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Magnetoplasmon spectra for the nondegenerate surface electrons confined in a quasi-one-dimensional chan-
nel over a liquid helium film are determined within a microscopic approach in the limit of strong magnetic
fields when the electrons occupy the lowest spin-split Landau level. It is shown that the dispersion relation and
the spatial structure, transverse to the channel, of the magnetoplasmons have a length scale,T=Î2T/mV2

@,0, where V is the confining frequency and,0 is the magnetic length. We find acoustic modes, whose
velocities as a function of the gate distance exhibit a highly nonlinear behavior under certain conditions, in
particular, the appearance of anticrossings.
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I. INTRODUCTION

Electrons trapped in quantum surface states deposited
over the surface of a liquid helium or other cryogenic sub-
strates have been extensively studied both theoretically and
experimentally for the last 30 years.1 The quantum confine-
ment along thez direction perpendicular to the surface due to
a combination of the attractive liquid polarization potential
and a repulsive barrier coming from the Pauli exclusion prin-
ciple leads to the formation of electron subbands analogous
to the electron system in semiconductor heterostructures.2 At
low temperatures, the electrons are frozen out in the lowest
state of the potential well floating more or less freely over
the surface. The resulting two-dimensional electron system
(2DES) can be considered as nondegenerate(N2DES) be-
cause the Fermi energy is much less the thermal energy at
electron densities attainable experimentally.

Special attention has been given in understanding many-
body properties of the N2DES motivated initially by the ex-
perimental investigation of the 2D plasmon dispersion and
damping.3 Afterwards the observation of edge magnetoplas-
mons(EMPs) constituted another intriguing and unexpected
discovery in the N2DES.4,5 EMPs are chiral collective modes
that only propagate within a narrow strip very close to the
boundary of the electron sheet. The important properties of
the EMPs are:(i) a gapless spectrum in contrast with the
usual bulk magnetoplasmon; and(ii ) their frequency dimin-
ishes with increasing magnetic field. The theories of EMPs in
a N2DES were developed initially(as well as for the degen-
erate “compressible” 2DES) within classical hydrodynamic
models.6–13 In particular, Aleiner and Glazman12 demon-
strated for a strong magnetic fieldB the existence of low-
energy and long-wavelength acoustical excitations in addi-
tion to the fundamental EMP with frequencyvsqd
~qlns1/qd whereq is the one-dimensional(1D) wave vector.
The existence of new patterns for EMP charge distributions
is a general characteristic of the nonhomogeneous 2DES
subjected to a magnetic field with a finite region where the
equilibrium density profile varies. These new edge excita-
tions have been studied experimentally in Ref. 14 for the
N2DES on the helium surface.

In order to further reduce the degree of freedom of the
surface electrons, a structured substrate(V-shaped, rectangu-
lar stripes, bent foil, etc.) should be introduced to restrict the
electron motion to a narrow channel forming a nondegener-
ate quasi-one-dimensional electron system(NQ1DES).15 The
NQ1DES was also created by suspending a helium film be-
tween metallic ribs which are also used as measuring elec-
trodes for probing a single isolated electron wire in the
channel.16 In Ref. 16, the authors observed resonances in the
measured current along the channel as a function of the mag-
netic field which were attributed to low-frequency magneto-
plasmon excitations of the NQ1DES. Recently microelec-
tronic devices confining the electrons in microchannels have
been fabricated17 which constitute potential tools for the re-
alization of quantum computing with electrons floating on
liquid helium, as suggested by Platzman and Dykman.18

Previous microscopic study on the long wavelength fun-
damental magnetoplasmon excitation of the NQ1DES, later-
ally confined by a parabolic potential, somehow analogous to
the fundamental EMP, showed that the spectrum has the fol-
lowing form:19

v2sqd =
2e2

ma
q2 V2

V2 + vc
2ln

1

uq,u
, s1d

where,2=" /msV2+vc
2d1/2, vc= ueu B/mc, andV are the cy-

clotron and confinement frequencies, anda=L /ns is the
mean distance between electrons in the wire of lengthL with
ns being the 2D electron density. Equation(1) is valid for
values ofB satisfying the conditionvc,V. It is worthwhile
to point out that the dispersion of the Q1D magnetoplasmon,
given by Eq.(1), has the same formvsqd~qÎlns1/qd as the
fundamental magnetoplasmon mode of “classical” narrow
channels in the long wavelength limit.7,13

Inspired by the observed Q1D magnetoplasmon spectra,16

we investigate in this paper the collective-mode excitations
of the NQ1DES over a suspended liquid-helium film, with
thicknessdHe, deposited over a solid substrate with dielectric
constantes in the presence of a strong magnetic field in the
direction perpendicular to the surface. At a distanced below
the suspended-film structure, a gate electrode is inserted and

PHYSICAL REVIEW B 70, 035414(2004)

0163-1829/2004/70(3)/035414(7)/$22.50 ©2004 The American Physical Society70 035414-1



the gate potential determines the holding electric field in the
z direction and the electron density in the channel. A diagram
of the experimental apparatus is shown in Fig. 1.

The confinement of the NQ1DES in the channel is mod-
eled by a simple parabolic potential. Our choice is dictated
by the fact that the corresponding single-particle problem
can be solved analytically and, more importantly, because a
self-consistent calculation of the surface profile, taking into
account the effects of the van der Walls interaction of the
helium film, leads approximately to an electron potential
parabolic at the center of the channel for the experimental
conditions of Ref. 16. We study the magnetoplasmon modes
in the yet unexplored regime of strong magnetic fields,
vc/V@1, and in the ultraquantum limit when only the low-
est spin-split Landau level is occupied, in particular,"vc
@T.

For evaluation of the spectra and the spatial structure of
the magnetoplasmons, we employ an approach, based on the
random-phase approximation(RPA), developed in Ref. 20.
The work presented in this paper is therefore a direct exten-
sion of the EMP problem for the 2DES in the regime of the
integer quantum Hall effect to the Q1D magnetoplasmon of
the NQ1DES. However, the generalization is nontrivial be-
cause, as we show, a length scale,T=Î2T/mV2@,0, where
,0=s" /mvcd1/2 is the magnetic length, is introduced due to
the fact that the electron density profile of the equilibrium
NQ1DES in the parabolic channel is given byn0syd
=ns

0 exps−y2/,T
2d, wherens

0 is the 2D electron density at the
center of the channel.

In this paper we derive a full formula for the nonuniform
electron charge densities within the RPA and solve numeri-
cally with high accuracy the corresponding eigenvalue prob-
lem to obtain the dispersion relations and charge distribu-
tions of the Q1D low-energysv!vcd magnetoplasmons. In
particular, in the long wavelength limitq,T!1, we repro-
duce the usual spectrum for the fundamental mode in the
absence of the bottom metal gatev0,qÎlns1/qd. We obtain
exactly a rich spectrum of excited acoustical modes,v j
=ujq, with j =1,2,3,…. We also provide a detailed study of
the influence of the gate on the behavior of the mode veloci-
ties uj of the fundamentals j =0d and excited Q1D magneto-
plasmon modes. One main result of our work is the highly
nonlinear dependences of the mode velocities as a function
of the gate distance that could be observed in measurements
on the NQ1DES similar to those performed in the degenerate
2DES in the quantum Hall regime.21–24We find anticrossings
in the mode velocity dependence on the gate distance.

The paper is organized as follows. In Sec. II we obtain the
single-electron eigenstates in a parabolic confinement poten-
tial with a perpendicular magnetic field and we discuss the
basic assumptions of our model system. In Sec. III we de-
scribe the theoretical formalism with the self-consistent ap-
proach of the RPA to obtain the equation for the electron
charge density. The eigenvalue problem is solved in Sec. IV
where we present and discuss the results for the spectra and
charge amplitudes of the Q1D magnetoplasmon excitations.
In Sec. V we give a brief summary of our work.

II. NONINTERACTING SURFACE ELECTRONS IN THE
CHANNEL

We consider a parabolic confinement potential in they
direction, Vsyd=mV2y2/2 whereV is the confinement fre-
quency depending on the holding field and on other param-
eters related to the substrate structure. We also assume that
Vsyd is smooth on the scale of,0 such thatV!vc. In order
to take advantage of the translational invariance along the
channel(x axis) we choose the Landau gauge for the vector
potential A =s−By,0 ,0d. The noninteracting single electron
Hamiltonian is thus given by

ĥ0 = fsp̂x + eBy/cd2 + p̂y
2g/2m+ Vsyd, s2d

where p̂ is the momentum operator. For strong magnetic
fields, the eigenvalues and eigenfunctions of the noninteract-
ing NQ1DES are well approximated by

ENskd = sN + 1/2d "vc + mV2y0
2/2 s3d

and

ca sr d = expsikxdCN sy − y0d/ÎL, s4d

wherey0;y0 skd<,0
2k. Herer =hx,yj , a;hN,kj, wherek is

the 1D wave vector along the channel, andCN syd is the 1D
harmonic oscillator function with the characteristic length,0.
From the energy spectrum given by Eq.(3), we define the
group velocity of thehN,kj state of theNth LL as vgNskd
=]ENskd /"]k=mV2,0

4k/". We point out that for the
NQ1DES in a liquid helium based structure, at"vc@T, the
spin-splitting of the LLsg0mBB="vc, whereg0 is the Landé
g factor andmB is the Bohr magneton. Because we consider
that only the lowest spin-split LL is essentially occupied, the
spin indices can be omitted to simplify the notation.

In the absence of interactions, the one-electron density
matrix of the NQ1DES is kaur̂s0dubl= fadab where fa

=expf−sEa−EFd /Tg is the Boltzmann distribution function
andEF is the Fermi energy.

III. THEORETICAL APPROACH

Within the self-consistent field version of the RPA,25 the

one-electron HamiltonianĤ std= ĥ0+V sx,y,td in the pres-
ence of a self-consistent potential waveVsx,y,td
=VsÃ ,q,yd expf−isÃt−qxdg+c.c. Thecorresponding equa-
tion of motion for the one-electron density matrixr̂ reads as

FIG. 1. Schematic drawing of the structure from Ref. 16.
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i"
] r̂

] t
= fĤ std,r̂g −

i"

t
sr̂ − r̂s0dd, s5d

where the brackets denote the commutator and the final phe-
nomenological term describes the relaxation of the perturbed
r̂ to its equilibrium valuer̂s0d Equation(5) can be solved20

by looking for a solutionRab svd=kaue0
` eivtr̂dtubl in power

series of V as Rab svd=oN=0
` Rab

sNd svd, where Rab
s0d svd

=sif a /vd dab. In the regime of linear response, we consider
only the first two terms of the series expansion and, by cal-
culating trhr̂fedsr − r̂ dgj, we arrive at an integral expression
of the charge density wave

rsx,y,td =
e

2p
E

−`+ih

`+ih

dve−ivt o
ab

Rab
s1d svd cb

p sr d ca sr d,

s6d

where

Rab
s1dsvd =

i sfb − fad kauV sÃ,q,yd eiqxubl
sv − ÃdsEb − Ea + "v + i"/td

. s7d

From Eqs. (6) and (7) it follows that rsx,y,td
=rsq,y,tdexpsiqxd. Moreover, fort /t@1, since the contribu-
tions related to transitional processes are already negligible
we haver sx,y,td=rsÃ ,q,ydexps−iÃtd. Furthermore, from
Poisson’s equation the potential wavefsq,y,td induced by
rsq,y,td is given by

f sq,y,td =
2

e
E

−`

`

dy8K̃0 suquuy − y8ud r sq,y8,td, s8d

wheree=ses+1d /2 and

K̃0suqu uy − y8ud = o
p=0

`

s− 1dp+1 S es − 1

es + 1
Dp

3 hK0fuquÎsy − y8d2 + 4sp + 1d2d2g
− K0fuquÎsy − y8d2 + 4p2d2gj , s9d

with K0 sxd being the modified Bessel function and the typi-
cal conditiondHe ! 1/s2Îq2+,T

−2d is well satisfied. We can
see that the right-hand side of Eq.(9) is well approximated
by the p=0 term, whenses−1d!1 or expf−2dsqx

2+,T
−2d1/2g

!1.
The relationrsq,y,td=rsq,y,Ãdexps−iÃtd holds for t

@t and it follows from Eq. (8) that fsq,yd
=fsq,y,Ãd exps−iÃtd. In the absence of an external poten-
tial, we haveVs q,y,Ãd=ef sq,y,Ãd. As a consequence
from Eqs. (6), (7), and (8), the integral equation for
r sq,y,vd can be written as

r sq,y,vd =
2e2

eL
o

Na,Nb=0

`

o
ka

fb − fa

Eb − Ea + "v + i"/t

3 PNaNb
sy,ka,kbd

3 E
−`

`

dỹE
−`

`

dy8 PNaNb
sỹ,ka,kbd

3 K̃0suqu uỹ − y8udrsq,y8,vd, s10d

where PNaNb
sy,ka ,kbd=CNa

sy−y0adCNb
sy−y0bd, with y0a

=y0skad andkb=ka−q, and we setÃ=v. An analysis of the
summation overNa and Nb in Eq. (10) indicates that the
terms with NaÞNb can be neglected forv!vc and qvg
!vc. This leads to the integral equation

rsq,y,vd =
2e2

eL
o

Na=0

N

o
ka

fNa,ka−q − fNa,ka

ENa,ka−q − ENa,ka
+ "v + i"/t

3 PNaNa
sy,ka,ka − qd

3 E
−`

`

dỹE
−`

`

dy8 PNaNa
sỹ,ka,ka − qd

3 K̃0suquuỹ − y8ud rsq,y8,vd, s11d

where N denotes the highest occupied LL. Because the
strong quantizing magnetic field,"vc@T, the Fermi level
does not cross the lowest spin-split LL and all electrons oc-
cupy only the lowest LL. Hence,N=0 and Eq.(11) becomes

r sq,y,vd =
e2

p"e
E

−`

`

dk
f0,k−q − f0,k

ṽ − vg0skdq
P00 sy,k,k − qd

3 E
−`

`

dỹE
−`

`

dy8P00 sỹ,k,k − qd

3 K̃0 suquuỹ − y8udrsq,y8,vd, s12d

where ṽ=v+ i /t. Assuming thatq,0!1, then P00 sy,k,k
−qd<P00 sy,k,kd with P00 sy,k,kd=expf−sy−y0d2/,0

2g /
Îp,0. Using this expression in Eq.(12) we obtain

rsq,y,vd =
e2

p2"e,0
2E

−`

`

dk
f0,k−q − f0,k

ṽ − vg0skdq
e−sy−y0d2/,0

2

3 E
−`

`

dỹE
−`

`

dy8e−sỹ−y0d2/,0
2

3 K̃0 suquuỹ − y8ud r sq,y8,vd, s13d

where f0,k=n exps−,0
4k2/,T

2d and n=expfsEF−"vc/2d /Tg
=2p,0

2ns
0 is the filling factor in the center of the channel.

Obviously n!1 in the present case. Forq,0!1 it follows
that:

f0,k−q − f0,k <
2n,0

4kq

,T
2 e−,0

4k2/,T
2
, s14d

which is valid if ,0
2/,T

2&1. Using Eq.(14) into Eq. (13) we
obtain
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r sq,y,vd =
4e2ns

0q

p"e,T
2E

−`

`

dy0
y0 exps− y0

2/,T
2d

ṽ − vg0sy0/,0
2dq

e−sy−y0d2/,0
2

3 E
−`

`

dỹE
−`

`

dy8e−sỹ−y0d2/,0
2

3 K̃0suquuỹ − y8ud r sq,y8,vd. s15d

Furthermore, since,T@,0, we can approximate expf−sx
−y0d2/,0

2g by Îp,0dsx−y0d. After integration, it follows that:

fṽ − CqH1 sy/,Tdg r sq,y,vd

= QqH1 sy/,Td c0
2 sy/,Td

3 E
−`

`

dy8K̃0 suquuy − y8ud r sq,y8,vd, s16d

where C=V2,T/2vc, Q=2Îp ueucns
0/eB, we used that

vg0sy/,0
2d=V2y/vc and Hnsxd is the Hermite polynomial.

From Eq.(16) we see that its nontrivial solutions are neither
symmetric, rssq,−y,vd=rs sq,y,vd, nor antisymmetric,
ra sq,−y,vd=−ra sq,y,vd. In other words, we want to un-
derline that the solutions will not have a definite parity. We
will seek a solution of Eq.(16) in the form

rsq,y,vd = H1 sy/,Tdc0
2 sy/,Td o

n=0

`

rsnd sq,vd Hn sy/,Td,

s17d

which is an exact expansion due to the orthogonality of the
Hn sxd. We point out that the even(odd) terms in Eq.(17)
give purely antisymmetric(symmetric) contributions to
r sq,y,vd. Then the mixture of both symmetric and antisym-
metric terms should be present in Eq.(17) to have a non-
trivial solution. In particular, we need take at least the first
two terms,n=0,1, to obtain the fundamental magnetoplas-
mon mode. Substituting Eq.(17) in Eq. (16) then multiplying
Eq. (16) by Hm sy/,Td /H1 sy/,Td and integrating overy, we
obtain forrsmdsq,vd:

ṽrsmdsvd − Cqfrsm−1dsvd + 2sm+ 1d rsm+1dsvdg

=
Qq

2mm! on=0

`

rsndsvdImn sqd, s18d

with

Imnsqd =
1

p
E

−`

` E
−`

`

dYdY8HmsYdexpf− sY2 + Y82dg

3 K̃0suqu,TuY − Y8udH1sY8dHnsY8d, s19d

whereY=y/,T. Observe thatImnsqd;0 if sm+nd is an even
number. We emphasize that the parameterC is related to
one-particle confinement effects, i.e., advection contributions
related with the energy dispersion of the LL whileQ corre-
sponds to contributions from electron-electron interactions.

IV. RESULTS AND DISCUSSION

In this section, we present our results for the dispersion
relations and spatial structures of magnetoplasmons in the
NQ1DES obtained through the solution of Eq.(18) for a
wide range ofq,T. We neglect the dissipation by assuming
t→`, and as a consequenceṽ=v. Considering the terms
n,m=0,1 in Eqs.(18) and (17) we obtain

vrs0dsq,vd − qf2C + QI01sqdgrs1dsq,vd = 0, s20d

and

qFC +
Q

2
I10sqdGrs0dsq,vd − vrs1dsq,vd = 0. s21d

From Eqs.(20) and(21), the dispersion relation for the fun-
damental magnetoplasmon mode can be written as

v0
2 = q2H2C2 + CQfI10sqd + I01sqdg +

Q2

2
I10sqdI01sqdJ ,

s22d

with positive sv+d and negativesv−d modes propagating
forth and back along thex axis. In the absence of the metallic
gatesd→`d and in the long wavelength limitsq,T!1d we
obtain, from Eq.(22), the dispersion relation for the funda-
mental plasmon mode of the NQ1DES as

v0± = ±
2Îpueucns

0

eB
qFlnS 2

q,T
D − 0.44G1/2

, s23d

which is close to the fundamental magnetoplasmon disper-
sion obtained in previous works.13,19As we consider a finite
d, we find the interesting result that the fundamental mode is
acoustical in the long wavelength limit ford/,T&1. In ad-
dition, for d/,T!1, it follows from Eq.(22) that the mode
velocity u0=v0/q is given by

u0 =
V2,T

Î2vc

+
2pueucns

0

esB

d

,T
. s24d

We now go further by considering terms up ton,m=9 in
Eqs. (17) and (18). In this case, the dispersion relation is
obtained in terms of a fifth-degree polynomial forv2 which
yields five magnetoplasmon modes propagating in each di-
rection of thex axis. Two of them correspond to the funda-
mental magnetoplasmon modesv0± determined with accu-
rate precision for allq,T. If otherwise not stated, we present
the results for thev+ modes, assumingq.0 andv+.0.

In Fig. 2, the fundamental magnetoplasmon frequency is
depicted as a function ofsq,Td−1 for a choice of parameters
similar to the experimental values in Ref. 16:ns=2
3108 cm−2, e=3, V=108 s−1, T=0.6 K, and B=3.6 T,
which correspond to"vc=0.42 meV,vc/V<6.33103, ,T
=42.6mm, and ,T/,0<3.23103. The characteristic fre-
quency vp=2Îp ueucns

0/e,TB<2.23107 s−1. The solid,
dashed, and dotted curves in Fig. 2 are ford→` ,10−2 and
10−3 cm, from top to bottom, respectively. We note from the
inset of Fig. 2, where the mode velocityu in units of up
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=Îpvp,T=2p ueucns
0/eB is shown, that the region of acous-

tical dispersion appears when 2kd!1, wherek=Îq2+qy
2 and

qy,,T
−1.

We depict in Fig. 3 the charge density amplitude
rsq,y,vd /rp, whererp=rs0dsq,vd /Îp,T, for the fundamen-
tal mode as a function ofY=y/,T for sq,Td−1=100 and dif-
ferent gate distances for seeing the influence of the metal
plate on the structure of the magnetoplasmon mode. The pa-
rameters are the same as for the corresponding curves in Fig.
2. In the inset, we display the amplitudes for the modesv0+
(solid) and v0− (dashed) of the NQ1DES in the absence of
gate,d→`. We clearly observe the chirality of these two
branches.

The dispersion relations for the first and second excited
modes, described by Eq.(18), are shown in Fig. 4 for the
same parameters used in Fig. 2. The first(second) excited
mode is represented by the upper(lower) curve. Solid curves

correspond to the modes in the structure without a metal
gate, while the dotted curve corresponds to the mode in the
gated structure withd=10−3 cm. No marked difference is
found for d=10−2 cm. In the inset of Fig. 4 we show the
mode velocity as a function ofsq,Td−1. Now we observe a
slight deviation whend=10−2 cm represented by the dashed
line. The screening effect from the bottom plate is stronger
on the first excited mode and the overall influence of the gate
is to diminish the frequencies of all modes. As expected the
spectrum exhibits only low-lying excitation modes which are

acoustical forq!1/Î,T
2+4d2.

We show in Fig. 5, the influence of the temperature on the
dispersion of the magnetoplasmon modes in the NQ1DES
without the gate forT=0.4 K (solid curve) and 1 K(dashed
curve) and the same conditions of Fig. 2. The fundamental
and the first and second excited modes are indicated by the
top, middle, and bottom curves, respectively. As we can see
the differences appear only forq,T.10 and are due to the
advection contribution in Eq.(18).

In Fig. 6 the spatial structure of the charge density is
depicted for the first two excited modes of the NQ1DES

FIG. 2. Fundamental mode spectrumv0sqd in units of vp

=2Îp ueucns
0/e,TB for the NQ1DES in the absence of gatesd

→`d indicated by the solid line and for gate distancesd
=10−2 cm (dashed line) andd=10−3 cm (dotted line). In the inset,
the mode velocity is shown, in units ofup=2p ueucns

0/eB. The spec-
trum was calculated from the 10310 equation system in Eq.(18).
The parameters are chosen to be the same as in the experiment of
Ref. 16.

FIG. 3. Spatial structure of the fundamental modersq,y,vd, in
units of rp=rs0dsq,vd /Îp,T, calculated from the 10310 system,
for sq,Td−1=100. The solid, the dashed and the dotted curves pa-
rameters coincide with those of pertinent curves in Fig. 2. In the
inset the solid(dashed) curve plotsr /rp for v0+ sv0−d mode in the
absence of gate.

FIG. 4. Dispersion relations for the first(upper curve) and sec-
ond (lower curve) excited Q1D magnetoplasmons. The solid and
the dotted curves correspond to the same parameters as the pertinent
curves in Fig. 2. In the inset the mode velocities are shown with the
dashed curve corresponding tod=10−2 cm.

FIG. 5. Dispersion relation for the fundamental(top curve) and
two excited magnetoplasmons(curves below) for the structure with-
out the gate forT=1 K (solid line) and T=0.4 K (dashed line).
Other parameters are the same as in Fig. 2. In the inset we show the
mode velocities.
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without the metallic gate for the conditions of Fig. 3. The
solid and dashed curves in Fig. 6 correspond to the first and
second excited positive magnetoplasmons, respectively, and
are calculated forq,T=0.01. Note that in the usual Q1D
fundamental mode(solid line in Fig. 3), the charge density
does not oscillate around the channel center in contrast with
the excited modes.

Furthermore, in Fig. 7 we present the mode velocity ver-
sus the gate distance for the first five positive modes indi-
cated by the solid, dashed, dotted, dot-dashed, and dot-dot-
dashed curves. We observe that the mode velocities exhibit
anti-crossings atd/,T!1. All anticrossings have a finite gap,
even though some of them are very small in that scale. In the
inset of Fig. 7, the velocities for these five modes are shown
twofold: (i) by five solid curves, when the second term in the
left-hand side of Eq.(18) is neglected; and(ii ) by five dashed
curves, if the right-hand side of Eq.(18) is taken as zero.
These solid curves correspond to the case when the advec-
tion contributions related with the energy dispersion of the
LL are omitted(C term is neglected) while the dashed curves
are evaluated when contributions due to the electron-electron

interaction(Q term is neglected) are omitted. The parameters
used in Fig. 7 are ns=23107 cm−2, e=3, V=5
3108 s−1, T=0.6, and B=3.6 T giving now up<1.68
3104 cm/s. For better accuracy of the results, we have also
checked out all crossings and anticrossings shown in Fig. 7
by solving the determinantal equation up ton,m=19 in Eqs.
(17) and(18), which gives the dispersion relation as a tenth-
degree polynomial forv2.

In Fig. 8 we plot the mode velocity for a wider region of
d/,T. There are two anticrossings beyond those shown in
Fig. 7, atd/,T.0.2. It is seen in Figs. 7 and 8 that the mode
velocities of all magnetoplasmon modes show nonlinear be-
havior as a function ofd/,T as for d/,T&1 as well for
d/,T!1. It is essentially different from the result of Ref. 24
whereu~d/,, for d/,→0, in the compressible region of the
width , at the edge of the degenerate 2DES in the quantum
Hall regime. From the two terms appearing in Eq.(24), we
observe thatu~d/,T, similar to the result of Ref. 24, only
when d@da, whereda=Tes/ sÎ2pe2ns

0d. Because the condi-
tion e2/es,0@T is well satisfied in the NDQ1DES, the nec-
essary condition for the appearance of the anticrossing re-
gion,d&da, as shown in Figs. 7 and 8,da/,0@1 implies that
n!1. The latter is in agreement with assumptions of our
model.

V. SUMMARY

We study low frequency magnetoplasmon excitations of
the nondegenerate two-dimensional electron system laterally
confined by a parabolic quantum well forming a quasi-one-
dimensional electron system. Starting from the equation of
motion for the electron density operator we employ the self-
consistent method to obtain the algebraic matrix representa-
tion of the integral equation for the wave charge density in
the NQ1DES. In the simplest approximation, the eigenvalue
equations are reduced to only two equations and we derive
the dispersion relation for the fundamental mode which is
similar to the previous results obtained in the hydrodynamic
method as well in the perturbation approach to the dielectric
function within the random-phase approximation. We solve
numerically the matrix equation with high accuracy to obtain
the fundamental and excited magnetoplasmon modes forq

FIG. 6. Spatial structure of charge density for the first excited
modes in the channel without the metallic gate calculated forq,T

=0.01. The solid(dashed) line represent the first(second) excited
magnetoplasmon.

FIG. 7. Mode velocity versus gate distance for the first five
modes represented by the solid, dashed, dotted, dot-dashed and dot-
dot-dashed curves. In the inset these modes are indicated by five
solid (dashed) curves when theC sQd term of Eq.(18) is neglected.
Here ns=23107 cm−2, V=53108 cm−1 and the other parameters
are the same as in Fig. 2.

FIG. 8. Same as Fig. 7 in a wide region ofd/,T. We clearly see
additional anticrossings for largerd/,T.
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!,T
−1 as well for the interesting wide region,0

−1@q*,T
−1.

We discuss the influence of screening due to the metal gates
on the plasmon dispersion and the mode velocity. Forq
!,T

−1 our results show that all excited modes are acoustical.
Furthermore, ford/,T&1 andq!,T

−1 the magnetoplasmon
modes are acoustical and their velocities display a nontrivial
dependence on the gate distance. Moreover, there are a num-
ber of anticrossings(and, in principle, infinite) within the
well-defined characteristic length which are more easily
achievable ford/,T!1, smaller electron density and larger
confinement frequency. We show that the anticrossings are
essentially connected both with the electron-electron interac-

tion and the dispersion of the lowest Landau level, through
the quantum numberk. Finally, we speculate that our pre-
dicted results may be verified through time-resolved magne-
totransport measurements.
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