
Intra-Landau-level polarization effect for a striped Hall gas

T. Aoyama,* K. Ishikawa, Y. Ishizuka, and N. Maeda
Department of Physics, Hokkaido University, Sapporo 060-0810, Japan

(Received 10 December 2003; revised manuscript received 5 April 2004; published 22 July 2004)

We calculate the polarization function including only intra-Landau-level correlation effects of striped Hall
gas. Using the polarization function, the dielectric function, the dispersion of the plasmon, and the correlation
energy are computed in a random phase approximation(RPA) and generalized random phase approximation
(GRPA). The plasmon becomes anisotropic and gapless owing to the anisotropy of the striped Hall gas and two
dimensionality of the quantum Hall system. The plasmon approximately agrees with the phonon derived before
by the single mode approximation. The(G)RPA correlation energy is compared with other numerical
calculations.
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I. INTRODUCTION

At the half-filled third and higher Landau level(LL ), the
anisotropic longitudinal resistance has been observed in ul-
trahigh mobility samples.1,2 Collective excitations and re-
lated physical quantities of the anisotropic state give impor-
tant information to clarify this state, but have not been
studied well experimentally and theoretically. In this paper,
we study collective excitations by calculating a polarization
function in intra-LL.

The Hartree-Fock approximation(HFA) at a half-filledlth
LL in the l →` limit predicts that a unidirectional charge
density wave(UCDW) forms in the two-dimensional(2D)
electron system.3,4 Within the intra-LL, the HFA at the half-
filled lth LL sl ù2d shows that an anisotropic Fermi surface
forms in the UCDW which explains the anisotropic longitu-
dinal resistance and exotic response.5–7 Collective modes for
the UCDW are studied based on an edge current picture9 and
a single mode approximation(SMA).10 We call the UCDW
the striped Hall gas. Another solution in the HFA is a modu-
lated striped state which is a highly anisotropic charge den-
sity wave(ACDW) having an energy gap and no Fermi sur-
face. Collective modes for the ACDW is derived by the time
dependent HFA(TDHFA).8 In this paper, we study the
striped Hall gas by using a random phase approximation
(RPA), in which bubble diagrams are summed up, and a
generalized RPA(GRPA), in which bubble and ladder dia-
grams are summed up. The spectrum of collective modes and
correlation energy of the striped Hall gas are compared with
the results of SMA and ACDW.

The electron gas system in the absence of a magnetic field
has been studied successfully by using diagram techniques in
many-particle physics. The diagram technique enables us to
compute corrections to HFA systematically.11 In a 2D elec-
tron system in a strong magnetic field, on the other hand, the
electron kinetic energy is frozen to one LL and it seems
difficult to analyze the system by using diagram techniques.
In the von Neumann lattice(vNL) formalism,12 however, it is
possible to apply a systematic diagram technique to the 2D
electron system under a magnetic field. In the vNL formal-
ism, the 2D electron system under a homogeneous magnetic
field is represented as a 2D lattice system and a momenta is

defined in the magnetic Brillouin zone(MBZ). The electron
kinetic energy is induced in HFA within intra-LL and de-
pends on the momentum. Hence the free propagator is de-
fined by using the kinetic energy and a diagram technique is
applied systematically.

In this paper, we investigate quantum fluctuation effects
of the striped Hall gas below the cyclotron energy scale.
From the polarization function including only intra-LL ef-
fects at one-loop order, we obtain the dielectric function, the
plasmon, and the correlation energy in the(G)RPA. Isotropic
screening effects in the dielectric function at higher LL have
been estimated.13 The intra-LL screening effects in the di-
electric function is highly anisotropic for the striped Hall
gas. The plasma frequency which is obtained by the zero of
the dielectric function in(G)RPA is found to be an aniso-
tropic gapless mode. In the RPA, the energy of plasmon is
larger than the particle-hole excitation as a usual plasmon in
the electron gas without a magnetic field. In the GRPA, on
the other hand, the energy of the plasmon becomes smaller
than the particle-hole excitation. The plasmon in the GRPA
approaches to the phonon derived by the SMA as including a
long-range component of the Coulomb interaction. The cor-
relation energy in the(G)RPA substantially reduces the total
energy.

This paper is organized as follows. The striped Hall gas
with the Fermi surface of a strip shape is introduced in Sec.
II. In Sec. III, we calculate the polarization function at the
one-loop order and derive the dielectric function, the plas-
mon, and the correlation energy in the(G)RPA. Summary is
given in Sec. IV. Appendix A gives the LL-projected HF
approximation in the vNL formalism. The explicit one-
electron energy of the striped state is given in Appendix B. In
Appendix C, the Feynman rule for the diagram techniques
are presented. In Appendix D, a duality relation between the
direct term and the exchange term is shown.

II. STRIPED HALL GAS WITH AN ANISOTROPIC FERMI
SURFACE

In this section, we derive the striped Hall gas at the half-
filled higher LL in the vNL formalism.5,14 In the vNL formal-
ism, the 2D electron system in a perpendicular uniform mag-
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netic field is transformed into a 2D lattice system and the
momentum becomes a good quantum number of the one-
electron state. In the HFA, the kinetic energy is induced by
the interaction term and perturbative calculation is easily car-
ried out by using the diagram technique.

Let us consider a 2D electron system in a perpendicular
uniform magnetic fieldB. The total HamiltonianH of the
system is written asH=H0+H1,

H0 =E c†sr ,td
sp̂ + eAd2

2m
csr ,tdd2r ,

H1 =
1

2
E :rsr ,tdVsr − r 8drsr 8,td:d2rd2r8, s1d

where p̂a=−i"]a, ]xAy−]yAx=B, V=q2/ ur u, andq2=e2/4pe
(e is a background dielectric constant). csr ,td is the electron
field, andrsr ,td=c†sr ,tdcsr ,td. The symbol : means the nor-
mal ordering for the vacuum of one electron field. In the
following calculation, the units are set as"=c=1. H0 is the
free Hamiltonian, which is quenched in a LL.H1 is the Cou-
lomb interaction. Since we want to consider only intra-LL
effects, the free Hamiltonian is omitted. We ignore the spin
degree of freedom. The electron field is expanded by the
momentum stateuf l ^ bpl in the vNL formalism12 as

csr ,td =E
MBZ

d2p

s2pd2o
l=0

`

blsp,tdkr uf l ^ bpl, s2d

where blsp ,td is the anticommuting annihilation operator
with momentump defined in the MBZ. The base function
depends on two momentapx, py symmetrically. The annihi-
lation operatorblsp ,td obeys a twisted periodic boundary
condition blsp−2pn ,td=e−ipsnx+nyd+inypxblsp ,td, wherenx, ny

are integers. The momentum state is the Fourier transform of
the Wannier basis of vNL which is localized atr
=asrsm,n/ rsd, wheren, m are integers. Herea=Î2p" /eB,
andrs is a vNL asymmetry parameter. In this paper, we seta
to be 1. The MBZ meansupa u øp. The t dependence of the
operators is omitted for simple notation. The Fourier trans-
formed current operatorjmskd is written in the vNL formal-
ism as

jmskd =E
MBZ

d2p

s2pd2o
ll8

bl
†spdbl8sp − k̂dkf lu

1

2
hvm,e−ik·jjuf l8l

3 expF− i
1

4p
k̂xs2py − k̂ydG , s3d

wherek̂ =srskx,ky/ rsd andj is the relative coordinate of the
electron andvm=f1,−seB/mdh ,seB/mdjg, m=0,1,2. In or-
der to project the operators into thelth LL, we take only the
lth LL index in Eq. (3) and write it as j *

mskd. We define
gl

mskd=k f lu 1
2hvm ,e−ik·jju f ll. For the projected density operator

r̃*skd= j *
0skd, we use the shorthand notationf lskd=gl

0skd and

f lskd=Llsk2/4pde−k2/8p whereLl is the Laguerre polynomial.
In the LL projected space, the Fourier transformed Coulomb
interaction is modified asVlskd=ff lskdg22pq2/k for the vNL
operatorblspd. We apply the HFA to the Coulomb interaction

within the lth LL and get the one-electron spectrum satisfy-
ing a self-consistency explicitly(see Appendix A).

There are two conserved chargesQX andQY correspond-
ing to the magnetic translation in the −y direction andx
direction, respectively,

QX = Ui
] r̃*skd

] kx
U

k=0
,

QY = Ui
] r̃*skd

] ky
U

k=0
, s4d

which satisfy fH ,QXg=fH ,QYg=0.10 Note thatQX and QY

correspond to the magnetic translation in thepx direction and
py direction in the momentum space, respectively. We give a
self-consistent mean field solution which is uniform in they
direction and periodic in thex direction, that is the striped
Hall gas. This state is given as

uHFl = N1 p
upxuøp,upyuøp/2

bl
†spdu0l, s5d

where u0l is the vacuum forbl and N1 is a normalization
factor. This striped state satisfies the self-consistency Eq.
(A3) at the half-filled higher LL.5,14 The corresponding one-
electron energy has the anisotropic Fermi surface which is
parallel to thepx axis. The explicit form ofel

HFspyd is given
by Eq. (B2) in Appendix B. The density of this state
kHFursr duHFl is uniform in they direction and periodic in the
x direction with a periodrs.

5,14 Using Eq.(5), we can show

kHFufQX,r̃*skdguHFl = 0,

kHFufQY,r̃*skdguHFl Þ 0 for skx,kyd = s2pn/rs,0d, s6d

wheren is an integer. Therefore the magnetic translational
symmetry in thex direction orpy direction is spontaneously
broken.

The one-electron energy has an anisotropic energy gap in
the px direction. The Fermi velocity, then, is in they direc-
tion in coordinate space. The orthogonality of the Fermi sur-
face in the momentum space and the density profile in the
coordinate space is reminiscent of the Hall effect. The
Hartree-Fock (HF) energy per particle is calculated as
El

HFsrsd=kHFuH1uHFl /N. We determine the optimal valuers

=rs
min which corresponds to the stripe period by minimizing

El
HFsrsd. At the half-filled l =2 LL, the optimal value isrs

min

=2.474.5

III. INTRA-LL POLARIZATION EFFECT

In the lth LL Hilbert space, the free HamiltonianH0 is
quenched and only the interaction HamiltonianH1 remains.
Since there exists no bare kinetic term, it seems difficult to
deal with the Coulomb interaction as a perturbative term,
naively. In the HFA, however, the kinetic term of electrons is
induced by the effective direct and exchange interaction.
Hence, the effective kinetic term appears in the HFA and the
quantum fluctuation around the HF ground state is caused by
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the residual interaction term. The Coulomb interactionH1 is
divided into two terms

H1 = HHF + sH1 − HHFd

= HHF +
1

2
E

−`

` d2k

s2pd2+
+ r̃*skdVlskdr̃*s− kd+

+. s7d

Here, HHF is given by Eq.(A1) in Appendix A. Operators
between the symbol+

+ are normal ordered for the HF vacuum.
We study the quantum fluctuation for the HF state using the
polarization function in the(G)RPA. In the vNL formalism,
we use the Feynman diagram technique in the vNL formal-
ism which is presented in Appendix C. The dielectric func-
tion and excitation spectra of the striped Hall gas are given
by the polarization function in the(G)RPA.

A. One-loop polarization function

First let us study the polarization function in the one-loop
order. The current-current correlation function, which is a
response of the external electromagnetic field, in one LL is
defined in the Heisenberg picture as

pmnsk,vd = − isTSd−1E
−`

`

dt1dt2kC0uTd j *
msk,t1d

3 d j *
ns− k,t2duC0le−ivst1−t2d, s8d

where d jm= jm−kC0u jmuC0l and TS is a total time times a
total area of a 2D electron system. The one-loop current-
current correlation function shown in Fig. 1 is calculated as

p1−loop
mn sk,vd = − igl

mskdgl
nskdE

−`

` dv1

2p
E

MBZ

d2p

s2pd2

3G̃p,v1

s0d G̃
p+k̂,v1+v

s0d

= gl
mskdgl

nskdE
MBZ

d2p

s2pd2

3Fusep+k̂ − mFdusmF − epd

v − ep+k̂ + ep + id

−
usmF − ep+k̂dusep − mFd

v − ep+k̂ + ep − id
G . s9d

G̃p,v
s0d is the free electron propagator given by Eq.(C5). mF is

the Fermi energy. We define the one-loop polarization func-
tion in the lth LL by p1−loopsk ,vd=p00sk ,vd / sgl

0skdd2.
On the basis thatek is an even function, we can
show that p1−loops−k ,vd=p1−loopsk ,vd and p1−loopsk ,−vd

=p1−loopsk ,vd. The explicit form of the real and imaginary
parts of the one-loop polarization function is as follows:

Re p1−loopsky,vd = 2lim
d→0
E

p/2−k̂y

p/2−k̂y/2 dpy

2p

3F epy
− epy+k̂y

− v

sepy
− epy+k̂y

− vd2 + d2

+
epy

− epy+k̂y
+ v

sepy
− epy+k̂y

+ vd2 + d2G , s10d

Im p1−loopsky,vd = −E
p/2−k̂y

p/2−k̂y/2
dpyfdsepy

− epy+k̂y
− vd

+ dsepy
− epy+k̂y

+ vdg. s11d

The real part is given by the principle integral. The delta
function of the imaginary part means the energy conservation
for the particle-hole excitation. Thekx-independence is the
result of the anisotropy of the striped Hall gas. The numeri-
cal results ofp1−loopsky,vd are given in Fig. 2. Thev region
in Fig. 2 where Imp1−loopsky,vd takes finite value corre-
sponds to the particle-hole excitation region. At the lower
boundary of the particle-hole excitation region,
Im p1−loopsky,vd approaches zero. At the upper boundary of
the particle-hole excitation region, Imp1−loopsky,vd becomes
infinite negatively. In contrast to the ordinary 2D electron gas
system in which the Fermi surface is a sphere shape, the
particle-hole excitation region has a gap for a finiteky due to
the one-dimensional nature of the striped Hall gas or the strip
shape of the Fermi surface.

B. Random phase approximation (bubble and ladder diagram)

The quantum fluctuation beyond the one-loop order is cal-
culated in the RPA which is the summation of the geometric
series of the one-loop polarization function as shown in

FIG. 1. Feynman diagram for the current-current correlation
function.

FIG. 2. v-dependence of the polarization functionp1−loopsky,vd
at ky=p /4. The unit ofky is rs/a. Im p1−loopvanishes at the smallv
region due to the strip shape of the Fermi surface. The unit ofv is
q2/ sa"d.
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Fig. 3. Under a homogeneous magnetic field, we can also
sum up bubble and ladder diagrams as shown in Fig. 4,
which is called the generalized RPA(GRPA).15 As an ex-
ample, the two-loop diagram is calculated in Appendix D.

The RPA polarization function is written as

pRPAsk,vd = p00
s0dsk,vd + o

n

p0n
s0dsk,vdWnskdpn0

s0dsk,vd

+ o
nm

p0n
s0dsk,vdWnskdpnm

s0dsk,vdWmskdpm0
s0dsk,vd

+ ¯ = o
n

p0n
s0dsk,vdf1 − Wskdps0dsk,vdgn0

−1,

s12d

where we define

pnm
s0dsk,vd ; − iE

−`

` dp0

2p
E

MBZ

d2p

s2pd2G̃p,p0

s0d G̃
p+k̂,p0+v

s0d
eip3sn−md,

s13d

Wnskd;Vlsk +2pñd, and a3b;axby−aybx. Here ñ

=snx/ rs,rsnyd. SinceG̃p,p0

s0d is independent ofpx for the striped
Hall gas, we can integrate Eq.(13) over px, and then

pnm
s0dsky,vd = − iE

−`

` dp0

2p
E

MBZ

dpy

2p
G̃py,p0

s0d G̃
py+k̂y,p0+v

s0d

3 e−ipysnx−mxddny−my,0. s14d

pnn
s0d is independent ofn and equivalent to the one-loop po-

larization functionp1−loopsky,vd. Here,on=on=−`
+` appears as

the result of dividing the infinite momentum integral region
by the MBZ. f1−Wskdps0dsk ,vdgn0

−1 means thesn0d-element
of the inverse matrix of f1−Wskdps0dsk ,vdg−1. In the
(G)RPA, the fluctuation for the transverse to the stripe are
included through the argument of exp in Eq.(14). When the
integernx increases, the effects of the Coulomb interaction
between different stripes increase because thepy direction
corresponds to thex direction.

A peculiar property of a 2D system in a magnetic field is
that the ladder diagram take a similar form with the bubble
diagram in one LL.15 In the presence of a magnetic field,
there exists a duality relation between the direct term and the
exchange term(see Appendix D). Owing to this property,
bubble and ladder diagrams are able to be summed up to the
infinite order. The intra-LL polarization function in the
GRPA is written as

pGRPAsk,vd = p00
s0dsk,vd + o

n

p0n
s0dsk,vdhWnskd − W̃nskdjpn0

s0dsk,vd

+ o
nm

p0n
s0dsk,vdhWnskd − W̃nskdjpnm

s0dsk,vdhWmskd − W̃mskdjpm0
s0dsk,vd + ¯

= o
n

p0n
s0dsk,vdf1 − Weffskdps0dsk,vdgn0

−1, s15d

where we define Wn
effskd;Wnskd−W̃nskd. Here, W̃nskd

; Ṽl
sky/2p + ñy, kx/2p + ñx

d, and Ṽlsad=ed2b/
s2pd2Vlsbdeib·a. The negative sign in front ofW̃nskd is due to
the exchange between the electron and hole in the ladder
diagram.

The effective interactionW0
effskd is shown in Fig. 5 at the

l =2 LL. The effective interactionW0
effskd is positive for

small k and negative for largek. Thus the bubble diagram is
dominant in the smallk region and the ladder diagram is
dominant in the largek region. As shown later, the negative
contribution of the effective interaction in the ladder diagram

FIG. 4. Bubble+ladder diagram summation(GRPA). The dotted

and dashed line meansW and −W̃, respectively. The wavy line is
Weff.

FIG. 3. Bubble diagram summation(RPA).
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changes the behavior of the dielectric function and plasmon
drastically.

C. Dielectric function

We are able to obtain useful physical information of the
system through the dielectric function. The RPA dielectric
function is the denominator of the polarization function in
the RPA. In the RPA, the pole of the polarization function,
which is equivalent to the zero of the RPA dielectric con-
stant, provides a spectrum of the plasmon excitation.

In the RPA, the dielectric function is defined by

eRPAsk,vd = 1 −W0skdp1−loopsky,vd, s16d

and in the GRPA, it is defined by

eGRPAsk,vd = 1 −
W0skdp1−loopsky,vd

1 + W̃0skdp1−loopsky,vd
. s17d

Here, we consider only then=0 term in Eq.(15) for the first
approximation. The numerical results of the dielectric func-
tion at the RPA are shown in Fig. 6 at a typicalk-value
skx,kyd=sp /4 ,1.5d. The imaginary parte2

RPA of eRPAsk ,vd
always takes a positive value, and the real parte1

RPA of

eRPAsk ,vd has two zeros.eRPAsk ,vd is finite at the particle-
hole excitation range.

In the GRPA, the numerical results ofeGRPA are shown in
Fig. 7. As shown in Fig. 5, the effective potentialW0

effskd has
a negative region in contrast toW0skd, which causes the dras-
tic change of the dielectric function behavior. Thus the point
where bothe1

RPA ande2
RPA are zero, which corresponds to the

pole of the plasmon, moves over the particle-hole range in
GRPA (compare Fig. 6 with Fig. 7).

D. Plasmon

The pole of the(G)RPA polarization function gives the
excitation mode associated with the charge fluctuation, that
is plasmon. The pole of the(G)RPA polarization function
psGdRPA is zero ofesGdRPAsk ,vd. The plasmon appears at the
outside range of the particle-hole pair regime where
e2

sGdRPAsk ,vd takes finite values.
First, we see the case of considering only then=0 term of

Eqs. (12) and (15). The plasma frequency given by solving
the pole ofpsGdRPA is shown in Figs. 8 and 9. AtkxÞ0, the
plasma frequency always approaches zero asky→0. On the
other hand, atkyÞ0 the plasma frequency remains a finite
value atkx=0. The difference of the plasmon behavior be-

FIG. 5. InteractionW̃0skd, W0skd, andW0
effskd at l =2 LL. We set

kx=p /4. The units of interactions andky are q2/a and 1/a,
respectively.

FIG. 6. v-dependence ofeRPA which includes only bubble dia-
grams forskx,kyd=(p/ s4rsad , 1.5rs/a). The unit ofv is q2/ sa"d.

FIG. 7. v-dependence ofeGRPA which includes both bubble and
ladder diagrams for(p/ s4rsad , 1.5rs/a). The unit ofv is q2/ sa"d.

FIG. 8. kx-dependence of plasma frequencyvpskx,kyd for the
RPA in then=0 case. The unit ofvpskx,kyd andkx is q2/ sa"d and
1/a, respectively.

INTRA-LANDAU-LEVEL POLARIZATION EFFECT FOR… PHYSICAL REVIEW B 70, 035314(2004)

035314-5



tween thekx andky direction is the result of the spontaneous
breaking of the magnetic translation and rotation symmetry
of the striped Hall gas. For the long wavelength limit and
epy+ky

−epy
!vp, the plasma frequencyvp rises like

uky uÎ−ln ukyu / uk u1/2 for taking only then=0 term. The origin
of the square root behavior is the Coulomb interaction 1/r in
two-dimensional space. The logarithmic correction is caused
by the divergent Fermi velocity due to the Coulomb interac-
tion.

For then=0 case, in the GRPA, theky dependence of the
plasma frequency separates into two regions. The one region
is lower than the particle-hole pair excitation region, where
W0

effskd is negative. The another region is higher than the
particle-hole pair excitation region, whereW0

effskd is positive.
At the positive interaction region where bubble diagrams are
dominant, the plasma frequency appears above the particle-
hole excitation and collapses into the particle-hole excitation.
On the other hand, at the negative interaction region where
ladder diagrams are dominant, it appears below the particle-
hole excitation. This negative interaction dominant state is
considered as a low energy bound state due to the effective
attractive interactionW0

effskd. At the long wavelength range,
the plasma frequency behaves the same as the case ofn
=0 RPA.

Next we include finiten terms of Eqs.(12) and (15). In
the RPA, the plasma frequency is slightly larger than then
=0 case at the largeky region(see Fig. 9). On the other hand,
in the GRPA, the plasma frequency is smaller than then=0
case for the wideky region (see Fig. 9), and approaches the
phonon frequency associated with the density fluctuation de-
rived in the SMA.10 In the striped Hall gas, the phonon is a

Nambu-Goldstone mode associated with the spontaneous
symmetry breaking for the magnetic translation due toQY in
Eq. (4).10 Increasingn in Eq. (15) means that the polarization
function includes effects ofnth MBZ increasingly. For the
largen value, the argument ofWn

effskd is in the largek range
as seen in Fig. 5. Since the charge density is the same as the
electron density, it is reasonable that the plasmon associated
with the charge fluctuation is the same as the phonon asso-
ciated with the density fluctuation. For the smallky range, the
convergence of the numerical calculation for largen is not
good because of the singular behavior of the polarization
function nearky=0.

E. Correlation energy

We calculate the(G)RPA correlation energy in this sec-
tion. As is well known, the correlation energy is given by the
virtual coupling constantl integration16

Etotal = EHF +E
0

1

dl
1

2
E

−`

` d2k

s2pd2ṼskdkEsldu+
+r̃skd

3r̃s− kd+
+uEsldl, s18d

where r̃skd= j0skd, Ṽskd= 2pq2/ uk u is the Fourier trans-
formed Coulomb interaction, anduEsldl is the ground state
for the system with the virtual coupling constantl. The sec-
ond term of Eq.(18) is the correlation energy. By replacing

r̃skd with r*skd and Ṽskd with Vlskd in Eq. (18), the LL
projected correlation energy is represented by a vNL basis:

FIG. 9. (Color) ky-dependence of the plasma frequencyvpskx=p /4 ,kyd for the RPA and the GRPA with the particle-hole excitation
region and the phonon frequency. The number means the dimension of the matrixf1−Weffskdps0dsk ,vdg−1. The dashed line is the plasmon
in the RPA, and the dotted line is the one in the GRPA. The solid line is the phonon derived in the SMA(Ref. 10). The behavior ofvp

approaches to the phonon one in the SMA when the matrix dimension increases. The particle-hole excitation region is unchanged and
remains in the(G)RPA. The unit ofvpskx,kyd, kx, andky is q2/ sa"d, 1 /srsad, andrs/a, respectively.
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Ecorr =
1

2
E

0

1

dlE
−`

` d2k

s2pd2VlskdkEsldu+
+r̃*skdr̃*s− kd+

+uEsldl

=
1

2
E

0

1

dlE
MBZ

d2k̂

s2pd2

d2p1

s2pd2

d2p2

s2pd2o
n

Vlsk

+ 2pñde−si/2pdk̂xsp1 − p2dy+isp1−p2d3n

3 kEsldu+
+b

l,p1+k̂

†
bl,p1

bl,p2

† bl,p2+k̂+
+uEsldl. s19d

The integern is caused by dividing thek-integral region into

summation of one MBZ. The RPA correlation energy is the
sum of the chain diagram of the bubble as shown in Fig. 10
which is derived by the perturbative calculation about the
virtual coupling constantl. The density correlation function
part in Eq.(19) is calculated as

E
MBZ

d2p1

s2pd2

d2p2

s2pd2o
n

Vlsk + 2pñde−si/2pdk̂xsp1 − p2dy+isp1−p2d3nkEsldu+
+b

l,p1+k̂

†
bl,p1

bl,p2

† bl,p2+k̂+
+uEsldl

.
RPA

i o
mnp

pmn
s0dskdWnskdpnp

s0dskdlWpskdS 1

1 − ps0dskdlWskdDpm

. s20d

Here pnm
s0d is given in Eq.(13). We take only the diagonal

matrix elements contribution and approximate Eq.(20) as

io
n

fpnn
s0dskdWnskdg2 l

1 − pnn
s0dskdlWnskd

. s21d

In the summation aboutn, the contribution ofnù1 terms
are negligible because of the Gaussian factor inVlskd. So we
consider only then=0 term. By substituting Eq.(21) into Eq.
(19), the integral aboutl gives the RPA correlation energy
ERPA

corr as

ERPA
corr = −

i

2
E

−`

` dv

2p
E

MBZ

d2k̂

s2pd2hlogfeRPAsk,vdg

+ p1−loopsky,vdW0skdj. s22d

The numerical estimates ofEHF, the real part ofERPA
corr , and

the total energyEtotal per particle at the half-filledl =2 LL are
obtained as follows:

EHF = − 0.7706,

ERPA
corr = − 0.0341,

Etotal = − 0.8047, s23d

where the energy unit isq2/a. The total energy is lowered
by the RPA correlation energy significantly.

GRPA correlation energy is the sum of the chain diagram
of the bubble and ladder as shown in Fig. 11. Corresponding
to Eq. (21) in RPA, Eq.(20) is approximated in GRPA as

io
n

fpnn
s0dskdg2WnskdWn

effskd
l

1 − pnn
s0dskdlWn

effskd
.

Considering then=0 term, the GRPA correlation energy
EGRPA

corr is written byp1−loopsky,vd as

EGRPA
corr = −

i

2
E

−`

` dv

2p
E

MBZ

d2k̂

s2pd2HS W0skd
W0

effskdD
3 logf1 − W0

effskdp1−loopsky,vdg

+ p1−loopsky,vdW0skdJ . s24d

The numerical estimates of the real part ofEGRPA
corr and the

total energyEtotal per particle at the half-filledl =2 LL are
obtained as follows:

EGRPA
corr = − 0.0385,

Etotal = − 0.8090. s25d

GRPA correlation energy is slightly lower than RPA correla-
tion energy.

Yoshioka calculated the corresponding HF energy for the
ACDW state.17 The ACDW state has anisotropic energy gaps
in the px andpy direction. Our striped Hall gas, on the other
hand, has an energy gap only in thepy direction. The numeri-
cal value of Yoshioka’s HF energy isEY =−0.7763. Our total
energyEtotal of the ground state is smaller thanEY, hence our
striped Hall gas including the quantum fluctuation at the
(G)RPA level is more stable than the ACDW. On the other
hand, Shibata and Yoshioka studied the ground state phase of
2D electrons inl =2 LL by a density matrix renormalization
group(DMRG) method, which is a numerical calculation of
a small system improved by the renormalization group

FIG. 10. The chain diagram for RPA correlation energy.
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method.18 The DMRG results seem to predict the striped
Hall gas at the half-filled higher LL. The total energy given
by the DMRG is ED=−0.796±0.004(Ref. 19) which is
smaller thanEY, whereas it is close toEtotal.

The one-electron energy of the ACDW state has a gap in
bothpy andpx directions, whose value is about 1 K.20 Hence,
this state is an insulator in thex andy direction and the gap
structure causes the quantization of the Hall conductance.
However, experiments show the huge anisotropic resistivity
and the Hall conductance is not quantized at several mK.1,2

Since the striped Hall gas has the anisotropic Fermi surface,
thex direction is an insulator whose gap energy is the cyclo-
tron energy, and they direction is metal in which the electron
gas state realizes. Therefore the striped Hall gas is more
consistent with experiments than ACDW. Moreover, the
comparison of the correlation energy with the ACDW and
results of DMRG seems to support our striped Hall gas.

IV. SUMMARY

Using the one-loop polarization function which includes
only intra-LL effects, the dielectric function, the plasma fre-
quency, and the correlation energy are calculated in the
(G)RPA for the striped Hall gas. The characteristic feature of
the plasma frequency is anisotropic gapless behavior. The
anisotropy is due to the spontaneous breaking of rotational
symmetry and the gapless feature comes from two-
dimensionality of the system. The anisotropic plasma fre-
quency will be observed by some experiments: e.g., a surface
acoustic wave. The numerical result of GRPA plasmon sug-
gests that the plasmon in the striped Hall gas is the same as
the phonon in the striped Hall gas which is the Nambu–
Goldstone mode due to the the spontaneous breaking of
translational symmetry. In contrast to the quantum Hall
smectic9 derived by the edge current picture and TDHFA
applying to the ACDW, this excitation state reflects the

striped Hall gas state. It is shown that the quantum fluctua-
tion effect for the striped Hall gas substantially reduces the
total energy in(G)RPA. This means that the quantum fluc-
tuation plays an important role in the striped Hall gas. The
quantum Hall gas properties strongly depend on the electron
self-energy with the anisotropic Fermi surface. The treatment
for quantum fluctuation effects to the electron self-energy is
beyond the scope of the present paper, and is very interesting
as a future problem.
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APPENDIX A: HARTREE-FOCK APPROXIMATION

In the intra-LL HFA, we reduce the Coulomb interaction
term to the kinetic term by using a mean fieldUspd
;kHFubl

†spdblspduHFl where uHFl is a many-particle state
satisfying a self-consistency equation. The interaction
Hamiltonian projected into thelth LL,

H1 =
project1

2
E

−`

` d2k

s2pd2:r*̃skdVlskdr*̃s− kd:,

is approximated by the HF Hamiltonian

FIG. 11. The chain diagram for GRPA correlation energy.
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HHF =
n*

N
E

MBZ

d2p

s2pd2

d2p8

s2pd2vl
HFsp − p8dUsp8dbl

†spdblspd

−
n*

2N
E

MBZ

d2p

s2pd2

d2p8

s2pd2Uspdvl
HFsp − p8dUsp8d.

sA1d

Here, we define

vl
HFsp − p8d ; o

n

hVls2pñdeisp−p8d3n − Vls2pñ + p̃8 − p̃dj.

sA2d

n* is a filling factor for the highest LL, andN is the number
of electrons at the highest LL. In this paper,n* is set to 1/2.
The states belowl −1 th LL are fully occupied. The first term
in Eq. (A2) is the Hartree potential and the second one is the
Fock potential. The uniform positive background charge can-
cels then=0 term in the Hartree term. Since the state at the
lth LL is occupied by electrons whose energy is below a
Fermi energy mF, the mean field is written asUspd
= N/ n* ufmF−el

HFspdg. Hence the self-consistency equation
of one-electron energyel

HFspd reads

el
HFspd =E

MBZ

d2p8

s2pd2vl
HFsp − p8dufmF − el

HFsp8dg.

sA3d

The one-electron energy has a periodic structureel
HFspd

=el
HFsp+2pnd owing to vl

HFspd=vl
HFsp+2pnd.

APPENDIX B: ONE-ELECTRON SPECTRUM

The one-electron spectrum is given by the next explicit
relationel

HFspyd=el
Hspyd+el

Fspyd, where

el
Hspyd =

2q2

p
o
n=0

`

VlF2ps2n + 1d
rs

G s− 1dn cosfs2n + 1dpyg
s2n + 1d

,

sB1d

el
Fspyd = − rsq

2 o
n=−`

` E
−p/2

p/2 dky

2p
E

−`

` dkx

2p

3VlfÎkx
2 + rs

2sky − py − 2pnd2g . sB2d

APPENDIX C: FEYNMAN RULE

In the following calculation, the interaction picture is ap-
plied in perturbation theory. In the Heisenberg picture, the
time-dependence of an operatorOHstd is defined asOHstd
=eiH1tOe−iH1t.

The electron Green’s function is defined by

kC0uTbp1,t1
H bp2,t2

†H uC0l

; iGsp1,t1 − t2do
n

s2pd2ds2dsp1 − p2 − 2pndeifsp1,nd,

sC1d

where uC0l is the exact ground state ofH1, and fsp,nd

=psnx+nyd−nypx. T means the time ordering. We write
blsp ,td asbp,t and omit its LL index. The Heisenberg picture
is changed to the interaction picture by using the relation
bk,t

H =Ss0,tdbk,tSst ,0d, whereSst ,t8d=eiHHFte−iH1teiHHFt8e−iH1t8.
UsingSst ,t8d in Eq. (C1), the Green’s function is written as a
familiar form:

Gsk,t − t8d = − io
n=0

`
s− idn

n!
E

−`

`

dt1 ¯

3E
−`

`

dtn
kHFuTbk,tbk,t8

† Vst1d ¯ VstnduHFl

kHFuSs+ `,− `duHFl
,

sC2d

where the interactionVstd is the residual interaction in the
interaction picture

Vstd =
1

2
E

−`

` d2k

s2pd2+
+r̃*sk,tdVlskdr̃*s− k,td+

+. sC3d

The lowest order Green’s function is obtained as

Gs0dsk,t − t8d = − ihust − t8dusek − mFde−ist−t8dsek−mFd

− ust8 − tdusmF − ekde−ist−t8dsek−mFdj.

sC4d

Considering only intra LL effects, we omit the LL index and
take the short notation ofel

HFskd asek. The Fourier transfor-
mation of the free propagator reads

G̃k,v
s0d =E

−`

`

dt eivtGs0dsk,td =
usek − mFd

v − ek + mF + id

+
usmF − ekd

v − ek + mF − id
. sC5d

In the vNL formalism, it is a transparent way to represent
the infinite k-integral of Eq.(C3) as the summation of one
fundamental MBZ. So the residual interaction is written as

Vstd =E
MBZ

d2k̂

s2pd2

d2p1

s2pd2

d2p2

s2pd2e−si/2pdk̂xp1yVlsp1,k,p2d

3 esi/2pdk̂xp2y
+
+b

t,p1+k̂

†
bt,p1

bt,p2

† bt,p2+k̂+
+, sC6d

where we define

Vlsp1,k,p2d ; o
n=−`

`

Vlsk + 2pñdeisp1−p2d3n. sC7d

Instead of the infinitek-integral region, the infinite summa-
tion appears. The local interactionVlskd in momentum space
is replaced by the nonlocal oneVlsp1,k,p2d including the
phase factor in the density operator. For perturbative calcu-
lations, we use the Wick’s theorem and obtain ann-point
correlation function for the interactionVstd.

In the following we present the Feynman diagram rule in
the momentum space for the perturbative residual interaction
Eq. (C6). The phase factor due to the magnetic field makes
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the vertex and the momentum conservation factors compli-
cated.

(i) Draw a Feynman diagram. For an electron propagator,
introduce the Green’s function

sC8d

(ii ) For one Coulomb line which is the interaction vertex,
a local momentum interaction is not assigned in the usual
way. We add a nonlocal interaction including four electron
momentumpi with phase factor as

sC9d

(iii ) Add a momentum conservation factor for each inter-
action vertices with four electron momentumpi and fre-
quencyvi:

o
nm

s2pd2dsp1 − p2 − k̂ − 2pndeifsp2,nds2pd2

3dsp3 − p4 + k̂ − 2pmdeifsp3,md

3s2pd2dsv1 − v2 − vddsv3 − v4 + vd. sC10d

The phase factorfspi ,nd is added to the delta function.
sivd For a one current vertex, a local momentum factor is

also not assigned as the interaction vertex case. We add a
nonlocal factor

sC11d

svd Add a momentum conservation factor for each cur-
rent vertex with two electron momentumpi and frequency
vi:

o
n

s2pd2dsp1 − p2 − k̂ − 2pndeifsp2,nds2pddsv + v1 − v2d.

sC12d

The phase factorfspi ,nd is added to the delta function.
svid Perform integral for internal momentum and add the

numerical factor

H 1

s2pd3JI

, sC13d

where I is the number of internal line. Count the electron
loop number and add the factors−1dL for L electron loops.

APPENDIX D: DUALITY BETWEEN THE DIRECT TERM
AND THE EXCHANGE TERM

One of the surprising properties of the 2D electron system
in a magnetic field is that the ladder diagrams take a similar
form with the bubble diagram and the bubble and ladder
diagrams can be summed up to the infinite order. This is
caused by the duality between the direct term and the ex-
change term. In this appendix we show this property in the
two-loop order as shown in Fig. 12.

Following the rule of Appendix C, the left two-loop dia-
gram in Fig. 12 reads

− o
n
E dv1

2p

dv2

2p
E

MBZ

d2p1

s2pd2

d2p2

s2pd2G̃
p1−k̂,v1−v

s0d
G̃p1,v1

s0d

3 G̃
p2−k̂,v2−v

s0d
G̃p2,v2

s0d Vlsp̃1 − p̃2 + 2pñdesi/2pdsp1−p2+2pnd3k̂ .

sD1d

In general, the Fourier transform Ṽlsqd=ed2p/
s2pd2Vlspdeip·q satisfies the following duality relation be-
tween the direct term and the exchange term:

o
n

Vlsp + 2pndeisp+2pnd·q = o
n

Ṽlsq + nde−ip·n. sD2d

Using this relation, Eq.(D1) is written as

− o
n
E dv1

2p

dv2

2p
E

MBZ

d2p1

s2pd2

d2p2

s2pd2G̃
p1−k̂,v1−v

s0d
G̃p1,v1

s0d

3G̃
p2−k̂,v2−v

s0d
G̃p2,v2

s0d ṼlS ky

2p
+ ñy,−

kx

2p
− ñxDein3sp1−p2d

= − o
n

p0nskdW̃nskdpn0skd. sD3d

This result is equivalent to two bubbles connected with the

interactionW̃skd as the right two-loop diagram in Fig. 12.
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