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We present a study of the dielectric response ofsGaAsdp/ sAlAsdp (001) superlattices in a wide range of
barrier and well widths. We applied density functional theory and a semiempirical method to obtain the
superlattice band structures. These were then used as a starting point to evaluate the optical spectra and
macroscopic dielectric constants using time-dependent density functional theory. In this context, we investi-
gated the role of crystal local field effects in determining the anisotropy of the dielectric constants. Further-
more, we calculated absorption spectra including the strong continuum excitonic effect through the use of an
appropriate model exchange-correlation kernel. We analyzed in detail the complementarity of theab initio and
semiempirical approaches and we compared the successes and limitations of the different approximation
schemes.
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I. INTRODUCTION

Reducing the size of one-, two-, or three-dimensional het-
erostructures at the nanoscale level leads to electronic ground
and excited states widely different from those of the bulk
crystals, and has opened the way to a new generation of
optoelectronic and photonic devices. In nanostructured ma-
terials, the electronic states vary from those of the bulk con-
stituents essentially due to three effects.(i) The band offsets
at the interfaces act as effective potential barriers, inducing
the confinement of carriers(both electrons and holes) in po-
tential wells.(ii ) As a consequence of the creation of a su-
percell in the direct space, in reciprocal space the bulk bands
are folded onto a smaller Brillouin zone. This back folding is
accompanied by the mixing of otherwise independent bulk
states, coupled by the superimposed confining potential.(iii )
The composite crystal can exhibit symmetry breaking with
respect to its building blocks: in particular, the lowering of
an original cubic symmetry gives rise to anisotropy in the
electronic properties.

GaAs/AlAs superlattices (SL’s) are prototypes of
semiconducting heterostructures and have been extensively
studied, both experimentally1–3 and theoretically,4–10 in re-
cent years. The original point group of GaAs and AlAs bulk
crystals is theTd group of zinc blende, which yields an iso-
tropic optical response of the medium. When a multilayer
with a common-ion interface is grown along the[001] crys-
talline axis, the original cubicTd symmetry is reduced to
tetragonalD2d. The system turns from isotropic into uniaxial,
with a macroscopic dielectric tensor containing two compo-
nents«i and «', describing the response for light polarized
along the growth direction and in the plane containing the
interfaces. The anisotropy of GaAs/AlAs-based SL’s, to-
gether with the huge second-order susceptibility of GaAs,
have been successfully applied in the design of frequency
converters.11 These devices, working at frequencies in the
infrared region, exploit the change in the refractive index
with light polarization—the birefringenceDnsvd=Î«'svd

−Î«isvd—to prevent optical dispersion. This is achieved by
matching the phase velocities for light propagating at differ-
ent frequencies. Below the energy gap, while approaching
the first allowed dipole transition, the birefringence is domi-
nated by resonant contributions. On the other hand, in the
low-frequency regionDnsvd is rather dispersionless and can
be well approximated by its zero-frequency valueDns0d. The
magnitude of the static birefringenceDns0d is related to the
dielectric mismatch of the constituent crystals, and shows a
nontrivial dependence on the barrier and well width. In par-
ticular, a remarkable drop in the static birefringence was ob-
served by Sirenkoet al.12 in (001) sGaAsdp/ sAlAsdp SL’s,
when the so-called SL periodp is small sp,14d. For larger
periods, the measured birefringence reaches a plateau, whose
height can be easily related to the classical birefringence pre-
dicted by the effective medium theory.13–15 In fact, both
quantum confinement and tunneling effects, which affect the
carriers, vanish when the barrier and well widths become
large enough with respect to the lattice constant. This justi-
fies a simplified description of the medium as an arrange-
ment of classical bulk dielectrics. In this limiting case, the
dielectric constant tensor is obtained by the classical expres-
sion for a series and parallel arrangement of capacitors:13

«' = k«l =
1

2
s«GaAs+ «AlAsd, s1d

«i
−1 = k«−1l =

1

2
s«GaAs

−1 + «AlAs
−1 d, s2d

where «GaAs and «AlAs are the macroscopic dielectric con-
stants of bulk GaAs and bulk AlAs, respectively.

Apart from this simple situation, the theoretical problem
of determining the macroscopic dielectric functions of small-
sized heterostructures is quite complex. To obtain accurate
spectroscopic properties, one has to determine the SL band
structures and take properly into account confinement effects
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and confinement-induced multivalley and multiband mixings
all over the Brillouin zone. This can in principle be done
using eitherab initio or semiempirical band structure calcu-
lation methods.Ab initio density functional theory16,17(DFT)
calculations benefit from a high degree of precision and from
their predictive power, but are demanding from a computa-
tional point of view. Therefore, in recent decades many em-
pirical methods were developed in order to study large-scale
heterostructures.18 From this point of view,ab initio and em-
pirical calculations play a complementary role, and should be
combined to attain a complete comprehension, at different
size scales, of the electronic properties of complex hetero-
structures. Of course, this is true only if the semiempirical
description is able to catch all the essential physical effects
that contribute to the experimental results.

In this work we explore both theab initio DFT and the
semiempirical linear combination of bulk bands19 (LCBB)
approach. A comparison ofab initio and semiempirical re-
sults, together with available measurements, not only leads
to further insight into the physics of semiconductor SL’s, but
also allows a discussion of the advantages and disadvantages
of the two different computational approaches.

In recent years, the electronic structure of GaAs/AlAs
SL’s was studied by means of DFT only for very short-period
superlattices.6,20 Concerning the optical properties, it is pos-
sible to find in the literature a fewab initio calculations for
ultrathin multilayers,21 semiempirical LCBB calculations,22

and empirical tight-binding calculations for larger-scale
systems.5 All of these calculations are based on Fermi’s
golden rule, in terms of independent transitions between one-
electron states. This approximation ignores contributions
stemming from many-body effects. In particular, crystal local
field effects(LFE’s), which reflect the charge inhomogeneity
of the responding medium, give sizable contributions in
multilayer structures. Moreover, self-energy corrections and
the electron-hole interaction are expected to be important, as
they are known to modify significantly the line shape and the
peak positions of GaAs and AlAs absorption spectra.23,24

Our recent calculations25 of the SL dielectric constants
«i,'sv=0d as a function of the SL periodp, based on DFT
and including LFE’s, proved that, for any SL period, the
qualitative behavior of the dielectric anisotropy is essentially
governed by the interplay between quantum confinement and
LFE’s. In the present work we explain these results in more
detail, and we complete them with additional findings(semi-
empirical and DFT band structures, dielectric constants ob-
tained in different approximation schemes). Moreover, we
show results for the absorption spectra obtained within time-
dependent DFT(TDDFT),26,27 including the strong con-
tinuum excitonic effect through the use of an appropriate
model exchange-correlation(XC) kernel.28 Finally, we pay
particular attention to the description of the different terms
contributing to the anisotropy of the dielectric response, by
means of simple models. This allows us to give a consistent
picture explaining when and why semiempirical or classical
approximations and approximate descriptions of many-body
effects can be used, as well as the possible sources of error in
the calculations.

Concerning what follows, we briefly review the two ap-
proaches for the calculation of band structures in Sec. II and

the theory of dielectric function calculations in Sec. IV.
Then, we present our results for GaAs/AlAs SL’s for differ-
ent barrier and well widths: the electronic band structure
(Sec. III), the frequency-dependent absorption spectra(Sec.
V) and the static dielectric properties(Sec. VI). Finally, all
results are summarized in Sec. VII.

II. TECHNICAL ASPECTS OF THE BAND STRUCTURE
CALCULATIONS

We consideredsGaAsdp/ sAlAsdp SL’s, grown along the
[001] crystallographic axis, with a barrier-well periodp vary-
ing from 1 to 14. It is well known29 that a structural relax-
ation of the supercell geometry is not necessary for
GaAs/AlAs-based heterostructures, since the small lattice-
constant mismatchs.0.15%d makes negligible stress and
strain effects at the interfaces. Assuming abrupt interfaces,
the Bravais lattice is simple tetragonal, with a supercell de-
fined by the basis vectors(1,1,0) kal /2, s−1,1,0d kal /2,
s0,0,pd kal, where kal is the average bulk lattice constant
andp is the SL period.

The SL one-electron energy levels and wave functions
were calculated usingab initio DFT (Refs. 16 and 17) and
the semiempirical LCBB method(Ref. 19). We performed
band structure calculations within DFT in the local density
approximation (LDA ),17 using separable first-principles
norm-conserving pseudopotentials and a plane wave expan-
sion of the Kohn-Sham orbitals. We used for the LDA XC
functional the parametrization of Perdew and Zunger32 of the
Monte Carlo results of Ceperley and Alder.33 The atomic
pseudopotentials were generated with theFHI98PP code.34

The parameters used are listed in Table I. We tested various
atomic pseudopotentials,30,31 paying particular attention to
the choice of the reference configurations: this is essential to
reproduce the fact that the lattice mismatch between GaAs
and AlAs is very small.35 Furthermore, we found a strong
improvement of the excitation properties of Ga and Al atoms
when nonlinear core-valence corrections36 are included. The
same corrections turn out not to be relevant for the As

TABLE I. Pseudopotential construction: reference configura-
tions, core radii in bohrs, and generation scheme[H=Hamann
scheme(Ref. 30), TM=Troullier and Martins scheme(Ref. 31)].
Nonlinear core-valence corrections are included for Ga and Al
pseudopotentials(cutoff radiusrnlc=1.5 bohr). The component cho-
sen as local reference component isl =0 for all the atoms(Ref. 31).

Element Reference configuration l r l Scheme

Ga 4s1.54p0.54d0.5 0 1.20 H

4s1.54p0.54d0.5 1 1.25 H

4s1.54p0.54d0.5 2 1.45 H

Al 3s2.03p1.03d0.0 0 1.93 TM

3s2.03p1.03d0.0 1 2.39 TM

3s0.753p1.03d0.25 2 2.52 TM

As 4s2.04p3.04d0.0 0 1.15 H

4s2.04p3.04d0.0 2 1.60 H
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pseudopotential. The 3d semicore states of the Ga atom are
slightly polarizable. This leads to errors of a few mRy in the
atomic excitations, if the 3d states are treated as core states
in the pseudopotential. This, however, does not justify the
additional computational load which would follow from the
inclusion of d states in the valence. The reliability of our
atomic pseudopotentials was further confirmed by inspection
of the structural properties and the optical spectra of GaAs
and AlAs bulk crystals. In our self-consistent DFT calcula-
tions the plane wave cutoff energy was fixed at 35 Ry, inde-
pendently of the SL periodp. Integrations over the irreduc-
ible wedge of the Brillouin zone were evaluated using
equivalent sets ofk points for different supercell sizes. We
performed extensive tests with respect to the number ofk
points and the size of the plane wave basis, in order to guar-
antee convergence to a few meV, for both the total energy
and the eigenvalues. The bulk GaAs and AlAs lattice con-
stants converged, respectively, to 10.59 and 10.61 a.u.
(bohr). As usual in LDA calculations, these values are
slightly smaller than the experimental ones, respectively,
10.69 and 10.70 bohr.37 The theoretical estimation of the
lattice mismatch is, however, in excellent agreement with the
experimental value. Moreover, we found that the total energy
of the SL does not change significantly when moving from
the GaAs to the AlAs lattice constant and that the energy
minimum is reached close to the intermediate valuekal
=10.60. This value was used for the DFT calculations, while
the average of the experimental lattice constants was used for
the semiempirical calculations.

In Ref. 22 we adopted the LCBB method to determine the
electronic states and the absorption spectra of GaAs/AlAs
SL’s. For all technical details and convergence tests we refer
to that work. In the LCBB method, the heterostructure wave
functions ckSL,j

SL are expressed as linear combinations(over
band indicesi and wave vectorsk) of full-zone Bloch eigen-
statesck,i

s of the constituent bulk materials:

ckSL,j
SL sr d = o

s
o
k,i

nk,nb

ck,i,s
skSL,jdck,i

s sr d, s3d

wheres labels the bulk type(GaAs or AlAs), kSL is a wave
vector inside the SL Brillouin zone(see Fig. 1), and j is the
SL band index. Due to the supercell periodicity, the confining
potential mixes only thenk=2p bulk states labeled byk vec-
tors which differ fromkSL by a SL reciprocal lattice vector.
This property allows us to use a small basis set, namely,
2p3nb bulk states, wherenb is the number of selected band
indices. In the following we setnb equal to 20. The total
potential term in the SL Hamiltonian is a sum of screened,
local, semiempirical atomic pseudopotentialsva:

Vsr d = o
a

o
da

o
R[DL

vasr − R − dad, s4d

whereR is the tetragonal SL direct lattice(DL) vector and
da the displacement of the atom of typea in the primitive
supercell. We employed the parametrized pseudopotential
functions developed by Mäder and Zunger,38 designed for a
kinetic-energy cutoff of 5 Ry. The pseudopotential function
vasqd is adjusted to reproduce the measured electronic prop-

erties of bulk GaAs and AlAs, and the DFT-LDA wave func-
tions calculated for the ordered AlGaAs alloy(i.e., the mono-
layer SL). In semiempirical calculations, the fitting
procedure entails implicitly the relativistic and many-body
effects which can be described through a one-body local po-
tential. This, in particular, allows us to circumvent the so-
called gap problem present in DFT-LDA calculations of
semiconductors.39 In the heterostructure, As appears in three
different environments, namely, surrounded by four Ga at-
oms, by four Al atoms, or by two Al and two Ga atoms. In
this last situation, we use for the As pseudopotential the av-
erage of the pseudopotentials used in the two former situa-
tions. This choice preserves the symmetry of the crystal at
the interface. The same pseudopotentials were employed to
determine the bulk states, expanded on a plane wave basis.

The computational cost of theab initio and semiempirical
approaches is of course very different, starting from the num-
ber of plane wavesNPW. For comparison, we can consider
the calculation of the band structure for ap=10 SL. More
than 20 000 plane waves are needed for the DFT calcula-
tions, whereasNPW=1200 in the semiempirical approach.
The CPU time required for the calculation of the bandstruc-
ture differs in this case by almost two orders of magnitude,
and the random access memory requirement by one order of
magnitude.

III. BAND STRUCTURES: RESULTS

Let us first look at the SL band structures along the high-
symmetry directions in the tetragonal Brillouin zone(see
Fig. 1), obtained within DFT-LDA. The dispersion of both
the valence and the conduction bands is quite well described
in bulk GaAs and AlAs(with an error bar of 0.1–0.2 eV).39

Nevertheless, the energy gap is, as usual in LDA
calculations,39 largely underestimated. Additional self-energy
corrections have essentially the effect of shifting rigidly up-
ward the conduction bands by 0.8 eV for bulk GaAs and
0.9 eV for bulk AlAs, respectively(“scissor operator ap-

FIG. 1. Brillouin zone for simple tetragonalsGaAsdp/ sAlAsdp

(001) SL’s, included in bulk conventional cubic cell. High-
symmetry points are shown.
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proximation”). Some authors have applied a similar “scissor
operator” to very thin GaAs/AlAs SL’s,6 taking as reference
quasiparticle calculations for the band energies ofp=1,2
SL’s.20 We compared their DFT-LDA eigenvalues at the
high-symmetry points forp=1,2,3 with our corresponding
energy levels and found differences that never exceeded
0.1 eV. It should be noted that the Kohn-Sham eigenvalues
do not have a direct physical interpretation. However, these
eigenvalues, together with the Kohn-Sham eigenfunctions,
can be used within TDDFT to obtain the optical properties
and static dielectric constants. It is therefore instructive to
analyze the evolution of the band dispersions and the Kohn-
Sham gaps as a function ofp over a large period ranges1
øpø10d, and to compare DFT-LDA with semiempirical22

LCBB band structures.
By comparing thesGaAsdp/ sAlAsdp SL band structure to

the band structure of the material composing the layers
where both electrons and holes are confined(i.e., GaAs), one
can extract information about the magnitude of the confine-
ment effects, which increase the gap, and of the
confinement-induced tunneling and intervalley mixing,
which displace energy levels and remove level degeneracies.
In Fig. 2 we display the DFT-LDA band structures of
sGaAsd1/ sAlAsd1 and of its bulk counterpartsGaAsd2. The
latter was obtained by folding the bulk bands in the tetrago-
nal Brillouin zone, in order to allow a direct comparison to
the SL band dispersions. We observe a big increase of the SL
direct gaps+80%d with respect to the GaAs gap. Further-

more, atḠ, Z̄, andM̄ the threefold degeneracies are always
removed. As the spin-orbit interaction is not included, at the

point Ḡ we obtain a twofold degenerate “heavy hole” and a
single “light hole” state.40 The large bandwidths along the

Ḡ-Z̄ direction are the consequence of strong electron tunnel-
ing, resulting from the thin barrier widths. Forp=1, the
DFT-LDA band structure shows an indirect gap, as the con-

duction band minimum is found atR̄. This is in agreement
with quasiparticle calculations,20 but in disagreement with
experimental luminescence data, which place the conduction

minimum atM̄.41 For all other supercell sizesspù2d), our

DFT-LDA gap is a direct gap at theḠ point. Quasiparticle
calculations20 cannot reveal the nature of the gap forp=2,

since theM̄ and Ḡ states are too close in energy. Lumines-
cence data41 show that the indirect character of the gap(con-

duction minimum inM̄) is conserved up top=3. Then, start-

ing from p=4, the conduction minimum is located atḠ.42

The ordered alloy forp=1 (and to a smaller extent also
the p=2 SL) possesses very peculiar properties, that cannot
be deduced from the general behavior of GaAs/AlAs multi-
layers as a function of the SL period. However, general
trends can be easily established forpù3 SL’s. Whenp in-
creases, tunneling and confinement quantum effects vanish
progressively. It is then possible to have a classical descrip-
tion in terms of the electronic properties of the bulk constitu-
ents.

In Fig. 3 we reproduce the DFT-LDA band structure of a
sGaAsd10/ sAlAsd10 (001) SL, which can be directly com-
pared to the LCBB band structure for the same SL reported
in Fig. 4 of Ref. 22. The band folding makes the SL band
structure highly dense forp=10; thus the dispersion of a
single band cannot be detected by a simple inspection of the
figure. However, we verified carefully that theab initio and
semiempirical band dispersions and widths are similar, for
both the valence and conduction states. In fact, for all SL
periods considered, if the conduction DFT-LDA bands are
shifted rigidly upward to compensate for the underestimation
of the band gap in the Kohn-Sham scheme, the DFT-LDA
and LCBB bands coincide. This agreement is better for the
lowest conduction levels, up to 10 eV. Similarly to bulk
GaAs calculations, the DFT-LDA SL gap is about 50–60 %
smaller than the corresponding semiempirical gap. The larger
semiempirical gap is of course caused by the semiempirical
fitting procedure based on the experimental optical spectra. A
systematic study of the evolution of the band gap atG as a

FIG. 2. Comparison between the Kohn-Sham LDA scalar-
relativistic band structures ofsGaAsd1/ sAlAsd1 (a) andsGaAsd2 (b)
along high-symmetry directions. The energy zero is taken at the
valence band maximum.

FIG. 3. Kohn-Sham LDA scalar-relativistic band structure of a
sGAAsd10/ sAlAsd10 (001) SL along the high-symmetry directions.
The energy zero is taken at the valence band maximum.
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function ofp is presented in Fig. 4(the experimental data are
shown as well43). Despite the difference in the absolute value
of the gap energy, we find exactly the same slope in the
semiempirical and DFT-LDA curves: forpù3 the gap en-
ergy starts to decrease toward the respective(i.e., experimen-
tal or DFT-LDA) GaAsG gap values. As expected, the semi-
empirical results are very close to the measured ones.

Sizable differences between semiempirical and DFT-LDA
band dispersions cannot be easily detected, even for small
period SL’s. Nevertheless, we will see in Sec. VI that the
semiempirical andab initio dielectric tensors differ drasti-
cally for smallp. The reason for this fact is that the discrep-
ancies between the calculated wave functions turn out to be
more pronounced and more important than the discrepancies
in the energy bands, especially close to the interfaces. This
statement is illustrated in Fig. 5, where we can see the nor-
malized electron density profilesrszd, averaged in the plane,
along the SL growth directionz. The upper panel of Fig. 5
shows the results of the DFT-LDA calculations: we can ob-
serve that the SL electron density(continuous line) is similar
to the bulk GaAs electron density(dashed line) inside the
GaAs layer and to the bulk AlAs electron density(dotted
line) inside the AlAs layer. In the region around the As layer
which is located at the interface, the SL density has an inter-
mediate value between GaAs and AlAs densities. The lower
panel of Fig. 5 shows the results of LCBB calculations: the
SL density is essentially still close to the bulk densities in-
side the layers, but at the As interface there is an abrupt
change of the SL density from GaAs-like to AlAs-like. This
behavior can be traced back to the symmetrization of the As
pseudopotential for the As atoms at the interface.

In conclusion, in the DFT-LDA calculations, the perturba-
tion due to the presence of a mixed Ga-As-Al bond propa-
gates inside the GaAs(or AlAs) layer, which makes the in-
terface less abrupt than in LCBB. We will discuss in Sec. VI
how this effect can affect the anisotropy of the dielectric
response in the small barrier and well width range, where the

relative weight of interfaces is more important.

IV. THE MACROSCOPIC DIELECTRIC TENSOR:
THEORY

We now proceed to the calculation of the SL optical prop-
erties.

The electronic states all over the Brillouin zone, obtained
either by the DFT-LDA or by the LCBB method, are the
main ingredient for the calculation of the microscopic dielec-
tric function «sr ,r 8 ;vd. For periodic systems, a formulation
in the reciprocal space is often convenient: the Fourier trans-
form of «sr ,r 8 ;vd is a G, G8 matrix (where theG’s are
reciprocal lattice vectors), which depends on a wave vectorq
belonging to the first Brillouin zone:«G,G8sq ,vd. An optical
experiment measures the macroscopic response of the sys-
tem. In the long wavelength limitsq→0d, an absorption
spectrum is described by the imaginary part of the macro-
scopic dielectric function«Msvd. The electronic dielectric
constant is the real part of«Msvd at a frequency equal to
zero. In a uniaxial system,«G,G8sq ,vd depends on the direc-
tion of the wave vectorq. Consequently, the dielectric func-
tion is not a scalar quantity, but a diagonal tensor, defined by
two distinct elements«i=«zz and «'=«xx=«yy, where thez
axis is taken along the growth direction. As we are looking at
absorption spectra, and for the periods of the SL’s we con-
sidered, we do not have any additional symmetry breaking

FIG. 4. Photoemission gaps forsGaAsdp/ sAlAsdp SL’s as a
function of the SL periodp, calculated by the LCBB method(filled
circles) and as the difference of Kohn-Sham LDA eigenvalues
(crosses). The horizontal lines represent the gap energies in GaAs
bulk, obtained by LCBB and DFT-LDA. The open circles are the
experimental data(Ref. 43).

FIG. 5. Averaged in-plane electron density along the tetragonal
z axis for bulk GaAs(dashed line), bulk AlAs (dotted line), and
sGaAsd3/ sAlAsd3 (solid line). Upper panel: DFT-LDA calculations.
Lower panel: semiempirical LCBB calculations.
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problem due to the finite value ofq, as described, e.g., in
Ref. 44.

In this work we adopt an approach based on time-
dependent DFT. We start from the expression for the macro-
scopic dielectric response, which reads45,46

«Msvd = lim
q→0

1

«G=G8=0
−1 sq,vd

. s5d

When an external macroscopic field is applied, induced mi-
croscopicsG ,G8Þ0d variations appear in the response of
the medium, contributing to«M. The contributions due to the
presence of theGG8 off-diagonal elements of«G,G8 are the
crystal local field effects. They vanish for a homogeneous
medium, where Eq.(5) reduces to

«Msvd = lim
q→0

«G=G8=0sq,vd. s6d

The matrix inversion in Eq.(5) mixes formerly independent
transitions, even in the random phase approximation(RPA);
it can therefore drastically change«M due to interference
effects. Not only«00sq ,vd but also the LFE’s depend on the
direction of q, and thus contribute to the anisotropy of the
response. These facts will be important below for the inter-
pretation of our results, to show that the anisotropy of the
dielectric tensor in the static limit is governed by the aniso-
tropy of the LFE’s.

To identify the different contributions to the dielectric re-
sponse, it is useful to write the macroscopic dielectric func-
tion as

«Msvd = lim
q→0

f1 − vG=0sqdx̄sq,G = 0,G8 = 0,vdg, s7d

where vG=0 is the Fourier transform of the bare Coulomb
interaction. In TDDFT, the modified response functionx̄
obeys the matrix equation

x̄ = x0 + x0sv̄ + fXCdx̄. s8d

The independent-particle polarizabilityx0, after a summation
over the spin, can be constructed from theab initio or semi-
empirical wave functionsfi, eigenvalues«i, and occupation
numbersf i:

x0sr ,r 8,vd = 2o
i,j

sf i − f jd
fisr df j

*sr dfi
*sr 8df jsr 8d

ei − e j − v − ih
. s9d

v̄ is a modified Coulomb interaction:v̄Gsqd is vGsqd for all
G, except for the long-range termvG=0sqd which is set to
zero.v̄ is in fact the microscopic part of the variation of the
Hartree potential with respect to the density. Its inclusion is
equivalent to the inclusion of LFE’s.fXC is the XC kernel,
defined as the functional derivative of the time-dependent
XC potential with respect to the density; it is in principlev
dependent. As its exact form is unknown, we have to use
some approximated expressions.

In the RPA, fXC is set to zero, hence XC terms are com-
pletely neglected. The adiabatic local density approximation
(TDLDA ) consists in writingfXC as the functional derivative
with respect to the density of the adiabatic LDA XC potential
evaluated at the ground state density. It is well known that

the RPA can give large discrepancies between calculated and
measured spectra, and this is the case for GaAs and AlAs
bulk crystals. It is also known that the TDLDA does not
improve significantly the quality of absorption spectra or di-
electric constants in extended systems. To calculate im-
proved SL spectra, we will apply instead a static long-range
XC kernel, proposed by Reininget al.28 and further tested by
Botti et al.:24 it has been shown that astatic long-range con-
tribution (LRC) of the form

fXC
LRCsq,G,G8,vd = − dG,G8a/uq + Gu2, s10d

wherea is a static material-dependent parameter that is in-
versely proportional to the dielectric constant,24 can simulate
the strong continuum excitonic effect in the absorption spec-
trum of bulk semiconductors, provided that quasiparticle ei-
genvalues are used instead of Kohn-Sham LDA eigenvalues
in the construction ofx0=x0

QP. As is further discussed in Ref.
24, this approximation drastically improves the absorption
spectra of bulk GaAs and AlAs.24 In order to make the link
to our earlier work,25 we note that from Eqs.(7) and (8)
(with x0=x0

QP) one can extract47

«Msvd = 1 +
«M

QP-RPAsvd − 1

1 + gsvdf«M
QP-RPAsvd − 1g

s11d

wheregsvd=limq→0q
2fXCsq ,vd /4p and«M

QP-RPA is the mac-
roscopic dielectric function obtained in the RPA, after the
inclusion of quasiparticle corrections to the Kohn-Sham en-
ergy eigenvalues. As pointed out in Ref. 47, Eq.(11) is
equivalent to the contact exciton approximation.48 When the
LRC approximation is used forfXC the contact exciton pa-
rametergsvd corresponds to −a /4p, wherea is the param-
eter weighting 1/q2 in the XC kernel. In fact, in Ref. 25 we
have already used the contact exciton model via the expres-
sion (11), to include excitonic corrections in the calculation
of the static birefringence. This contribution turned out to be
essential to reach a quantitative agreement with the experi-
mental plateau value, although the qualitative dependence of
the birefringence onp was determined by the anisotropy of
the LFE’s. Results for the static birefringenceDn as a func-
tion of the SL period have been presented in Fig. 2 of Ref. 25
and are not repeated here, whereas we will show optical
spectra obtained using the LRC approach.

Independently of the question if(11) is considered as a
contact exciton, or as an approximate TDDFT approach, the
difference from the original work24,28,47,48lies in the fact that
here we consider an anisotropic material, which leads us to
consider the possibility of using two different parametersa
for the two light polarizations. Below, in Sec. V, we will
explain how we get these parameters.

Finally, it is also possible to neglect both XC contribu-
tions sfXC=0d and LFE’ssv̄=0d. In that case the evaluation
of absorption reduces to the naive independent-particle tran-
sition picture of Fermi’s golden rule:
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«Msvd = lim
q→0

«00sq,vd = lim
q→0

f1 − v0sqdx0sq,G = 0,G8 = 0,vdg.

s12d

In the application of TDDFT to SL systems, we will discuss
different levels of approximation to account for crystal LFE’s
and XC terms.

V. ABSORPTION SPECTRA

The quality of the the spectra obtained in TDDFT is lim-
ited by the quality of the approximate expressions for the
unknown XC potentialvXC and, especially, for the XC kernel
fXC. We performedab initio TDDFT calculations for the ab-
sorption spectra ofp=1,3,6, sGaAsdp/ sAlAsdp (001) SL’s,
by averaging over the direction of light polarization. We em-
ployed various approximations: the RPA based on a DFT-
LDA band structure(including and neglecting LFE’s), the
TDLDA, and the long-range XC kernelfXC

LRC defined above.
Since the last approach gave excellent results for GaAs and
AlAs bulk spectra,24 we expect it to be able to give a good
description also of the heterostructures composed of these
two constituents. This formulation requires the quasiparticle
eigenvalues; we have thus applied a scissor operator of
0.85 eV, which is the intermediate value between the calcu-
lated scissor operators of 0.8 eV, for GaAs and 0.9 eV for
AlAs.39 The value chosen for the scissor approximation is
confirmed to be reasonable by inspection of the gap values in
Fig. 4: the semiempirical gaps reproduce the quasiparticle
gap and are larger than Kohn-Sham DFT gaps by about
0.85–0.9 eV for all considered periods.

We have discussed above that a SL is a uniaxial system,
where the optical response is dependent on the direction of
the q vector. The XC kernelfXCsq ,G ,G8 ,vd depends onq
as well; thus we introduced two different parametersai and
a' corresponding, respectively, toq along thez axis or in
the plane perpendicular to it. The values of the parameters
were fixed by exploiting their linear dependence on the in-
verse of the dielectric constant. We can in fact use the curve
of a versus«−1 in Ref. 24, which was obtained by interpo-
lating the values ofa for a variety of semiconductor crystals:

ai,' = 4.615«i,'
−1 − 0.213. s13d

The absorption spectra are in general rather stable with re-
spect to small changes ina. The slight difference between
in-plane and in-growth components of the SL dielectric con-
stants affects the value ofa by less than 5%. Since we are
not considering the anisotropy of the absorption spectrum, in
this section we could take the same valuea=0.3 for ai and
a'. Moreover, as the dielectric constant does not change too
much in going fromp=1 to p=6 we could select the same
valuea=0.3 for all the SL’s considered.49

In Fig. 6 we present as an example the calculated and
experimental absorption spectra for thesGaAsd3/ sAlAsd3 SL.
The dots are the experimental data from Ref. 1. The dot-
dashed curve stems from a standard TDLDA calculation(i.e.,
using DFT-LDA eigenvalues and applying the static LDA
XC kernel). The well-known discrepancies with experiment
are evident: the peak positions are wrong(the spectrum ex-

hibits a redshift), and the intensity of the first peak(the E1
peak) is strongly underestimated. A very similar result is ob-
tained within the RPA(not shown in Fig. 6). The dashed
curve is calculated by replacing the Kohn-Sham eigenvalues
with quasiparticle(scissor operator) energies in the RPA ex-
pression of«. The resulting spectrum is excessively blue-
shifted and, additionally, the height of theE1 structure has
not been corrected. The continuous curve represents the cal-
culation which contains the long-range contributionfXC

LRC

(TDDFT-LRC) to the XC kernel: both the peak positions and
the intensities are substantially modified, and are closer to
the experimental curve. The sole measurements found in the
literature1 were obtained at room temperature, while our cal-
culations were performed at zero temperature. This fact, to-
gether with the approximations discussed above, explains
why the agreement between calculated and experimental
curves for SL’s is not as good as for GaAs and AlAs bulk
systems. Nevertheless, the improvement with respect to stan-
dard TDLDA calculations is undoubtable, with the advantage
of not requiring any additional numerical cost and, thanks to
the use of Eq.(13), without using any empirical fit param-
eter.

In the inset of Fig. 6, we compare the TDDFT-LRC
curves for different SL periods,p=1 (dashed line), p=3
(continuous line), p=6 (dot-dashed line). The GaAs absorp-
tion spectrum is shown as well(dotted line): we remark the
expected redshift of theE1 peak as the period increases, as a
consequence of the weakening of confinement effects. The
second structure(the E2 peak) comes from transitions be-
tween weakly confined states and is thus stable at 4.8 eV.

FIG. 6. Imaginary part of the dielectric function of a
sGaAsd3/ sAlAsd3 SL from ab initio calculations. Dots: experimen-
tal results(Ref. 1). Dot-dashed curve: TDLDA. Dashed curve: RPA
using the scissor operator. Continuous curve: TDDFT-LRC. In the
inset the TDDFT-LRC curve forp=3 (continuous line, shifted up-
ward by +4) is represented together with the LRC curves forp=1
(dashed line) andp=6 (dot-dashed line, shifted upward by +8). The
TDDFT-LRC calculation for bulk GaAs(dotted line) is shown as
well (Ref. 43).
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These results confirm the qualitative conclusions based on
analogous LCBB spectra, presented in Ref. 22.

VI. DIELECTRIC CONSTANT AND BIREFRINGENCE

The birefringenceDn, defined as the difference in the re-
fractive index componentsDn=Î«'−Î«i, measures the di-
electric anisotropy of a medium. Here we focus on the zero-
frequency birefringence, whose peculiar behavior as a
function of the layer thickness was measured in Ref. 12. For
large periods, the experimental birefringence reaches a pla-
teau value of.0.3, which agrees with the effective medium
value obtained starting from the experimental dielectric
constants50 of GaAs and AlAs(«GaAs

expt =10.6 and«AlAs
expt =8.2).

In order to shed light on these experimental findings, we
presented in Refs. 22 and 25 both semiempirical andab ini-
tio calculations within the RPA, including and neglecting
LFE’s, and(in Ref. 25) within TDDFT-LRC. Now we want
to analyze these and further results in more detail, in order to
clarify the role of different contributions to the anisotropy, in
particular of LFE’s.

Due to confinement in thez direction, thep-like top va-

lence states atḠ split into a doubly degenerate heavy hole
and a single light hole state.40 As predicted by symmetry

selection rules, atḠ the lowest conduction states are coupled
to valence light hole states by light polarized along the
growth direction, whereas the heavy hole states respond to
light polarized in plane. Of course, this phenomenon is not

restricted to theḠ point or to the levels close to the gap, and
the order and character of the coupled states change through-
out the Brillouin zone. This prevents the description of the
birefringence by means of a simple analytical model.

To get a deeper insight into how the LFE’s act on the
birefringence, it is interesting to understand which transitions
determine the anisotropy of the dielectric response. We ex-
plore this idea by examining the effect of adding groups of
bands: we already discussed the contributions of the valence
bands to the birefringence in Ref. 25; here we add the analy-
sis of the conduction band contributions to the band sums in
Eq. (9). The general behavior is the same for all SL periods
studied. In Fig. 7 we show as an example the results obtained
for the well-barrier periodsp=3 andp=8 within the RPA. As
a first step, as discussed in Ref. 25, we took into account
“all” conduction bands(i.e., those necessary to achieve con-
vergence) as possible final states for the transitions, but we
restricted the initial states to the firstv valence bands(Fig. 7,
lower panel). In order to scale the results, the values on thex
axis vary from lattice to lattice, withv= ip, i being an integer.
We found that the lowest bands do not give rise to a sizable
birefringence and that the large positive contribution arising
from the bands 4p to 6p is almost completely canceled by
the contribution from the(folded) light hole and heavy hole
bands 6p to 8p. In a second step, we considered all the
occupied bands as possible initial states, and restricted the
final states to a group of high conduction bands, starting
from the cth band (Fig. 7, upper panel) to the last band
included in converged calculations. In Fig. 7 the number of
conduction bands isc=si −1dp+1, wherei has already been

defined. Once again, the transitions to the higher conduction
bands do not contribute to the birefringence. The large con-
tributions to birefringence of both conduction and valence
bands are associated withp-like states. In fact, the level split-
tings which give rise to anisotropy in the absorption also
yield a contribution to the static anisotropy, through the
Kramers-Kronig relation

Ref«Ms0dg = 1 +
2

p
E

0

` Imf«Msvdg
v

dv. s14d

Nevertheless, the large steplike positive contribution of the
intermediate group of conduction and valence bands is com-
pensated by the contribution of lowest(highest) conduction
(valence) bands. Adding up either valence bands or conduc-
tion bands, if LFE’s are neglected the cancellation is almost
total. The contribution of LFE’s to the birefringence can be
measured from the difference between the circles and tri-
angles in Fig. 7. We observe that this contribution changes
sign upon the inclusion of the highest valence bands(or the
lowest conduction bands), so it becomes positive(i.e., the
static birefringence is larger when LFE’s are included) and
dominated by the anisotropy arising from transitions involv-
ing p-like states. The large cancellation effects are essential:
it is thus important to evaluate the integral(14) over an ad-
equate frequency range. For this reason, a description involv-
ing only transitions from the highest valence to the lowest
conduction bands is inadequate and can lead to an estimated
birefringence with the wrong sign and about a factor of 10
too large.

FIG. 7. Contribution to the birefringence of the valence bands
(lower panel) and of the conduction bands(upper panel) for p=3
(filled symbols) and p=8 (empty symbols). Circles, contributions
with LFE’s triangles, contributions without LFE’s. The dashed line
is a guide to the eyes for thep=3 SL with LFE’s.
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Nevertheless, considering only the lifting of degeneracies
and the associated selection rules can be sufficient to give an
intuitive picture of the trend in the static dielectric tensor
components as a function of the SL period, provided that
LFE’s are neglected in the calculations[see Fig. 8(a)]. In that
case, the response of the medium can be interpreted in terms
of a sum of independent transitions(Fermi’s golden rule).
Both the in-plane and the in-growth components get larger
when the SL period increases. This fact is related to the
decreasing of confinement effects for thicker layers, which
produces smaller energy gaps. The selection rules discussed
above explain why the in-growth component is always
smaller than the in-plane one(except for the atypicalp=1
ordered alloy): in fact, it corresponds to the polarization for
which light experiences a larger gap. Furthermore, when the
SL period increases, the confinement-induced splittings be-
come smaller and the anisotropy of the response, i.e., the
distance between the in-plane and in-growth curves, van-
ishes. When LFE’s or even XC effects are taken into ac-
count, the interpretation of the calculated dielectric compo-
nents becomes less intuitive[see in Figs. 8(b) and 8(c)]. x0 is
still a sum over independent transitions; however, the rela-
tion between the macroscopic dielectric constant«M andx0

(even in the RPA) is much more complicated than the simple
linear relation(12), which is used in calculations without
LFE’s. The extra term in Eq.(7), or equivalently the result of
the matrix inversion in Eq.(5), is in fact sensitive to the
direction of polarization of the light, through the dependence
of the wing elements of«G,G8 on theq vector. In Fig. 8(b) we
can observe that, for the in-plane component, the conse-
quence of the inclusion of LFE’s is a rigid downward shift
(by a quantity that equals the average shift of bulk GaAs and
AlAs dielectric constants) of the dielectric constant compo-
nents at any SL period. The in-growth components, on the
other hand, contain LFE contributions which are negative in
sign and increasingly large as the SL period grows; thus they
have the tendency to balance the decreasing confinement ef-
fects, making the resulting«i always close to its classical
effective medium value(dashed horizontal line) given in Eq.
(2).

The inclusion of the XC contributions within the TDLDA
(Refs. 26 and 27) significantly increases the dielectric con-
stant components with respect to RPA calculations. This is
also true for both constituent bulk semiconductors(+7%
with respect to the RPA values, consistent with earlier
results35,51). Despite these significant changes, the contribu-
tions completely cancel out in the birefringence, where the
two components of the dielectric tensor are only rigidly
shifted on moving from Fig. 8(b) to 8(c). This result is not
surprising if we estimate roughly, applying the effective me-
dium theory, the contribution to the large period static bire-
fringence resulting from an increase by 7% of both constitu-
ent dielectric constants. It is given byDnTDLDAsp→`d
=Î1+gDnRPAsp→`d, whereg=0.07 andDnRPA is the bire-
fringence obtained using the RPA dielectric constants of
GaAs and AlAs.

This means that the inclusion of XC terms within the
TDLDA leads to a change of the RPA plateau of only a few
percent. This is within the accuracy of the calculated bire-
fringence. The complete cancellation of TDLDA effects in
the birefringence occurs, however, only by chance, namely,
because GaAs and AlAs exhibit a very similar XC correc-
tion. Therefore it cannot be considered to be a general fea-
ture. In fact, a sizable change in the birefringence can be
expected in the case of different TDLDA corrections to the
two bulk constituents; in that case the magnitude of the cor-
rection to the SL birefringence would depend also on the
dielectric mismatch of the two constituents. To give an ex-
ample, if the TDLDA correction to one of the two constituent
(let us say AlAs) were 5% instead of 7%, the resulting cor-
rection to the birefringence would be 5 times larger.

In Fig. 9 we show the results of a semiempirical calcula-
tion of the static dielectric tensor components«i and«', as a
function of the SL period, neglecting(upper panel) and in-
cluding (lower panel) LFE’s. The LFE’s«i,'

LF −«i,'
NLF are dis-

played in the inset. We can observe that only whenp is large
enough are the trends of«i and«' rather similar to the cor-
responding trends inab initio calculations. For small barrier
and well widths, instead, the behavior is quite different. Even
without LFE’s (Fig. 9, upper panel), the semiempirical cal-
culation shows a larger anisotropy, which increases when the
SL period decreases and which tends to zero more slowly in
the large-p limit. When LFE’s are included(Fig. 9, lower

FIG. 8. Dielectric tensor components in-growth«i and in-plane
«' (continuous lines) as a function of the SL periodp, calculated
within the RPA neglecting LFE’s(a), within the RPA including
LFE’s (b), and within the TDLDA(c). In panel(b), the dashed and
dotted curves refer to the corresponding model calculations, as de-
scribed in the text. The arrow in(a) marks the average of the bulk
GaAs and AlAs dielectric constants, calculated without LFE’s. Dot-
ted (dashed) lines in (b) and (c): effective medium values of in-
plane(in-growth) components.
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panel) the two curves for«i and«' become almost parallel,
in strong contrast to theab initio results and the experiment.
Later, we will see that in fact this result is due to the sharp-
ness of interfaces in semiempirical calculations and that a
smoother interface corrects this error.

However, the LFE dependence onp is very similar in the
ab initio (see Fig. 1 in Ref. 25) and semiempirical(see inset
in Fig. 9) approaches. First, LFE’s are always negative, since
they bring into play higher-energy transitions in the impor-
tant gap region, which decrease the dielectric constants. Sec-
ond, their dependence on the SL period is drastically differ-
ent for the in-plane and in-growth polarization of light: the
in-plane LFE’s«'

LF−«'
NLF show a very weak dependence on

p, while in-growth LFE’s increase in absolute value with
increasingp. In the growth direction, the increase in magni-
tude of the LFE’s with increasingp counterbalances the ef-
fects of quantum confinement on the independent-particle
transitions, and leads, in theab initio calculations, to a mac-
roscopic dielectric constant«i close to its effective medium
value at any periodp. The anisotropy of LFE’s allows us to
approach for largep the finite classical limit value of the
birefringence.

In order to explain the different effect of the LFE’s in the
two polarization directions, we apply a model based on
simple physical observations: using the effective medium
theory, we write the dielectric constant components without
LFE’s as a function of the bulk dielectric constants and a
function y describing the confinement effects:

«'
NLF =

1

2
f«GaAs

NLF y'spd + «AlAs
NLF g, s15d

«i
NLF =

1

2
f«GaAs

NLF yispd + «AlAs
NLF g. s16d

Here the assumption is the following. In Eqs.(15) and (16)
the functionsy',ispd account for the change in the effective
dielectric constant of the GaAs layer, due to the confinement
of carriers in this region. The AlAs effective dielectric con-
stant is assumed not to depend onp, as the barrier material
does not undergo significant effects of confinement. Since
the anisotropy of the dielectric constant components is very
small when LFE’s are neglected(see Figs. 8 and 9), we can
consider for simplicity only one functiony'spd.yispd
.yspd. This function can be deduced by fitting the calculated
component«'

NLF (or «i
NLF). Moreover, we observe that GaAs

and AlAs bulk dielectric constants both decrease by about
10% when the LFE’s are included in the calculations. We
make the hypothesis that the same reduction due to LFE’s is
found for the effective GaAs dielectric constant at any period
p: «GaAs

LF spd=«GaAs
LF yspd. Within this hypothesis, we obtain the

following expressions for the dielectric tensor components
including LFE’s, as a function ofyspd:

«'
LF =

1

2
f«GaAs

LF yspd + «AlAs
LF g, s17d

«i
LF = 2

yspd«GaAs
LF «AlAs

LF

yspd«GaAs
LF + «AlAs

LF = 2
«AlAs

LF

1 + f1/yspdgs«AlAs
LF /«GaAs

LF d
.

s18d

By fitting yspd to ab initio and semiempirical dielectric con-
stant curves, respectively, we are able to evaluate Eqs.(17)
and (18) for the two cases. The results are shown as dashed
lines in Figs. 8 and 9. The agreement with the calculated
curves is very good in both theab initio and semiempirical
approaches for the in-plane component.«'

LF is in fact the
average of the GaAs and AlAs effective dielectric constants
in Eq. (17), and simply shows the confinement effects con-
tained in the variation of«GaAsspd. The curves calculated
including and neglecting LFE’s are almost parallel, as the
effect of the inclusion of LFE’s is reasonably representable
by a scaling factor on both bulk components at any periodp.

Concerning the in-growth component, only for the semi-
empirical results is the agreement comparable; instead, there
is an evident discrepancy between the model and theab ini-
tio calculations for thin-layer SL’s. Nevertheless, from Eq.
(18) one can at least partially understand why the in-growth
component should show less deviation from the effective
medium result than the in-plane one. In fact, the ratio
«AlAs

LF /«GaAs
LF is smaller than unity, even when multiplied by

1/y, so that the dominant contribution to the component is a
constant with respect to the SL period.52 Basically, the LFE
for «i

LFE tends to localize the field in the material with a
smaller dielectric constant(AlAs in our case), which is less
sensitive to confinement effects. This should be even more

FIG. 9. Dielectric tensor components(continuous curves) calcu-
lated from the semiempirical electronic states without(«NLF, upper
panel) and with («LF, lower panel) LFE’s, as a function of the SL
period p. The dashed curves refer to the corresponding model cal-
culations described in the text. Arrow: average of semiempirical
bulk GaAs and AlAs dielectric constants, calculated without LFE’s.
Dotted (dashed) line: semiempirical effective medium value of«'

s«id. In the inset we display the LFE’s«i,'
LF −«i,'

NLF.
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true in systems with stronger dielectric mismatch, such as
GaAs/AlOx or GaAs/Al2O3.

In Fig. 9 the anisotropy of the semiempirical dielectric
tensor does not evolve significantly as a function ofp: the
two semiempirical curves«i

LFE and«'
LFE are almost parallel.

As a direct consequence, the semiempirical birefringence
(see Ref. 25) remains close to the large-period limit value
even in the case of thin layers, in disagreement with the
experimental measurements and with theab initio calcula-
tions. We observe that the only remarkable difference that we
have detected between DFT-LDA and semiempirical band
structures is in the electronic density along the SL growth
axis (see Fig. 5): the DFT-LDA density profile shows a de-
localization of the states at the interface much stronger than
the one in semiempirical calculations.

The comparison of numerical results, model calculations,
and measurements leads to two conclusions. First, for small
periods, the DFT-LDA calculations agree with the experi-
mental findings, but deviate from the simple model as the
assumption of sharp interfaces and carriers confined in the
GaAs layer is not correct. We will see later that by including
in the model an interface region we can correct the in-growth
component of« and explain the discrepancy present in Fig.
8. Second, the semiempirical calculations are well repro-
duced by the model, but do not account for the steep rise of
the birefringence in the small-p region. This reveals a limi-
tation of the semiempirical pseudopotential approach, which
does not give enough flexibility to electronic states at the
interfaces. As a result, when the weight of interface states is
important, the semiempirical method is not reliable, at least
as for as small quantities like the birefringence are con-
cerned. A correct description of the interface states turns out
to be extremely important, as it significantly affects the an-
isotropy of the dielectric properties. Nevertheless, the LCBB
method proves to work very well at large SL periods, when
the relative weight of interfaces is less important.

In addition to the presence of an “electronic” interface
region in the ideal sample, defined as the region where the
wave functions do not have a precise GaAs-like or AlAs-like
character, we have to consider the existence of an experi-
mental interface region, due to the interlayer diffusion in the
measured sample. This interface roughness can have an im-
portant impact on the experimental results, as we will show
in the following. In fact, we evaluated approximately the
effect of the atomic interlayer diffusion(unavoidable in the
measured sample) at the interfaces on the LFE’s, by means
of a classical three-layer model. The first layer is a homoge-
neous dielectric with the dielectric constant of bulk GaAs,
the second layer is the interface region, characterized by an
unknown dielectric constant«I and a width equal tol I layers,
and the third layer is a homogeneous dielectric with the di-
electric constant of bulk AlAs. By applying the effective me-
dium theory,13–15we can extract the dielectric tensor compo-
nents for such a three-layer SL:

«' = k«l +
l I
p

s«I − k«ld, s19d

«i =
1

k«−1l
S1 +

rIb

rk«−1l
D−1

, s20d

where

b =
1

«I
− k«−1l s21d

and k«−1l and k«l are given by Eqs.(1) and (2). The fit has
two parameterssl I and«Id, whose values can be fixed by
relying on some simple physical observations. First, as it is
known that the experimental sample shows at least one
monolayer interdiffusion,12 we set the experimental interface
region width to two monolayersslI =2d. Second, as we ex-
pect to find at the interface a GaAlAs alloy due to the inter-
diffusion, we assign to this region a dielectric constant«I
equal to the average bulk dielectric constant(of course, the
model starts to be valid forpù3, otherwise the definition of
the interface layer is meaningless). Hence, from Eq.(1) «I
=k«l, and Eq.(19) becomes«'=k«l: in the direction perpen-
dicular to the interfaces the effective medium theory always
predicts a dielectric constant describing an average homoge-
neous medium, independent ofp [unless the constituent itself
changes, as simulated above by the functionyspd]. In the
direction parallel to the interfaces, the interface region intro-
duced in Eq.(20) has the effect of reducing the LFE’s. The
effect is stronger for smallp and vanishes whenp gets large:
as a consequence,«i approaches the effective medium limit
more slowly.

We conclude that, for thin layers, the interlayer diffusion
can drastically reduce the birefringence(for p=3 the effec-
tive reduction is about 60%). A larger interface region would
produce a further reduction of the birefringence. This effect
clearly decreases when the SL period increases and can ex-
plain, at least qualitatively, the difference still present be-
tween the DFT-LRC and the experimental birefringence(see
Fig. 2 in Ref 25) in the small-period region.

Finally, it should also be noted that the reduction of LFE’s
due to the presence of an interface region can also be used to
correct the dashed curves in Fig. 8(b): these curves were
obtained by assuming sharp interfaces, whereas the existence
of an interface region in theab initio calculation results is
clearly shown in Fig. 5. By estimating this “electronic inter-
face” region as large as one monolayer, we can recalculate
the in-growth component of« which includes LFE’s, by ap-
plying Eq.(20), provided thatk«−1l in Eq. (19) is substituted
by 1/«i

LF from Eq.(18). The result is the dotted curve in Fig.
8(b): the agreement with the«i calculated in the RPA is
strongly improved, leading to a model«i close to its effective
medium value.

VII. CONCLUSIONS

We calculated the dielectric tensor components and the
optical absorption spectra of(001) sGaAsdp/ sAlAsdp SL’s as
a function of the period within time-dependent density func-
tional theory. The band structures were obtained by means of
density functional theory in the local density approximation
and by the semi-empirical linear combination of bulk bands
method. The analysis of the macroscopic dielectric tensor as
a function of the barrier and well width, from the monolayer
sp=1d SL up to large supercell sizessp=14d and the com-
parison to available experimental data show that onlyab
initio calculations are reliable in the case of thin layers. In
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both approaches, for large-scale systems, the dielectric con-
stant components converge to the classical limits predicted
by the effective medium theory. The anisotropy of the dielec-
tric properties is explained as governed by the interplay be-
tween quantum confinement and crystal local field effects. A
quantitative calculation of the birefringence is very difficult
as this quantity is very small and extremely sensitive to the
interface properties. In particular, for small-scale heterostruc-
tures, when the relative weight of interface states is more
important, the semiempirical method does not provide a sat-
isfying description of the anisotropy. Further many-body ef-
fects give only quantitative corrections to the static birefrin-
gence, whereas their inclusion is crucial to obtain precise
spectra. In particular, we examined the effects of a static
long-range contribution, due to the electron-hole interaction,
to the exchange correlation kernel of DFT, showing that this

approximation works very well for semiconducting SL’s, and
thus providing a first step for the extension of the limits of
validity of this approach to more complex systems.
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