in the con-
tact may be neglected and the fluctuation of current may be
considered as coordinate independent. In this case,

kdIsv1ddIsv2dl = 4pdsv1 + v2dsRLd−1

3E dxE d«fs«,xdf1 − fs«,xdg, s12d

and the only possible dispersion in Eq.(11) is due to the
dynamics of a fluctuationdf, so that the expression for the
third cumulant assumes the form

P3sv1,v2d = Psv1d + Psv2d + Ps− v1 − v2d,

Psvd =
2

RL
E

−L/2

L/2

dxE d«f1 − 2fs«,xdgkdfs«,xddIlv.

s13d

The quantityPsvd has to be calculated in different ways for
the case of purely elastic scattering and for the hot-electron
regime.

III. PURELY ELASTIC SCATTERING

For purely elastic scattering,dIee anddFee in Eq. (2) van-
ish, and a fluctuation of the distribution functiondf may be
presented as a sum of a part induced directly by an extrane-
ous source,

dfFs«,x,vd = s¹2 + iv/Dd−1] Fx
ext

] x
, s14d

and a part induced by fluctuations of the electric potential,

dffs«,x,vd = − ivs¹2 + iv/Dd−1F ] fs«,xd
] «

edfsx,vdG .

s15d

The existence of the term(15) indicates that the dynamics of
charged electrons differs from the dynamics of neutral par-
ticles even at frequencies much smaller thansRCd−1.

By multiplying these equations with the fluctuation of
current(8) and making use of the correlation function(9), we
obtain

kdfFs«,xddIlv = − 2
e

L
s¹2 − iv/Dd−1 ]

] x
hfs«,xdf1 − fs«,xdgj

s16d

and

kdffs«,xddIlv = ivs¹2 − iv/Dd−1F ] fs«,xd
] «

ekdfsxddIlvG .

s17d

At low frequencies, one easily obtains from Eqs.(6) and(8)
that

kdfsxddIlv =
2

L
s¹2d−1F ]

] x
E d« fs1 − fdG . s18d

Using the well-known expression for the average distribution
function

f̄s«,xd = S1

2
+

x

L
D f0s« + eV/2d + S1

2
−

x

L
D f0s« − eV/2d,

s19d

where f0 is the equilibrium Fermi distribution andV is the
voltage drop across the contact, we obtain

kdfsxddIlv =
1

6

x

L
S1 − 4

x2

L2DFeV cothSeV

2T
D − 2TG .

s20d

The correlatorkdfsxddIl vanishes atV=0 and is an odd
function of x at nonzeroV (see Fig. 2). Upon inverting the
operators¹2+ iv /Dd in Eqs. (16) and (17) and performing
the spatial integration in Eq.(13), we arrive at an expression
for Psvd in terms ofqv=siv /Dd1/2, which is our final goal.
Because of its length, we give here only its low-temperature
and low-voltage limits

Pelsvd = −
4

3

e2V

R
fqvLsqv

2L2 + 30dsinhsqvLd − 8sqv
2L2 + 6d

3coshsqvLd + 2qv
2L2 + 48g/fqv

5L5sinhsqvLdg s21d

and

Pelsvd =
4

3

e2V

R

2 coshsqvLd − qvL sinhsqvLd − 2

qv
3L3 sinhsqvLd

. s22d

At v=0 these expressions give −s1/45de2V/R and
−s1/9de2V/R, which corresponds to P3s0,0d
=−s1/15de2V/R and P3s0,0d=−s1/3de2V/R. These zero-
frequency results are in agreement with Refs. 5 and 8. At
finite frequency, Eqs.(21) and (22) become complex valued

FIG. 2. The coordinate dependence of the zero-frequency cor-
relatorkdfsxddIlv normalized toeV for the elastic case(solid line)
and the hot-electron regime(dashed line).
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and tend to zero asi /v at v→`. The real and imaginary
parts ofPsvd are shown in Figs. 3 and 4.

IV. HOT-ELECTRON LIMIT

Consider now the limit of strong electron-electron inter-
action. In this case, the distribution function may be assumed
to have a Fermi shape with a coordinate-dependent tempera-
ture Tesxd and electric potentialfsxd:

fs«,xd = F1 + expS« − efsxd
Tesxd

DG−1

. s23d

If the frequencyv is smaller than the rate of electron-
electron collisions, a fluctuationdf can be expressed in terms
of fluctuations of these quantities:

dfs«,r ,vd =
] fs«,r d

] f
df +

] fs«,r d
] Te

dTe. s24d

A substitution of Eq.(24) into Eq. (13) and integration over
the energy readily gives

Photsvd =
2

RL
E

−L/2

L/2

dxkdTesxddIlv. s25d

To calculate the correlator in Eq.(25), we have to obtain a
Langevin-type equation fordTe. To this end, we multiply Eq.
(2) by « and integrate it over«, as was done when deriving
the equation of heat balance in Refs. 3 and 4. This gives

S ]

] t
− D¹2DSp3

3
TedTeD − D¹2se2fdfd = −E d«« ¹ dFimp.

s26d

Multiplying Eqs.(26) and(8) and averaging the product with
the help of Eq.(9) results in an equation for the correlation
function kdTedIlv of the form

S¹2 − i
v

D
DFp2

3
TekdTesxddIlvG

= − ¹2fe2fkdfsxddIlvg +
2e

L

]

] x
E d««fs1 − fd.

s27d

The integral over the energy on the right-hand side of Eq.
(27) equalsefTe, and making use of Eq.(18), one easily
obtains the solution of Eq.(27) in a symbolic form

kdTesxddIlv =
6

p2

e2

L

1

Te
s¹2 − iv/Dd−1H ] sfTed

] x

− ¹2Ffs¹2d−1S ] Te

] x
DGJ , s28d

where the operators¹2 and¹2− iv /D are inverted with zero
boundary conditions. According to Ref. 3, the mean potential
is given byf̄sxd=V x/L and the mean effective temperature
by

T̄esxd = FT2 +
3

p2seVd2S1

4
−

x2

L2DG1/2

. s29d

As f̄ andT̄e are odd and even functions of coordinate, the
resulting correlator is an even function ofx. In the zero-
frequency limit it is given by

FIG. 3. The real part of the ratioPsvd / se2Id vs normalized
frequencyvtD stD=L2/Dd for purely elastic scattering ateV@T
(solid line), hot-electron regime ateV@T (dashed line), purely elas-
tic scattering ateV!T (dotted line), and hot-electron regime at
eV!T (dash-dotted line). Inset: charged and uncharged fluctuations
of the distribution functionf. Charged fluctuations have a short
relaxation time and contribute to fluctuations of currentdI. Un-
charged fluctuations do not contribute todI directly but affect the
intensity of noise sources. They decay only via slow diffusion and
result in the low-frequency dispersion of the third cumulant.

FIG. 4. The imaginary part of the ratioPsvd / se2Id vs normal-
ized frequencyvtD stD=L2/Dd for purely elastic scattering ateV
@T (solid line), hot-electron regime ateV@T (dashed line), and
purely elastic scattering ateV!T (dotted line), and hot-electron
regime ateV!T (dash-dotted line).
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kdTesxddIlv =
1

2p2e2VX− a2 − 2
x2

L2 +
1

Îa2 − 4x2/L2

3Hsa2 − 1d3/2 − 3a
x

L
arcsinS 2x

La
D

+ 6Fa2arcsinS1

a
D + Îa2 − 1G x2

L2JC , s30d

where a2=1+s4p2/3dT2/ seVd2. This correlation function
vanishes atV=0 and is negative at positive voltages—i.e., if
the increment of total current through the contact is negative.
This fact has a very simple physical meaning: an increase in
the total current results in an increase of the Joule heating
and hence an increase of the temperature.

An integration of Eq.(28) with respect tox gives the
low-frequency third cumulant for arbitrary temperatures and
voltages

P3s0,0d =
3

p2

e2V

R
F 7

12
−

13

4
a2 +

1

2
s5a2 − 2dÎa2 − 1

3 arcsinS1

a
D +

1

4
a4arcsin2S1

a
DG . s31d

Its limiting values P3s0,0d=−s3/p2de2V/R at eV!T and
P3s0,0d=−s8/p2−9/16de2V/R at eV@T coincide with the
results of Gutman and Gefen.5

In the case of nonzero frequencies, it is possible to obtain
analytical results only in the limiting cases ofeV!T and

eV@T. In the high-temperature limit, one may setT̄esxd=T
in Eq. (28); hencefsxd is the only coordinate-dependent
quantity, and the term in curly brackets equalsVT/L. Then
the diffusion operator is easily inverted and the integration
over x gives

Photsvd = −
12

p2

e2V

R

1

qv
2L2F1 −

2

qvL
tanhSqvL

2
DG . s32d

In the zero-temperature limit, the term in curly brackets in
Eq. (28) may be expanded in a Fourier series in cosfs2n
+1dpx/Lg and the operator¹2− iv /D is easily inverted. The
final result is obtained as a sum of an infinite series

Photsvd =
12

p

e2V

R o
k=0

`
J0spk + p/2dfJ1spk + p/2d − s− 1dkg

s2k + 1dfp2s2k + 1d2 + ivL2/Dg
,

s33d

whereJ0 andJ1 are Bessel functions of order 0 and 1.

V. DISCUSSION

Our results for the noninteracting regime[Eqs. (21) and
(22)] and for the hot-electron regime[Eqs.(32) and(33)] are
displayed in Figs. 3 and 4. It is clearly seen that both real and
imaginary parts of the third cumulant have the most pro-
nounced dispersion in the case of a high temperature or for
strong electron-electron scattering—i.e., when the local dis-
tribution function has a nearly Fermian shape. This unex-
pected result is in a sharp contrast with the dispersion of

quantum noise,20 which results from sharp singularities in
the energy dependence of the distribution function.

Mathematically, the different shape of the frequency de-
pendence for purely elastic scattering and interacting elec-
trons at high voltages can be explained as follows. In the
case of hot electrons, bothdkdI2l /dTesxd andkdTesxddIlv are
even functions of the coordinatex (measured from the
middle of the contact). On the contrary, for purely elastic
scattering atT=0 bothdkdI2l /dfs« ,xd and kdfs« ,xddIlv are
odd functions ofx. The functions acted upon by the inverse
diffusion operators¹2− iv /Dd−1 in Eqs. (28) and (16) are
also even and odd, respectively. At low frequencies, the in-
verse diffusion operator is essentially nonlocal in space and
applying it results in an effective averaging of the argument
on the scale of the order ofL. In the elastic case, this aver-
aging involves both negative and positive values, and this is
why the elastic third cumulant is suppressed at low frequen-
cies as compared to the hot-electron value. However, at high
frequencies, the inverse diffusion operator becomes almost
local in space; therefore, there is no averaging of negative
and positive values and both cumulants become of nearly the
same magnitude. This absence of spatial averaging partially
compensates for the increasing frequency and makes the fre-
quency dependence of the “elastic” cumulant more flat.
Therefore the different shape of the frequency dependence in
the elastic and hot-electron limits may be traced back to the
different symmetry of relevant second-order correlation
functions.

To show that the low-frequency dispersion in diffusive
wires is experimentally accessible, we need to compare the
bandwidth of 1 GHz for the measurement of the third
cumulant2 to typical diffusion times across diffusive wires.
We use the experimental parameters of Ref. 21(diffusion
constantD=40 cm2/s, contact widthW=40 nm, sheet resis-
tance Rh=9V) and assume for the length of the wireL
=1 mm, for the dielectric constant«d=1, and for the thick-
ness of the dielectric layerd0=10 nm. We then find for the
RC time RC=10−13 s and for the diffusion timeL2/D=2.5
310−10 s. These are very prudent estimates. We emphasize
that noise in the hot-electron regime has been measured in
wires as long asL=100mm.22,23 For such wires, the low-
frequency dispersion thus lies clearly inside the experimental
bandwidth.

VI. SUMMARY

In summary, we have shown that diffusive contacts ex-
hibit a nontrivial internal dynamics even at frequencies much
smaller than the inverse charge-relaxation time. Though this
dynamics is not affected by the electric environment of the
contact, it differs from the dynamics of charge-neutral par-
ticles and manifests itself as a low-frequency dispersion of
the third cumulant of current. In view of the fact that both the
dynamic conductance and shot noise of metallic conductors
depend only on theRC time, this frequency dispersion of the
third cumulant on the scale of the dwell time is a very inter-
esting result.
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APPENDIX: STOCHASTIC PATH-INTEGRAL
REPRESENTATION

In this appendix, we derive a stochastic path-integral
representation10,18 for the full current statistics of diffusive
conductors. In contrast to the cascade rules9 applied in the
main body of the paper, such a representation is not restricted
to the calculation of specific cumulants, but allows for the
calculation of the full probability distribution of frequency-
dependent fluctuations of current. Here, the stochastic path-
integral representation serves to verify the calculation of the
third-order current correlation function. We give first a de-
tailed derivation of the case without electron-electron scat-
tering. For simplicity, we restrict ourselves to quasi-one-
dimensional wires and consider only slow dynamics due to
the longitudinal diffusion modes. In this case, the kinetic
transport equation for the fluctuating contributiondfse ,x,td
to the electron occupation functionf = f̄se ,xd+dfse ,x,td is
given by the one-dimensional equivalent of Eq.(2). The

mean distribution functionf̄ is defined in Eq.(19). Since we
restricted ourselves to the regime of slow diffusive dynam-
ics, we may assume charge neutrality]sd jd /]x=0 where the
fluctuations of the electrical current density are given by Eqs.
(6) and (7). Finally, we make use of the fact9 that the extra-
neous sources of noise are Gaussian random variablesd cor-
related in time, space, and energy and described by Eq.(9).

In order to construct a path-integral representation of this
Boltzmann-Langevin equation, we define the probability
functional P which gives the probability to find a certain
realization of extraneous currentsdFimps« ,x,td. This func-
tional may be written as a path integral

PfdFimpg =E Dh expHE dtdxd«f− ihdFimp + HshdgJ ,

sA1d

taking Fourier transforms of the generating function

H = −
D

NF
fs1 − fdh2. sA2d

Since the Fourier transforms are independently taken for
each point in space, time, and energy, Eq.(A1) indeed char-

acterizes white noise. The electron occupation functionf = f̄
+df is considered to be a slowly changing variable which
modulates the instantaneous noise intensity. Its evolution is
determined by the kinetic equation(2) which we represent as
a d functional expressed by a path integral:

dFd ḟ − Ddf9 + e
] f

] «
dḟ + sdFimpd8G

=E Dl expHi E dtdxd«lSd ḟ − Ddf9 + e
] f

] «
dḟ

+ sdFimpd8DJ , sA3d

where the prime stands for] /]x. The dynamics of the poten-
tial fluctuationsdf can be expressed by a secondd func-
tional which enforces charge neutrality:

dFsdf9 − eNFE d«sdFimpd8G
=E Dj expHi E dtdxjSsdf9 − eNFE d«sdFimpd8DJ .

sA4d

The fieldsl andj can be understood as Lagrange multipli-
ers. Combining Eqs.(A1), (A3), and(A4), we construct the
probability Pt to find a certain realization of extraneous cur-
rentsdFimp under the constraint of current conservation and
charge neutrality:

PtfdFimpg =E DdfDdfdf¯gdf¯gPfdFimpg. sA5d

We are now in a position to calculate the generating func-
tionalSfixg of current fluctuationsdI =d jsx=−L /2d at the left
contactx=−L /2:

eSelfixg =E DdFimpPtfdFimpgexpHi E dtxdIJ . sA6d

This equation may be considerably simplified. In a first step,
we can integrate out the the extraneous currentsdFimp as well
as the fieldh introduced in Eq.(A1). We are then left with
four functional integrations overdf ,df ,l, andj. In a second
step, we evaluate this integrations in the saddle-point ap-
proximation. As the diffusive conductor is essentially semi-
classical, the corrections to the saddle-point action are
small.10 After rescalingl°eNFl, we are left with the gen-
erating functional

Selfx,l,j,df,dfg =E dtdxHsjdf9 +E d«Fs

e
ldf9 + sfs1

− fdsl8 + j8d2 − eNFlSd ḟ + e
] f

] «
dḟDGJ ,

sA7d

which has to be evaluated at the saddle point given by

dSel

dl
= 0,

dSel

dj
= 0,
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dSel

dsdfd
= 0,

dSel

dsdfd
= 0. sA8d

Note that we performed a complex continuation
il°l , ij°j, and ix°x. We are therefore left with purely
real quantities. The saddle-point equations are supplemented
with boundary conditions: the three fieldsdf ,df, andl van-
ish at both boundaries. The external counting fieldx is in-
corporated into the boundary conditions forj:

js− L/2d = x, jsL/2d = 0. sA9d

The frequency-dependent third cumulant under consider-
ation in this paper is obtained from the third functional de-
rivative:

kdIsv1ddIsv2ddIsv3dl = U d3Sel

dxsv1ddxsv2ddxsv3d
U

x=0
.

sA10d

We calculate this cumulant by a systematic expansion of the
action (A7), saddle-point equations(A8), and fields:

df = df1 + df2 + ¯ , df = df1 + ¯ , ¯ , sA11d

in orders of the external fieldx. It can be straightforwardly
shown by inserting the saddle-point equations(A8) back into
the action(A7) that the third-order contribution to the action
has the form

Sel,3fxg = sE dtE dxE d«s1 − 2f̄ddf1sj18d
2. sA12d

It remains to solve the saddle-point equations to first order in
x. For the Lagrange multipliers we find

l19 + j19 = 0, thus l1 = 0, j1 = − xsx/L − 1/2d.

sA13d

Their dynamics is trivial, since they follow instantaneously
the external fieldx. The interesting dispersion effect stems
from the saddle-point equation for the occupation function
which takes the form of an inhomogeneous diffusion equa-
tion

d ḟ1 − Ddf19 = − 2eDff0s1 − f0dj18g8

− 2eD
] f0

] «
E d«ff0s1 − f0dj18g8. sA14d

This diffusion equation has a very appealing interpretation:
When we integrate the equation over energy, we find that the
two source terms on the right-hand side cancel. The left-hand
side becomes a homogeneous diffusion equation for the fluc-
tuations of the charge density,dr1=eed«df1, which has the
trivial solution dr1=0. This is nothing than the charge neu-
trality which we demanded in the beginning of this section.
The second source term which is due to variations of the
electrostatic potential thus compensates the first term in such
a way that all fluctuations of the occupation functiondf1 are
charge neutral. We decompose the total variationdf1=df1

F

+df1
f into a contributiondf1

F due to free fluctuations of the
occupation function and a contributiondf1

f due to potential

fluctuations. Using the identitydḟ1=Ddf19, we solve the dif-
fusion equation by inverting the diffusion operator and find

df1
Fsvd = kdfFs«,xddIlv

xsvd
D

, sA15d

df1
fsvd = kdffs«,xddIlv

xsvd
D

. sA16d

The two correlators are defined in Eqs.(16) and(17), respec-
tively. They can now be inserted into Eq.(A12) to obtain the
third-order correlation function(13). We thus derived the
cascade rules applied in the main body of this paper from the
stochastic path-integral formalism.

The derivation of an action describing the hot-electron
regime requires only a minor additional effort. Here we cite
directly the result which has been derived by one of the
authors for the zero-frequency limit in a different context:24

Shot =E dtE dxH− NFlTeṪe + ssj8 l8dÂSj8

l8
D

− ssj8 l8dB̂Sf8

Te8
DJ . sA17d

In this action, we introduced the local electron temperature

Tesx,td=T̄esxd+dTesx,td and the local electrostatic potential
fsx,td=fs̄x+dfsx,td. The boundary conditions for these
fields are the potentials and temperatures of the left and right
reservoirs. As for the case of noninteracting electrons, the
Lagrange multiplierj ensures charge neutrality and obeys
the boundary condition(A9). The field l is linked to the
conservation of energy current and is zero at the boundaries.

The matrixÂ describes the local noise created by the extra-
neous sources of noisedFimp:

Â = TeS1 f

f sf2 + p2Te
2/3e2d

D . sA18d

The second matrixB̂ is the linear response tensor

B̂ = S1 0

f p2Te/3e2D . sA19d

In complete analogy to the derivation of Eq.(A12), we
may again collect all third-order terms which contribute to
the action(A17) and find

Shot,3fxg = sE dtE dxdTe,1sj18d
2, sA20d

where the variationdTe,1 can be identified with

dTe,1 = kdTesxddIlv sA21d

[see Eq.(28)]. The total-third order contributionShot,3fxg
therefore corresponds exactly to Eq.(25).

The main results of this appendix are the dynamic gener-
ating functionals(A7) and (A17). These functionals permit
the calculation of the full probability distribution of
frequency-dependent fluctuations of current.
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