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We study the linear response spin Hall conductivity of a two-dimensional electron gas(2DEG) in the
presence of the Rashba spin-orbit interaction in the diffusive transport regime. When defect scattering is
modeled by isotropic short-range potential scatterers the spin Hall conductivity vanishes due to the vertex
correction. A nonvanishing spin Hall effect may be recovered for dominantly forward defect scattering.
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Spintronics is the rapidly developing field of research
aimed at using not only the charge but also the spin degree of
freedom of electrons in electronic circuits and devices.1 In
order to be compatible with microelectronic technology, ef-
fective spin injection into conventional semiconductors is
necessary. Injection of spins via attached ferromagnets has
turned out to be quite difficult.2,3 This is one motivation to
investigate the possibilities of making use of the spin-orbit
(SO) interaction, which may spin-polarize a nonmagnetic
conductor simply by applying a source-drain bias.4–9 The
two-dimensional electron gas(2DEG) is an ideal model sys-
tem to investigate the physics of these effects. In sufficiently
asymmetric confinement potentials the so-called Rashba
term dominates the SO interaction.10 The Datta spin transis-
tor concept11 is based on the tunability of the Rashba inter-
action by an external gate potential.12

Applying an electric field in thex direction of a Rashba
2DEG spanning thex,y plane induces a charge current in the
x direction, and also a homogeneous spin accumulation in
the y direction proportional to the field strength.6,7 Recently,
Sinova et al. reported a persistent spin Hall current9 for a
ballistic Rashba 2DEG. The acceleration of the electrons by
the external electric field(along thex direction) modifies the
SO-induced pseudomagnetic field such that the spins are
tilted out of the 2DEG plane in directions that are opposite
for positive and negative lateral momentumskyd states. This
corresponds to a flow ofsz= +1/2 and −1/2spins in oppo-
site directions without a corresponding net charge transport.9

Sinova et al. suggest that the spin Hall current should be
rather robust against disorder scattering, which implies that
the effect is measurable in Hall bars of mesoscopic dimen-
sions. Note that the ballistic spin Hall effect is quite different
from the spin Hall effect reported earlier for diffuse para-
magnetic metals, which is caused essentially by impurity
scattering.13,14 In the weak scatteringregime, in which the
broadening is smaller than the SO-induced splitting of the
energy bands, the lifetime broadening of the self-energy has
recently been found to have small effects on the ballistic spin
Hall current.15,16 In this Rapid Communication we study the
effect of disorder on the spin Hall effect in the diffuse re-

gime, in which the scattering rate is larger than either the
frequency or the inverse sample traversal time, but for weak
scattering. By taking into account the vertex correction we
find that the spin Hall effect vanishes identically for short-
range impurity scattering.

We model the disorder by randomly distributed isotropic
short-range potentials and compute longitudinal and trans-
verse(Hall) conductivities for both charge and spin currents
by the Kubo formalism in the Born approximation and in the
low temperature limit. The SO interaction is subject to a
significant conductivity vertex correction,7 which we find
here to be decisive for the spin Hall current. The vertex
correction appears in such a way that the current operator
along thex direction corresponding to the Rashba Hamil-
tonian Jx=ehs"k/md1−lsyj is modified by substitutingl

→ l̃=l+l8. Heresi si =x,y,zd are the Pauli spin matrices.
The correction terml8 is not necessarily small compared
with l and found to be −l in the weak scattering regime.
Only without the vertex correction does the spin Hall con-
ductivity tend toe/8p as predicted by Sinovaet al.9 Physi-
cally, the diffuse scattering represented by the vertex correc-
tion efficiently scrambles the precession of spins out of the
2DEG plane induced by the applied electric field such that
no net spin Hall current remains. On the other hand, the
induced spin accumulation in they direction is much less
sensitive to impurity scattering.7 The spin Hall conductivity
may persist for long-range, anisotropic defect potentials that
correspond to predominantly forward scattering.

The Rashba Hamiltonian in the momentum representation
and Pauli spin space reads

H0 = Ss"2/2mdk2 il"k−

− il"k+ s"2/2mdk2D , s1d

where k=Îkx
2+ky

2, k±=kx± iky with k =skx,kyd the electron
momentum in the 2DEG plane, andl parametrizes the tun-
able spin-orbit coupling. The eigenfunctions and eigenvalues
of the Hamiltonian corresponding to periodic boundary con-
ditions are given as
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fks =
1

Î2L2
eik·rSisk−/k

1
D , s2d

Eks=
"2k2

2m
+ sl"k, s3d

respectively, withs= ±, andL2 is the area of the 2DEG. The
corresponding(free) Green function is denoted asgksszd
=1/sz−Eksd with an energyz on the complex-energy plane.

The disorder is modeled as randomly distributed, identical
defects with point scattering potentials that are neither spin
dependent nor flip spins

Vsr d = V1o
i

dsr − Rid, s4d

which gives rise to an isotropic(s-wave) scattering of elec-
trons. The configurational averaged Green function reads

G̃sk ± d =
1

z− Ek± − Sk±szd
. s5d

In the Born approximation the self-energySszd is a state-
independent constant:

Sszd =
nV2

2L2o
ks

gksszd, s6d

wheren is the impurity concentration andL denotes the lin-
ear dimensions of the sample. The self-energy at the Fermi
energy is related to the scattering lifetimet via uIm Su
=" /2teF.

The charge current operator in spin space reads17 Jx
=e]H0/]px=esbkx1−lsyd andJy=e]H0/]py=esbky1+lsxd
with b=" /m. The spin currents are represented by the Her-
mitian operators9

Ja
si =

"

4
hya,sij =

"

4
H ] H0

] pa

,siJ , s7d

where a=x, y, and z. Thus Jx
sx=s" /2dbkxsx, Jx

sy

=s" /2ds−l1+bkxsyd and Jx
sz=s" /2dbkxsz, whereas Jy

sx

=s" /2dsl1+bkysxd , Jy
sy=s" /2dbkysy, andJy

sz=s" /2dbkysz.
The Kubo formula for the longitudinal electrical conduc-

tivity can be written

sxx =
"

2pL2TrkJxG
RJxG

Alav, s8d

where the superscriptsR and A stand forretardedand ad-
vanced, respectively(omitted below for brevity), and the
trace is taken over wave vectors and band index. We evaluate
kJxGJxGlav=JxkGJxGlav;JxKx in the ladder approximation
that obeys the Ward relation with the self-energy in the Born
approximation. This leads to the Bethe-Salpeter equation

Kx < G̃JxG̃ + G̃kVKxVlavG̃. s9d

Kx=G̃J̃xG̃ has the same structure asG̃JxG̃, and7

J̃x = eSbkx1 +
l̃

k
skxsz − kysydD , s10d

with l̃=l+l8. The vertex correctionl8 is the solution of

l8 =
nV2

4L2o
k1

fbk1Pk1

− + sl + l8dsPk1

+ + Pk1

+− + Pk1

−+dg,

s11d

with Pk
s=Pk

+++sPk
−− andPk

ss8=G̃ksG̃ks8.
The generalized spin conductivity tensor in Pauli spin

space reads

sax
si =

"

2pL2TrJa
sikGJxGlav ,

"

2pL2TrJa
siKx, s12d

where the vertex function is the same as before. Symmetry
tells us that

TrJx
sxKx =

e"b

8
Trfbk2P+ + l̃kP−gsx, s13d

TrJx
syKx =

e"b

8
Trfbk2P+ + sl̃ + ldkP−

+ ll̃sP+ − P+− − P−+dgsy, s14d

TrJx
szKx =

e"b

8
Trfbk2P+ + l̃kP−gsz, s15d

TrJy
sxKx =

e"b

8
Trfl̃ksP+− − P−+d − lkP−

− ll̃sP+ − P+− − P−+dgsy, s16d

TrJy
syKx = −

e"bl̃

8
Tr ksP+− − P−+dsx, s17d

TrJy
szKx = i

e"bl̃

8
Tr ksP+− − P−+d1. s18d

Because the Green functions depend only onk, the angular
averages ofkx

2 andky
2 arek2/2, and odd terms with respect to

kx andky in the trace of the equations above vanish by sym-
metry. Without the SO interaction, all matrix elements of
Ja

siKx vanish except forJx
sxKx, Jx

syKx, and Jx
szKx. But also

these terms become zero after taking the trace. This means
that no spin current flows along the external electric field.7

Only the spin Hall conductivitysyx
sz proportional to TrJy

szKx
is nonzero, indicating that a spin Hall current along they
direction and polarized in thez direction may exist when an
external electric field is applied alongx, as predicted for the
ballistic limit.9

The magnitude of the spin Hall effect can be calculated
easily by adopting the following approximation for the prod-
uct of Green functions at the Fermi energyeF,
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G̃sksdG̃sksd <
2pt

"
dseF − Eksd, s19d

which holds when the energy dependence of the self-energy
is weak and the broadening is small compared to the SO
energy splitting at the Fermi energy,uIm S u !2"lk. Equa-
tion (19) implies that in the weak scattering limit only elec-
trons at the Fermi energy contribute to the spin Hall current.
Then

syx
sz = − sxy

sz =
el̃

8pl
s20d

for eF.0. This agrees with the ballistic resultsyx
sz=e/8p by

Sinovaet al.9 except for a factorl̃ /l=1+l8 /l due to the
vertex correction, but is identical to it when the vertex cor-
rectionl8 is neglected.

By substituting Eq.(19) into Eq. (11), the vertex correc-
tion l8 is evaluated asl8=−l, i.e., the spin Hall conductivity
vanishes. Equation(19) is equivalent to the weak scattering
or strong SO interaction limit. As far as the spin Hall current
is concerned, the effect of the impurity vertex correction is
thus found to be much more important than that of the im-
purity self-energy in the Green function treated by Schli-
emann and Loss15 and by Sinitsynet al.16

The ballistic result can be recovered by considering the
frequency dependent conductivity

smn
j = lim

v→0

Qmn
j svd − Qmn

j s0d
− iv

, s21d

in terms of the correlation function

Qmn
j sin,d =

1

L2b
o
m

TrfJm
j Gsivm + in,dJnGsivmdg s22d

=
1

L2TrJm
j Knsin,d, s23d

with

Knsin,d =
1

b
o
m

kGsivm + in,dJnGsivmdlav. s24d

The vertex correction is calculated as before resulting in

Kxsin,d =
1

b
o
m

G̃sivm + in,dJ̃xG̃sivmd, s25d

whereJ̃x includesl̃=l+l8svd with

l8svd < −
"

t

l

− i"v + "/t
, s26d

and lettingin,→"v+ i0. Here we assumed thatv!eF and
[as in Eq.(19)] weak scattering.18 This result generalizes Eq.
(20). When thet→` limit is taken first, l8svd→0, thus
recovering the ballistic limit.9 When we take thev→0 limit
first, l8svd=−l, and the spin Hall conductivity vanishes as
before.

We made the rather crucial approximation that the scatter-
ing potential is short-ranged, thus isotropic in momentum
space. As mentioned above, Sinovaet al.9 explain the ballis-
tic spin Hall current in terms of the precession of spins out of
the 2DEG plane when accelerated by the electric field. The
extra momentum change is only meaningful for electrons
near the Fermi surface, viz., the spin Hall current in the
Rashba 2DEG is carried only by electron spins near the
Fermi surface. In the presence of isotropic impurity scatter-
ing, electrons with momentumk are scattered into all other
momentak8 at the Fermi energy with equal rate, and the spin
Hall current disappears with the average spin tilting. This
picture is not appropriate anymore when the impurity poten-
tials are long-ranged, scattering predominantly in the for-
ward direction. In that case the short-range model misrepre-
sents the “skew scattering” corresponding to a nonzero Hall
angle.19 We argue below that the spin Hall conductance re-
acts more sensitive to randomization than the diagonal con-
ductancesxx.

20

For long-range anisotropic scatterers the longitudinal con-
ductivity is governed not by the energy lifetimet but the
transport(momentum) lifetime tt because the momentum in-
tegration in the vertex function overV2kx (x is the current
direction) does not vanish.18 Physically this means that the
forward (small angle) scattering does not contribute to the
resistivity. Without SO interaction, the vertex correction due
to anisotropic scattering reads

b8 =
knV2l
2L2

1

k
o
k1

sb + b8dPk1

+ , s27d

where b=" /m, 1 /k=t /t1, and knV2l is an average of the
scattering potential over the Fermi surface. The transport
lifetime is given by 1/tt=1/t−1/t1.

When the SO interaction is incorporated into this vertex
correction, the expression of the longitudinal charge conduc-
tivity and spin accumulation obtained before7 are modified as

sxx = 2Fe2tt

m
n0 + e2Dttl

2G s28d

and

ksyl = 2tteEDl, s29d

respectively. Here we have used the following relations:
1/t=2pnV2D /"=nV2m/"3, with D=m/2p"2, where D is
the density of states of 2DEG. Note that the relationsxx

↑↑

=sxx
↓↓ holds for arbitrary values ofb8 andl8.
The spin Hall effect may survive when small angle scat-

tering dominates because only states close to each other in
momentum space are scrambled. The anisotropy may affect
the effective current operator in Eq.(11): the first term in
parenthesis on the right-hand side becomesl in the isotropic
scattering case and is likely to dominate for not too large
long-range potentials. The vertex correctionl8 is then given
by
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l8 =
knV2l
4L2

1

k8
o
k1

bPk1

− , s30d

in which k1x
2 andk1y

2 =k1
2−k1x

2 are replaced with weighted av-
eragesk1

2/2k8 and k1
2−k1

2/2k8 over the angle. With 1/k8

=t /t8, we getl̃=st /tHdl and 1/tH;1/t−1/t8. In the iso-

tropic case,tH→` and l̃→0, but in general the spin Hall
current is finite. This argument does not take into account the
full effects of the anisotropy but demonstrates how the vertex
correction for anisotropic scattering affects the spin-Hall
conductivity.

Burkov and MacDonald21 computed the spin Hall conduc-
tivity for the Rashba 2DEG model system with short-range
impurity scattering. These authors focus on the dirty limit in
which the lifetime broadening exceeds the SO energy split-
ting, opposite to the clean limit discussed here, but also find
a vanishing spin Hall current. A recent numerical study for
finite size systems22 found that the spin Hall conductivity
vanishes when the system size is larger than the localization
length. A direct comparison is not straightforward because
the scattering strength in the numerical calculations is not
weak and the mean free path, localization length, and system
size are of the same order of magnitude, whereas we work
with a weak scattering approximation and an infinite system
size. Still, it appears that our analytical results are not in
conflict with the outcome of these simulations.

Murakami et al.8,23 developed a theory for the spin Hall
currents in hole-doped semiconductors described by the Lut-
tinger Hamiltonian. Separating the spin Hall current into a

topologically conserved(intraband) and nonconserved(inter-
band) contribution,23 these authors contend that the former,
which does not exist in the Rashba 2DEG, is robust against
impurity scattering.24 The breakdown of the spin Hall current
by impurity scattering in the Rashba 2DEG discussed here
would then correspond to the vanishing of the nonconserved
part of the spin Hall current. Microscopic calculations for the
Luttinger Hamiltonian analogous to the present ones are nec-
essary to unambiguously prove that the topological spin Hall
current indeed survives under impurity scattering.

In conclusion, we have examined the effect of impurities
on the spin Hall conductivity of a Rashba-split 2DEG and
found that the vertex correction(diffuse electron scattering)
to the conductivity is essential, causing the spin Hall effect to
vanish.

Note added in proof. Recently, we have become aware of
a paper by Murakami25 that confirms that the spin-Hall cur-
rent vanishes in the diffuse Rashba 2DEG but that the vertex
correction does not affect the spin-Hall current in the Lut-
tinger hole system.
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