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Intra-Landau-level polarization effect for a striped Hall gas
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We calculate the polarization function including only intra-Landau-level correlation effects of striped Hall
gas. Using the polarization function, the dielectric function, the dispersion of the plasmon, and the correlation
energy are computed in a random phase approxim@Re#) and generalized random phase approximation
(GRPA). The plasmon becomes anisotropic and gapless owing to the anisotropy of the striped Hall gas and two
dimensionality of the quantum Hall system. The plasmon approximately agrees with the phonon derived before
by the single mode approximation. TH&)RPA correlation energy is compared with other numerical

calculations.
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[. INTRODUCTION defined in the magnetic Brillouin zon@&BZ). The electron

kinetic energy is induced in HFA within intra-LL and de-

At the half-filled third and higher Landau levéllL), the  pends on the momentum. Hence the free propagator is de-
anisotropic longitudinal resistance has been observed in ufined by using the kinetic energy and a diagram technique is
trahigh mobility sample$? Collective excitations and re- applied systematically.
lated physical quantities of the anisotropic state give impor- In this paper, we investigate quantum fluctuation effects
tant information to clarify this state, but have not beenof the striped Hall gas below the cyclotron energy scale.
studied well experimentally and theoretically. In this paper,From the polarization function including only intra-LL ef-
we study collective excitations by calculating a polarizationfects at one-loop order, we obtain the dielectric function, the
function in intra-LL. plasmon, and the correlation energy in tRPA. Isotropic

The Hartree-Fock approximatigriFA) at a half-filledlth screening effects in the dielectric function at higher LL have
LL in the | —o limit predicts that a unidirectional charge been estimatetf The intra-LL screening effects in the di-
density wave(UCDW) forms in the two-dimensional2D) electric function is highly anisotropic for the striped Hall
electron systerd? Within the intra-LL, the HFA at the half- gas. The plasma frequency which is obtained by the zero of
filled Ith LL (I=2) shows that an anisotropic Fermi surface the dielectric function i(G)RPA is found to be an aniso-
forms in the UCDW which explains the anisotropic longitu- tropic gapless mode. In the RPA, the energy of plasmon is
dinal resistance and exotic respofseCollective modes for larger than the particle-hole excitation as a usual plasmon in
the UCDW are studied based on an edge current pitanmé  the electron gas without a magnetic field. In the GRPA, on
a single mode approximatiogfBMA).1° We call the UCDW the other hand, the energy of the plasmon becomes smaller
the striped Hall gas. Another solution in the HFA is a modu-than the particle-hole excitation. The plasmon in the GRPA
lated striped state which is a highly anisotropic charge denapproaches to the phonon derived by the SMA as including a
sity wave(ACDW) having an energy gap and no Fermi sur-long-range component of the Coulomb interaction. The cor-
face. Collective modes for the ACDW is derived by the timerelation energy in th€ G)RPA substantially reduces the total
dependent HFA(TDHFA).2 In this paper, we study the energy.
striped Hall gas by using a random phase approximation This paper is organized as follows. The striped Hall gas
(RPA), in which bubble diagrams are summed up, and awith the Fermi surface of a strip shape is introduced in Sec.
generalized RPAGRPA), in which bubble and ladder dia- 1l. In Sec. lll, we calculate the polarization function at the
grams are summed up. The spectrum of collective modes arghe-loop order and derive the dielectric function, the plas-
correlation energy of the striped Hall gas are compared wittmon, and the correlation energy in ti8)RPA. Summary is
the results of SMA and ACDW. given in Sec. IV. Appendix A gives the LL-projected HF

The electron gas system in the absence of a magnetic fiegpproximation in the vNL formalism. The explicit one-
has been studied successfully by using diagram techniques @lectron energy of the striped state is given in Appendix B. In
many-particle physics. The diagram technique enables us #®ppendix C, the Feynman rule for the diagram techniques
compute corrections to HFA systematicafhin a 2D elec- are presented. In Appendix D, a duality relation between the
tron system in a strong magnetic field, on the other hand, thdirect term and the exchange term is shown.
electron kinetic energy is frozen to one LL and it seems
difficult to analyze the system by using diagram techniques
In the von Neumann latticeyNL ) formalism}? however, it is
possible to apply a systematic diagram technique to the 2D
electron system under a magnetic field. In the vNL formal- In this section, we derive the striped Hall gas at the half-
ism, the 2D electron system under a homogeneous magnefiitied higher LL in the vNL formalisn®#In the vNL formal-
field is represented as a 2D lattice system and a momenta ism, the 2D electron system in a perpendicular uniform mag-

1l. STRIPED HALL GAS WITH AN ANISOTROPIC FERMI
SURFACE
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netic field is transformed into a 2D lattice system and thewithin thelth LL and get the one-electron spectrum satisfy-
momentum becomes a good quantum number of the oneng a self-consistency explicitlisee Appendix A

electron state. In the HFA, the kinetic energy is induced by There are two conserved charg@g and Qy correspond-
the interaction term and perturbative calculation is easily caring to the magnetic translation in they -direction andx

ried out by using the diagram technique. direction, respectively,
Let us consider a 2D electron system in a perpendicular -
uniform magnetic fieldB. The total HamiltonianH of the Qy = i‘?P*(k)
system is written asi=Hgy+H,, Ky k=0
| e o BFEAY 2 ~
HO—J Yh(r,t) om Y(r,t)der, Q= i&p*(k) , @)
& ky k=0

which satisfy[H,Qyx]=[H,Qy]=0.° Note thatQy and Q
correspond to the magnetic translation in thelirection and

. ) 5 5 py direction in the momentum space, respectively. We give a
wherep,==ifd,, dA,=dA=B, V=0¢*/r|, andq =€’/4me  self-consistent mean field solution which is uniform in the

(e is a background dielectric constani(r ,t) is the electron  gjrection and periodic in the direction, that is the striped
field, andp(r ,t)=¢'(r ,t)¢(r ,t). The symbol : means the nor- Hg|| gas. This state is given as

mal ordering for the vacuum of one electron field. In the

following calculation, the units are set &ssc=1. Hy is the HR =N, [l by (p)[0), (5)

free Hamiltonian, which is quenched in a LH, is the Cou- I =<.|py|<ml2

lomb interaction. Since we want to consider only mtra—Ll__ where |0) is the vacuum forb, and N, is a normalization

, . factor. This striped state satisfies the self-consistency Eg.
degree of freedom. The electron field is exzpanded by th‘;(’A3) at the half-filled higher LL>** The corresponding one-
momentum stat@ﬂ@/%p) in the vNL formalisnt? as electron energy has the anisotropic Fermi surface which is
Pp & parallel to thep, axis. The explicit form ofe " (py) is given
WE bi(p, )(r|f; ® By, (2 by Eq. (B2) in Appendix B. The density of this state
MBz (€7 1=0 (HF|p(r)|HF) is uniform in they direction and periodic in the
where by(p,t) is the anticommuting annihilation operator X direction with a periods.>** Using Eq.(5), we can show
with momentump defined in the MBZ. The base function ~ _
depends on two momentg, p, symmetrically. The annihi- (HFI[Qx.p- () IHF) =0,
lation operatorby(p,t) obeys a twisted periodic boundary ~ B
condition by(p -2 ,t):e—iﬂ-(nx+ny)+inypxb|(p,t), wheren,, n, <HF|[Qy,p*(k)]|HF> # 0 for (k,, ky) = (2mn/rg,0), (6)
are integers. The momentum state is the Fourier transform @fheren is an integer. Therefore the magnetic translational
the Wannier basis of VNL which is localized at  symmetry in thex direction orp, direction is spontaneously
=a(rgm,n/rg), wheren, m are integers. Hera=v2n#/eB, broken.
andrg is a VNL asymmetry parameter. In this paper, wesset  The one-electron energy has an anisotropic energy gap in
to be 1. The MBZ meantp'a| <. Thet dependence of the the p, direction. The Fermi velocity, then, is in thedirec-
operators is omitted fo_r S|mple notation. The Fourier transtion in coordinate space. The orthogonality of the Fermi sur-
formed current operatdr“(k) is written in the vNL formal-  face in the momentum space and the density profile in the

legf:p(r,t)V(r —=r")p(r',b):d?rd?r’, (1)

yr,t) =

ism as coordinate space is reminiscent of the Hall effect. The
p . 1 _ Hartree-Fock (HF) energy per particle is calculated as
ji#(Kk) = 5> bl (p)by (p = K)(Fi| = o™, e 4}, E/"(r9=(HF|H,/HF)/N. We determine the optimal valug
mez (27) n 2 =rg"" which corresponds to the stripe period by minimizing
1. . EMf(ry). At the half-filled =2 LL, the optimal value ig™
X exp{— |ZTkX(2py - ky)} , (3 =2.4745

wherelzz(rskx,ky/rs) and ¢ is the relative coordinate of the
electron andv#=[1,~(eB/m)»,(eB/m)&], ©=0,1,2. In or- IIl. INTRA-LL POLARIZATION EFFECT
der to project the operators into thé LL, we take only the

ltD LI: mdlelen _qu (3)> and write 't, asj(k). We define quenched and only the interaction Hamiltonidn remains.
9 (k)‘<fl‘5{v € é}|fl - For the projected density operator gjnce there exists no bare kinetic term, it seems difficult to

pe(K)=j2(k), we use the shorthand notatiéitk)=gP(k) and  geal with the Coulomb interaction as a perturbative term,
fi(k)=L,(k?/4m)e ¥/8™ whereL, is the Laguerre polynomial. naively. In the HFA, however, the kinetic term of electrons is
In the LL projected space, the Fourier transformed Coulombnduced by the effective direct and exchange interaction.
interaction is modified a¥,(k)=[f,(k)]?2270?/k for the vNL  Hence, the effective kinetic term appears in the HFA and the
operatorb,(p). We apply the HFA to the Coulomb interaction quantum fluctuation around the HF ground state is caused by

In the Ith LL Hilbert space, the free HamiltoniaH, is
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FIG. 1. Feynman diagram for the current-current correlation g Y e
function. 7 2f ) -
< 4 Re ©) ——
= 4 e“1-loop(ky' )
the residual interaction term. The Coulomb interactitnis _§ 6 M1 soop(Ky@) - _
divided into two terms 5 8 .
-10 1 1 1 1 1 1
H, = H"F + (H, - HHF) o o5 1 15 2 25 8
e [ d*k . - ~ o )
=H™ + 2 L 2m¥ p-(K)Vi (k) (= k). @) FIG. 2. w-dependence of the polarization functiaf_ ok, »)

atk,=/4. The unit ofk, is rg/a. Im m;_ypvanishes at the smadl
Here, H"F is given by Eq.(A1) in Appendix A. Operators region due to the strip shape of the Fermi surface. The unit isf
between the symbdglare normal ordered for the HF vacuum. 9’/ (ah).
We study the quantum fluctuation for the HF state using the
polarization function in th€G)RPA. In the VNL formalism, =k, w). The explicit form of the real and imaginary

we use the Feynman diagram technique in the vNL formalparts of the one-loop polarization function is as follows:
ism which is presented in Appendix C. The dielectric func-

tion and excitation spectra of the striped Hall gas are given 2k 2 dp,
by the polarization function in théG)RPA. Re 71_jpod Ky, @) = 2Iimf R
-0 a2k, 2m
A. One-loop polarization function % [ €p, ~ €p,+k, T @
S 2
First let us study the polarization function in the one-loop (Epy_ €py+k, w)? + &

order. The current-current correlation function, which is a € —e o+
. . . . P, P +ky w
response of the external electromagnetic field, in one LL is + y y > . (10
defined in the Heisenberg picture as (Epy- €p i, t w)?+ &
7T‘“’(k,w) == |(TS_1J dtldt2<\lf0|T51y(k,tl) 5 Ay/

72—k, /2
Im 71 g0 Ky, @) = = f _dpf 5(epy ~ €k, )
2k

X 8= K, tp) | Woye et (8
where §j“=j*—(¥|j*|¥o) and TSis a total time times a + ey, ~ €k T )]
total area of a 2D electron system. The one-loop current- o -
current correlation function shown in Fig. 1 is calculated asThe real part is given by the principle integral. The delta

function of the imaginary part means the energy conservation

(13)

7 (Kw) = —igh(g (k) - doy d’p for the particle-hole excitation. Thik-independence is the
ook A wez (2)° result of the anisotropy of the striped Hall gas. The numeri-
o cal results ofm; 04Ky, w) are given in Fig. 2. The» region
XGY, G((i)liw " in Fig. 2 where Imm; ik, ) takes finite value corre-
Lo sponds to the particle-hole excitation region. At the lower
=gi(kg(k) dp boundary of the particle-hole excitation region,
! ' gz (27)2 Im 71 _004Ky, @) approaches zero. At the upper boundary of
the particle-hole excitation region, lam, i,k , ) becomes
O €p+ic = Hr) O = €) infinite negatively. In contrast to the ordinary 2D electron gas
0= €t Etid systgm in Which_ th.e Ferrr_1i surface is a sphgrg shape, the
particle-hole excitation region has a gap for a firkjelue to
(e — €p+ic) B€p ~ p) 9 the one-dimensional nature of the striped Hall gas or the strip
- €kt €10 ©) shape of the Fermi surface.

G is the free electron propagator given by EG5). ur is N .
the Fermi energy. We define the one-loop polarization func-B' Random phase approximation (bubble and ladder diagram)

tion in the Ith LL by m;_peik,w)=m"k,w)/(gP(K))2. The quantum fluctuation beyond the one-loop order is cal-
On the basis thate, is an even function, we can culated in the RPA which is the summation of the geometric
show that 7_jpod —K, ®) =71 _g0dK, @) and my_pedK, o) series of the one-loop polarization function as shown in
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Fig. 3. Under a homogeneous magnetic field, we can alsc
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sum up bubble and ladder diagrams as shown in Fig. 4.

which is called the generalized RR&GRPA).1® As an ex-

ample, the two-loop diagram is calculated in Appendix D.

The RPA polarization function is written as

Trea(K,0) = T (K, ) +E o (K, ) Wo(K) 70 (K, )
+ 2 7L (K, @) Wo(K) 7K, 0) Wiy (K) QK @)

= 2 w9k, 0)[1 - WK 7Ok, 0) ],

(12)

where we define

(0) k _|f f G(O) gpx(n-m)
(k) = o MBZ (277)2 ProC p+k Pote ’

(13
W,h(k)=Vi(k+277), and axXb=ahb,~ab, Here N
=(Ny/Ts,rny). SinceGEfz)o is independent of, for the striped
Hall gas, we can integrate E(L3) over p,, and then
( dpg
0 —_ 9Po _px 0 &0
nm(ky"'u) - If_oo 20 MBZ 2 Dy F)opr+ky pote

X @ Py 5 (14)

myO

merealk, @) = T (K, 0) + X, 7
n

FIG. 4. Bubble+ladder diagram summati@&RPA). The dotted

and dashed line mearwy and —\7\/, respectively. The wavy line is
Weg.

( ) is independent oh and equivalent to the one-loop po-
Iarlzatlon functionm; _,0dky, ). Here,Z, =37 _ appears as
the result of dividing the infinite momentum integral region
by the MBZ.[1-W(k)7?(k,w)].3 means then0)-element
of the inverse matrix of[1-W(k)79(k,®)] L. In the
(G)RPA, the fluctuation for the transverse to the stripe are
included through the argument of exp in Ef4). When the
integern, increases, the effects of the Coulomb interaction
between different stripes increase becausepthéirection
corresponds to the direction.

A peculiar property of a 2D system in a magnetic field is
that the ladder diagram take a similar form with the bubble
diagram in one LLL In the presence of a magnetic field,
there exists a duality relation between the direct term and the
exchange tern{see Appendix D Owing to this property,
bubble and ladder diagrams are able to be summed up to the
infinite order. The intra-LL polarization function in the
GRPA is written as

Ok, @) Wh(K) = Wo(K)} 79 (K, @)

+2770n K, 0){Wi(K) = Wa(K)} 7O (K, 0){Wi(K) = Wir(K)} 7Yk, @) + -+

_E 77.0)(|( w)[1 - Weff k)w(o)(k,w)];é,

where we define WEfi(k) =W, (k) -W,(K). Here, Wy(k)
=Vk /27 +7,, k./ 27 +7i), and  Vi(a)=/d?B/
(2m)2V,(B)€P=. The negative sign in front aiv,(k) is due to

(15

The effective mteracUoN\Fﬁ(k) is shown in Fig. 5 at the
=2 LL. The effective mteractlon\/\/e (k) is positive for
smallk and negative for largk. Thus the bubble diagram is
dominant in the smalk region and the ladder diagram is

the exchange between the electron and hole in the laddefominant in the largé region. As shown later, the negative

diagram.

contribution of the effective interaction in the ladder diagram
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FIG. 5. Interactiori(k), We(k), andWE"(k) atl=2 LL. We set FIG. 7. w-dependence of°RPAwhich includes both bubble and

ke=m/4. The units of interactions andé, are g’/a and 1A, ladder diagrams fo¢w / (4rsa) , 1.5rs/ a). The unit ofw is g2/ (atk).

respectively.
€*PAk,w) has two zerose*"A(k ,w) is finite at the particle-

changes the behavior of the dielectric function and plasmofiole excitation range.
drastically. In the GRPA, the numerical results 8fRPA are shown in
Fig. 7. As shown in Fig. 5, the effective potentwﬁﬁ(k) has
a negative region in contrast W(k), which causes the dras-
tic change of the dielectric function behavior. Thus the point

We are able to obtain useful physical information of theywhere bO'[he?PA and EZRPA are zero, which corresponds to the
system through the dielectric function. The RPA die|ectriCpo|e of the p|a5mon, moves over the partic|e-ho|e range in
function is the denominator of the polarization function in GRPA (compare Fig. 6 with Fig. )7
the RPA. In the RPA, the pole of the polarization function,
which is equivalent to the zero of the RPA dielectric con-

C. Dielectric function

stant, provides a spectrum of the plasmon excitation. D. Plasmon
In the RPA, the dielectric function is defined by The pole of the(G)RPA polarization function gives the
RP 1 excitation mode associated with the charge fluctuation, that
€K, ) = 1 =Wo(K) 71100l Ky, ), 18 i plasmon. The pole of théG)RPA polarization function
and in the GRPA, it is defined by merea IS 2ero of®RPAk, ). The plasmon appears at the
outside range of the particle-hole pair regime where
(G)RPA T
SRPAK o) =1 - Wo(K) 71100 Ky, @) _ 1 @ (k, w) takes finite values.

First, we see the case of considering only e term of
Egs.(12) and (15). The plasma frequency given by solving
Here, we consider only the=0 term in Eq.(15) for the first  the pole ofmg)rpa is shown in Figs. 8 and 9. At,# 0, the
approximation. The numerical results of the dielectric func-plasma frequency always approaches zergas0. On the
tion at the RPA are shown in Fig. 6 at a typidelvalue  other hand, ak,+ 0 the plasma frequency remains a finite
(ke.k)=(m/4,1.5. The imaginary pari5™* of e*"Ak,w)  value atk,=0. The difference of the plasmon behavior be-
always takes a positive value, and the real pgit" of

1+ Wo(k) 71100 Ky, ©)

1.25 T T T T T T
5 T T T T T T T
12
4 .
g 3 82:21(0)) _— 4 115 | ky=tt —— J
x € p(w) ------- Pagficle-Hole range __| Plasmo ky=2f3 ----mm-
B, 2r ™ & 11} ky=/3 -oonveee .
? — i Ky=Wfd oo -
= g 1.05 | g
E ol
=
& -
<, -1 - 1
'2 [~ -1 0‘95 1 1 1 1 1 1
3 \ . . . . \ . 0 05 1 15 2 25 8
0 02 04 06 08 1 12 14 Ky

FIG. 8. k-dependence of plasma frequeney(ky,k,) for the
FIG. 6. w-dependence of*”” which includes only bubble dia- RPA in then=0 case. The unit of,(ky, k) andk, is g°/(a%) and
grams for(k,,k,)=(7/(4rs), 1.5/ a). The unit ofw is g2/ (afi). 1/a, respectively.
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1.2} e
1 g
/7 v
0.8} /L
o /s
3 /e
0.6f I —
f Ll ..'0-."...‘ ° .....
0 ° 4 W °e ..‘"...’.“"'3......."'-..'00... .'o
{ S 5 gL
0.2 }/ :.h”n. ® . :..:'::9....7"... SMA o"’ :
. 2 a t
0 0.5 1 1.5 9 2.5 3
ky

FIG. 9. (Color) ky-dependence of the plasma frequengyk,=/4 k,) for the RPA and the GRPA with the particle-hole excitation
region and the phonon frequency. The number means the dimension of the [hatig(k) 79 (k ,w)]". The dashed line is the plasmon
in the RPA, and the dotted line is the one in the GRPA. The solid line is the phonon derived in théR&¥1AQ. The behavior ofw,
approaches to the phonon one in the SMA when the matrix dimension increases. The particle-hole excitation region is unchanged and
remains in thgG)RPA. The unit ofwp(ky, k), Kk, andk, is g’/ (ah), 1/(r), andrg/a, respectively.

tween thek, andk, direction is the result of the spontaneous Nambu-Goldstone mode associated with the spontaneous
breaking of the magnetic translation and rotation symmetrysymmetry breaking for the magnetic translation du€toin

of the striped Hall gas. For the long wavelength limit andEq. (4).1° Increasingn in Eq. (15) means that the polarization
epy+ky—epy< o, the plasma frequencyw, rises like function includes effects ofth MBZ increasingly. For the

|ky| —In|ky|/|k|1’2 for taking only then=0 term. The origin largen ve_llue_, the argument dNﬁﬁ(k) isin t_he_largek range
of the square root behavior is the Coulomb interactionia/ 25 S€en in Fig. 5. Since the charge density is the same as the

two-dimensional space. The logarithmic correction is cause&l_ec'[ron density, it is rez_isor)able that the plasmon associated
with the charge fluctuation is the same as the phonon asso-

by the divergent Fermi velocity due to the Coulomb interac-" . : .
tign. 9 y ciated with the density fluctuation. For the smiglrange, the

For then=0 case, in the GRPA, thg, dependence of the convergence of the numerical calculation for largés not

plasma frequency separates into two regions. The one regid#P®d because of the singular behavior of the polarization

is lower than the particle-hole pair excitation region, wherefunction neark,=0.

ngf(k) is negative. The another region is higher than the

particle-hole pair excitation region, whevﬁf(k) is positive. E. Correlation energy

At the positive interaction region where bubble diagrams are ) ) )
dominant, the plasma frequency appears above the particle- We calculate thgG)RPA correlation energy in this sec-
hole excitation and collapses into the particle-hole excitationtion: As is well known, the_correlafuonBenergy is given by the
On the other hand, at the negative interaction region wher¥irtual coupling constank integratiort

ladder diagrams are dominant, it appears below the particle-

hole excitation. This negative interaction dominant state is rotal_ CHF oo dk ~ -
considered as a low energy bound state due to the effective EPN=ET"+ d)‘E (ZW)ZV(kKE()\) -p(K)
attractive interactiorWS“(k). At the long wavelength range, 0 -

the plasma frequency behaves the same as the case of Xp(=K):JJE(N)), (18
=0 RPA.

Next we include finiten terms of Eqs(12) and (15). In
the RPA, the plasma frequency is slightly larger thanrhe
=0 case at the large, region(see Fig. 9. On the other hand, ) X -
in the GRPA, the plasma frequency is smaller thanrth® for the system with t_he virtual couplmg constantThe sec-
case for the wide, region(see Fig. 9, and approaches the ond term of Eq(18) is the correlation energy. By replacing
phonon frequency associated with the density fluctuation dea(k) with p.(k) and V(k) with V(k) in Eq. (18), the LL
rived in the SMALC In the striped Hall gas, the phonon is a projected correlation energy is represented by a vNL basis:

where 5(k)=j%k), V(k)=2mg?/|k| is the Fourier trans-
formed Coulomb interaction, an@&(\)) is the ground state
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Vi(K)(E()

d’k
E®= J d\ o2 P (K)p+ (= K)J[E(N))

J f ok d’p; d*p,
wez (2m)?(2m)? (2m)?*;
+ Zwﬁ)e_(ilzw)kx(pl = Poly*i(p1=p2)Xn

K EN)).

b p1b| pzbl patke

> Vik

(19

Ip+k

The integem is caused by dividing thk-integral region into

f d2p1 dzpz
MBZ (277)2(2 ™24

|2 o (k)Wn(k)q-r(O)(k))\Wp(k)<

mnp

Here ’77(0) is given in Eqg.(13). We take only the diagonal

matrix elements contribution and approximate E2f)) as

N

2
2 [ (M0 i

(21)

In the summation about, the contribution oh=1 terms
are negligible because of the Gaussian factdy,{k). So we
consider only then=0 term. By substituting Eq21) into Eq.
(19), the integral abouk gives the RPA correlation energy

corr
Erpa @S

i [* do d?k
Ecorr - _ hahed | RP. k
RPA Z,f_w ZWJMBZ (277)2{ ogl€ A( )]

+ Wl—loop(ky:w)wo(k)}-

(22
The numerical estimates &%, the real part ofEyy,, and
the total energ™ @ per particle at the half-filleti=2 LL are
obtained as follows:

EHF=-0.7706,
corr.=—0.0341,
Eto = — 0.8047, (23

where the energy unit ig?/a. The total energy is lowered
by the RPA correlation energy significantly.

E V|(k + 2,7Tn)e_(|/277)kx(p1 p2

1
- O (kAW(K) ),,m'
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00 -

FIG. 10. The chain diagram for RPA correlation energy.

corr _

“+ .-

summation of one MBZ. The RPA correlation energy is the
sum of the chain diagram of the bubble as shown in Fig. 10
which is derived by the perturbative calculation about the
virtual coupling constank. The density correlation function
part in Eq.(19) is calculated as

| Py +kbl plb' pzb' p2+|QZ|E()\)>

(20)

A

(0172 ft
IE [rn (K PWa(K)OWG (k)l — OGN (k)

Considering then=0 term, the GRPA correlation energy

ES IS written by 1 _ipqky, ) as
GRPA™ 2 o 27 ) Bz (277)2 vaﬁ(k)

X log[1 = WG"(K) 710Ky, )]

+ Wl—loop(kyu @) Wy(K) (24)
The numerical estimates of the real partEffxp, and the
total energyE"®?® per particle at the half-filled=2 LL are
obtained as follows:

con =~ 0.0385,

Et°@ = — 0.8090. (25)

GRPA correlation energy is slightly lower than RPA correla-
tion energy.

Yoshioka calculated the corresponding HF energy for the
ACDW statel” The ACDW state has anisotropic energy gaps
in the p, and p, direction. Our striped Hall gas, on the other
hand, has an energy gap only in ghedirection. The numeri-
cal value of Yoshioka's HF energy 5" =-0.7763. Our total
energyE"? of the ground state is smaller th&, hence our
striped Hall gas including the quantum fluctuation at the
(G)RPA level is more stable than the ACDW. On the other
hand, Shibata and Yoshioka studied the ground state phase of

GRPA correlation energy is the sum of the chain diagram2D electrons in=2 LL by a density matrix renormalization
of the bubble and ladder as shown in Fig. 11. Correspondingroup(DMRG) method, which is a numerical calculation of

to Eq.(21) in RPA, Eq.(20) is approximated in GRPA as

a small system improved by the renormalization group
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FIG. 11. The chain diagram for GRPA correlation energy.

method® The DMRG results seem to predict the stripedstriped Hall gas state. It is shown that the quantum fluctua-
Hall gas at the half-filled higher LL. The total energy given tion effect for the striped Hall gas substantially reduces the
by the DMRG is EP=-0.796+0.004(Ref. 19 which is total energy in(G)RPA. This means that the quantum fluc-
smaller tharEY, whereas it is close t&®°®@ tuation plays an important role in the striped Hall gas. The
The one-electron energy of the ACDW state has a gap imuantum Hall gas properties strongly depend on the electron
bothp, andp, directions, whose value is about 1°RHence, self-energy with the anisotropic Fermi surface. The treatment
this state is an insulator in theandy direction and the gap for quantum fluctuation effects to the electron self-energy is
structure causes the quantization of the Hall conductancéeyond the scope of the present paper, and is very interesting
However, experiments show the huge anisotropic resistivityas a future problem.
and the Hall conductance is not quantized at several*fK.
Since the striped Hall gas has the anisotropic Fermi surface,
thex direction is an insulator whose gap energy is the cyclo-
tron energy, and thg direction is metal in which the electron
gas state realizes. Therefore the striped Hall gas is more,
consistent with experiments than ACDW. Moreover, the
comparison of the correlation energy with the ACDW and
results of DMRG seems to support our striped Hall gas.
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Using the one-loop polarization function which includes Eoundation.

only intra-LL effects, the dielectric function, the plasma fre-
quency, and the correlation energy are calculated in the

(G)RPA for the striped Hall gas. The characteristic feature of APPENDIX A: HARTREE-FOCK APPROXIMATION

the plasma frequency is anisotropic gapless behavior. The

anisotropy is due to the spontaneous breaking of rotational In the intra-LL HFA, we reduce the Coulomb interaction
symmetry and the gapless feature comes from twoterm to the kinetic term by using a mean field(p)
dimensionality of the system. The anisotropic plasma fre=(HF|b{(p)b(p)|HF) where |HF) is a many-particle state
quency will be observed by some experiments: e.g., a surfaggatisfying a self-consistency equation. The interaction
acoustic wave. The numerical result of GRPA plasmon sugHamiltonian projected into theh LL,

gests that the plasmon in the striped Hall gas is the same as

the phonon in the striped Hall gas which is the Nambu— projectl 42k

Goldstone mode due to the the spontaneous breaking of Hi = | —= - (K)V,(K)p« (= k)1,

translational symmetry. In contrast to the quantum Hall —e (27)

smecti€ derived by the edge current picture and TDHFA

applying to the ACDW, this excitation state reflects theis approximated by the HF Hamiltonian
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v d?p d*p’ , , =m(ny+ny)—-nyp,. T means the time ordering. We write
HAF = ﬁf (ZW)Z(ZW)vaF(p ~p")U(p")b(p)bi(p) bi(p,t) asb,, and omit its LL index. The Heisenberg picture
MBZz is changed to the interaction picture by using the relation

L B R - p U by!,=S(0 Dby (S(t,0), whereS(t ) =eH" e Hught Vi
2N gy (2m)2 (272 PJop=(p=p)Up). Using S(t,t') in Eq.(C1), the Green’s function is written as a
familiar form:
(A1)
Here, we define Gkt-t)==-i>, ¢ i)nfc dt; ---
n=0 n! —©

o (p-p’) = 2 {Vi(2mT)e PPN~ V(27T + B - )}
n

= (HFITh by V(ty) -~ V(t,)[HF)
(A2) XJ_OO : (HF|S(+ oo,—oc)|HF>

v' is a filling factor for the highest LL, antl is the number (C2)
of electrons at the highest LL. In this paper,is set to 1/2.

The states below-1 th LL are fully occupied. The first term Wwhere the interactiorv(t) is the residual interaction in the
in Eq. (A2) is the Hartree potential and the second one is theénteraction picture
Fock potential. The uniform positive background charge can- = K
cels then=0 term in the Hartree term. Since the state at the v ==| ——
Ith LL is occupied by electrons whose energy is below a 2)_. (2m)
Fermi energy ug, the mean field is written adJ(p)
=N/ v lue— € (p)]. Hence the self-consistency equation

Pk YVi(Kp«(=k,b)..  (CI

The lowest order Green’s function is obtained as

of one-electron energy ' (p) reads GOK,t-t') = — {6t —t') Bl e — pe)e T ke
d%p’ At et (s
" (p) = Dol (p - p") e - ()], O =0 0up — )T HE
wez (27) (Cq
(A3)

Considering only intra LL effects, we omit the LL index and
The one-electron energy has a periodic structd?é(p) take the short notation oaT'F(k) ase,. The Fourier transfor-

= &F(p+27n) owing to v (p)=v/"F(p+27n). mation of the free propagator reads
APPENDIX B: ONE-ELECTRON SPECTRUM é(kol): fw dt é“’tG(O)(k,t) — (& — 1e) :
The one-electron spectrum is given by the next explicit ’ w ® = & F pptio
relation " (p,) =€ (py) + € (p,), where . e — &) -
dl(p,) = 2 w[zw(zn i 1)} (=17 cod(2n+ Dpy] Tt o
I s (2n+1) In the vNL formalism, it is a transparent way to represent

the infinite k-integral of Eq.(C3) as the summation of one

(B1) fundamental MBZ. So the residual interaction is written as

dz& dzpl d2p2 _ -
M2 —(il2m)kypy. vV, K
MBZ (2’77)2 (277)2 (277)2 Wi (p1, K po)

o 2 o
fp)=-rey | % f % V(D) =

n=-0w J —7/2 2m

/ i12mk,poorT o
xVi[VIé + 2k, = py = 27m)?). (B2) x ell? )kxp2y°btvpl+l;bt,Plbzpzbt,pfko! (C6)

APPENDIX C: FEYNMAN RULE where we define

0

Vi(prkpo) = X Vi(k+27m)dPrP2xn (C7)

n=-w

In the following calculation, the interaction picture is ap-
plied in perturbation theory. In the Heisenberg picture, the
time-dependence of an operato¥(t) is defined asOM(t)
=@Mt e, Instead of the infinit&k-integral region, the infinite summa-

The electron Green’s function is defined by tion appears. The local interactidfi(k) in momentum space

(Wb b W) is replaced by the nonlocal on¢g(p,,k,p,) including the

01 Eputy Tpatyl T 0 phase factor in the density operator. For perturbative calcu-
= iG(pLt - t) D (2m)282(py — p, — 27N) 4P lations, we use the Wick’s theorem and obtain rapoint
n correlation function for the interactio(t).
(C1) In the following we present the Feynman diagram rule in
the momentum space for the perturbative residual interaction
where [¥,) is the exact ground state d¢f;, and ¢(p,n) Eqg. (C6). The phase factor due to the magnetic field makes
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the vertex and the momentum conservation factors compli- », - & p2—k 5 5
-k -k
cated.
(i) Draw a Feynman diagram. For an electron propagatork -k =k O';V'Or -+
introduce the Green'’s function h pz no P2
"
~ pw
G(O) = > FIG. 12. The two-loop ladder diagram and corresponding two-
pw (C8  loop bubble diagram.
(i) For one Coulomb line which is the interaction vertex, 1 |
a local momentum interaction is not assigned in the usual —3( (C13
way. We add a nonlocal interaction including four electron (2)

momentump; with phase factor as wherel is the number of internal line. Count the electron
loop number and add the factor1)" for L electron loops.

i P /;: w APws APPENDIX D: DUALITY BETWEEN THE DIRECT TERM

V](pz, k,p3)e_(i/2ﬁ)kx(p1 ~Pa)y= e AND THE EXCHANGE TERM

P2 W2 b3 w3 One of the surprising properties of the 2D electron system

(C9) in a magnetic field is that the ladder diagrams take a similar
form with the bubble diagram and the bubble and ladder

(iii) Add a momentum conservation factor for each inter-diagrams can be summed up to the infinite order. This is

action vertices with four electron momentupy and fre- caused by the duality between the direct term and the ex-

quencyw;: change term. In this appendix we show this property in the
two-loop order as shown in Fig. 12.
> (2m)28(p1 - po- k — 27m)g#P2n)(2)2 Following the rule of Appendix C, the left two-loop dia-
nm gram in Fig. 12 reads

X 3(ps = pa+ k = 2mm)eiPam S f dogda, [ &p Pprz0.  zo
n

2 2 —K,w,—w » -

X (2m) 28y — wp — ) Swg - wy+ @).  (C10 2m 2m J ez (2m)° (2m)* “Pricere Tt
=(0) = ~ o~ ~\ _(i12m)(p1=pot2mm) XK
The phase factos(p;,n) is added to the delta function. X sz—sz—wG(p?vsz'(pl_ Py + 2T)gllemParpzram k.

(iv) For a one current vertex, a local momentum factor is (D1)
also not assigned as the interaction vertex case. We add a _
nonlocal factor In general, the Fourier transform V,(q)=/d?p/

N (2m)2V,(p)€P Y satisfies the following duality relation be-

kw tween the direct term and the exchange term:

D1 y 1% N
> Vi(p+2mn)Pr2ma= 3V (q +n)eP". (D2)
n

n

g (k)e-(i/2w)12xp1y+(i/47r)kxky:
Iz

K (C1y
, Using this relation, Eq(D1) is written as

(v) Add a momentum conservation factor for each cur- ) 5
rent vertex with two electron momentum and frequency - J %MJ dp; dp2 ~0) =(0)
wj: N 27 27 J gy (2m)% (21m)% Prkermo TPrey

S (2m)28(p, - Py~ k - 2m) @ (2m) (@ + 03— ). x39. 30 YK xR g Jenxeie

n Pykwymw Pawp N\ o WY o X

12 "
(€12 == 3 oK Wh(K (K. (D3)
n

The phase factop(p;,n) is added to the delta function.
(vi) Perform integral for internal momentum and add theThis result is equivalent to two bubbles connected with the

numerical factor interactionW(k) as the right two-loop diagram in Fig. 12.
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