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The indices of refraction as a function of wavelength are calculated from first-principles band structure
calculations for CdSiAs2 and CdSiP2. Both are found to have negative birefringence in good agreement with
experimental data. Examining the birefringence data among various chalcopyrites suggests a linear dependence
of birefringence onc/a and thus on tetragonal strain. First-principles calculations confirm this expectation and
give dDn/dh=1.7 for CdSiAs2 and 2.3 for CdSiP2 with h the uniaxial tetragonal strain. Estimates are made of
the mid infrared dispersion based on the calculations combined with experimental data on midinfrared optical
absorption. Phase matching curves are calculated based on these results as function of strain in CdSiAs2 and in
mixed CdSisAs1−xPxd2 alloys. Uniaxial strains of order 1% or mixing with CdSiP2 are required for CdSiAs2 to
provide noncritial phase matching in the midinfrared range. Combined with the relatively highxs2d of these
materials, they are concluded to be potentially competitive nonlinear optical materials.
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I. INTRODUCTION

Chalcopyrite semiconductors have not only high second-
order optical susceptibilitiesxs2d but also birefringence
which allows for angular tuning of the phase matching. In
negative birefringent crystals a condition known as noncriti-
cal phase matching(NCPM) is highly desirable because it
optimizes the effective conversion coefficient, given by

xeff
s2d = sin uxzxy

s2d , s1d

for type-I (i.e., ooe) second harmonic generation(SHG) in
chalcopyrites. Indeed it corresponds tou=90°, whereu is the
angle between the beam and the optical axis. Furthermore,
since under these conditions the beams propagate along a
crystallographic axis, walk off is avoided and the phase
matching is less sentitive to beam divergence, thus increas-
ing the overall efficiency. In order to achieve NCPM for a
given target wavelength, the material’s birefringence must be
adjusted. This can be done by adjusting the composition of
an alloy between semiconductors with different birefrin-
gence. This concept has previously been proposed for
AgGasSe1−xTexd2 alloys.1

The II-IV-V 2 chalcopyrites generally have largerxs2d than
the I-III-VI 2 family.2,3 They also have a better thermal
conductivity,4,5 which translates into a higher laser-damage-
threshold and higher allowable maximum power. However,
both CdGeAs2 and ZnGeP2, the two II-IV-V2 chalcopyrites
primarily under development, have positive birefringence,
excluding NCPM. The question arises whether a II-IV-V2
chalcopyrite semiconductor exists with negative birefrin-
gence from which to design NCPM alloys with high effec-
tive xs2d. This question is critically examined here using a
combination of literature data on chalcopyrites supplemented
by first-principles calculations.

The available literature data5,6 suggest that birefringence
varies linearly withc/a ratio at least within a given closely
related family of materials, e.g., the various AgGa-VI2 com-
pounds or the various Zn-sSi,Ged-sAs,Pd2 compounds or

Cd-sSi,Ged-sAs,Pd2 compounds. This is illustrated in Fig. 1
and is to be expected because both quantities are a measure
of the anisotropy. The only presently known negative bire-
fringent II-IV-V 2 chalcopyrites are CdSiP2 and CdSiAs2.
Furthermore, however, this linear dependence onc/a sug-
gests that birefringence should depend linearly on tetragonal
strain, which might offer new opportunities for tuning the
birefringence to any desired value.

In this paper we check this empirical prediction by using
first-principles calculations of the birefringence in CdSiAs2
and CdSiP2. We also confirm and quantify the linear depen-
dence of birefringence on strain. The computational method
used for these birefringence calculations is described in Sec.
II. We present our results on the birefringence in CdSiAs2
and CdSiP2 in Sec. III A. In order to evaluate the possibili-
ties for phasematching, we also need to know the dispersion
in the mid infrared range. Our calculations are expected to
give a reasonable description of the dispersion in the region
where the dispersion effects due to the electronic transitions

FIG. 1. Birefringence as a function ofc/a for various chalcopy-
rites. Experimental data taken from Refs. 5 and 6. Least squares
approximations to the data within a chosen family give the straight
lines.
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dominate over those from the phonon effects. The Sellmeyer
equation provides a convenient way to parametrize the index
of refraction as function of wavelength. It describes the op-
tical absorption from electronic transitions and from phonon
excitation each by a single pole. We thus use our first-
principles calculated dispersion to extract the Sellmeyer co-
efficientsA, B, andC related to the electronic optical transi-
tions. These results are presented in Sec. III B. However, the
phonon related dispersion is important in the midinfrared. By
careful examination of the available experimental data on
chalcopyrites, we show that theE Sellmeyer parameter
which represents the phonon effects by a single pole can be
estimated from the TO phonon frequency while theD param-
eter is effectively independent of material. This allows us to
make estimates of theD andE parameters for CdSiAs2 and
CdSiP2. Finally, we are then in a position to discuss the
phasematching opportunities in CdSiAs2 and CdSiP2, as dis-
cussed in Sec. III C. We show that strains of order 1% in
CdSiAs2 are necessary to provide phase matching and more
particularly NCPM in the useful ranges in the midinfrared.
On the other hand, CdSiP2 has sufficient birefringence to
provide phasematching and furthermore it could be tuned by
alloying with CdSiAs2. The strains of 1% are substantial but
by calculating the relevant elastic constant we show that it
corresponds to stressess,1 GPa, which are feasible based
on literature data.7 The second harmonic coefficients of
these materials which were calculated in previous work2 are
compared with those of other materials presently in use to
evaluate the potential of these materials in Sec. III D. We
conclude that these materials are potentially competitive
NLO materials.

II. COMPUTATIONAL METHOD

First-principles calculations of the indices of refraction
were performed based on density functional band structure
calculations. The linear muffin-tin orbital method(LMTO) is
used in the atomic-sphere approximation(ASA)8 and the
local-density approximation(LDA ) is used for exchange and
correlation.9 After converging the potential to self-
consistency using a well converged regular 63636 k-point
mesh, the imaginary part of the optical dielectric function
«2svd is obtained by summing over interband transitions ne-
glecting local field and excitonic effects as described in Ref.
10. We calculated«2svd up to about 27 eV. In fact,«2svd is
already negligibly small above 12 eV. Our calculation in-
cludes 14 conduction bands and the 22 uppermost valence
bands, i.e., the anionp-like bands, and Cdd bands, although
the latter made little or no contribution. The tetrahedron
method with a large 20320320 regulark-point mesh was
used to perform the Brillouin zone integrals. An energy mesh
of 1200 energy points was used between 0 and 27 eV. Based
on earlier experience with calculation of optical properties,
e.g., in Ref. 10, we know that these computational param-
eters are sufficient to obtain the real part«1svd by Kramers-
Kronig transformation. Finally the complex index of refrac-
tion is obtained fromnsvd+ iksvd=Î«1svd+ i«2svd. Here we
show results only fornsvd for "v below the band gap al-
though we did calculate both up to 27 eV. Since the well-

known LDA underestimate of the band gap can significantly
affect the calculated indices of refraction, a rigid shift of the
conduction band is introduced simply by shifting the«2svd
by the band-gap correction before calculating«1svd and
nsvd. This is equivalent to a scissor’s shift accompanied by a
renormalization of the momentum optical matrix elements.11

The absolute indices of refraction may still show a fairly
large systematic error from the experiments because of the
lack of local field effects in our calculations. This effect may
lead up to a typical 20% underestimate of the static index of
refraction. However, one may expect that this is a more or
less constant error and hence the birefringence, i.e., the dif-
ference between the indices of refraction between two polar-
ization directions should have a much smaller error of a few
percent at most. The same is true for the dispersion, that is,
the variation of the indices of refraction with frequency. The
overall reliability of the present method to calculate birefrin-
gence has been demonstrated in earlier work.2 In particular,
it was found there that the calculated birefringence of
CdGeAs2 and ZnGeP2 agree with the experimental values to
better than 10% for wavelengths sufficiently far above the
phonon-absorption range and sufficiently below the band
gap. Near the band gap defect absorption effects tend to in-
crease the birefringence faster than the calculations pre-
dicted. Also, while the calculated birefringence decreases to
a nearly constant value for increasing wavelengths in the mid
to far infrared, the experiments show an increase when the
phonon absorption range is approached.

III. RESULTS

A. Birefringence

We first show our results for the birefringence in CdSiP2.
The calculated birefringence as function of wavelength is
shown in Fig. 2 compared to the experimental data from Itoh
et al.12

One may notice that the experimental birefringence in-
creases faster when approaching the band gap than the cal-
culated one. This may well be a result of defect or exciton
absorption below the band gap, as was also found to be the
case for CdGeAs2.

2 Our calculated value for the static value

FIG. 2. Birefringence of CdSiP2, solid line theory, circles with
spline interpolation, experimental data from Itohet al. (Ref. 12).
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of the birefringence for CdSiP2 is Dn=−0.049±0.006. This
calculation uses experimental lattice constants and the ex-
perimental value for the internal structural parameter for the
chalcopyrite structure from Ref. 5. A gap correction of
1.28 eV was used assuming an experimental gap of 2.45 eV.
Values ranging from 2.08 to 2.45 eV have been reported5 for
the gap of CdSiP2. We checked that the birefringence is not
very sensitive to the choice of gap correction in this case
because the LDA gap is sufficiently large to start with. It
varies by less than 0.001 even when using the LDA gap. We
checked that the birefringence is also insensitive to the inter-
nal structural parameter. Using a value ofu=0.2923 obtained
from a full-potential(FP) LMTO (Ref. 13) energy minimi-
zation instead of the experimental valueu=0.2967 changed
the result to −0.043. The experimental value used in Fig. 1
from Ref. 5 is −0.051 and corresponds tol=2.06mm and
T=300 K. At the longest wavelength considered 0.82mm in
Itoh et al.,12 the birefringence seems to flatten out at a value
of about −0.045. In other words, our uncertainty seems com-
parable to the experimental one and excellent agreement is
obtained between both.

The results for the birefringence in CdSiAs2 are shown in
Fig. 3 for different values of the uniaxial strainh. A gap
correction of 1.07 eV is included, bringing the LDA gap for
zero strain 0.48 eV in agreement with the experimental gap
of 1.55 eV. We see that at low frequency the birefringence is
indeed negative, approximately −0.01 for zero strain, i.e.,
somewhat less negative than the experimental value of
−0.017.6 One can also see that the variation of birefringence
with strain is linear, which is further confirmed by plotting
Dnsv=0d directly as a function of strain in Fig. 4. One finds
Dn<−0.01+1.7h.

In the calculations for nonzero strain, we have maintained
the internal structural parameteru of the chalcopyrite struc-
ture equal to its experimental value for the unstrained situa-
tion. We have separately checked with full-potential LMTO
calculations thatu does not vary significantly withc/a, as is
to be expected because it corresponds only to a displacement
of the anion sublattice relative to the two types of cation
sublattices in planes perpendicular to thec axis. It is basi-
cally determined by a balance between the Cd-
As and Si-As bondlengths. As already mentioned, the bire-
fringence is not very sensitive tou and, in fact, changing the

estimated value ofu=0.2893 to a FP-LMTO calculated value
of u=0.2866 had negligible effect. For a 1% strain theu
value changed less than 0.0003. The experimental value6 for
the birefringence is −0.017 in fair agreement with our calcu-
lation, and shows little dispersion in the midinfrared range
except near the band gap.

B. Index of refraction and Sellmeyer parameters

In Fig. 5, we show the calculated indices of refraction for
CdSiAs2 as function of wavelength and their fit by means of
a Sellmeyer expression5

n2 = A + B/s1 − C/l2d + D/s1 − E/l2d. s2d

The last term in this expression involving the coefficientsD
andE, is related to the downward curving part of the index
of refraction when approaching the long-wavelength region
where phonons produce absorption. Since this physics is not
included in our first-principles calculation, we fit our data
with D=0. The resulting Sellmeyer coefficients for CdSiAs2
and CdSiP2 are given in Table II below.

However, the phonon contributions are important and are
discussed next. The Sellmeyer equations essentially describe

FIG. 3. Birefringence as a function of photon energy for
CdSiAs2 for different uniaxial strainsh along thec axis. FIG. 4. Calculated long-wavelength value of the birefringence

as a function of strain for CdSiAs2.

FIG. 5. Calculated indices of refraction for CdSiAs2 (circles for
no and squares forne), a Sellmeyer fit to them(solid lines), and the
same with an added “phonon”-related term(dashed lines) respon-
sible for the decrease at long wavelengths.
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the real part of the dielectric function«1svd assuming that its
imaginary part simply consists of two poles, one at high
frequency, corresponding to band gap aborption and one at
low frequency, representing phonon related absorption. In
the spirit of the Einstein model for phonons, it seems reason-
able to represent the optical phonon spectrum by a single
average phonon frequency, which we may identify with, e.g.,
the TO frequency at theG point in the Brillouin zone. There
is actually no particular reason to prefer the TO over the LO
mode here and to within the accuracy we claim here, either
one could serve. From this point of view we expect that the
Sellmeyer coefficientE can be identified withlTO

2 . Table I
illustrates to what extent this expectation works for some
chalcopyrites for which the Sellmeyer parameters have been
determined by measurement of the indices of refraction and
for which the phonon frequencies are known. We use results
from the data compilation of MacKinnonet al.5

The agreement between the last two columns is reason-
ably good and in particular shows the remarkable difference
between CdGeAs2 from the other materials. Now, the pho-
non frequencies in CdSiAs2 are not well known but mid
infrared absorption data by Averkievaet al.14 indicate a fairly
strong absorption peak at about 12.8mm. By comparison
with CdGeAs2 and ZnGeP2 midinfrared absorption data in
Ref. 15 it becomes clear that this peak corresponds to a two-
phonon process and hence we estimate thelTO for CdSiAs2
as 25.6mm. We can thus estimate theE parameters of

CdSiAs2 and CdSiP2 to be 660 and 420, respectively.
On the other hand, we note that the strength of the phonon

pole or theD parameter does not vary much between the
various chalcopyrites and is about 1.5. The effect of adding
the terms withD andE can be seen in Fig. 5.

We finally adjust the SellmeyerA parameter slightly to
correct for our underestimate of the individual indices of
refraction. This leads us finally to the estimated Sellmeyer
parameters given in Table II, in which we also give the in-
dices of refraction that result from them for long wavelength
and the calculated strain derivatives. Our calculations for dif-
ferent strains for both CdSiAs2 and CdSiP2 indicate that not
only the birefringence but each of the indicesno and ne sepa-
rately vary linearly with strain.

C. Phase matching angles

Having a convenient analytic expression for the indices of
refraction, it is then straightforward to obtain the phase
matching angle for type-I SHG, i.e., the angle between the
optical beam and the optical axis for which thev and 2v
beams are phase matched, given by

sin2 u =

1

nosvd2 −
1

nos2vd2

1

n̄es2vd2 −
1

nos2vd2

<
nos2vd − nosvd
n̄es2vd − nos2vd

, s3d

wheren̄e is the principal value of the extraordinary index of
refraction, i.e., for polarization along thec axis. Another pro-
cess of interest is difference frequency generation. In this
case, we are interested in a type-IIeoo process in which a
pumpp beam ofe polarization of frequencyv gives rise to a
signal s and idler i beam both ino polarization of two fre-
quencies which add up tov. The phase matching equation
for this case can be found in Ref. 19 and is given by

sin2 uPM =
snp

ed2

fslp/lsdns
o + slp/lidni

og2

3S snp
od2 − fslp/lsdns

0 + slp/lidni
og2

snp
od2 − snp

ed2 D . s4d

One can also consider the idler as a second pump beam and

TABLE I. Phonon data, phonon frequencynTO, corresponding
optical wavelengthlTO, and Sellmeyer parameterE.

nTO scm−1d lTO smmd slTOd2 smm2d E smm2d

ZnGeP2 399 25.1 628 660

CdGeP2 384 26.0 676 671

CdGeAs2 272 36.8 1354 1370

ZnSiAs2 405 24.7 610 700

CdSiP2 489 20.4 418

CdSiAs2 391 25.6a 655

aEstimated from Ref. 14 as explained in the text.

TABLE II. Estimated Sellmeyer coefficients, index of refraction, and strain derivative for CdSiAs2 and
CdSiP2. The first column gives theA coefficient obtained by fitting to the first-principles calculations and the
second column gives theA coefficient slightly adjusted to match the experimental indices and birefringence.
The indicesn correspond toÎA+B using the adjusted value ofA. The resulting birefringenceDn and its strain
derivative is given separately.

A (calculated) A (adjusted) B C smm2d D Esmm2d n dn/dh

CdSiAs2
no 4.523 6.823 4.742 0.164 1.5 660 3.40 −1.2

ne 6.071 8.321 3.126 0.245 1.5 660 3.38 0.5

Dn −0.02 1.7

CdSiP2

no 2.747 6.747 4.784 0.076 1.5 420 3.40 −0.8

ne 3.162 7.107 4.107 0.086 1.5 420 3.35 1.5

Dn −0.05 2.3
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the signal as the generated difference, although in an optical
parametric oscillator(OPO) only a single pump is used and
the desired signal is selected by a resonant cavity effect. We
note that ifls=li, these equations reduce to the one for SHG
of signal and idler combining to the pump.

In Fig. 6 we show the results for CdSiAs2 as function of
strain. We see that a minimum compressive strain ofh
=−0.0015 is required to have any phase matching at all, cor-
responding to the innermost curve. In fact, for compressive
strains smaller than this, the birefringence is simply to small
to give any solutions of the Eq.(3) because the dispersion in
the midinfrared range is too strong. With increasing strain,
the curves move outward. Of particular interest are the wave-
lengths for which the phasematching angleuPM=90° since
this corresponds to NCPM. In particular, we note that CO2
lasers have a manifold of sharp laser lines in the wavelength
range 9−11.5mm. This corresponds to 4.5–5.75mm for the
frequency doubled wave. Thus we can see that a strain of
about −0.007 to −0.015 is required to cover this range. On
the other hand, if we would frequency double a CO2 laser
line twice, we would need to cover the range 2.25 to
2.75mm. We see that we can indeed have NCPM again for
this purpose now on the left-hand side of the curves with
smaller strains of about −0.0015 to −0.0035

One could also use difference frequency generation with a
pump near 2mm (for example, with a Ho-YAG or Tm-
YAG laser) and obtain a signal and idler beam both at about
4 mm in an OPO under NCPM conditions. This again would
require compressive strains of order −1%. Note, however,
that if we consider NCPM, i.e., sinuPM=1, Eq. (4) reduces
simply to

v1n
osv1d + v2n

osv2d = sv1 + v2dnesv1 + v2d. s5d

Thus, for a chosen pump frequencyv1+v2 and any desired
signal frequencyv1,vpump, we just have to find the strain
such that Eq.(5) is satisfied. Since the birefringence varies
linearly with strain, this simply means

sv1 + v2d
dDn

dh
h = fv1n

osv1d + v2n
osv2d

− sv1 + v2dnesv1 + v2dgh=0, s6d

where the right-hand side can be evaluated straightforwardly
using the data from Table II. For example, by pumping with
2 mm light, one could generate a signal and idler of wave-
lengths 6 and 3mm. In that casenosv1d=3.4106, nosv2d
=3.3912,nesv1+v2d=3.4120 and a the strain required for
NCPM is −0.0046.

The questions is now if strains of this magnitude are
achievable. To this purpose, we calculated the elastic con-
stant for uniaxial deformation along thec axis, which can be
expressed in terms of the elastic constants for a tetragonal

crystal with point group 4̄2 m as follows:

Cf001g = s2C33 − C11 − C12d/2, s7d

by evaluating the curvature of the energy(per unit volume) u
versus strainh curve

u =
1

2
Cf001gh

2. s8d

This is done using the FP-LMTO method mentioned earlier
and gives a value of 27 GPa, which seems reasonable in
comparison with elastic constants of for example GaAs. In
that case, the corresponding elastic constant would besC11

−C12d /2 which evaluates to 28 GPa using measured elastic
constants reported in the Landolt-Börnstein tables.16 This
means that a 1% compressive strain requires a stress of about
0.3 GPa. This is fairly large but not impossible to achieve.
For example, in studies of uniaxial deformation potentials of
semiconductors, one uses stresses up to 1 GPa.7

For OPO and SHG applications, one typically works with
bulk crystals because one needs to perform angular tuning.
However, under NCPM conditions, one might consider using
a thin film geometry since the beam would propagate in the
direction perpendicular to thec axis and thus in the film
(conventionally grown normal to thec axis). Fairly high
strains can be obtained in thin films by growing a film on a
mismatched substrate and thus putting it under biaxial strain.
For a 1% compressive uniaxial strain, roughly a 0.5% biaxial
tension is required. However, the achievable strains in this
way are usually significantly smaller, except in films of only
a few atomic layers, because of the generation of misfit dis-
locations which relax the strain. Nevertheless, it might be
possible to achieve the required strains simply by bending
the substrate on which the thin film is deposited and making
sure the beams follow the film by confining them within a
waveguide. Small adjustments of thec/a might also be pos-
sible by temperature tuning, since CdSiP2 and related chal-
copyrites have a strongly anisotropic linear thermal expan-
sion. 5

Alloying with CdSiP2 to make the birefringence more
negative is an alternative solution to tune the birefringence.
Linear dependence of the indices of refraction on alloy com-
position is not obvious, but is a frequently made assumption
in the field.1 A systematic verification of the linear depen-
dence on alloy composition would require one to model ran-

FIG. 6. Phase matching angleuPM as function of frequency
doubled wavelength for CdSiAs2 for different uniaxial strains:h=
−0.0015,−0.002,−0.003, . . . ,−0.015 from innermost to outermost
curve.
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dom alloys, which is beyond the scope of this paper. How-
ever, it is easily verified that the assumption of linear
dependence of the indices of refraction gives similar results
to the assumption of linear variation of the Sellmeyer coef-
ficients, another plausible assumption. Assuming linear
variation of the indices of refraction with composition and
using the parameters of Table II we obtain the results shown
in Fig. 7.

We can see that with increasing concentration ofP the
range of wavelengths for which phase matching is possible
increases. We also see that for pure CdSiP2 NCPM for SHG
occurs for optical wavelengths of the 2v beam at 4.6mm, or
the fundamental atl=9.2 mm, i.e., at the lower end of the
CO2 laser frequencies. To achieve NCPM SHG of longer
wavelengths one would need to increase the birefringence,
which again would be possible by compressive strain along
the c axis. NCPM OPO applications with pumps at about
1 mm would also be possible for pure CdSiP2, e.g., using the
popular Nd-YAG laser at 1.064mm.

D. Nonlinear optical coefficients

Having demonstrated the feasibility of phase matching for
CdSiAs2 under strain and for CdSiP2 and CdSisPxAs1−xd2

alloys we now consider thexs2d and the SHG figure of
merit18,19 (FOM) fxs2dg2/n3 in comparison with other chal-
copyrite semiconductors in Table III. The figure of merit is
chosen based on the fact that for SHG, the efficiencyh
=P2v /Pv for perfect phase matching is given by19

h =
8p2deff

2 L2Iv

«0nv
2n2vclv

2 , s9d

in SI units and wheredeff=
1
2xeff

s2d, L is the path length the
beam traverses through the crystal,Iv is the intensity of the
input beam, andlv is the wavelength of the input beam. The
NLO coefficients are taken from our previous calculations2,3

and the other properties from the Landolt-Börnstein tables.5

In this table, CdSiAs2 has the second highestxs2d. This
high value ofxs2d, is in fact, due to the very small negative
purely interband contribution toxs2d, such that the large posi-

tive mixed intraband-interband contribution dominates. As
discussed in Ref. 2, this is in contrast with the usual behavior
of the two contributions which in most chalcopyrites cancel
to a large extent. CdSiAs2 shares this unusual property with
CdGeAs2. Although CdGeAs2 has a much smaller phase-
matching angle of about 33.57° for CO2 frequency
doubling,20 it should be kept into account that for a positive
birefringent material the effectivexeff

s2d=xzxy
s2dsin 2u for aneeo

process and hence CdGeAs2 still seems to have a superior
xeff

s2d than CdSiAs2 even without NCPM. On the other hand,
the actual value of thexs2d of CdGeAs2 is still somewhat
uncertain and the theoretical value used here may be a bit
optimistic. This is because the band gap in CdGeAs2 is very
small and in fact negative in LDA(Ref. 17) and hence the
calculatedxs2d is more sensitive to the way in which one
corrects for the LDA band gap underestimate than in other
materials. However, CdGeAs2 has the disadvantage that
NCPM cannot be used and hence it is subject to the walk-off
problem. Compared with AgGaSe2, CdSiP2 has the advan-
tage of NCPM for desired wavelengths and has a competitive
xs2d and may have a higher thermal conductivity. However,
the AgGaSe2 and telluride have probably advantages in
terms of transparency range.

Indeed, another consideration for nonlinear optical appli-
cations is the transparency range. On the short wavelengths
side this is determined by the band gap. The band gaps of
CdSiP2 and CdSiAs2 are sufficiently large to allow for pump-
ing with about 1mm lasers, which gives them an advantage
over CdGeAs2 for those applications. At the long wavelength
side, the transparency is usually limited by the position of the
multiphonon lines. In particular, the optical absorption cor-
responding to two phonon generation tend to be rather strong
and may limit applications for CdSiP2, because the latter has
a fairly high phonon frequency because of the light P and Si
atoms. In fact, the optical wavelength corresponding to a two
phonon process is about 10mm which overlaps with the CO2
frequency range. Even three phonon processes are found to
limit applications of ZnGeP2 for CO2 doubling because they
occur at 8.3mm. Interestingly, the mid infrared absorption
data from Averkievaet al.14 do not show a three-phonon
absorption band for CdSiAs2 and the two-phonon absorption

FIG. 7. Phase matching angleuPM as a function of frequency
doubled wavelength for CdSisAs1−xPxd2 for x=0.1−1, the inner-
most curve corresponding tox=0.1.

TABLE III. Comparison of NLO properties for different chal-
copyrites. The experimental values of the band gapEgap and bire-
fringenceDn are taken from Refs. 5 and 6 the calculatedxs2d values
are from Refs. 2 and 3 and the experimental values between paren-
theses are from various sources quoted in the same papers where
the theoretical values are taken from.

Egap sevd xs2d spm/Vd Dn fxs2dg2/n3

CdSiP2 2.45 73 −0.051 135

CdSiAs2 1.55 139 −0.017 700

CdGeAs2 0.65 506s351−472d 0.110 5450

ZnGeP2 2.05 102s111−150d 0.039 330

AgGaS2 2.64 26s18−23d −0.055 50

AgGaSe2 1.80 66s64−68d −0.033 250

AgGaTe2 1.32 138 0.016 730
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band occurs at 12.8mm, i.e., beyond the CO2 laser line
manifold. Thus CdSiAs2 under compressive strain of about
1% may be suitable for CO2 frequency doubling as well as
for OPO applications with pumps near 2mm.

IV. CONCLUSION

In conclusion, our calculations indicate that both CdSiAs2
and CdSiP2 are II-IV-V2 chalcopyrite materials with signifi-
cant potential for NLO frequency conversion applications.
Their negative birefringence opens the way towards design
of noncritically phase matched materials by strain(and tem-
perature) tuning or by alloying between these two com-
pounds for various processes leading to wavelengths in the
midinfrared, such as optic parametric oscillators with pump-
ing by lasers at about 1−2mm or CO2 laser SHG. Our cal-
culations confirmed the negative birefringence of both
CdSiAs2 and CdSiP2. The actual calculated values were to
within 0.01 of the experimental values but furthermore indi-
cate the strong sensitivity of the birefringence to uniaxial
strain. A strain coefficientdDn/dh of about 2 was obtained
for both materials, indicating that with a strain of order 0.01
a significant change in birefringence can be realized.

While from the NLO coefficient point of view CdSiAs2 is
much more desirable than CdSiP2 (about a factor 2 larger
xs2d) its negative birefringence is slightly too small to over-
come the fairly large dispersion in the midinfrared. We
showed that even in the absence of index of refraction mea-
surements, we can estimate the midinfrared dispersion of the
index of refraction from a knowledge of the optical phonon
frequencies combined with our calculated data. We suggest
that the too low birefringence in CdSiAs2 could be overcome
by uniaxial compression. Our calculations show that the
strain coefficient of the birefringence both in CdSiP2 and
CdSiAs2 is of order 2, which is fairly large and allows for
tuning over the relevant range with uniaxial strains of the
order of 1%. This is not trivial but should be feasible with
currently available stress apparatus since it requires stresses
less than 1 GPa and by exploiting the fact that under NCPM
conditions thin films could be utilized instead of bulk crys-
tals.
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