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The wave-vector dependence of electron-hole exchange interaction is investigated. For the yellow 1S exci-
ton in Cu2O the exchange is derived up to the orderk2. The theoretical predictions are verified experimentally
by high-resolution absorption experiments. In agreement with theory the fine structure shows a characteristic
dependence on the direction of the wave vector. The exchange splitting of the orthoexciton triplet are distin-
guished from strain-induced perturbations. The exchange gives rise to an isotropic and an anisotropic correc-
tion of the effective exciton mass. This can explain the discrepancies in the measurements of the exciton mass
in Cu2O.
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I. INTRODUCTION

Spins are coupled via exchange interaction. While
electron-electron exchange is well understood in atomic sys-
tems, the topic is of increased complexity for the electron-
hole exchange interaction in semiconductors. Investigations
of electron-hole exchange, beginning with bulk
semiconductors,1,2 have been extended to quantum wells3

and, recently, also to quantum dots.4 Nowadays efforts con-
centrate on spin phenomena in such micro- and nanostruc-
tures. However the understanding of electron-hole exchange
even in bulk materials is far from being complete.

In semiconductors an excited electron in the conduction
band couples to a hole in the valence band via Coulomb
interaction. The properties of the coupled electron-hole pair
are determined by the valence as well as the conduction
band. One therefore expects that the electron-hole exchange
interaction also depends on the full band structure and hence
on the wave vectork of the exciton center-of-mass motion.
Due to the complexity of the bands, difficulties in calculating
the electron-hole exchange microscopically arise. Attempts
to describe it on a quantitative level can hardly be found.5,6

Exchange is normally approximated as a spin-spin interac-
tion, which is independent of the wave vector in bulk mate-
rials. This isotropic approximation represents a severe sim-
plification of the exchange interaction omitting much of the
lattice properties. Nevertheless, these calculations are suffi-
cient to describe the experiments reported so far. These stud-
ies, however, were performed with modest spectral resolu-
tion of typically *20 meV. Resolving the more complex
nature of exchange is challenging.7 Typically exchange split-
tings are small. Further, inhomogeneous and homogenous
line broadening often mask the underlying fine structure.

The goal of the present study is to overcome these diffi-
culties and to investigate electron-hole exchange for the ex-
ample of the yellow 1S orthoexciton in Cu2O. Cu2O is the
prototype material for exciton physics.8 Because of its high
crystal quality and large exciton binding energy of 150 meV,

it is possible to observe several hydrogen-like exciton series.
To minimize the effects of radiative broadening, we study the
yellow 1S orthoexciton transition, which is dipole forbidden,
but quadrupole allowed. This extremely sharp exciton tran-
sition is ideally suited for the study of electron-hole ex-
change and its wave-vector dependence.

Besides the requirements on the sample side, the experi-
mental setup has to provide an adequate spectral resolution.
The k-dependent exchange splitting is expected to be on the
order of few meV. Therefore, to monitor wave-vector-
dependent energy shifts a resolution in the sub-meV regime
is required.

This paper is organized as follows. In Sec. II we will
derive the exchange fine structure of the yellow 1S orthoex-
citons in Cu2O. This description is based on the theory of
invariants and describes the wave-vector dependence of the
exchange up to the orderk2. As our approach is not micro-
scopic the absolute magnitude of the exchange remains to be
determined. In Sec. III we will describe the experimental
technique. Besides the setup, we will explain the essential
steps of the sample preparation. This will be followed by the
presentation of the experimental data, which will be com-
pared to the theoretical predictions of Sec. II. In Sec. IV we
evaluate to what extent our results can be affected by strain.
This will be followed by a discussion of our results(Sec. V),
where we focus on the influence of the exchange interaction
on the effective exciton mass. In Sec. VI we present our
conclusions.

II. THEORY

Cu2O condenses in a cubic structure, where the copper
ions form a face-centered sublattice, and the oxygen ions, a
body-centered sublattice. The arrangement of both lattices is
such that a copper ion is centered between two oxygen ions.
This makes Cu2O a simple cubic crystal with inversion sym-
metry, described by the point groupOh. The valence band of
highest energy hasG7

+ symmetry, while the lowest conduc-
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tion band hasG6
+ symmetry. The excitonic transitions with

holes in theG7
+ band and electrons in theG6

+ band give the
so-called yellow exciton series. Thus the yellow 1S excitons
are the lowest excited state.

The exciton representationsGexd is obtained from the di-
rect product of electronsGed and holesGhd representations
and the envelope functionsGenv=G1

+d. This gives for the yel-
low 1S excitons:9

Gex= Genv ^ Ge ^ Gh = G1
+

^ G6
+

^ G7
+ = G5

+
% G2

+. s1d

The threefoldG5
+ states are termed orthoexcitons, while the

singleG2
+ level is referred to as paraexciton. In the following

we will solely concentrate on the orthoexcitons, since the
paraexciton is split off byD0=12.1 meV14 and is optically
forbidden to all orders. A more precise evaluation of this
exchange splitting will be discussed elsewhere.

The transition from the ground statesG1
+d to the 1S ortho-

excitonssG5
+d is dipolesG4

−d forbidden as the dipole operator
has odd symmetryskG5

+uG4
−uG1

+l=0d. In lowest order, the
orthoexciton couples to light via quadrupole interaction
G5

+skG5
+uG5

+uG1
+lÞ0d. Unlike the dipole operator, the quadru-

pole operator depends on the direction of the light wave
vectork and the polarization vectore relative to the lattice.
Because of thek dependence the transition is anisotropic
even in a cubic crystal. The amplitudes(QA1 to QA3) of the
orthoexciton transitions are given by the symmetric vector
product ofk ande:10

1QA1

QA2

QA3
2 = 1eykz + ezky

ezkx + exkz

exky + eykx
2 . s2d

We now proceed with the derivation of the electron-hole ex-
change. Typically the theoretical treatment does not go be-
yond thek-independent terms, as this already agrees with the
data reported so far. For our purposes such a treatment is
insufficient and terms of higher order ink need to be taken
into account. In the following we will develop the electron-
hole exchange up to the orderk2.

In the most general case the exchange interactionJex for
the charge distributionsr andr8 is given by:1

Jex= dk,k8o
R

eik·RE E r * sr 1dr8sr 2ddr 1dr 2

ur 1 − r 2 − Ru
, s3d

with the lattice vectorsR and the spatial vectorr . The
orthoexciton exchange is determined by the interaction of the
spin-singlet exciton charge distributions, which are given by
rsr d=eoRCsRdosasr dbsr +Rd*, whereby asr d and bsr +Rd
denote the conduction and valence band Wannier functions
andos denotes a summation over all spin states.1

Introducing the Fourier transform of the charge distribu-
tions

Mskd =E drrsr dexps− ik · r d, s4d

the exchange integral is transformed into a sum over all re-
ciprocal lattice vectorsK i

1

Jex= dk,k8
4p

V
o

i

M * sk + K idM8sk + K id
sk + K id2 . s5d

The electron-hole exchange can be split into long-range
(LR) and short-range(SR) contributions. Qualitatively, the
SR exchange splitting of the excitons originates from the
interactions between an electron and a hole located in the
same unit cell, while the LR part originates from the inter-
action between an electron and a hole located in different
unit cells.

A. Long-range exchange interaction

We define the quadrupole electron-hole LR exchange as
the term withK i =0 in Eq. (5)

Jex
Q = dk,k8

4p

V

M * skdM8skd
k2 , s6d

and the SR part as all other terms withK i Þ0. These defini-
tions of the two exchange contributions are typically referred
to as “nonanalytic”sK i =0d and “analytic” exchangesK i

Þ0d. However, for higher orders ofk the nonanalytic term
becomes analytic. To avoid a contradictory nomenclature we
use the nomenclature for the separation of the exchange con-
tributions in real-space, long-range, and short-range ex-
change. Both definitions are very similar, however not
identical.4 We expand exps−ik 3 r d in Eq. (4) into spherical
harmonicsYl,m

e−ik·r = o
l=0

`

o
m=−l

m=+l

4ps− idl j lskrdYl,m
* sa,bdYl,msu,fd, s7d

whereu, f and a, b are the polar angles ofk and r with
respect to thex,y,z coordinate system(cubic axes), and
j lskrd is the modified Bessel function of orderl. For l =2 it is
given by j2skrd=skrd2/15. . ., where we neglect higher order
terms. Decomposingr into multipoles11

rl,m =E dr r lÎ 4p

2l + 1
Yl,m

* rsr d, s8d

we find the quadrupole momentssl =2d

qm =Î4p

5
E dr r2Y2,m

* rsr d. s9d

Using Eqs.(4), (7), and(9) we get

Mskd =E drrsr d o
m=−2

m=+2

4ps− id2j2skrdY2,m
* sa,bdY2,msu,fd

= −Î4p

45
k2 o

m=−2

m=+2

qmY2,msu,fd. s10d

Substituting Eq. (10) into Eq. (6) the LR quadrupole-
quadrupole exchange is given by
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Jex
Q = dk,k8

16p2

45V
k2 o

m1,2=−2

2

qm1

* qm2
8 Y2,m1

* su,fdY2,m2
su,fd.

s11d

To explicitly calculate the exchange interaction, we take a
look at the specific electron and hole charge distributions.
For the yellow 1S orthoexciton in Cu2O the spin-singlet part
of the Wannier functions are written asfc,s for the conduc-
tion andfv,yz,fv,xz,fv,xy for the valence band, withs- and
d-like character, respectively. Ortho- and paraexciton are not
simple product forms of the pure electronsu↑el , u↓eld and hole
spin statessu↑hl , u↓hld. TheG7

+ hole statessu↑Hl , u↓Hld are lin-
ear combinations ofu↑hl and u↓hl:

u↑Hl =
− i
Î3

fsfv,yz+ ifv,zxdu↓hl + fv,xyu↑hlg,

u↓Hl =
− i
Î3

fsfv,yz− ifv,zxdu↑hl − fv,xyu↓hlg. s12d

The singletsuSld and the three tripletsuT+1l , uT−1l , uT0ld states
are given by:

uSl =
1
Î2

su↑e,↓hl − u↓e,↑hld,

uT0l =
1
Î2

su↑e,↓hl + u↓e,↑hld,

uT−1l = u↓e,↓hl,

uT+1l = u↑e,↑hl. s13d

Using the singlet-triplet notation the paraexciton state
suPld and the three orthoexciton statessuOyzl , uOzxl , uOxyld in
the CartesianG5

+ basis can be written as

uPl =
i

Î6
fc,sffv,yzsuT−1l − uT+1ld + ifv,zxsuT−1l + uT+1ld

+ Î2fv,xyuT0lg,

uOyzl =
1
Î6

fc,sfÎ2fv,yzuSl + iÎ2fv,zxuT0l + fv,xysuT+1l

+ uT−1ldg,

uOzxl =
− i
Î6

fc,sfÎ2fv,yzuT0l + iÎ2fv,zxuSl + fv,xysuT+1l

− uT−1ldg,

uOxyl =
− 1
Î6

fc,sffv,yzsuT+1l + uT−1ld − ifv,zxsuT+1l − uT−1ld

− Î2fv,xyuSlg. s14d

After having defined a proper basis, we now use the wave-

functions to calculate the LR exchange. As electron-hole ex-
change interaction affects states with opposite spin, only the
singlet uSl terms contribute to the exchange splitting. From
Eq. (14) we find that the paraexcitonuPl is a pure triplet state
and is thus not affected by the quadrupolar exchange. The
quadrupole moments in the Cartesian basis are calculated
from the singlet-charge densities using Eq.(14)

rPsr d = 0,

ryzsr d =
1
Î3

efc,sfv,yz,

rzxsr d =
1
Î3

efc,sfv,zx,

rxysr d =
1
Î3

efc,sfv,xy. s15d

The valence band Wannier functions are given by11

fv,yz= dsrdsinu cosu sinf = iÎ2p
15dsrdsY2,1+ Y2,−1d,

fv,zx= dsrdsinu cosu cosf = − Î2p
15dsrdsY2,1− Y2,−1d,

fv,xy = dsrdsin2 u cosf sinf = − iÎ2p
15dsrdsY2,2− Y2,−2d.

s16d

With Eqs. (15) and (16) we rewrite Eq.(9). Using the or-
thogonality relations of the spherical harmonics, one finds
that fv,yz, fv,zx contribute only toq1 and q−1, while fv,xy
contributes toq2 and q−2. q0 is always zero. Decomposing
the quadrupole moments into contributions from the basis
statesuOyzl, uOzxl, uOxyl we find

1
q+2

q+1

q0

q−1

q−2

2 = C031
0

i

0

i

0
2

uOyzl

+1
0

− 1

0

1

0
2

uOzxl

+1
− i

0

0

0

i
2

uOxyl

4 .

s17d

All prefactors are included inC0. We now express the LR
exchange in matrix form in theuOyzl, uOzxl, uOxyl basis. Each
elementsJex

Qs j , j8d ; s j =yz,zx,xydd of the matrix representa-
tion of Jex

Q is calculated as

Jex
Qs j , j8d = dk,k8

16p2

45V
k2 o

m1,2=−2

2

sqm1

* d jsqm2
8 d j8

3Y2,m1

* su,fdY2,m2
su,fd, s18d

which leads to:
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Jex
Q , sin2 u ·1 scosu sinfd2 cos2 u cosf sinf sinu cosu cosf sin2 f

cos2u cosf sinf scosu cosfd2 sinu cosu cos2 f sinf

sinu cosu cosf sin2 f sinu cosu cos2 f sinf ssinu cosf sinfd2 2 .

In terms ofk and introducing the constant LR quadrupole-
quadrupole exchange parameterDQ, we obtain:

Jex
Q = DQ 3

1

k21 kz
2ky

2 kz
2kxky ky

2kzkx

kz
2kxky kz

2kx
2 kx

2kykz

ky
2kzkx kx

2kykz kx
2ky

2 2 . s19d

In contrast to dipole excitons, the LR part of the quadrupole-
quadrupole exchange scales ask2 and is analytic atk=0. The
first attempt to calculate this interaction was reported by
Moskalenko, Bobyrysheva, and Kiselyova.12 In their treat-
ment the quadrupolar interaction between the exciton states
was given as an effective dipole-dipole interaction, but did
not take the off-diagonal interaction matrix elements into ac-
count. As these are of the same magnitude as the diagonal
terms, this simplification is not justified.

B. Short-range exchange interaction

We now turn to the derivation of the SR exchange. The
K i Þ0 terms of Eq.(5) give the SR exchange, which we
expand into orders ofk and treat each order by the method of
invariants.1,13 This means that the Hamiltonian has to be in-
variant under the operations of the cubic symmetry group.
The well-known k-independent SR exchange splits the
orthoexcitons from the paraexciton byD0=12.1 meV,14 but
leaves the orthoexcitons degenerate. The next higher-order
term would scale linearly withk. This term vanishes because
of the inversion symmetry of the lattice(point groupOh).
The SR exchange of orderk2 gives nonvanishing contribu-
tions: The electron and hole spin operatorsŝe,ŝh transform
as G4

+, while k is a polar vector and transforms asG4
−. The

direct product of the spin operatorsŝe^ ŝh andk ^ k terms
are decomposed into the representations as follows:

G4
+

^ G4
+ = G4

−
^ G4

− = G1
+

% G3
+

% G4
+

% G5
+. s20d

Consequently, the SR exchangesŝe^ ŝhdsk ^ kd is decom-
posed into contributions ofG1

+, G3
+, G4

+, and G5
+ symmetry.9

The operator part of total exchange Hamiltonian can be split
into invariant representationsHi of symmetryGi

+. To finally,
obtain the exchange energiesJi we introduce the exchange
parametersDi.

Using the tables of Kosteret al.9 the exchange Hamil-
tonian ofG1

+ symmetry is given by

H1 = 1
6s2ŝe 3 ŝhdsk ·kd. s21d

First, we will consider the spin operators inH1:

2ŝe 3 ŝh = 2se,zsh,z + se,+sh,− + se,−sh,+, s22d

with the standard momentum ladder operatorsse/h,+, se/h,−.
Now we apply the spin operators to the electron-hole spin
states of Eq.(13) and obtain

2ŝe 3 ŝhuSl = − 3
2uSl,

2ŝe 3 ŝhuT0l = 1
2uT0l,

2ŝe 3 ŝhuT+1l = 1
2uT+1l,

2ŝe 3 ŝhuT−1l = 1
2uT−1l. s23d

We apply the spin product operator to the orthoexciton states
uOyzl, uOzxl, uOxyl

2ŝe 3 ŝhuOyzl = 1
2Î6

fc,sf− 3Î2fv,yzuSl + iÎ2fv,zxuT0l

+ fv,xysuT+1l + uT−1ldg,

2ŝe 3 ŝhuOzxl = −i
2Î6

fc,sfÎ2fv,yzuT0l − i3Î2fv,zxuSl

+ fv,xysuT+1l − uT−1ldg,

2ŝe 3 ŝhuOxyl = −1
2Î6

fc,sffv,yzsuT+1l + uT−1ld − ifv,zxsuT+1l

− uT−1ld + 3Î2fv,xyuSlg. s24d

The exchange matrix elements are given by:

kOjuH1uOj8l = 1
6kOju2ŝe 3 ŝh 3 sk ·kduOj8l

= 1
6kOju2ŝe 3 ŝhuOj8lk

2. s25d

The Wannier functions are orthonormalssfv,j ·fv,j8d=d j ,j8d,
thus for j = j8=yz we find

kOyzuH1uOyzl = −1
36k2. s26d

This holds for all diagonal elements. Forj Þ j8 we find

kOjuH1uOj8lk
2 = 0. s27d

The vanishing off-diagonal elements again reflect that theG1
+

operator is spin conserving. As a consequence no mixing
between the orthoexciton states occurs. The matrix represen-
tation of the SR exchange energy in the orthoexciton basis is
thus given by:

J1 = D1 ·1k2 0 0

0 k2 0

0 0 k22 = D1k
2 ·1. s28d

J1 is proportional to the identity matrix and causes iden-
tical spectral shifts for all three orthoexciton states. SinceJ1
scales ask2 it contributes to the spatial dispersion where it
can be interpreted as a correction to the effective mass. This
will be discussed in detail in Sec. V. AsD1 does not give rise
to an orthoexciton splitting it cannot be determined indepen-
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dently in the current experiment. It is thus included in the
energyE0 of the degenerate orthoexciton states.

The exchange Hamiltonian ofG3
+ symmetry is given by:9

H3 = 1
2Î2f 1

3sŝe · ŝh − 3se,zsh,zdsk2 − 3kz
2d + sse,xsh,x − se,ysh,yd

3skx
2 − ky

2dg . s29d

The exchange energies are again obtained by calculating the
individual matrix elements, following the steps described in
the treatment ofH1. We derive the matrix representation

J3 = D313kx
2 − k2 0 0

0 3ky
2 − k2 0

0 0 3kz
2 − k22 . s30d

Again, all off-diagonal elements vanish and no mixing of the
basis states occurs. However, thek-dependence of the diag-
onal elements should give rise to an orthoexciton fine struc-
ture.

The G4
+ electron-hole exchange obviously vanishes.

H4 = 1
2Î3

fsse,ysh,z − se,zsh,ydskykz − kzkyd + sse,zsh,x − se,xsh,zd

3skzkx − kxkzd + sse,xsh,y − se,ysh,xdskxky − kykxdg = 0.

s31d

Finally, the contribution ofG5
+ symmetry is given by:

H5 = 1
Î3

fsse,ysh,z + se,zsh,ydskykzd + sse,zsh,x + se,xsh,zdskzkxd

+ sse,xsh,y + se,ysh,xdskxkydg

= 1
Î3

fQyzskykzd + Qzxskzkxd + Qxyskxkydg. s32d

In analogy to the example ofH1 we again derive the action
of the G5

+ spin operators on the exciton states.

QyzuSl = QzxuSl = QxyuSl = 0,

QyzuT0l = −i
2Î2

suT+1l + uT−1ld,

QzxuT0l = 1
2Î2

suT+1l − uT−1ld,

QxyuT0l = 0,

QyzsuT+1l + uT−1ld = i
Î2

uT0l,

QzxsuT+1l + uT−1ld = 0,

QxysuT+1l + uT−1ld = −i
2 suT+1l − uT−1ld,

QyzsuT+1l − uT−1ld = 0,

QzxsuT+1l − uT−1ld = 1
Î2

uT0l,

QxysuT+1l − uT−1ld = i
2suT+1l + uT−1ld. s33d

The G5
+ operators give rise to a mixing among the triplet

states. As the spin is not conserved, we expect only off-
diagonal elements in the matrix representation. We find

J5 = D5 ·1 0 kxky kxkz

kxky 0 kykz

kxkz kykz 0
2 . s34d

As for the LR term[Eq. (19)], a k-dependent mixing of the
orthoexciton states is expected.

Summarizing, we have derived three electron-hole ex-
change terms of orderk2, that give rise to the orthoexciton
fine structure: the LR quadrupole interactionJQ

ex and the SR
contributionsJ3,J5, where the absolute splittings are given
by the exchange parametersDQ, D3, andD5, which remain to
be determined.

For high symmetryk ’s (see Fig. 1) the matrices in Eqs.
(19), (30), and (34) can be diagonalized analytically. The
new eigenstates are linear combinations ofuOyzl, uOzxl, and
uOxyl. Fork along[110], exchange should lift the degeneracy
of the orthoexcitons and three separate lines are expected
[Fig. 1(a)], where theE2−E1 splitting directly givesD5. For
k along [001] there is no contribution fromJex andJ5. One
thus expects a doubly degenerate levelE1,3 and a single level
E2 with a total splitting of 3D3. In the [111] direction we
expect to find a degenerate low energy state besides a single
high energy level. Fork along [112] we should again find
three distinct orthoexciton energies.

For the detection of the fine structure the quadrupole am-
plitudes are crucial[Eq. (2)]. The lower part of Fig. 1 gives
the uQAiu2’s for vertical and horizontal polarization. With the
exception of the[112] direction, only one of the fine struc-

FIG. 1. Energy level diagram of the exciton fine structure.E0

gives the orthoexciton energy including the exchange shiftsD0 and
D1. Panels(a), (b), (c), and (d) give the energy schemes fork
=f110g, [001], [111], and [112], respectively(DQ=5 meV, D3=
−1.3 meV, D5=2 meV). In the upper schemes the analytic expres-
sions for the exchange energy are indicated. Fork =f112g the low
symmetry gives rise to a rather complex analytic expression forE2

andE3. In the lower half theuQAu2’s are given for each level. The
upper and lower numbers correspond to horizontal and vertical po-

larization, respectively. In all cases the vertical axis isf1̄10g.

WAVE-VECTOR-DEPENDENT EXCHANGE INTERACTION… PHYSICAL REVIEW B 70, 045206(2004)

045206-5



ture components will be directly observable. It will be dis-
cussed below how to detect the other components.

III. EXPERIMENT

The k-dependence of the exchange is investigated in
transmission experiments, where a laser beam propagating
alongk, directly probes the corresponding fine structure. Ro-
tating the samples around the vertical axis gives access to
intermediatek-directions. Such intermediate, lower symme-
try k ’s also break the strict polarization selection rules(com-
pare Fig. 1). This leads touQAu2Þ0 for the fine structure
components that are forbidden in high symmetryk ’s. The
dependence of the orthoexciton energiesE1, E2, andE3 on k
can thus be measured.

Following these requirements, a setup for high-resolution
absorption experiments(Fig. 2) has been designed. The cru-
cial element is the tunable, frequency-stabilized, ring dye
laser. The laser bandwidth of<2 neV gives access to a sub-
meV resolution. In the experiment the laser energy is con-
tinuously scanned across the orthoexciton resonance. The
dye is excited by a frequency-doubled Nd:YVO4-laser.

For rough adjustment of the laser energy, a wavelength
meter with an accuracy of<2 meV is used. The precision of
the wavelength meter limits the absolute energy calibration
of the setup. Therefore we will present spectra in terms of
relative energies. The laser beam is passed through polariza-
tion optics(half-wave plateWP and polarizerP), to ensure
precise control of the polarization of the exciting laser light.
A lens focuses the laser beam onto a spot of about 30mm on
the sample. After passing through an analyzersAd the trans-
mitted photons are detected by photodiode 1, which is con-
nected to an oscilloscope. Running the laser in the frequency
scanning mode, the ramp voltage of the scan is used as trig-
ger input for the oscilloscope. As the laser frequency is
scanned, the transmittance of the specimen is monitored on
the photodiode 1. Photodiode 2 is used as a reference, to
compensate for intensity fluctuations of the laser source.
Synchronizing the scan and the photodiode readout on the

oscilloscope gives the spectrally resolved transmission. Typi-
cally, the scan range is set to<40 meV with a scan time of
250 ms. The samples were mounted in a helium immersion
cryostat, keeping them at a temperature of about 1.5 K.

High-resolution experiments are extremely sensitive to
perturbations. One such perturbation is strain. Hence, great
care was taken to mount the samples strain-free. In our ex-
periments we used two types of samples. First, cube-shaped
samples with dimensions of<4 mm. These samples were
housed in a brass cage, slightly larger than the sample itself.
Second, slab-shaped samples with lateral extensions of a few
mm, while being onlydS&50 mm thick. To ensure a strain-
free upright mounting, special housings have been designed.
The sample is sandwiched between two brass plates, while a
spacer slightly thicker than the sample surrounds the speci-
men. A sectional drawing of such a holder is shown in Fig. 3.

The samples were cut from the same natural Cu2O crystal
and were oriented by X-ray diffraction. They were cut such
that the surfaces correspond to a main crystalline axis(e.g.,
[001], [110], [111], [112]). After cutting, the surfaces were
polished. This treatment can give rise to strain in the crystals.
Samples showing signatures of strain were annealed. For this
purpose they were heated up to 450 °C and slowly cooled in
an evacuated tube. To reduce loss of oxygen, the samples
were sandwiched between quartz plates.

The mounting allows the rotation of the sample around
the vertical axis by an anglew8, which corresponds to an
angle w ssinw=ssinw8d /nid for the laser beam inside the
crystal. ni is the index of refraction for thei ’th polariton.
Because of the extremely small oscillator strength of the
quadrupole transitions,ni can be approximated with high ac-
curacy by Îe`=2.55. As an example a crystal is shown

where the rotation is around thef11̄0g axis. Here forw=0 the
light travels along[110]. For wÞ0 the light travels along
intermediatek ’s. By means of the polarization optics,e can
be varied. The direction ofe is given by the anglec (Fig. 3).
c=0 corresponds to horizontale; in our exampleesc=0d
=f001g, while the vertical polarizationc=90° corresponds to

e=f11̄0g.
The electron hole exchange fork along f1̄10g is investi-

gated in the experiments presented in Fig. 4, where the left

FIG. 2. (Color online) Schematic setup for high-resolution spec-
troscopy: A, analyzer;P, polarizer; PD, photodiode;S, sample;
WM, wavelength meter; andWP, half wave plate.

FIG. 3. (Color online) Left: Sample holder for strain-free
mounting of thin Cu2O slabs. Right: Configuration of anglesw8
(rotation of the sample) andc (rotation of the polarization vectore).
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panels show the calculated transition amplitudes forc=
−35.3° 4(a) and c=54.7° 4(c) as function ofw (rotation

around the[111]-axis). CalculatinguQA2u2 at k along f1̄10g
sw=0d shows that forc=−35.3°ses−35.3°d=f001̄gd the tran-
sition E2 is fully allowed, while E1 and E3 are forbidden
[Fig. 4(a)]. In the corresponding experiment[solid line in
Fig. 4(b)] one indeed finds a strong absorption. Forc=
+54.7°ses+54.7°d=f110gd all three transitions are forbidden,
as confirmed by the experiment[triangles in Fig. 4(b)]. This
confirms the calculations of panel(a) and (c) and demon-
strates the high crystallographic quality of the sample and the
absence of symmetry breaking perturbations. The picture
changes drastically if the sample is tilted slightly fromw

=0°, wherek no longer points exactly alongf1̄10g. For c=
−35.3°,E1 and E3 gain oscillator strength for increasingw,
howeverE2 remains almost fully allowed masking the two
weak lines. As expected, the spectrum atw=4° shows only
E2. However, forc=54.7° E1 andE3 are no longer covered
by theE2 transition, asuQA2u2 is about one order of magni-
tude smaller thanuQA1u2 and uQA3u2. Indeed the orthoexciton
doublet with an exchange splitting of 4meV is resolved[Fig.
4(d)].

The degeneracy of the orthoexciton is lifted. Besides the
spectral signatures, we observe that theE1 absorption is
smaller than theE2 absorption, as predicted[Fig. 4(c)]. Both
lines are exceptionally narrow with a full width at half maxi-
mum of&1 meV. This gives further proof of the high quality
of natural Cu2O crystals and the small homogenous broad-
ening of the quadrupole transition.

Having demonstrated qualitative agreement between
theory and experiment, we proceed with the quantitative
analysis of the three exchange parametersDQ, D3, andD5. In
our experimentuk u=k0=2.623107 m−1 is given by the inter-
section of the light cone with the exciton dispersion. As it is

constant, we will treatk as a normalized unit-less vector.
This allows us to directly express the exchange parameters as
an exchange energy. Fork along [001] [Fig. 5(a)] the
fine structure is only determined byJ3, which allows to
measureD3 directly. The levelsE1,3 and E2 are split by
3D3=3s−1.3d meV (Fig. 1). In the angular range investigated
no significant line shifts are expected and the degeneracy of
E1 and E3 is only slightly lifted, which is masked by their
spectral widths. For the sample orientation of Fig. 4,E1, E2,
and E3 are shown as a function ofw in Fig. 5(b). E2−E1

gives directlyD5=2 meV in the k =f1̄10g configuration. Fi-
nally, DQ=5 meV is determined fromE3. These parameters
also give the correct relative line positions, when comparing
the absolute energies obtained fork along[001] to those for

k along f1̄10g. The direct comparison of two measurements
requires great care, as the absolute laser energy is not known
with sufficient accuracy. Therefore, the experiments were
performed with two samples mounted in the cryostat. While
keeping the laser frequency stabilized, two consecutive mea-
surements were performed on both samples that allows com-
parison of the relative exciton energies. The sample shown in
Fig. 4 with the characteristicE1−E3 doublet was taken as
spectral reference.

FIG. 4. (a) and (c) CalculateduQA1u2 (open symbols), uQA2u2
(full line), and uQA3u2 (full symbols) as a function ofw (rotation

around the[111]-axis) for c=−35.3° (e=f001̄g at w=0) (a) and c

=54.7°(e=f110g at w=0) (c). At w=0 k is alongf1̄10g. (b) and(d)
Transmission spectra of a 4-mm-thick crystal.(b) The full line gives
the transmission spectra forc=−35.3° and the triangles forc
=54.7°sw=0d. (d) Spectra forw=4° andc=−35.3°(solid line) and
c=54.7° [open(full ) dots correspond toE1 sE3d].

FIG. 5. E1, E2, andE3 as a function ofw. Dots mark the experi-
mental data. Full lines give the calculated values.(a) For w=0, k is

along [001]. w describes a rotation around thef11̄0g-axis sdS

=4 mmd. (b) For w=0, k is along f1̄10g. w describes a rotation
around the[111] axis sdS=4 mmd. (c) For w=0, k is along[111]. w

describes a rotation around thef112̄g-axis sdS=85 mmd.
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Now all exchange parameters have been measured close
to k-directions of high symmetry. According to theory, these
exchange parameters should apply for any arbitraryk.
Hence, the crucial test for our description is done by mea-
suring the exchange fine structure fork-directions with low
symmetry. As a test of consistency we present data fork
along[111] [Fig. 5(c)]. According to Fig. 1(c) we expect for
w→0 a degenerate levelE1,2 plus a high energy stateE3,
where uQA3u2 should be much weaker thanuQA1,2u2 swÞ0d.
In panel(c) E1, E2, andE3 are shown versusw. TheE1−E2
splitting increases withuwu, while E3 shows only slight shifts.
The fine structure is modelled(full lines) using the param-
eters obtained above. Obviously,DQ, D3, and D5 allow a
consistent description for thesek ’s. In samples ofdS.1 mm,
lines of largeuQAu2 become rather broad. This hinders the
precise quantitative evaluation of the fine structure[see, e.g.,
error bar forE2 in Fig. 5(b)]. To overcome this broadening a
thin samplesds=30 mmd had to be employed, which permits
resolving theE1−E2 splitting [Fig. 5(c)].

IV. IMPACT OF STRAIN

The degeneracy of the orthoexcitons could also be lifted
by perturbations, such as strain.15,16 Considering the energy
scales we are dealing with, even slightest strain on the order
of 13103 N m−2 can cause a notable effect.17 Two sources
of strain have to be taken into account. First, external strain
originating from the sample mounting. Our sample holders
exclude this source. Second, the crystal itself can also be
intrinsically strained. Such stress can originate from imper-
fections in the lattice structure, cutting and polishing during
the sample preparation, or thermal stress. In the following we
will evaluate to what extent this can influence our experi-
ment findings.18

Let us first focus on cube-shaped samples with extensions
of <4 mm. Because of the relatively large size of the speci-
men, an inhomogeneous strain distribution across the sample
is expected. The central parts should be less affected by
strain than the outer sections of the cube, where cutting and
polishing can give rise to an increased stress. Hence, a strain-
induced fine structure should depend on the sample section
being probed.

To clarify this, the experiment of Fig. 4 was repeated for
illumination of the specimen in the sample center(solid line
in Fig. 6) and close to the sample edge(dotted line). Other-
wise the experimental conditions are identical to those for
the data given by the dots in Fig. 4. In both sections of the
sample, two lines with a splitting of<4 meV are found. The
spectral shifts ofE1 andE3 are insignificant as compared to
the splitting. Additional spectra were recorded covering the
entire surface area of the sample and the fine structure re-
mained more or less unchanged. This indicates that the fine
structure cannot be interpreted as being stress induced. A
second argument along these lines is the following: In a thick
sample a large volume is probed, even with a focused beam.
Thus, inhomogeneous strain would give rise to an inhomo-
geneous broadening of the lines. However, for the laser beam
passing through the sample center, the lines remain ex-
tremely narrow(FWHMø1 meV) and Lorentzian in shape.

For the beam traveling along the edge of the sample, the line
shape ofE3 deviates from a Lorentzian. The shoulder on the
high-energy side might arise from a strained section of the
sample. The data show that slight stress can be found in the
surface regions of the sample. However, this does not have a
significant impact on the fine structure and can be disre-
garded when the laser beam passes through the center of a
thick sample.

The situation is more complex for thin samples of
ds,100 mm. For such slab-shaped samples surface effects
gain importance and stress-induced perturbations can no
longer be disregarded a priori. Each sample has to be exam-
ined carefully. A first impression can be obtained via polar-
ization microscopy: The crystal is placed between crossed
polarizers. In a strain-free sample, the polarization of the
transmitted light is unchanged and the light is blocked by the
second polarizer. If the crystal is strained, the transmitted
light becomes elliptically polarized and thus partly passes
through the second polarizer. In Fig. 7 sections of two
samples are shown. The sample on the left shows clear sig-
natures of strain, which is inhomogeneous across the speci-
men. The picture on the right shows an homogenously

FIG. 6. Transmission spectra forw=4° (rotation around the

[111] axis andk alongf1̄10g at w=0) andc=54.7°. The spectra are
recorded for excitation in the sample center(solid line) and excita-
tion close to the edge of the sample(dashed line).

FIG. 7. Microscopic pictures of two slab-shaped samples. The
specimens were positioned between two crossed polarizers. Hence,
bright areas indicate where the sample is stressed. The bright white
line is the sample edge. The dark areas in the upper right corners
give a reference without sample. Both samples are about 100mm
thick.
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weakly strained sample(the bright spots arise from dirt par-
ticles). Even if a crystal appears to be perfectly strain free
under the polarization microscope, it does not mean that
there is no residual strain. High-resolution spectroscopy pro-
vides a much more sensitive tool. Therefore each sample is
tested for homogeneity by probing various sections of the
specimen. Only if the spectral positions of the exciton reso-
nances are independent of the sample section being probed,
the specimen is suited for our purposes, even though this still
does not prove that it is unstrained. It only shows that the
strain induced perturbation is of the same magnitude as the
k2 exchange and homogenous across the crystal.

As we still cannot exclude this perturbation, we have to
clarify how such residual strain affects the orthoexciton fine
structure. The impact of strain can be approached by sym-
metry considerations: The strain tensors possess the same
symmetry as the SRk2-exchange terms.1,2 Therefore the ef-
fect of strain onuOyzl, uOzxl, and uOxyl is described by the
same types of symmetry operators as given in Eqs.(28),
(30), and(34). Replacingkikjsi , j =x,y,zd by the correspond-
ing elementsei j of the strain tensor we find

S1 = d1 ·1exx + eyy + ezz 0 0

0 exx + eyy + ezz 0

0 0 exx + eyy + ezz
2 ,

s35d

S3 = d3 ·12exx
2 − eyy

2 − ezz
2 0 0

0 2eyy
2 − exx

2 − ezz
2 0

0 0 2ezz
2 − exx

2 − eyy
2 2 ,

s36d

S4 = 0; S5 = d5 ·1 0 exy exz

exy 0 eyz

exz eyz 0
2 . s37d

Hence, the stress can be quantified by three parametersd1,
d3, andd5, whereS1 simply shifts all three states, andS3 and
S5 give rise to splittings. However, strain-induced shifts can
be discriminated from exchange as they are fixed to the lat-
tice and hence depend only on the orientation of the crystal-
line axes, but not onk. Therefore, when probing variousk ’s
(turning the crystal) one would not expect any dependence of
the energy levels onw for strain-induced effects.

In Fig. 8, the spectral positions of the orthoexciton reso-
nances are studied versusw with k =f111g at w=0 and rota-

tion aroundf112̄g. In panel (a) the exchange splittings ac-
cording to the parameter set obtained above are shown(solid
traces). Apparently the calculations do not match the data, as
the E1,2-E3 splitting is by a factor of two too large in the
experiment. The experiments also show an asymmetry with
respect tow=0. The data seem to be shifted towards lower
angles by about 2°. Nevertheless, we find the qualitative
structure as known from Fig. 5(c). In panel(b) the calcula-
tions include strain ofG3

+ and G5
+ type sd1=0d, while the

exchange parameters remain unaltered. When neglecting the
exchange induced shifts, we end up with constant energy

levels[dashed lines in Fig. 8(b)]. As evident from this mod-
eling, the w skd dependence solely arises from exchange,
while the increased splittings arise from residual strain. Most
convincingly, thek dependence is again very well described
by the set of exchange parameters derived above. The inclu-
sion of strain also gives the explanation for the shift toward
lower w observed in the data set. It simply originates from
strain offsets.

As a final test for the wave vector dependence of electron-
hole exchange, we proceed with ak of even lower symmetry.
For this crucial experiment we have chosen a crystal withk
alongf112̄g at w=0. The experimental findings are shown in
Fig. 9, where the upper panels show spectra for the two

polarizationsf1̄10g 9(a) and [111] 9(b). For all k ’s we have
access to all fine structure components with comparable
uQAu2’s [see Fig. 1(d)]. Panel(c) shows thew-dependence of
the orthoexciton energies. Including slight strain offsets
again gives a good agreement between theory and experi-
ment. Especially the characteristick dependence is well de-
scribed by the exchange parameters. As the exchange param-

FIG. 8. Orthoexciton energies as function ofw (rotation around

the f112̄g axis) for dS=30 mm (k =f111g at w=0). The experimental
data are given by full dots. In panel(a) calculations for the param-
etersDQ=5 meV, D5=2 meV, andD3=− 1.3 meV are plotted(solid
lines). In panel(b) the calculations(solid lines) also include strain
of G3

+ sd3=− 1.4 meVd and G5
+ sd5=−2.1 meVd type, keeping the

exchange parameters fixed. The dashed lines give the strain offsets.
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eters determine the mixing betweenuOyzl, uOzxl, and uOxyl,
they also influence the corresponding quadrupole amplitudes.
In panel(d) the measureduQAu2’s are compared to the calcu-
lations and we find very good agreement.

V. INFLUENCE ON THE EFFECTIVE EXCITON MASS

As the exchange terms discussed here scale quadratically
in k, they can also be interpreted in terms of ak-dependent
effective mass. Naturally, previous measurement of the exci-
ton massM have not taken these contributions into account.
As we have seen, the exchange shifts are on the order of few
meV and hence comparable to the kinetic energy of the ex-
citon at the exciton-photon resonancek0. The wave-vector-
dependent contributions to the effective mass are thus not
negligible. In the following, we will evaluate how exchange-
induced contributions to the exciton mass affect such mea-
surements.

As pointed out already by Yu and Shen,19,20 there is a
discrepancy between the effective exciton massM0 derived
from the band masses of the conduction bandme and the

valence bandmh sM0=me+mhd and the mass derived from
resonant Raman experiments. From the latter the authors ob-
tain M =s3.0±0.2d m0, with the free electron massm0. From
cyclotron resonance experiments Goltzene and Schwab find
the band massesme=0.98m0 andmh=0.66m0.

21 Assuming
the crystals in the resonant Raman experiments were ori-
ented along thek =f001g, their results have to be interpreted
as follows: Looking at Fig. 1(b) we find that only theE1,3
level is optically allowed, which means that the investigated
orthoexciton is shifted by −D3 from E0. As mentioned above
E0 already includes the SR exchange ofG1

+ symmetry with
the exchange energyD1.

When calculating the effective exciton mass fork
=f001g, theG1

+ andG3
+ terms have to be included. The effec-

tive massM1,3 of the E1,3 resonance is then given by

"2k0
2

2M1,3
=

"2k0
2

2M0
+ D1 − D3. s38d

From resonant Raman scattering we know thatM1,3 equals
s3.0±0.2d m0.

19,20As we also know the individual masses of
the exciton constituents, we can now determineD1=
−8.6 meV. D1 is of the same magnitude as the other ex-
change parameters. Taking the exchange into account the
controversial reports on the exciton mass can be explained in
a straight forward way. The exchange interaction between
the exciton constituents gives thus rise to an effective mass
different from the sum of the electron and hole masses. How-
ever, there might be additional reasons for this difference.22

Obviously thek-dependence of the exchange gives rise to
an anisotropy of the effective mass. Using Eq.(38) and
knowing the exchange shift fromE0 and Di we can now
calculate the massMi as function ofk:

FIG. 10. (a) Exchange shifts of the orthoexcitons as function of
w. k lies in the [001]-[110] plane. (b) Effective exciton mass as
function of w.

FIG. 9. Transmission spectra atk =f112̄g sdS=95 mmd for c

=0 se=f111gd (a) andc=90° (b) se=f1̄10gd. (c) Orthoexciton ener-

gies as function ofw (k =f112̄g at w=0, axis of rotationf1̄10g).
Squares correspond toE3, open dots toE1, and triangles toE2.
Calculations based on the parametersDQ=5 meV, D5=2 meV, D3

=−1.3 meV, d3=0.7 meV, and d5=1.0 meV are plotted as solid
lines. The strain offsets are given by dotted lines.(d) uQAiu2’s as
function of w. Solid traces give the calculateduQAiu’s.
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1

Miskd
=

1

M1,3sk = f001gd
+

2

"2k0
2sD3 + Diskdd. s39d

Figure 10(b) shows the exciton masses for thek-directions in
the [001]-[110] plane. Indeed the anisotropy is significant.
For example atk =f001g the effective mass of the two
orthoexcitons differs by almost a factor of two.

VI. CONCLUSIONS

We have derived and demonstratedk2-dependent electron-
hole exchange interaction. For the yellow 1S orthoexcitons
in Cu2O the exchange parametersDQ=5 meV, D1=
−8.6 meV, D3=−1.3 meV, andD5=2 meV are obtained. The
k2-dependent exchange is interpreted as an interaction-
induced correction to the effective mass. The magnitude of
this correction is of the same order as the kinetic energy at
k0. Our results explain the discrepancies found in the mea-

surements of the effective-exciton mass and the masses of its
constituents. The exchange parameters apply only for this
specific exciton transition, however thek2-dependent ex-
change is a fundamental property. Even though this effect
has not been observed before, it should be present for all
exciton transitions. The theoretical approach presented here
is semi-empirical and the magnitude of the exchange param-
eters is only accessible experimentally. We hope that our
experiments motivate microscopic calculations of the higher-
order exchange terms.
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