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Magnetoplasmons in nondegenerate quantum wires on suspended helium films
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Magnetoplasmon spectra for the nondegenerate surface electrons confined in a quasi-one-dimensional chan-
nel over a liquid helium film are determined within a microscopic approach in the limit of strong magnetic
fields when the electrons occupy the lowest spin-split Landau level. It is shown that the dispersion relation and
the spatial structure, transverse to the channel, of the magnetoplasmons have a length=s@lém(?
>{,, where() is the confining frequency and, is the magnetic length. We find acoustic modes, whose
velocities as a function of the gate distance exhibit a highly nonlinear behavior under certain conditions, in
particular, the appearance of anticrossings.
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[. INTRODUCTION In order to further reduce the degree of freedom of the
surface electrons, a structured substfatshaped, rectangu-
Electrons trapped in quantum surface states depositddr stripes, bent foil, etg.should be introduced to restrict the
over the surface of a liquid helium or other cryogenic sub-electron motion to a narrow channel forming a nondegener-
strates have been extensively studied both theoretically anate quasi-one-dimensional electron systt\®@1DES.'® The
experimentally for the last 30 yeatShe quantum confine- NQ1DES was also created by suspending a helium film be-
ment along the direction perpendicular to the surface due totween metallic ribs which are also used as measuring elec-
a combination of the attractive liquid polarization potentialtrodes for probing a single isolated electron wire in the
and a repulsive barrier coming from the Pauli exclusion princhannel® In Ref. 16, the authors observed resonances in the
ciple leads to the formation of electron subbands analogousieasured current along the channel as a function of the mag-
to the electron system in semiconductor heterostructu#és. netic field which were attributed to low-frequency magneto-
low temperatures, the electrons are frozen out in the lowegilasmon excitations of the NQ1DES. Recently microelec-
state of the potential well floating more or less freely overtronic devices confining the electrons in microchannels have
the surface. The resulting two-dimensional electron systerbeen fabricated which constitute potential tools for the re-
(2DES can be considered as nondegenef®8DES be-  alization of quantum computing with electrons floating on
cause the Fermi energy is much less the thermal energy #tjuid helium, as suggested by Platzman and Dykrfan.
electron densities attainable experimentally. Previous microscopic study on the long wavelength fun-
Special attention has been given in understanding manydamental magnetoplasmon excitation of the NQ1DES, later-
body properties of the N2DES motivated initially by the ex- ally confined by a parabolic potential, somehow analogous to
perimental investigation of the 2D plasmon dispersion andhe fundamental EMP, showed that the spectrum has the fol-
damping? Afterwards the observation of edge magnetoplas{owing form:21°
mons(EMP9 constituted another intriguing and unexpected
discovery in the N2DE$® EMPs are chiral collective modes
that only propagate within a narrow strip very close to the
boundary of the electron sheet. The important properties of )
the EMPs are(i) a gapless spectrum in contrast with the Where¢>=A/m(Q%+wp)"?, o =|e| B/mg and(} are the cy-
usual bulk magnetoplasmon; afid) their frequency dimin-  clotron and confinement frequencies, aadL/ng is the
ishes with increasing magnetic field. The theories of EMPs ifmean distance between electrons in the wire of lehgalith
a N2DES were developed initialls well as for the degen- ns being the 2D electron density. Equatiob) is valid for
erate “compressible” 2DBSwithin classical hydrodynamic Values ofB satisfying the conditiorw, < (). It is worthwhile
models®-13 In particular, Aleiner and Glazméh demon-  to point out that the dispersion of the Q1D magnetoplasmon,
strated for a strong magnetic fiell the existence of low- given by Eq.(1), has the same form(q) «qyIn(1/q) as the
energy and long-wavelength acoustical excitations in addifundamental magnetoplasmon mode of “classical” narrow
tion to the fundamental EMP with frequency(q)  channels in the long wavelength linfit3
«gIn(1/q) whereq is the one-dimension&lD) wave vector. Inspired by the observed Q1D magnetoplasmon spéttra,
The existence of new patterns for EMP charge distributionsve investigate in this paper the collective-mode excitations
is a general characteristic of the nonhomogeneous 2DESf the NQ1DES over a suspended liquid-helium film, with
subjected to a magnetic field with a finite region where thethicknessdy,., deposited over a solid substrate with dielectric
equilibrium density profile varies. These new edge excitaconstanteg in the presence of a strong magnetic field in the
tions have been studied experimentally in Ref. 14 for thedirection perpendicular to the surface. At a distaddeelow
N2DES on the helium surface. the suspended-film structure, a gate electrode is inserted and
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e | The paper is organized as follows. In Sec. Il we obtain the
o0 single-electron eigenstates in a parabolic confinement poten-

tial with a perpendicular magnetic field and we discuss the

ribs liquid helium ribs basic assumptions of our model system. In Sec. Il we de-

scribe the theoretical formalism with the self-consistent ap-
proach of the RPA to obtain the equation for the electron

d charge density. The eigenvalue problem is solved in Sec. IV
where we present and discuss the results for the spectra and
charge amplitudes of the Q1D magnetoplasmon excitations.
In Sec. V we give a brief summary of our work.

substrate

metal gate

FIG. 1. Schematic drawing of the structure from Ref. 16.

the gate potential determines the holding electric field in the ||, NONINTERACTING SURFACE ELECTRONS IN THE
z direction and the electron density in the channel. A diagram CHANNEL

of the experimental apparatus is shown in Fig. 1. . ] . o

The confinement of the NQ1DES in the channel is mod- We consider a parabolic confinement potential in yhe
eled by a simple parabolic potential. Our choice is dictatedlirection, V(y)=mQ?y?/2 whereQ is the confinement fre-
by the fact that the corresponding single-particle problenfiuency depending on the holding field and on other param-
can be solved ana|ytica||y and, more importanﬂy, because gters related to the substrate structure. We also assume that
self-consistent calculation of the surface profile, taking intoV(y) is smooth on the scale @ such that() < w. In order
account the effects of the van der Walls interaction of thelo take advantage of the translational invariance along the
helium film, leads approximately to an electron potentialcChannel(x axis) we choose the Landau gauge for the vector
parabolic at the center of the channel for the experimentapotential A=(-By,0,0. The noninteracting single electron
conditions of Ref. 16. We study the magnetoplasmon modeklamiltonian is thus given by
in the yet unexplored regime of strong magnetic fields,

w./Q>1, and in the ultraquantum limit when only the low- ho=[ (P, + eByc)?+ pZJ/2m+V(y), 2
est spin-split Landau level is occupied, in particulag. where p is the momentum operator. For strong magnetic
>T.

F uati £ th ; d th tial struct fields, the eigenvalues and eigenfunctions of the noninteract-
or evaluation of the spectra and the spatial structure o eq NQ1DES are well approximated by

the magnetoplasmons, we employ an approach, based on t|1
random-phase approximatigiRPA), developed in Ref. 20. En(k) = (N+1/2) .+ szyglz 3
The work presented in this paper is therefore a direct exten-
sion of the EMP problem for the 2DES in the regime of the@nd
integer quantum Hall effect to the Q1D magnetoplasmon of — ; _ I
the NQ1DES. However, the generalization is nontrivial be- W (1) = EXRIk Wy (v = Yol VL “@
cause, as we show, a length scéje\2T/mQ2s> €,, where  whereyo =y, (k) = €2k. Herer ={x,y}, a={N,k}, wherek is
£o=(hlmwy)*? is the magnetic length, is introduced due tothe 1D wave vector along the channel, akg (y) is the 1D
the fact that the electron density profile of the equilibriumharmonic oscillator function with the characteristic lenggh
NQ1DES in the parabolic channel is given hy(y) From the energy spectrum given by H®), we define the
=n? exp(—y?/€2), wheren? is the 2D electron density at the group velocity of the{N,k} state of theNth LL as vgy(k)
center of the channel. =9EN(K) /7 ok=mQ?(gk/h. We point out that for the

In this paper we derive a full formula for the nonuniform NQ1DES in a liquid helium based structure fat.>T, the
electron charge densities within the RPA and solve numerispin-splitting of the LLsgougB=%w., whereg, is the Landé
cally with high accuracy the corresponding eigenvalue probg factor andug is the Bohr magneton. Because we consider
lem to obtain the dispersion relations and charge distributhat only the lowest spin-split LL is essentially occupied, the
tions of the Q1D low-energyw < w;) magnetoplasmons. In spin indices can be omitted to simplify the notation.
particular, in the long wavelength limig¢;<1, we repro- In the absence of interactions, the one-electron density
duce the usual spectrum for the fundamental mode in thenatrix of the NQIDES is(a|p'?|B8)=f,5,5 where f,
absence of the bottom metal gasg~ q/In(1/q). We obtain  =exp[-(E,—Eg)/T] is the Boltzmann distribution function
exactly a rich spectrum of excited acoustical modes, andEg is the Fermi energy.
=u;q, with j=1,2,3,.... We also provide a detailed study of
the influence of the gate on the behavior of the mode veloci-
ties u; of the fundamenta(j=0) and excited Q1D magneto- Ill. THEORETICAL APPROACH
plasmon modes. One main result of our work is the highly

nonlinear dependences of the mode velocities as a function Within the self-con&stgnt field version of the RPAthe

of the gate distance that could be observed in measuremer@§e-electron HamiltoniarH (t)=h%+V (x,y,t) in the pres-
on the NQ1DES similar to those performed in the degeneratence of a self-consistent potential wav#/(x,y,t)
2DES in the quantum Hall reginfé-2*We find anticrossings =V(w,q,y) exp[—i(wt-gx)]+c.c. Thecorresponding equa-
in the mode velocity dependence on the gate distance.  tion of motion for the one-electron density matfixeads as
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where the brackets denote the commutator and the final phe- X HNaNB (¥ karkg)
nomenological term describes the relaxation of the perturbed % %
p to its equilibrium valuep'® Equation(5) can be solve® X f d?’f dy’ Iy v, (. Kaskp)
by looking for a solutiorR,z (w)=(c| 7 €“'pdt|B) in power e -
series of Va5 Rys(0)=T R, (), where Ry (@) X Kol [y =y Do(a,y’ o), (10)
=(if ./ ®) 8,5 In the regime of linear response, we consider .

only the first two terms of the series expansion and, by calwhere HNaNﬂ(y,kwkﬁ):‘I’Na(y_VOa)‘l'N,;(y‘yOﬁ)’ with o,
culating t{p[ed(r —f)]}, we arrive at an integral expression =Yo(K.) andkz=k,—q, and we sets=w. An analysis of the
of the Charge density wave summation OVGINa and Nﬁ in Eq (10) indicates that the
terms with N, # Ngz can be neglected fob <o, and qug
< w.. This leads to the integral equation

p(X,y,t) = 23 J_::} dwe““’taEB R (@) 5 (1) 4, (1), 2@ N fu, ke -a~ F,k,
®) Py, = IEO% En_k -~ En i *fio+ifir
X My n (V. Ka ke = Q)
where . .
_ X f d?f dy’ Iy n, VK ke =)
R(alg(w) _ [ (f,B_ fo) <a|V (w,0,y) equ|,3> @ - -

 (0-®)(Eg-E, +hiw+ifil7) X Ko(ldl[y = y']) pla,y’, @), (11)

) where N denotes the highest occupied LL. Because the
From Egs. (6) and (7) it follows that p(X,y,t)  strong quantizing magnetic fieldw.> T, the Fermi level
=p(d,y,t)expligx). Moreover, fort/ 7> 1, since the contribu-  does not cross the lowest spin-split LL and all electrons oc-
tions related to transitional processes are already negligibleupy only the lowest LL. Hencéy=0 and Eq(11) becomes
we havep (x,y,t)=p(w,q,y)exp(-iwt). Furthermore, from

Poisson’s equation the potential way€q,y,t) induced by »(QY.®) = ifc dkfo,k—g_ fox Moy (v, k= @)
1 1 7Tﬁ6 . o~ 1 t

p(q,y,t) is given by o =vg(kq
2 * o , , Xf dyj dy,HOO(y!k!k_q)
¢@y=—| dyKo(dly-y'Dp@y.n, (8 e
x Ko (lally = y'De(ay’, @), (12)
wheree=(es+1)/2 and where w=w+i/7. Assuming thatqfy<1, thenTIly (y,k,k
~0) =Tloo (y,k,K)  with  Tloo(y,k,K/=exd~(y=yo)*/ (5]/
o 1 V. Using this expression in E¢12) we obtain
~ €Ec—
Kolal ly-y') =2 (- 1)'“”(S—> - _
’ p=0 &+l p(ay.w) = f foica ™ Fok i3
[ "2 242 whelg) . ®-vg(Kg
< {Kol [al\(y = y")? + 4(p + 1] o
~ Kol oy -y + 4p’e]}, (9 X f dy J dy' e 006
with K (x) being the modified Bessel function and the typi- X RO (laly=y'D p (ay, o), (13)

cal conditiondy < 1/(2\r’q2+€}2) is well satisfied. We can

— _pH27 p2 - —
see that the right-hand side of E@) is well approximated where fo,=vexp(-(ok®/¢5) and v=exd(Er—fiwc/2)/T]

2,0 T .
by the p=0 term, when(e;—1)<1 or exp—2d(gZ+¢;9)Y =2m{gng is the filling factor in the center of the channel.
<y1 P (&=1) A-2d(@c+ )™ Obviouély v<<1 in the present case. Fof,<1 it follows

The relationp(d,y,t)=p(q,y, w)exp(~iwt) holds fort N8t
>7r and it follows from Eqg. (8 that &(q,y) 2063k o
=¢(q,y,®) exp(-iwt). In the absence of an external poten- fok-g= fox= 2 e (14)
T

tial, we haveV(q,y,w)=e¢ (q,y,w). As a consequence
from Egs. (6), (7), and (8), the integral equation for which is valid if ¢3/¢2<1. Using Eq.(14) into Eq.(13) we
p(q,y,») can be written as obtain
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Oq [ IV. RESULTS AND DISCUSSION
p(q,y,w)zﬂsgf LoD gy Y o
mhelT) . - vgo(yo/lio)q In this section, we present our results for the dispersion
w w relations and spatial structures of magnetoplasmons in the
Xf dyj dy/e—w—yomg NQLDES obtained through the solution of E{.8) for a
- - wide range ofgf;. We neglect the dissipation by assuming
- 7—o, and as a consequenée=w. Considering the terms
X Ko(ldl[y-y'D p @y, o). (15  n,m=0,1 inEgs.(18) and(17) we obtain
Furthermore, sincelt> €, we can approximate ekp(x wp (g, w) = q[2C + Qloy(a) 1p™P (g, ») = 0, (20)
~Yo)2/ €3] by N7y S(x-Yy,). After integration, it follows that: ]
an
[@- Caky (y/4r)] p (aY,w) o ) )
bt © — ool =
= QqH, (y/€y) Y2 (ylty) Q{C+ 2'10(‘1)]/) (9,0) —wp(qw)=0. (21

% J dy’Ro (lally=y'D p (@Y, o), (16) From Egs.(20) and(21), the dispersion relatiqn for the fun-
o damental magnetoplasmon mode can be written as

where C=02(1/2w., Q= 2\7-r|e|cnS/eB we used that 2 Q
vo(Y/€5)=0%/w, and H,(x) is the Hermite polynomial. =7} 2C% + CQl1o(@) + log(@)] + —- |1o(Q)|01(CI)
From Eq.(16) we see that its nontrivial solutions are neither (22)
symmetric, pJ(q,-Y,w)=ps(q,y,w), nor antisymmetric,

Pa(d,~Y,w)==pa(Q,y, o). In other words, we want to un- jth positive (w,) and negative(w_) modes propagating

derline that the solutions will not have a definite parity. Weforth and back along theaxis. In the absence of the metallic

will seek a solution of Eq(16) in the form gate(d— o) and in the long wavelength limiig¢;<1) we
obtain, from Eq.(22), the dispersion relation for the funda-

- mental plasmon mode of the NQ1DES as
p(Q,,0) = Hy (Y3 (y1en) S p™ (6 ) Hy (y/€), P Q

n=0 —
2\ mlelend [ ( 2 ) }1’2
= +*————q|In| — | -0.44| 23
(17) wo B 9 Mg (23

which is an exact expansion due to the orthogonality of th

H. (). We point out that the eve(odd) terms in Eq.(17) Swhich is close to the fundamental magnetoplasmon disper-

. . ) ) L sion obtained in previous work$:°As we consider a finite
give purely antisymmetric(symmetrig contributions 10 \ye find the interesting result that the fundamental mode is
p(9,y,®). Then the mixture of both symmetric and antisym- 5. stical in the long wavelength limit fat/ ¢;<1. In ad-
metric terms should be present in HG.7) to have a non-  gision, for d/¢;<1, it follows from Eq.(22) that the mode
trivial solution. In particular, we need take at least the f'rStveIocity Up=wo/q is given by

two terms,n=0, 1, toobtain the fundamental magnetoplas-

mon mode. Substituting E¢L7) in Eq. (16) then multiplying QZ€T 27r|e|cns d

Eq. (16) by H, (y/€¢1)/H, (y/€1) and integrating ovey, we Up= 7 B (- (24)
obtain for p™(q, w): V20, &B

We now go further by considering terms uprtom=9 in
p™(w) —CC[P(m_l)(w) +2(m+1) p™V(w)] Egs. (17) and (18). In this case, the dispersion relation is
obtained in terms of a fifth-degree polynomial f@f which
(n) yields five magnetoplasmon modes propagating in each di-
2mm' E P @) (@), (18 rection of thex axis. Two of them correspond to the funda-
mental magnetoplasmon modesg. determined with accu-
with rate precision for alg€+. If otherwise not stated, we present
the results for thew, modes, assuming>0 andw, > 0.

21 5 2 In Fig. 2, the fundamental magnetoplasmon frequency is
@) = Wf_w f_x dYdYHp(Y)exp - (Y7 +Y")] depicted as a function afj¢1)™* for a choice of parameters
~ similar to the experimental values in Ref. 16=2
X Ko(lal€1]Y = Y DH1(Y)HA(Y"), (199 X1 cm? e=3, 0=1Fs?, T=0.6K, and B=3.6T,

which correspond tdiw.=0.42 meV,w./Q~=6.3X10%, {1
whereY=y/{;. Observe that,,(q)=0 if (m+n) is an even =42.6um, and €T/€0~3 2x10°. The characteristic fre-
number. We emphasize that the paramedeis related to quency w.=2y 7r|e|cr15/e€TB 2.2x10"st. The solid,
one-particle confinement effects, i.e., advection contributionslashed, and dotted curves in Fig. 2 are der,1072 and
related with the energy dispersion of the LL whiecorre- 102 cm, from top to bottom, respectively. We note from the
sponds to contributions from electron-electron interactions. inset of Fig. 2, where the mode velocity in units of u,
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FIG. 2. Fundamental mode spectruay(q) in units of w.
=2\x|e|crl/ et:B for the NQIDES in the absence of gaté
—oo) indicated by the solid line and for gate distancds
=102 cm (dashed lingand d=10"2 cm (dotted ling. In the inset,
the mode velocity is shown, in units af =2 |e|crl/ eB. The spec-
trum was calculated from the »010 equation system in E@18).

PHYSICAL REVIEW B 70, 035414(2004)

0.90

0.00

FIG. 4. Dispersion relations for the fir@ipper curvg¢ and sec-
ond (lower curveg excited Q1D magnetoplasmons. The solid and
the dotted curves correspond to the same parameters as the pertinent
curves in Fig. 2. In the inset the mode velocities are shown with the
dashed curve correspondingde 1072 cm.

The parameters are chosen to be the same as in the experiment@rrespond to the modes in the structure without a metal

Ref. 16.

=\mw,0r=2m|e|crl/ eB is shown, that the region of acous-
tical di?persion appears wher@< 1, wherex =g+ q§ and
ay~

We depict in Fig. 3 the charge density amplitude
p(9,y,w)/p., wherep,=p%(q, w)/\ly, for the fundamen-
tal mode as a function of =y/ ¢ for (qf7)"t=100 and dif-

gate, while the dotted curve corresponds to the mode in the
gated structure wittd=10" cm. No marked difference is
found for d=10"2 cm. In the inset of Fig. 4 we show the
mode velocity as a function aigf7)™t. Now we observe a
slight deviation wherd=10"2 cm represented by the dashed
line. The screening effect from the bottom plate is stronger
on the first excited mode and the overall influence of the gate
is to diminish the frequencies of all modes. As expected the
spectrum exhibits only low-lying excitation modes which are

ferent gate distances for seeing the influence of the metal _ )
plate on the structure of the magnetoplasmon mode. The p&coustical fog<1/y¢+4d”.

rameters are the same as for the corresponding curves in Fig_
i

2. In the inset, we display the amplitudes for the modgs

~We show in Fig. 5, the influence of the temperature on the
spersion of the magnetoplasmon modes in the NQ1DES

(solid) and wo_ (dashedl of the NQ1DES in the absence of without the gate foilT=0.4 K_(SO”d CUI’_VQ and 1 K(dashed
gate,d—=. We clearly observe the chirality of these two curve) and the same conditions of Fig. 2. The fundamental
branches. and the first and second excited modes are indicated by the
The dispersion relations for the first and second excitedoP. Middle, and bottom curves, respectively. As we can see
modes, described by E@18), are shown in Fig. 4 for the the differences appear only fofr>10 and are due to the
same parameters used in Fig. 2. The fisstcong excited ~ @dvection contribution in Eq(18). o
mode is represented by the upplewer) curve. Solid curves In Fig. 6 the spatial structure of the charge density is
depicted for the first two excited modes of the NQ1DES

25 T T T T T

1.5 . . . .
2.0
1.5
1.0 1
g 1.0 s
< K]
0.5 0.5 w0 |
0.0 '
0.5} :
3 2 A 0 1 2 3 000 - - = = ,
Y=/, 10 10 10 10 10 10
@ty

FIG. 3. Spatial structure of the fundamental mede,y, ), in
units of p,=p9(q,w)/ Vw1, calculated from the 18 10 system, FIG. 5. Dispersion relation for the fundamengap curve and
for (g¢)"1=100. The solid, the dashed and the dotted curves patwo excited magnetoplasmotsurves belowfor the structure with-
rameters coincide with those of pertinent curves in Fig. 2. In theout the gate forT=1 K (solid line) and T=0.4 K (dashed ling
inset the soliddashegl curve plotsp/p.. for wg. (wg-) mode in the  Other parameters are the same as in Fig. 2. In the inset we show the
absence of gate. mode velocities.
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3 T T T T T 0.20

0.15

-3 -2 -1 0 1 2 3 0.0 0.1 02 03 04 05 06
Y=y/£'r d//T

FIG. 6. Spatial structure of charge density for the first excited
modes in the channel without the metallic gate calculatedyfqr
=0.01. The soliddashegl line represent the firgtseconq excited
magnetoplasmon.

FIG. 8. Same as Fig. 7 in a wide regionaff+. We clearly see
additional anticrossings for largel/ €.

interaction(Q term is neglectedare omitted. The parameters

without the metallic gate for the conditions of Fig. 3. TheUsed I Fig. 7 are n=2x10"cm?, =3, Q=5
solid and dashed curves in Fig. 6 correspond to the first and 10° s™, T=0.6, and B=3.6 T giving now u.~1.68
second excited positive magnetoplasmons, respectively, and 10" cm/s. For better accuracy of the results, we have also
are calculated fog¢;=0.01. Note that in the usual Q1D checke_d out all crossings and anticrossings shovyn in Fig. 7
fundamental modesolid line in Fig. 3, the charge density PY Solving the determinantal equation uprtom=19 in Egs.
does not oscillate around the channel center in contrast withl /) @hd(18), which gives the dispersion relation as a tenth-
the excited modes. degree polynomial for?. . . .
Furthermore, in Fig. 7 we present the mode velocity ver- N Fig. 8 we plot the mode velocity for a wider region of
sus the gate distance for the first five positive modes indid/ ¢+ There are two anticrossings beyond those shown in
cated by the solid, dashed, dotted, dot-dashed, and dot-ddil9- 7, atd/¢;>0.2. Itis seen in Figs. 7 and 8 that the mode
dashed curves. We observe that the mode velocities exhibfelocities of all magnetoplasmon modes show nonlinear be-
anti-crossings ad/ ;< 1. All anticrossings have a finite gap, Navior as a function ofd/¢r as ford/{r=1 as well for
even though some of them are very small in that scale. In th@/€r<1. Itis essentially different from the result of Ref. 24
inset of Fig. 7, the velocities for these five modes are showivhereu=d/¢, for d/¢—0, in the compressible region of the
twofold: (i) by five solid curves, when the second term in theWidth ¢ at the edge of the degenerate 2DES in the quantum
left-hand side of Eq(18) is neglected; andi) by five dashed Hall regime. From the two terms appearing in E24), we
curves, if the right-hand side of E¢L8) is taken as zero. ODServe thaud/{r, similar to the resuit of Ref. 24, only
These solid curves correspond to the case when the adve@hend>d,, whered,=Te//(v2me’n;). Because the condi-
tion contributions related with the energy dispersion of thetion €/es(o>T is well satisfied in the NDQ1DES, the nec-
LL are omitted(C term is neglectedwhile the dashed curves €ssary condition for the appearance of the anticrossing re-

are evaluated when contributions due to the electron-electroion, d=dj,, as shown in Figs. 7 and 8,/ €o> 1 implies that
v<1. The latter is in agreement with assumptions of our

0.10 . . — model.

o ] V. SUMMARY

o o
. ‘...‘./..-__-:, ............... We study low frequency magnetoplasmon excitations of
S 05 _ LT e 3 ] the nondegenerate two-dimensional electron system laterally
D ) ot confined by a parabolic quantum well forming a quasi-one-

.......... dimensional electron system. Starting from the equation of
motion for the electron density operator we employ the self-

o o consistent method to obtain the algebraic matrix representa-
0.00 ' ' ' tion of the i | ion for th harge density i
0.00 0.05 0.10 0.15 0.20 on of the integral equation for the wave charge density in
dit the NQ1DES. In the simplest approximation, the eigenvalue
T

equations are reduced to only two equations and we derive
FIG. 7. Mode velocity versus gate distance for the first five € dispersion relation for the fundamental mode which is
modes represented by the solid, dashed, dotted, dot-dashed and detilar to the previous results obtained in the hydrodynamic
dot-dashed curves. In the inset these modes are indicated by fiv8ethod as well in the perturbation approach to the dielectric
solid (dashegi curves when th€ (Q) term of Eq.(18) is neglected. ~ function within the random-phase approximation. We solve
Herens=2x 10" cm™ Q=5x10% cm™* and the other parameters numerically the matrix equation with high accuracy to obtain
are the same as in Fig. 2. the fundamental and excited magnetoplasmon modes for
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< (7' as well for the interesting wide regiofy'>q= (7"

PHYSICAL REVIEW B 70, 035414(2004)

tion and the dispersion of the lowest Landau level, through

We discuss the influence of screening due to the metal gatese quantum numbek. Finally, we speculate that our pre-
on the plasmon dispersion and the mode velocity. §or dicted results may be verified through time-resolved magne-
< €7 our results show that all excited modes are acousticakotransport measurements.

Furthermore, ford/¢r=<1 andq<€}l the magnetoplasmon

modes are acoustical and their velocities display a nontrivial
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