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A general systematic method of predicting hypothetical crystal structures could enable important advances in
many areas of science. We describe a recently developed approach based on graph theory and density func-
tional theory and apply it to enumerate systematically a number ofsp3-hybridized carbon polymorphs with four
atoms per unit cell. The calculations predict three unknown structures that are potentially metastable under
appropriate pressure and temperature conditions. The theoretical properties of these hypothetical polymorphs
and their relative stability with respect to diamond are discussed.
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I. INTRODUCTION

The theoretical enumeration of crystal structures has been
an area of considerable scientific interest for many years. The
systematic prediction of molecules such as the fullerenes has
been possible for some time.1 However, methods used for the
prediction of bulk structures are often based on isomorphic
substitution of known structures or repetitions of known
molecules.2–4 In other words they are not free of intuition
and hence bias and do not necessarily lead to the complete
enumeration of all crystal structures under a given set of
criteria.

A potential approach to the systematic prediction of crys-
tal structures, based on the tiling of minimal surfaces, is de-
scribed by Friedrichset al.5 However, their theory is consid-
erably more complex than the approach presented below, is
not generally applicable, and is inefficient for small struc-
tures. A sphere packing method developed by Kock and
Fischer6 is based on the orbit of a point under all operations
of a three-dimensional space group. All pairs of points of the
orbit which are less than a specified distance apart are then
connected by a line. Unfortunately, this method does not al-
low the straightforward generation of all structures with a
specific number of atoms and bonds per unit cell.

Blatov7 independently made use of a reduced representa-
tion of nets, similar to the one described in this paper. His
graph-theoretical method has been applied to the analysis of
topological similarities of existing crystal structures8 and not
to the prediction of new crystal structures. Curtaroloet al.9

recently proposed mining existing data librarys to investigate
new crystal structures and hence incoporate the results of
large numbers of quantum mechanical calculations into the
prediction of structures.

The approach described in this paper is a combination of
graph theory and quantum mechanics which enables the sys-

tematic prediction of crystal structures under a given set of
constraints: for example, the number of atoms per unit cell
and coordination of the atoms. Results forsp3-hybridized or
fourfold-coordinated carbon polymorphs with four atoms per
unit cell are presented and discussed in Sec. IV. Previous
applications of this method tosp2-hybridized crystal struc-
tures with four and six atoms per unit cell are described by
Winkler et al.10,11

II. SYSTEMATIC PREDICTION OF BULK STRUCTURES

In 1977, Wells12 showed that a system of interatomic
bonds in a crystal structure could be completely represented
by a three-dimensional infinite graph known as anet.

Each atom is represented by a vertex of the net, and each
edge of the net represents a bond in the crystal structure. In
the cases we study, the graphs describe bonding—i.e., we
impose thesp3 hybridization—and bonding is considered to
be equivalent to connectivity(throughout this paper the
terms are used as synonyms). For clarity, we would like to
emphasize thatconnectivityis a geometrical feature, while
bondingis a crystal chemical concept, and these need not be
the same.

A net retains all the information on the connectivity of
atoms within the crystal. In turn, a crystal may simply be
thought of as anembeddednet, in the sense that precise
locations in Euclidean space are assigned to each vertex. A
two-dimensional example of a crystal layer and the corre-
sponding net are shown in Fig. 1; however, the theory may
be applied equally well to three-dimensional crystals.

To enable the systematic generation of nets the method
makes use of afinite or reducedrepresentation of nets in the
form of quotient graphs, described by Chunget al.13 A two-
dimensional example of a net and the corresponding quotient
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graph are shown in Fig. 1. Each unit cell of the net, and
hence the crystal it corresponds to, is made up of a pair of
vertices labeledA andB. The basis vectors for the coordinate
system,x andy, may be used to move from unit cell to unit
cell, completely mapping out the net.

Each vertex of the quotient graph corresponds to a class
of translationally equivalent vertices of the net. In other
words, it is the image of a class of translationally equivalent
atoms in the crystal. In the illustrated case, the vertices of the
net labeledA are mapped onto vertexa of the quotient graph
and those labeledB are mapped onto vertexb.

Similarly, each labeled edge of the quotient graph is the
image of a class of translationally equivalent edges of the
embedded net(or bonds within the crystal). The indices as-
signed to each edge of the quotient graph are the difference
between the coordinates of the cell in which an arbitary bond
ends and the cell in which it starts, expressed in terms of the
chosen coordinate system. The actual values of the indices
vary depending on the structure and choice of basis vectors
for the coordinate system. However, for real crystal struc-
tures, a coordinate system can be chosen such that the indi-
ces are from the domainh−1,0,1j. Parallels may be drawn
between the relationship of a quotient graph and net and the
relationship of a primitive unit cell and the corresponding
crystal. More elaborate arrangements are also possible; for
example, groups of atoms may be mapped onto a single ver-
tex or an oxygen bridge could be mapped onto a single edge.
However, such complex mapping is outside the scope of the
structures studied in this paper.

The direct mapping between a crystal and its correspond-
ing quotient graph is illustrated in Fig. 2. A reverse mapping
from quotient graph to crystal is also feasible. However, the
reverse mapping is not straightforward as the basis vectors
for the coordinate system needed to map between the quo-
tient graph and the crystal, and the positions of nodes within
the cell are unknown and require optimization. Since all
crystal structures can be mapped onto a quotient graph, in
principle it is possible to reverse the procedure and generate
possible crystal structures through the enumeration of quo-
tient graphs.

The approach has the advantage that for a given connec-
tivity and number of atoms per unit cell all finite labeled
quotient graphs can be determined using combinatorial tech-
niques, leading to the complete enumeration of all possible
nets. The method used is based on the vector method de-
scribed by Chunget al.13 The practical implementation and
application of the technique to threefold-coordinated nets
with four and six vertices per unit cell is discussed in Bader
et al.14

The first stage of the approach consists of generating all
of the finite graphs that will become quotient graphs, under
the constraints of the crystal structures to be investigated. In
other words, the number of vertices in the graph must be
equivalent to the predicted number of atoms per unit cell,
and the number and arrangement of edges must match the
connectivity of the structures to be studied. The algorithm
used to enumerate the graphs is quite complex, as additional
steps and constraints are included to reduce the number of

FIG. 1. (Color online) An illustration of a two-dimensional crystal layer, its corresponding net, and quotient graph.

FIG. 2. (Color online) A schematic diagram of the relationship between the crystal, lonsdaelite, and its quotient graph.
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redundant graphs. However, a basic summary of the algo-
rithm follows.

(i) Enumerate all nonisomorphic graphs with the required
number of vertices and further match the imposed constraints
for connectivity.

(ii ) Arbitrarily orientate all edges in the graph.
(iii ) Complete the labeling of the graphs.
Edges of the finite graphs are labeled with all possible

combinations of index triples sr ,s,td where r ,s,t
P h−1,0,1j. In addition, loops may not have the label
s0,0,0d and no pair of parallel edges may have the same
label or a label that results from multiplying all indices of the
other label by −1. Each finite graph may generate more than
one labeled quotient graph leading to different nets.

(iv) Eliminate quotient graphs describing isomorphic
nets. The labeled quotient graphs are checked for isomor-
phism and one representative is selected from each isomor-
phic group and taken forward to the next, embedding, stage.

There are also a few cases where isomorphic nets belong to
nonisomorphic quotient graphs, but these may be recognized
by studying invariant properties of the quotient graphs, such
as cycle sequences.1,15

A very high number of superfluous graphs are produced
by this approach, hence the importance of producing a pro-
gammable algorithm to implement computationally the
theory of Chunget al.13

The next stage of the method is the tentative embedding
of each net obtained from the quotient graphs into Euclidean
space. The idea of embedding is to approximately define the
basis vectors for the coordinate system needed to map from
the quotient graph to the crystal, producing a crystallographi-
cally viable net.

A net is said to have yielded anacceptableembedding if
it meets the following requirements.14

(i) The distance between adjacent vertices of the net is 1.
(ii ) The distance between nonadjacent vertices of the net

is greater than 1.
The second requirement is due to the choice of investigat-

ing carbon polymorphs, where the connectivity described by
the graphs actually corresponds to interatomic bonding. In a
more general case the presence of complex coordination
polyhedra including atoms in a second coordination shell
could be required for a succesful embedding. Those nets that
meet the above criteria are potentially of crystallographic
interest and are retained. An atom may then be added to the
net at each vertex and the length of the edges of the net
scaled so that the distance between atoms is average for the
examined type of structure.

TABLE I. Structures, space groups, lattice energies relative to diamondsDEd, and densities of the hypo-
thetical carbon polymorphs.

Structure
Space
group

Lattice parameters Atom positions DE Density

Cell anglessÅ,degd x/a, y/b, z/c seV/atomd sg/cm3d

A Fd3̄m 3.5658 3.5658 3.5658 0.0000 0.0000 0.0000 0.000 3.519

Diamond

B Fd3̄m 3.5658 3.5658 3.5658 0.0000 0.0000 0.0000 0.000 3.519

Diamond

C Ps63/mdmc 2.5074 2.5074 4.1735 0.6667 0.3333 0.4373 0.025 3.511

Lonsdaelite

D Is4/mdmm 4.3717 4.3717 2.5061 0.3197 0.3197 0.0000 0.198 3.331

E Imma 4.9327 2.5434 4.1958 0.1629 0.2500 0.6042 0.364 3.031

F C2 3.7694 6.2448 2.4757 0.0000 0.1116 0.5000 0.803 2.950

90.00 68.17 90.00 0.3761 0.2442 0.3042

0.5000 0.4689 0.0000

G P4122 3.1017 3.1017 2.4487 0.5000 0.1458 0.0000 1.101 3.387

H Fddd 2.4304 4.9396 7.5260 0.0000 0.0000 0.1880 1.138 3.532

I C2 3.9981 4.3078 3.8750 0.1674 0.4445 0.2274 1.328 2.865

90.00 123.94 90.00 0.3893 0.2419 0.5945

J I212121 6.5973 2.5921 2.7514 0.2500 0.3216 0.0000 1.579 3.391

0.0766 0.0000 0.2500

K I212121 5.9468 2.8971 2.9161 0.0000 0.2500 0.8719 1.677 3.176

0.2500 0.3620 0.0000

FIG. 3. Set of ten unlabeled quotient graphs with four fourfold-
coordinated vertices.
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The final stage of the method makes use of density func-
tional theory(DFT) to optimize the geometry of acceptably
embedded quotient graphs. DFT is an efficient way to use
quantum mechanics to calculate the ground-state electron
density and total energy of a system of interacting electrons
for a given configuration of ions. No assumption is made
about the nature of the system to be studied; instead, the
approximations are based on general principles of physics.
DFT is an accurate tool for the calculation of interatomic
distances, bond angles, crystal density, and unit cell volume
and properties such as the relative stability of structures, vi-
brational spectra, and elastic properties. More detailed re-
views of the total energy pseudopotential method may be

found in Payneet al.16 and Segallet al.17 Any candidate
structure that, after a full geometry optimization, is stable
with respect to small strains is said to be a potential poly-
morph. Some nets produced by embedding quotient graphs
in Euclidean space do not survive this final stage with their
connectivity intact and are discarded.

III. COMPUTATIONAL DETAILS

In order to demonstrate the above method we investigated
sp3-hybridized fourfold-coordinated framework carbon poly-
morphs with four atoms per unit cell. Any member of this
class of structures can be completely mapped onto one of the

FIG. 4. (Color online) Diamond, produced by quotient graphsA andB.

FIG. 5. (Color online) A selection of geometry-optimized structures of hypothetical carbon polymorphs.
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ten as yet unlabeled quotient graphs shown in Fig. 3. Based
on these graphs, the enumeration algorithm produced
roughly 403106 labeled quotient graphs, of which 67 507
describe distinct nets. Embedding the nets into Euclidean
space produced 27 candidate structures suitable for geometry
optimization.

The DFT calculations presented below were carried out
using a DFT codeCASTEP.17 CASTEP determines the elec-
tronic ground state of periodic systems by using a plane-
wave basis set to represent the wave functions. Nonlocal
ultrasoft pseudopotentials18 were used to describe the
electron-ion interaction. Exchange-correlation effects in the
electron gas were described in the generalized gradient ap-
proximation(GGA) due to Perdewet al.19 Reciprocal space
was sampled using the Monkhorst-Pack scheme20 with a dis-
tance between grid points of 0.05 Å−1. The plane-wave basis
set cutoff energy was 550 eV.

A BFGS algorithm21 was used for geometry optimization.
A structure was said to be successfully optimized when the
maximum ionic force on all atoms was less that 0.05 eV Å−1

and the maximum component of the stress tensor was less
than 0.08 GPa.

IV. RESULTS FOR sp3-HYBRIDIZED CARBON
POLYMORPHS

Eleven of the 27 candidate structures maintained their
original connectivity as they were embedded into Euclidean
space and optimized. The geometry, space group, density,
and lattice energy for these structures are described in Table
I. Structures were optimized in two different ways, either
with the symmetry of the original structure constrained or
with only the translational symmetry maintained. Each struc-
ture led to the same optimized result in both cases, suggest-
ing that the final predicted polymorphs are all stable with
respect to small distortions of the lattice.

Diamond and lonsdaelite were produced by the method.
The crystal structures and original quotient graphs are illus-
trated in Figs. 4 and 2, respectively. Diamond appears twice
as graph theory produced two nonisomorphic quotient graphs
that both correspond to a double primitive cell of diamond.

Three of the unknown structures have a lattice energy
within 0.803 eV/atom of diamond and may be metastable
under certain temperatures and pressures. The five remaining
structures are unlikely to be found in nature as their calcu-

lated lattice energies are more than 1.1 eV/atom greater than
diamond. Figure 5 illustrates the unknown structures and the
corresponding quotient graphs. All of the structures apart
from structure H are less dense than diamond. Following
geometry optimization, the carbon-carbon bonds range from
1.430 to 1.736 Å, which are consistent with experimentally
observed distances betweensp3-hybridized carbon atoms.
The most stable structures have bond angles between 90°
and 120°.

Sixteen of the structures did not survive the final geom-
etry optimization with their connectivity intact. Two of these
structures did not relax to within the required stress con-
straint, suggesting that they would be unstable. The remain-
ing structures contained somesp2-hybridized bonds or con-
sisted purely of sp3-hybridized bonds with a different
connectivity to the original quotient graph. Those structures
that were purelysp3-hybridized were the same as some of
the final optimized structures that had maintained connectiv-
ity throughout the optimization process.

Some of the quotient graphs studied were clearly likely to
be very unstable from the outset as they contained three-
membered rings. An example of a quotient graph that con-
tained a triangular structure and the optimized structure that
did not maintain connectivity are shown in Fig. 6. The quo-
tient graph implies that the net contains neighboring three
and four-membered rings; however, the optimized structure

FIG. 7. Total density of states(thin line) andp-projected partial
density of states(thick line) for two of the more stable carbon
polymorphs.

FIG. 6. (Color online) The quotient graphL, which did not retain the original connectivity.

SYSTEMATIC PREDICTION OF CRYSTAL… PHYSICAL REVIEW B 70, 045101(2004)

045101-5



consists of four- and six-membered rings. Two such quotient
graphs maintained their connectiviy to produce structuresF
and I. However, extra care was needed during optimization.
Quotient graphs containing four-membered rings produce
stable structures in both thesp3 and previously studied
sp2-hybridized cases.11 Four-membered carbon rings are
found in cubane and related compounds,22,23 but have not as
yet been found experimentally in crystals.

Figure 7 illustrates the total density of states(DOS) of
two of the more stable polymorphsE andD. Thep-projected
DOS may be correlated to an experimentally measured elec-
tron energy loss spectrum(EELS), allowing the identification
of local phases of polymorph within a sample. A range of
DFT calculated elastic constants is shown in Table II. The
error shown on the bulk modulus, which expresses the re-
sponse of the material to an isotropic compression, is due to
the fitting scheme used as opposed to an absolute error. It
may be seen from the compressibility of the structures that
none of them are expected to be stiffer than diamond. The
computed indirect GGA band gaps of the set of polymorphs
that are insulators range from a diamondlike 4.5 eV to a

siliconlike 1 eV, suggesting the possibility of band-gap en-
gineering using the polymorphs. DFT has a tendency to cal-
culate a theoretical band gap that is smaller than that found
experimentally in certain systems;24 hence, the band gaps
have been compared to DFT-calculated values throughout.

Fyta et al.25 investigated the energetics and thermody-
namic stability of nanostructured amorphous carbon includ-
ing an embedded sample of thesp2-hybridized structure
polymorph previously predicted by Winkleret al.10 using the
graph-theoretical method. Thesp2-hybridized structure was
considered as a possible candidate structure for the fragmen-
tation and distortion of embedded nanotubes in an amor-
phous matrix. They report that it is possible that the
sp2-hybridized structure could transform to metastable dia-
mond under appropriate pressure conditions. This recent ex-
perimental work25 shows that polymorphs predicted using
graph-theoretical methods are of great potential interest in
crystallography, chemistry, physics, and materials science.

V. CONCLUSIONS

The combination of graph theory and quantum mechani-
cal calculations described in this paper allows the enumera-
tion of crystal structures for a specified number of atoms per
unit cell and coordination of atoms. This investigation has
predicted three unknown potentially metastable
sp3-hybridized carbon polymorphs with four atoms per unit
cell; however, this approach could be applied equally well to
other potential crystal structures.

While the current study cannot point towards the synthe-
sis routes for such novel polymorphs, the structural and spec-
troscopic data provided here may aid in their identification.
The current results can also be used to study hypothetical
polymorphs in structurally related compounds such as silicon
carbide and boron nitride.
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