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Universality of the Lyapunov regime for the Loschmidt echo

Fernando M. Cucchietti,1,2 Horacio M. Pastawski,2 and Rodolfo A. Jalabert3

1Theoretical Division, MS B213, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA
2Facultad de Matema´tica, Astronomı´a y Fı́sica, Universidad Nacional de Co´rdoba, Ciudad Universitaria, 5000 Co´rdoba, Argentina

3Institut de Physique et Chimie des Mate´riaux de Strasbourg, UMR 7504, CNRS-ULP, 23 rue du Loess, Boıˆte Postale 43,
67034 Strasbourg Cedex 2, France

~Received 31 July 2003; revised manuscript received 1 December 2003; published 22 July 2004!

The Loschmidt echo~LE! is a magnitude that measures the sensitivity of quantum dynamics to perturbations
in the Hamiltonian. For a certain regime of the parameters, the LE decays exponentially with a rate given by
the Lyapunov exponent of the underlying classically chaotic system. We develop a semiclassical theory,
supported by numerical results in a Lorentz gas model, which allows us to establish and characterize the
universality of this Lyapunov regime. In particular, the universality is evidenced by the semiclassical limit of
the de Broglie wavelength going to zero, the behavior for times longer than Ehrenfest time, the insensitivity
with respect to the form of the perturbation, and the behavior of individual~nonaveraged! initial conditions.
Finally, by elaborating a semiclassical approximation to the Wigner function, we are able to distinguish
between classical and quantum origin for the different terms of the LE. This approach renders an understanding
for the persistence of the Lyapunov regime after the Ehrenfest time, as well as a reinterpretation of our results
in terms of the quantum-classical transition.

DOI: 10.1103/PhysRevB.70.035311 PACS number~s!: 03.65.Sq, 03.65.Yz, 05.45.Mt, 03.67.2a
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I. INTRODUCTION

Controlling the phase in the evolution of a quantum s
tem is a fundamental problem that is becoming increasin
relevant in many areas of physics. In relatively simple s
tems, such as a quantum dot in an Aharanov-Bohm ring,1 the
phase can even be measured by transport experiments
development of the quantum information field requires
control of the phase of increasingly complex systems.2 Such
a control is hindered by interactions with the environment
a way which is not completely understood at present.

Nuclear magnetic resonance provides a privileged fra
work to test our ideas on the evolution and degradation of
quantum phase. The phenomenon of spin echo, through
reversal of the time evolution, allows us to study how
individual spin, in an ensemble, loses its phase memory.3 The
randomization of its phase appears as a consequence o
interaction with other spins that act as an environment.
cently, it has become possible to test the phase of the co
tive many-spin state through the experiments of magic4 and
polarization5 echoes. In these cases an initial polarizat
‘‘diffuses’’ away as consequence of the spin-spin interactio
in the effective HamiltonianH. The whole many-body dy-
namics can be reversed by the sudden transformationH→
2H. However, there is a failure to recover the initial pola
ization state which increases with the time elapsed before
reversal. Such a failure is a consequence of the fluctuat
of the phase of the complex quantum state6 and constitutes a
measure of the entropy growth.7

Surprisingly, the rate of phase information loss appear
an intrinsic property of the system, quite insensitive to h
small the coupling to the external degrees of freedom is
to the precision of the reversal.8 This may be interpreted a
analogous to the residual resistivity of impure metals. Wh
the direct coupling to the thermal bath is decreased by l
ering the temperature, the resistivity becomes controlled
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the reversible elastic scattering with impurities.9,10 The com-
mon feature of both intrinsic behaviors is the complexity
the dynamics that justifies thestosszahlansatzor molecular
chaos hypothesis.

However, such a hypothesis does not seem to be com
ible with our basic knowledge of quantum dynamics. Unli
classical mechanics, quantum dynamics does not exhibit
persensitivity to initial conditions.11,12 That is why the field
known as quantum chaos deals mainly with the quant
stationary properties of systems whose underlying class
dynamics is chaotic. Among these properties, the ones m
frequently studied are the level statistics,13 wave-function
scarring,14 and parametric correlations.15 A notable exception
among these studies was that of Peres,16 who realized that,
for long times, classically chaotic and integrable systems
have differently under imperfect time reversal. It is throu
the experimental findings above cited that the study of ti
evolution of classically chaotic systems has gained a pr
leged place in nowadays research.

A simplified version of the echoes experimentally studi
is the so-called Loschmidt echo~LE!

M ~ t !5um~ t !u25u^c0uei (H01S)t/\e2 iH0t/\uc0&u2, ~1.1!

whereuc0& is an arbitrary initial state that evolves forward
time under the system HamiltonianH0 for a timet, and then
backwards under a slightly perturbed HamiltonianH01S
betweent and 2t. The amplitudem(t) of the LE also repre-
sents the overlap between the two slightly different evo
tions of the same initial state andM (t) quantifies the depar
ture from the perfect overlap. Because of this importa
property, within the field of quantum information the LE
referred to asfidelity.17 Alternatively,M (t) can also be writ-
ten as the trace of the product of two pure-state density
trices r or Wigner functionsW evolving with different
Hamiltonians,
©2004 The American Physical Society11-1
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M ~ t !5tr$rH01S~ t !rH0
~ t !%

5~2p\!dE drE dpWH01S~r ,p;t !WH0
~r ,p;t !.

~1.2!

We have used the standard definitions

rH5uc&^cu with uc&5e2 iHt/\uc0&, ~1.3!

WH~r ,p;t !5
1

~2p\!dE ddr expF2
i

\
p•dr G

3 K r1
dr

2 UrHUr2
dr

2 L , ~1.4!

whered is the dimensionality of the space.
In consistency with the experimental behavior of the p

larization echo, the LE of a classically chaotic one-bo
Hamiltonian H0 was found to exhibit an intrinsic deca
rate.18 This result is valid beyond some critical value of th
perturbation. Interestingly, the decay rate is precisely
Lyapunov exponentl of the classical system. A relate
relevance of the classical dynamics had been hinted from
analysis of the entropy growth of dissipative systems.19

The purely Hamiltonian character of the model of Ref. 1
as well as the result of a classical parameterl governing a
bona fidequantum propertyM, attracted considerable atten
tion. A quite intense activity has been devoted in the last t
years in order to test these predictions in various model
tems and pursue further developments of the theory.20–36

The Lyapunov behavior has been numerically obtained
models of a Lorentz gas,21 kicked tops,22,23 Bunimovich
stadium,24 bath tube stadium,25 and sawtooth map.26 The
analytical results have been mainly focused in the small p
turbation region. Jacquod and collaborators22 identified the
regime below the critical perturbation as following a Fer
golden rule through the energy uncertainty produced by
perturbation which was also analyzed with semiclass
tools.27 Prosen and collaborators28,29showed thatM (t) in the
perturbative regime depends on the specific time depend
of the perturbation correlation functions. The transition b
tween the perturbative Gaussian regime to the Fermi go
rule has also been studied using the semiclassical app
mation as well as random matrix theory.30

The Lyapunov regime bears a clear signature of the
derlying classical dynamics. Investigations on bound
systems22,24 could not study the behavior of the LE after th
Ehrenfest time~as defined by Berman and Zaslavsky37! be-
cause of the finite-size long-time saturation. This raises
question of whether the independence of the decay rate
the perturbation strength is a consequence of the quan
classical correspondence principle. As we will analyze in t
work, the situation is far less trivial. Using that the Loren
gas is an extended system, we are going to show that
regime persists for times much larger than the Ehren
time. In addition, the quantum LE is functionally differe
than what a direct estimation would yield for the classical
~for the chaotic,18 as well as the integrable31,32 cases!. More-
03531
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over, the classical counterpart of the LE is problematic sin
a wide range of dynamic behaviors is obtained in differe
situations.29,33,34

The LE has also been studied in different disorde
systems.20,35 It has been shown in both cases that the lo
range of the perturbing potential, as emphasized in Ref.
is crucial in order to obtain a perturbation-independent
gime.

The various approximations that the semiclassical the
of Ref. 18 relies on were further corroborated using an ini
momentum representation of the wave packet.36 This
changes the sum over an uncontrolled number of trajecto
into only one, which allows the exact numerical evaluati
of the semiclassical expression for the echo.

Taking the perturbation as the action of an external en
ronment allows us to think of the LE as a measure of
decoherence. This approach has been advocated by Zur38

and later extended39 by studying the decay ofM (t) as ex-
pressed by a product of Wigner functions@Eq. ~1.2!#. A semi-
classical approximation to the Wigner function allows us
separate the different contributions to the LE coming fro
classical and nonclassical processes. As we discuss in d
in the sequel, such distinction enables us to understand
relation to decoherence, and how it builds in until the cla
sical terms finally dominate the LE.

With the goal of addressing experimentally releva
systems,40–42 we illustrate our findings in a simple mode
with classical chaotic dynamics: the Lorentz gas. This s
tem has been shown to exhibit a well-defined Lyapun
regime.21 The semiclassical theory that we develop, as w
as the extensive numerical results that we present in
work, allows us to establish and characterize the range wh
the perturbation-independent regime has the universality
served in classical chaos.

This universality manifests itself by the robustness of
Lyapunov regime with respect to various effects. First, in
semiclassical limit of the de Broglie wavelengthlB going to
zero, the borders of the regime extend from zero perturba
up to a classical upper bound. Second, and as stated ab
for finite lB the Lyapunov regime extends up to times ar
trarily larger than Ehrenfest’s time. Finally, universality
also evidenced by the insensitivity of the Lyapunov regim
with respect to the form of the perturbation or the~nonaver-
aged! behavior of individual semiclassical initial condition

The paper is organized as follows. In Sec. II we deve
the semiclassical approach to the LE with a quenched di
der playing the role of the perturbation, as proposed in R
18. We then discuss the main assumptions and set the t
retical framework that will be further developed in the rest
the paper. In Sec. III we consider a specific model, the L
entz gas. In this model we apply a completely different~al-
though still global! perturbation than in the previous cas
which allows us to study the dependence of the Lyapun
regime on the form of the perturbation. We first character
the classical dynamics of the Lorentz gas, as well as tha
the perturbation, and then present a semiclassical calcula
of the LE, discussing the different regimes predicted by
theory. In Sec. IV we concentrate on the main results of t
work. The universality of the Lyapunov regime is discuss
1-2
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and supported with numerical results on the semiclass
limit, the behavior after the Ehrenfest time, and the effects
averaging. In Sec. V we discuss the relation of the LE
decoherence by studying the semiclassical approximatio
the Wigner function and reinterpreting the results of Sec
under this highlight. We conclude in Sec. VI with some fin
remarks.

II. THE LOSCHMIDT ECHO—SEMICLASSICAL
ANALYSIS

A. Semiclassical evolution

In this section we calculate the Loschmidt echo@Eq.
~1.1!# for a generic chaotic systemH0 and a perturbationS
arising from a quenched disorder. We follow the analyti
scheme of Ref. 18, discussing the main assumptions and
generality of the results. We choose as initial state a Gaus
wave packet~of width s), which is the closest we can get t
a classical state:

c~ r̄ ,t50!5S 1

ps2D d/4

expF i

\
p0•~ r̄2r0!2

1

2s2
~ r̄2r0!2G .

~2.1!

We will keep the spatial dimensiond arbitrary in the analyti-
cal calculations, but it will be fixed tod52 for the numerical
studies of Sec. IV. It has been shown43 that if the initial state
is a superposition ofN Gaussians, the final result is the sam
exponential decay one obtains with a single Gaussian
normalized byN. Thus, our results will be valid only whe
the initial state can be decomposed as a sum of Gauss
The exponential decay is observed also with momen
eigenstates,26 but it is not universal for a random state or a
eigenstate of the system.

The time evolution of the statec( r̄ ,0) is given by

c~r ,t !5E dr̄K~r , r̄ ;t !c~ r̄ ,0!, ~2.2!

with the propagator

K~r,r̄ ;t !5^r ue2 iHt/\u r̄ &. ~2.3!

We will use the semiclassical expansion of t
propagator44,45 as a sum over classical trajectoriess( r̄ ,r ,t),
going from r̄ to r in a time t,

K~r , r̄ ;t !5 (
s( r̄ ,r ,t)

Ks~r , r̄ ;t !,

Ks~r , r̄ ;t !5S 1

2p i\ D d/2

Cs
1/2expF i

\
Ss~r , r̄ ;t !2 i

p

2
msG ,

~2.4!

valid in the limit of large energies for which the de Brogl
wavelength (lB52p/kF52p\/p0) is the minimal length
scale.Ss(r , r̄ ;t)5*0

t d t̄Ls@qs( t̄ ),q̇s( t̄ ); t̄ # is the action over
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the trajectorys and L the Lagrangian. The JacobianCs
5udetBsu accounts for the conservation of classical pro
abilities, with the matrix

~Bs! i j 52
]2Ss

]r i] r̄ j

, ~2.5!

obtained from the derivatives of the action with respect
the various components of the initial and final positions. W
denote byms the Maslov index, counting the number of co
jugate points of the trajectorys. Since we will work with
fairly concentrated initial wave packets, we use th
“ r̄ i

Ssu r̄5r0
52p̄s,i (p̄s,i is the i th component of the initial

momentum of the trajectorys) and we expand the action a

Ss~r , r̄ ;t !.Sŝ~r ,r0 ;t !2p̄ŝ•~ r̄2r0!. ~2.6!

We are led to work with trajectoriesŝ that join r0 to r in a
time t, which are slightly modified with respect to the orig
nal trajectoriess( r̄ ,r ,t). We can therefore write

c~r ,t !5 (
s(r0 ,r ,t)

Ks~r ,r0 ;t !E dr̄ expF2
i

\
p̄s•~ r̄2r0!Gc~ r̄ ,0!

5~4ps2!d/4 (
s(r0 ,r ,t)

Ks~r ,r0 ;t !

3expF2
s2

2\2
~ p̄s2p0!2G , ~2.7!

where we have neglected second-order terms ofS in ( r̄
2r0) since we assume that the initial wave packet is mu
larger than the de Broglie wavelength (s@lB). Equation
~2.7! shows that only trajectories with initial momentump̄s
closer than\/s to p0 are relevant for the propagation of th
wave packet.

B. Semiclassical Loschmidt echo

The amplitude of the Loschmidt echo, defined in E
~1.1!, for the initial condition ~2.1!, can be approximated
semiclassically as

m~ t !5S s2

p\2D d/2E dr(
s,s̃

Cs
1/2Cs̃

1/2

3expF i

\
~Ss2Ss̃!2

ip

2
~ms2m s̃!G

3expF2
s2

2\2
@~ p̄s2p0!21~ p̄s̃2p0!2#G . ~2.8!

Without perturbation (S50) and restricting ourselves t
the terms withs5 s̃ ~which leaves aside terms with a high
oscillating phase! we simply have
1-3
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m~ t !5S s2

p\2D d/2E dr (
s(r0 ,r ,t)

CsexpF2
s2

\2
~ p̄s2p0

2!2G51.

~2.9!

We have performed the change from the final position v
abler to the initial momentump̄s using the JacobianC, and
then carried out a simple Gaussian integration over the v
able p̄s .

For perturbationsS that are classically weak~as not to
change appreciably the trajectories governed by the dyn
ics of H0), we can also neglect the terms of Eq.~2.8! with
sÞ s̃ and write

m~ t !.S s2

p\2D d/2E dr(
s

CsexpF i

\
DSsG

3expF2
s2

\2
@~ p̄s2p0!2#G , ~2.10!

whereDSs is the modification of the action, associated w
the trajectorys, by the effect of the perturbationS. It can be
obtained as

DSs52E
0

t

d t̄Ss@q~ t̄ !,q̇~ t̄ !#, ~2.11!

in the case where the perturbation appears as a potentia
ergy in the Hamiltonian~like we discuss in this chapter!. If
the perturbation is in the kinetic term of the Hamiltonia
~such as in Sec. III!, there is an irrelevant change of sign.

Clearly, individual classical trajectories will be expone
tially sensitive to perturbations and the diagonal approxim
tion of Eq. ~2.10! would sustain only for logarithmically
short times, rendering our following calculations usele
However, it has been argued36 that this approximation is
valid for much longer times because of the structural stab
of the manifold of initial states that evolve classically.27 This
allows for the existence of trajectories arriving atr and de-
parting exponentially close tor0.

Within the approximation of Eq.~2.10!, the LE is ex-
pressed as a double integral containing two trajectories:

M ~ t !5S s2

p\2D dE drE dr 8 (
s(r0 ,r ,t)

(
s8(r0 ,r8,t)

CsCs8

3expF i

\
~DSs2DSs8!G

3expF2
s2

\2
@~ps2p0!21~ps82p0!2#G . ~2.12!

As in Ref. 18, we can decompose the LE as

M ~ t !5Mnd~ t !1Md~ t !, ~2.13!

where the first term~nondiagonal! contains trajectoriess and
s8 exploring different regions of phase space, while in t
03531
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second~diagonal! s8 remains close tos. Such a distinction is
essential when considering the effect of the perturbation o
the different contributions.

C. Quenched disorder as a perturbation

In order to calculate the different components to the
@Eqs. ~2.12! and ~2.13!# we need to characterize the pertu
bationS. One possible choice18 is a quenched disorder give
by Ni impurities with a Gaussian potential characterized
the correlation lengthj,

S5Ṽ~r !5 (
a51

Ni ua

~2pj2!d/2
expF2

1

2j2
~r2Ra!2G .

~2.14!

The independent impurities are uniformly distributed~at po-
sitions Ra) with density ni5Ni /V, (V is the sample vol-
ume!. The strengthsua obey ^uaub&5u2dab . The correla-
tion function of the above potential is given by

CṼ~ uq2q8u!5^Ṽ~q!Ṽ~q8!&

5
u2ni

~4pj2!d/2
expF2

1

4j2
~q2q8!2G .

~2.15!

The perturbation~2.14! does not lead to the well-known
physics of disordered systems, since the potentialṼ is not
part of H0, but of S. Then, it acts only in the backwar
propagation of the LE setup. On the other hand, the anal
with standard disordered systems is very useful for the a
lytical developments. The finite range of the potential allo
us to apply the semiclassical tool~providedjkF@1), as has
been extensively used in the calculation of the orbital
sponse of weak disordered quantum dots.46–48 The finite
range of the potential is a crucial ingredient in order
bridge the gap between the physics of disordered and
namical systems35,47 and to obtain the Lyapunov regime.18

Moreover, taking a finitej is not only helpful for computa-
tional or conceptual purposes, but it constitutes an appro
ate approximation for an uncontrolled error in the rever
procedureH0→2(H01S) as well as an approximate de
scription for an external environment. Without entering in
a discussion about what kind of perturbation more appro
ately represents an external environment, it is reasonab
admit that the interaction with the environment will not b
local ~or short range!, but will extend over certain typica
length.

As discussed in the preceding section, in the leading or
of \ and for sufficiently weak perturbations, we can negle
the changes in the classical dynamics associated with
disorder. We simply modify the contributions to the sem
classical expansion of the LE associated with a trajectors
~or in general to any quantity that can be expressed in te
of the propagators! by adding the extra phaseDS of Eq.
~2.11!. For the perturbation~2.14! we can make the chang
of variablesq5v t̄ and write
1-4
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DSs52
1

v0
E

C s
c
V~q!dq. ~2.16!

The integration is now over the unperturbed trajectoryC s
c ,

and we have assumed that the velocity along the trajec
remains unchanged with respect to its initial valuev0
5p0 /m5Ls /t.

For trajectories of lengthLs@j, the contributions toDS
from segments separated more thanj are uncorrelated. The
stochastic accumulation of action along the path can
therefore interpreted as determined by a random-walk p
cess, resulting in a Gaussian distribution ofDSs(Ls). This
has also been verified numerically in Ref. 36. The ensem
average over the propagator~2.4! @or over independent tra
jectories in Eq.~2.12!# is then obtained from

K expF i

\
DSsG L 5expF2

^DSs
2&

2\2 G , ~2.17!

and therefore entirely specified by the variance

^DSs
2&5

1

v0
2EC s

c
dqE

C s
c
dq8^V~q!V~q8!&. ~2.18!

Since the lengthLs of the trajectory is supposed to b
much larger thanj, the integral overq2q8 can be taken
from 2` to 1`, while the integral on (q1q8)/2 gives a
factor of Ls . We thus have

^DS2&5
Ls

v0
2E dqC~q!, ~2.19!

resulting in

K expF i

\
DSsG L 5expF2

Ls

2,̃
G5expF2

v0t

2,̃
G . ~2.20!

In analogy with disordered systems,46,47 we have defined the
typical length over which the quantum phase is modified
the perturbation as

1

,̃
5

1

\2v0
2E dqC~q!5

u2ni

v0
2\2~4pj2!(d21)/2

. ~2.21!

The ‘‘elastic mean free path’’,̃ and the mean free timet̃

5 ,̃/v0 associated with the perturbation49 will constitute a
measure of the strength of the coupling.

Taking impurity averages is technically convenient, b
not crucial. Results like that of Eq.~2.20! would also arise
from considering a single-impurity configuration and a lar
number of trajectories exploring different regions of pha
space.

D. Loschmidt echo in a classically chaotic system

Once we have settled the hypothesis with respect to
perturbation, we can go back to Eqs.~2.12! and ~2.13! to
calculate the two contributions to the Loschmidt echo.
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In the nondiagonal term the impurity average can be d
independently fors ands8, since the two trajectories explor
different regions of phase space. Therefore, upon impu
average the nondiagonal term becomes

Mnd~ t !5u^m~ t !&u25S s2

p\2D dU E dr(
s

Cs

3expF2
s2

\2
~ p̄s2p0!2G K expF i

\
DSsG L U2

.

~2.22!

We have kept the same notation for the averaged and i
vidual LE, in order to simplify the notation, and because
will be demonstrated that this distinction is not crucial. A
cording to Eq.~2.20! we have18

Mnd~ t !5S s2

p\2D d

expF2
v0t

,̃
GU E dr(

s
Cs

3expF2
s2

\2
~ p̄s2p0!2GU2

5expF2
v0t

,̃
G . ~2.23!

This term depends on the perturbation, through,̃, and can be
interpreted as a Fermi golden rule result.22

In the diagonal term the trajectoriess ands8 of Eq. ~2.12!
remain close to each other. The existence of such type
trajectories is based on the structural stability of t
manifold27,36 ~opposed to the exponential sensitivity of ind
vidual trajectories!. The actionsDSs andDSs8 accumulated
by effect of the perturbation cannot be taken as uncorrela
like in the previous case. A special treatment should be
plied to the terms arising froms.s8. The small difference
betweens ands8 is only considered through the difference
actions, and therefore

Md~ t !5S s2

p\2D dE drE dr 8(
s

Cs
2expF2

2s2

\2
~ p̄s2p0!2G

3K expF i

\
~DSs2DSs8!G L . ~2.24!

Sinces ands8 are nearby trajectories, we can write

DSs2DSs85E
0

t

d t̄ “Ṽ„qs~ t̄ !…•@qs~ t̄ !2qs8~ t̄ !#.

~2.25!

The difference between the intermediate points of both
jectories can be expressed using the matrixB of Eq. ~2.5!:

qs~ t̄ !2qs8~ t̄ !5B21~ t̄ !~ p̄s2p̄s8!5B21~ t̄ !B~ t !~r2r 8!.
~2.26!
1-5
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In the chaotic case the behavior ofB21( t̄ ) is dominated
by the largest eigenvalueel t̄ . Therefore we make the sim
plification B21( t̄ )B(t)5exp@l( t̄2t)#I, where I is the unit
matrix andl the mean Lyapunov exponent. Here, we use
hypothesis of strong chaos which excludes marginally sta
regions50 with anomalous time behavior. Assuming a Gau
ian distribution for the random variableDSs2DSs8 , in anal-
ogy with Eq.~2.17!, we have

K expF i

\
~DSs2DSs8!G L

5expF2
1

2\2E0

t

d t̄E
0

t

d t̄8exp@l~ t̄ 1 t̄ 822t !#

3C
“Ṽ@ uqs~ t̄ !2qs~ t̄ 8!u#~r2r 8!2G . ~2.27!

Unlike the nondiagonal case, which was obtained throu
the correlation potential@Eq. ~2.15!#, we are now led to con-
sider the ‘‘force correlator’’

C
“Ṽ~ uq2q8u!5^“Ṽ~q!•“Ṽ~q8!&

5
u2ni

~4pj2!d/2F d

2j2
2S q2q8

2j2 D 2G
3expF2

1

4j2
~q2q8!2G . ~2.28!

Using the fact thatC
“Ṽ is short ranged~in the scale ofj),

and working in the limitlt@1, the integrals of Eq.~2.27!
yield

K expF i

\
~DSs2DSs8!G L 5expF2

A

2\2
ur2r 8u2G

~2.29!

with

A5
~d21!u2ni

4lv0j2~4pj2!(d21)/2
. ~2.30!

Therefore, we have

Md~ t !5S s2

p\2D dE drE dr 8(
s

Cs
2

3expF2
2s2

\2
~ p̄s2p0!2GexpF2

A

2\2
~r2r 8!2G .

A Gaussian integration over (r2r 8) results in
03531
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Md~ t !5S s2

p\2D dE dr(
s

Cs
2S 2p\2

A D d/2

3expF2
2s2

\2
~ p̄s2p0!2G .

The factorCs
2 reduces toCs when we make the change o

variables fromr to p̄. In the long-time limitCs
21}elt, while

for short timesCs
215(t/m)d. Using a form that interpolates

between these two limits we have

Md~ t !5S s2

p\2D dE dp̄S 2p\2

A D d/2S m

t D d

exp@2lt#

3expF2
2s2

\2
~ p̄2p0!2G

5Ā exp@2lt#, ~2.31!

with Ā5@sm/(A1/2t)#d. Since the integral overp̄ is concen-
trated aroundp0, the exponentl is taken as the phase-spa
average value on the corresponding energy shell. The c
pling S appears only in the prefactor~throughĀ) and there-
fore its detailed description is not crucial in discussing t
time dependence ofMd.

The limits of smallt and weakS yield an infiniteĀ, and
thus a divergence in Eq.~2.31!. However, our calculations
are only valid in certain intervals oft and strength of the
perturbation. The times considered should verifyv0t/ ,̃>1.
Very long times, resulting in the failure of our diagonal a
proximations@Eqs.~2.12! and~2.24!# or our assumption tha
the trajectories are unaffected by the perturbation, are
cluded from our analysis. Similarly, the small values ofS are
not properly treated in the semiclassical calculation of
diagonal termMd(t), while for strongS the perturbative
treatment of the actions is expected to break down and
trajectories are affected by the quenched disorder. This
condition translates into a ‘‘transport mean free path’’46,47

,̃ tr54(kj)2,̃ much larger than the typical dimensionR of
our system. In the limitkj@1 that we are working with, we

are able to verify the condition,̃ tr@R@ ,̃.
Within the above limits, our semiclassical approach ma

it possible to estimate the two contributions of Eq.~2.13! to
M (t). The nondiagonal componentMnd(t) will dominate in
the limit of small t or S. In particular, such a contribution
ensures thatMS50(t)51 @see Eq.~2.9!#, and thatMS(t
50)51. The diagonal term will dominate over the nond
agonal one for perturbations strong enough to verify

,̃,
v0

l
. ~2.32!

This crossover condition is extremely important, and will
discussed in detail in the sequel.

It is worth noting that the widths of the initial wave
packet appears as a prefactor of the diagonal contribut
The nondiagonal term, on the other hand, is independen
1-6
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the initial wave packet. Therefore, as explained in Ref.
changing our initial state~2.1! into a coherent superpositio
of N wave packets would reduceMd by a factor ofN without
changingMnd. The localized character of the initial state
then a key ingredient in order to obtain the universal beh
ior. In particular, only a Fermi golden rule regime is o
served when the initial state is random23 or an eigenstate o
H0.51

III. LOSCHMIDT ECHO IN THE TWO-DIMENSIONAL
LORENTZ GAS

A. Classical dynamics ofH0

We consider in this section the case where the sys
HamiltonianH0 represents a two-dimensional Lorentz ga
i.e., a particle that moves freely~with speedv) between elas-
tic collisions~with specular reflections! on an irregular array
of hard-disk scatterers~impurities! of radiusR. Such a bil-
liard system is a paradigm of classical dynamics, and
been proven to exhibit mixing and ergodic behavior, wh
its dynamics for long distances is diffusive.52–54 The exis-
tence of rigorous results for the Lorentz gas has made
preferred playground to study the emergence of irrevers
behavior out of the reversible laws of classical dynamic53

Moreover, antidot lattices defined in a two-dimensional el
tron gas,40,41or in acoustic and microwave cavities,42 consti-
tute an experimentally realizable quantum system wh
classical features have been identified and measured. We
use the terms antidot, impurity, and disk indistinctly.

In our numerical simulations we are limited to finite sy
tems, therefore we will work in a square billiard of areaL2

~with N scatterers!, and impose periodic boundary cond
tions. The concentration of disks is

c5NpR2/L2. ~3.1!

We require that each scatterer has an exclusion regionRe
from its border, such that the distance between the cente
any pair of disks is larger than a value 2Re.2R. Such a
requirement is important to avoid the trapping of the clas
cal particle and the wave-function localization in the qua
tum case. The antidots density is set to be roughly unifo
and the concentration is chosen to be the largest one com
ible with the value of Re, obtained numerically asc
50.7pR2/4Re

2 .
The Lorentz gas has been thoroughly studied,53 and we

will not discuss here its classical dynamics in detail. We w
simply recall some of its properties that will be used in t
sequel, and present the numerical simulations that allow
to extract some important physical parameters.

The chaotic character of the dynamics is a consequenc
03531
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the defocusing nature of the collisions. The separation
tween a particle with impact parameterx and a second one
with impact parameterx1dx that have traveled a distances
after a collision will grow as~see Fig. 1!

dd.dx1dus.dxS 11
2s

AR22x2D . ~3.2!

The next collision will further amplify the separation, due
the new impact parameters and the different incide
angles.

Within the above restrictions, the exclusion distanceRe
completely determines the dynamical properties of the L
entz gas. Among them, we are interested in the Lyapu
exponent~measuring the rate of separation of two near
trajectories!, the elastic mean free path, ~given by the typi-
cal distance between two collisions!, and the transport mea
free path, tr ~defined as the distance over which the mome
tum is randomized and the dynamics can be taken as e
tively diffusive!.

A shifted Poisson distribution

FIG. 1. Schematics of a Lorentz gas showing the dispersion
two trajectories initially close to each other~with a differencedx in
the impact parameterx). The angledu between the two trajectorie
increases after each collision as described in the text.
P~s!5H exp$2s/@,22~Re2R!#%

@,22~Re2R!#exp$22~Re2R!/@,22~Re2R!#%
if s.2~Re2R!

0 if s,2~Re2R!

~3.3!
1-7
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CUCCHIETTI, PASTAWSKI, AND JALABERT PHYSICAL REVIEW B70, 035311 ~2004!
is a reasonable guess for the distribution of lengths betw
successive collisions, which yields^s&5,5vte, and is con-
sistent with numerical simulations in the range of antid
concentration that we are interested in. Within this billia
model, the magnitude of the velocity and momentum
constants of motion, which we denote byv and p, respec-
tively.

The elastic mean free path that we obtain numerica
compares favorably with a simple estimation of the me
free distance in a strip of lengthL and width 2R with
2cL/pR disks,

,.
pR

2c
2

pR

2
5

Re
2

0.35R
2

pR

2
. ~3.4!

The diffusive character of the Lorentz gas can be pu
evidence from the time evolution of the root-mean-squ
displacement over a collection of initial conditions. We n
merically obtain̂ r 2&52dDt tr ~with d52). t tr5, tr /v is the
mean time required to randomize the direction andD
5v, tr/2d is the diffusion coefficient. The difference betwee
, and, tr arises from the angular dependence of the sca
ing cross section. Taking this factor into account we obtai
ratio , tr /, which is in good agreement with the one obtain
from the independently determined, and, tr .

Various estimations of the Lyapunov exponent of the L
entz gas are known. Considering the three-disk probl
Gaspard and Nicolis55 obtained

l5
v

2Re22R
lnF2Re2R1~4Re

224ReR!1/2

R G . ~3.5!

Considering a periodic Lorentz gas~repeated Sinai billiard!
Laughlin proposed the form10

l5
v
,

lnF11
b,

R G , ~3.6!

whereb is a geometrical factor of order 1. In the dilute
limit ( c!1), van Beijeren and Dorfman56 showed that

l52
N

L2
RvS 12 ln 220.5772 lnFNR2

L2 G D . ~3.7!

Numerically, we use the procedure of Benettinet al.57 to
obtain the Lyapunov exponents. Two nearby trajectories
followed, and their separation is scaled down to the ini
valuedx0 after a characteristic timet ~which we take to be
larger than the collision time!. The Lyapunov exponent re
sults from the average over the expanding rates in the di
ent intervals:

l5 lim
n→`

v
n (

j 51

n
1

sj
lnF dxj

dx0
G , ~3.8!

wheresj is the length of thej th interval anddxj the separa-
tion just before the normalization. Technically, we shou
03531
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work with distances in phase space, rather than in confi
ration space, but the local instability makes this precisi
unnecessary.

Benettin’s algorithm can also be used for a semianalyti
calculation of the Lyapunov exponent. Taking the length d
tribution of Eq.~3.3! to obtain the average separation after
collision from Eq. ~3.2!, and identifying the average ove
pieces of the trajectory with a geometrical average over
pact parameters, we can write

l5
v

R,E0

R

dx lnF11
2,

AR22x2G . ~3.9!

Performing the integration yields

l

v
5

1

,
lnF ,

RG1
p

R
1A 4

R2
2

1

,2S arcsinF R

2,G2
p

2 D .

~3.10!

As shown in Fig. 2, the above expression reproduces rem
ably well the numerical calculations of the Lyapunov exp
nent. It agrees also with the result of van Beijeren and D
fman in the dilute limit, and gives good agreement wi
Laughlin’s estimation.

B. Perturbation Hamiltonian

In Sec. II C we studied the case of a quenched disor
perturbation as in Ref. 18. In order to shed light on the d
pendence of the results on the details of the perturbation,

FIG. 2. Lyapunov exponentl of the Lorentz gas as a function o
the mean free path,. The black dots represent our numerical valu
and the solid line the analytical estimate of Eq.~3.10!. The dashed
line indicates Laughlin’s approximation@Eq. ~3.6!# and the open
dots are the quantum values obtained from the decay of the LE~Fig.
4 in the sequel!. Inset: the same plot in log-log scale highlightin
the agreement between the different approximations in the regio
very small concentrations~large,).
1-8
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consider a radically different perturbation for the case of
Lorentz gas: a distortion of the mass tensor introduced
Ref. 21, and briefly discussed in the sequel.

The isotropic mass tensor ofH0, of diagonal components
m0, can be distorted by introducing an anisotropy such t
mxx5m0(11a) andmyy5m0 /(11a). This perturbation is
inspired by the effect of a slight rotation of the sample in t
problem of dipolar spin dynamics,58 which modifies the mass
of the spin-wave excitations. The kinetic part of the Ham
tonian is now affected by the perturbation, which is writt
as

S~a!5a
py

2

2m0
2

a

11a

px
2

2m0
. ~3.11!

In our analytical work we will stay within the leading-orde
perturbation ina. That is,

S~a!5
a

2m0
~py

22px
2!. ~3.12!

Making the particle ‘‘heavier’’ in thex direction ~i.e., we
consider a positivea) modifies the equations of motio
without changing the potential part of the Hamiltonian. It
important to notice that, unlike the case of quenched dis
der, the perturbation~3.11! is nonrandom, and will not be
able to provide any averaging procedure by itself, b
through the underlying chaotic dynamics.

Numerical simulations of the evolution of two trajectori
with the same initial conditions, the first one governed byH0
and the second one byH01S, show that the distance in
phase space grows exponentially with the same Lyapu
exponent that amplifies initial distances. The classical
namics is then equally sensitive to changes in the Ham
tonian as to changes in the initial conditions.59

For a hard wall model, such as the one we are consi
ing, the perturbation~3.11! is equivalent to having nonspecu
lar reflections. One can resort to the minimum-action pr
ciple ~see Appendix A! to obtain a generalized reflection law

vx85
vx~mxny

22mynx
2!22vymynxny

mxny
21mynx

2
, ~3.13a!

vy85
vy~mynx

22mxny
2!22vxmxnxny

mxny
21mynx

2
, ~3.13b!

wherevx8 andvy8 are the two components of the velocity aft
a collision against a surface defined by its normal unit
vector (nx ,ny). Equations~3.13! allow us to show that the
distortion of the mass tensor is equivalent to an area cons
ing deformation of the boundaries asx→x(11j), y
→y/(11j), as used in other works on the LE,24 wherej
5A11a21 is the stretching parameter.

C. Semiclassical Loschmidt echo

We calculate in this chapter the Loschmidt echo for
system whose classical counterpart was previously
cussed;H0 describes a Lorentz gas andS is given by Eq.
03531
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~3.11!. We adapt to the present perturbation the semiclass
approach of Sec. II and Ref. 18. As before, we take as in
state a Gaussian wave packet of widths @Eq. ~2.1!#.

The semiclassical approach to the LE under a weak p
turbationS is given by Eq.~2.12!, with the extra phase

DSs5E
0

t

d t̄Ss„q~ t̄ !,q̇~ t̄ !…. ~3.14!

The sign difference with Eq.~2.11! results because the pe
turbation is now in the kinetic part of the Hamiltonian. O
the other hand, as explained before, this sign turns out to
irrelevant.

With the perturbation of Eq.~3.12! we have to integrate a
piecewise constant function~in between collisions with the
scatterers!, obtaining

DSs5
am0

2 (
i 51

Ns

t i~2vyi

2 2v2!. ~3.15!

We have usedvx
21vy

25v2, and have definedt i as the free
time of flight ending with thei th collision,vyi

is they com-

ponent of the velocity in such an interval, andNs as the
number of collisions that the trajectorys suffers during the
time t.

As we saw in Sec. III A, the time of flightt i ~or the
inter-collision lengthvt i) has a shifted Poisson distributio
@Eq. ~3.3!#. This observation will turn out to be important i
the analytical calculations that follow since the sum of E
~3.15! for a long trajectory can be taken as composed
uncorrelated random variables following the abov
mentioned distribution. Unlike the case of Sec. II, the ra
domness is not associated with the perturbation~which is
fixed!, but with the diffusive dynamics generated byH0.

D. Nondiagonal contribution

As in the case of Sec. II, the nondiagonal contribution
given by the second moment

^DSs
2&5

a2m0
2

4 K (
i , j 51

Ns

t it j~2vyi

2 2v2!~2vyj

2 2v2!L .

~3.16!

Separating in diagonal (i 5 j ) and nondiagonal (iÞ j ) contri-
butions~in pieces of trajectory! we have

^DSs
2&5

a2m0
2Ns

4
@^t i

2&~4^vyi

4 &24v2^vyi

2 &1v4!

1~Ns21!^t i&
2~4^vyi

2 &224v2^vyi

2 &1v4!#.

~3.17!

We have assumed that different pieces of the trajectoryi
Þ j ) are uncorrelated, and that within a given piecei, t i and
vyi

are also uncorrelated. According to the distribution
times of flight ~3.3! we have

^t&5te, ~3.18a!
1-9
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^t2&52te
2. ~3.18b!

Assuming that the velocity distribution is isotropic@P(u)
51/2p, whereu is the angle of the velocity with respect t
a fixed axis# is in good agreement with our numerical sim
lations, and results in

^vy
2&5v2^sin2u&5

v2

2
, ~3.19a!

^vy
4&5v4^sin4u&5

3v4

8
. ~3.19b!

We thus obtain that 4̂vyi

2 &224v2^vyi

2 &1v450, implying

a cancellation of the cross terms of^DSs
2&, consistently with

the lack of correlations between different pieces that we h
assumed. We therefore have

^DSs
2&5

a2m0
2Nste

2v4

4
. ~3.20!

For a givent, Ns is also a random variable, but fort@te we
can approximate it by its mean valuet/te and write

^DSs
2&5

a2m0
2v4tet

4
. ~3.21!

We therefore have for the average echo amplitude

^m~ t !&.expF2
a2m0

2v4tet

8\2 G S s2

p\2D d/2E dr(
s

Cs

3expF2
s2

\2
~ p̄s2p0!2G

5expF2
vt

2,̃
G , ~3.22!

where we have again usedCs as a Jacobian of the transfo
mation fromr to p̄s and we have defined an effective me
free path of the perturbation by

1

,̃
5

m0
2v2,

4\2
a2. ~3.23!

The effective mean free path,̃5v t̃ should be distin-
guished from,5vte since the former is associated to th
dynamics ofS andH0, while the latter is only fixed byH0.
Obviously, our results are only applicable in the case o
weak perturbation verifying,̃@,. From Eq.~3.22! we ob-
tain the nondiagonal component of the LE as

Mnd~ t !5u^m~ t !&u25expF2
vt

,̃
G . ~3.24!

In the following sections we study the conditions und
which the correlations not contained in the FGR approxim
03531
e

a

r
-

tion dominate the LE, while in Sec. IV we will test the abov
results against numerical simulations.

E. Diagonal contribution

As in Sec. II, we have to discuss separately the contri
tion to the LE@Eq. ~2.12!# originated by pairs of trajectorie
s and s8 that remain close to each other. In that case
termsDSs andDSs8 are not uncorrelated. The correspondi
diagonal contribution to the LE is given by Eq.~2.24!, and
then we have to calculate the extra actions fors.s8. As in
Fig. 1, we represent byu (u1d) the angle of the trajectorys
(s8) with a fixed direction~i.e., that of thex axis!. We can
then write the perturbation@Eq. ~3.11!# for each trajectory as

Ss5
a

2m0
p2~2 sin2u21!, ~3.25a!

Ss85
a

2m0
p2~2 sin2u22d sin 2u21!1O~d2!.

~3.25b!

Assuming that the time of flightt i is the same fors ands8
we have

DSs2DSs85
ap2

m0
E

0

t

d t̄d~ t̄ !sin@2u~ t̄ !#. ~3.26!

The anglesd alternate in sign, but the exponential dive
gence between nearby trajectories allows one to approxim
the angle difference aftern collisions asudnu5ud1uelnte. A
detailed analysis of the classical dynamics shows that
distance between the two trajectories grows with the num
of collisions asd15ud1uvt1 , d25d11ud2uvt2, and there-
fore

dNs
.v(

j 51

Ns

ud j ut j.vteud1u(
j 51

Ns

e( j 21)lte

5,ud1u
eNslte21

elte21
. ~3.27!

By eliminating ud1u we can express an intermediate ang
d( t̄ ) as a function of the final separationur2r 8u5dNs

,

d~ t̄ !.
ur2r 8u

,

elte21

elt21
el t̄ , ~3.28!

where again we have used thatt5Nste is valid on average.
Assuming that the action difference is a Gaussian rand
variable, in the evaluation of Eq.~2.24! we only need its
second moment
1-10
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^~DSs2DSs8!
2&

.a2m0
2v4

ur2r 8u2

,2 S elte21

elt21
D 2

3K E
0

t

d t̄E
0

t

d t̄8el t̄ 1l t̄ 8sin@2u~ t̄ !#sin@2u~ t̄ 8!#L .

~3.29!

As before, we assume that the different pieces are un
related and the anglesu i uniformly distributed. Therefore
^sin@2ui#sin@2uj#&5dij /2 and

^~DSs2DSs8!
2&.

a2

2 S m0v2

, D 2

ur2r 8u2S elte21

elt21
D 2

3(
i 51

Ns K E
t i 21

t i
d t̄el t̄ L 2

5
a2

2 S m0v2

l, D 2

ur2r 8u2
~elte21!4

~elt21!2

e2lNste21

e2lte21

5Aur2r 8u2, ~3.30!

where we have taken the limitlt@1, and defined

A5
a2

2 S m0v2

l, D 2 ~elte21!3

elte11
. ~3.31!

Our result~3.30! is analogous to Eq.~2.29! obtained in
the case of a perturbation by a quenched disorder. Obviou
the factorA is different in both cases. We use the same
tation to stress the similar role played by this prefactor ofMd

in both cases. Performing again a Gaussian integral ofMd

over r2r 8 we obtain

Md~ t !5S s2

p\2D dE dr(
s

Cs
2S 2p\2

A D d/2

3expF2
2s2

\2
~ p̄s2p0!2G . ~3.32!

Under the same assumptions as in Sec. II D, we are le
a result equivalent to that of Eq.~2.31!:

Md~ t !.Āe2lt, ~3.33!

with Ā5@sm0 /(A1/2t)#d. Therefore, for long times the diag
onal part of the Loschmidt echo decays with a rate given
the classical Lyapunov exponent of the system,

lim
t→`

S 2
1

t
ln@Md~ t !# D5l. ~3.34!

Of course this limit actually implies a timet@1/l, but still
lower than the time at which either localization or finite-si
03531
r-
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effects appears. In the following section we will study t
competition between the diagonal and nondiagonal contr
tions.

F. Diagonal versus nondiagonal contributions

As we have previously shown, the Loschmidt echo
made out of nondiagonal and diagonal components,
within the time scales specified above, it can be written a

M ~ t !5expF2
vt

,̃
G1Āexp@2lt#. ~3.35!

Such a result holds for the perturbationS that we have dis-
cussed in this section@Eq. ~3.11!#, as well as for the
quenched disorder of Sec. II@Eq. ~2.14!#. The only difference

lies in the form of the elastic mean free path,̃ and the
prefactorĀ, both of which are perturbation dependent. T
decay of the LE will be controlled by the slowest of the tw

rates. A weak perturbation implies,̃.v/l and a dominance
of the nondiagonal term, while for sufficiently strong pertu

bations verifying,̃,v/l ~but weak enough in order not t
modify appreciably the classical trajectories!, the diagonal
term ~governed by the Lyapunov exponent! sets the decay o
the LE. This perturbation-independent behavior, predicted
Ref. 18 has been observed in numerical simulations done
a number of systems.20–35 In Ref. 22 the regime of domi-
nance of the nondiagonal~diagonal! component has bee
interpreted and referred to as a Fermi golden rule~Lyapunov!
regime, and we will use both terminologies in the discu
sions that follow.

From the previous discussion it is clear that the Lyapun
regime can only be observed beyond a critical value of
perturbation. The condition stated above for the strength
the perturbation, along with Eq.~3.23!, yields for the model
discussed in this section a critical value of the perturbat
parametera beyond which the Lyapunov regime is obtaine

ac5
2\

m0
A l

v3,
. ~3.36!

We will discuss in Sec. IV the physical consequences of
above critical value and its dependence on various phys
parameters.

IV. UNIVERSALITY OF THE LYAPUNOV REGIME

A. Correspondence between semiclassical and numerical
calculations

The semiclassical results obtained in the previous sect
are valid in the small-wavelength limit, and rely on vario
uncontrolled approximations. It is then important to perfo
numerical calculations for various model systems in orde
compare against the semiclassical predictions, and to exp
parameter regimes inaccessible to the theory. In this sec
we use the same numerical method of Ref. 21~described in
detail in Appendix B! to study the Lorentz gas with the mas
tensor perturbation introduced in Sec. III. We extend pre
1-11
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ously known results in order to sustain the discussion on
universality of the Lyapunov regime. We will first focus o
the behavior of the ensemble-averaged Loschmidt echo,
lowed by a thorough discussion of individual behavior a
the averaging procedure.

We typically worked with disks of radiusR520a, and
with a de Broglie wavelengthlB52p/k516/3a. Here,a is
the irrelevant lattice unit of our tight-binding model, which
decreased until the results only depend on the relation
tween physical parameters. The smallest system size al
ing us to observe the exponential decay ofM (t) over a large
interval was found to beL5200a which leads to a Hilbert
space with 43104 states. We calculatedM (t) for different
strengths of the perturbationa and concentration of disksc.
In Fig. 3 we show our results forc50.157, 0.195, and
0.289, and different values ofa.

The time evolution of the LE presents various regime
First, for very short times,M (t) exhibits a Gaussian decay
M (t)5exp@2ba2t2#, whereb is a parameter that depends o
the initial state, the dynamics ofH0, and the form of the
perturbationS. This initial decay corresponds to the overla

FIG. 3. Time decay of the Loschmidt echoM (t) for different
values of the perturbation strengtha and concentration of impuri-
tiesc. Top panel:c50.157 anda50.004, 0.007, 0.01, 0.015, 0.02
0.03, 0.05, 0.07, 0.1~from top to bottom!. Middle panel: c
50.195 anda50.004, 0.007, 0.01, 0.015, 0.02, 0.03, 0.04, 0.0
0.06, 0.07, 0.08, 0.1, 0.15. Lower panel:c50.289 anda50.004,
0.007, 0.01, 0.015, 0.02, 0.03, 0.04, 0.05, 0.06, 0.07. The tim
measured in units of\/V, where V is the hopping term of the
tight-binding model~see Appendix B!. The dashed lines represen
the best fits to the decay, as described in the text.
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of the perturbed and unperturbed wave packets whose
ters separate linearly with time by the sole effect of the p
turbation. This regime ends approximately at the typical ti
of the first collision.

Second, for intermediate times we find the region of
terest for the semiclassical theory. In this time scale the
decays exponentially with a characteristic timetf . We re-
serve the symboltf for the decay rate, in view of its inter
pretation in terms of quantum decoherence~as we discuss in
Sec. V!. For small perturbations,tf depends ona. We ob-
serve that for all concentrations there is a critical valueac
beyond whichtf is independent of the perturbation. Clear
the initial perturbation-dependent Gaussian decay prev
the curves to be superimposed.

Finally, for very large times the LE saturates at a val
M` that depends on the system sizeL, but could also depend
on the diffusion constantD. This regime is discussed in de
tail in the following sections. However, let us observe that
the crossover between the exponential decay and the l
time saturation there is a power-law decay with
perturbation-independent exponent. This is a manifesta
of the underlying diffusive dynamics that leads to the isot
pic state.

In order to compare our numerical results ofM (t) with
the semiclassical predictions, we extracttf by fitting lnM(t)
to ln@Aexp(2t/tf)1M`#. The dashed lines in Fig. 3 corre
spond to the best fits obtained with this procedure. The v
ues of tf for the different concentrations are shown as
function of the perturbation strength in Fig. 4. In agreem
with our analytical results of the preceding section, we s
that 1/tf grows quadratically with the perturbation streng
up to a critical valueac , beyond which a plateau appears
the corresponding Lyapunov exponent. The dashed lines
the best fits to a quadratic behavior. The values obtaine
this way agree with those predicted by the semiclass
theory @Eq. ~3.23!# for the nondiagonal~FGR! term. The
saturation values aboveac are well described by the corre
sponding Lyapunov exponents~solid lines!, in agreement
with the semiclassical prediction@Eq. ~3.34!#. The very good
quantitative agreement between the semiclassical and
merical calculations for the Lorentz gas~as well as in the
case of other models22,24,25! strongly supports the generalit
of the saturation oftf at a critical value of the perturbatio
strength.

The FGR exponent, which depends onH0 but not much
on its chaoticity,22,31 is given by the typical squared matri
element ofS, and the density of connected final states 1/D.
Hence, differentH0 change the wave functions. That is wh
we observe that, for fixed perturbation strengtha, the factor

v/ ,̃ depends on the concentration of impurities ofH0 ~see
inset of Fig. 4, where a log-log scale has been chosen
order to magnify the small perturbation region!.

Notably, the dependence ofv/ ,̃ with H0 leads to a coun-
terintuitive effect~clearly observed in the inset of Fig. 4!,
namely, that the critical value needed for the saturation
1/tf is smaller for less chaotic systems~smaller l). The
reason for this is that in more dilute systemsS is constant
over larger straight pieces of trajectories~in between colli-

,
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sions!, leading to a larger perturbation of the quantum ph
and resulting in a stronger effective perturbation.

B. Universality of the Lyapunov regime
in the semiclassical limit

Our semiclassical analysis yielded a critical value of
perturbation to enter in the Lyapunov regime@Eq. ~3.36!#,
which vanishes in the semiclassical limit,ac→0 for \ ~or
lB) →0, implying the collapse of the Fermi golden ru
regime. This behavior is reproduced by our numerical cal
lations~Fig. 5!. There, we decreasedlB while keeping fixed
the sizes of the initial wave packet. We note that, for
given value of the parametera, the perturbationS @Eq.
~3.11!# scales with the energy in a way that the underlyi
classical trajectories are always affected in the same wa
the perturbation. The extracted crossover values ofac are in
quantitative agreement with Eq.~3.36!, decreasing withlB
in the interval that we were able to test.

Other choices of the perturbationS, such as the quenche
disorder of Refs. 18 and 25, can be shown to give criti
values that decrease with decreasing\ as in Eq.~3.36!, pro-
vided that the perturbation is scaled to the proper semic
sical limit. That is, for a fixed perturbation potential, w
should take the limit oflB→0. As a result, if we keep\
constant and decreaselB by increasing the particle energ
we should scale up the perturbation potential consiste
~assuming thatH0 generates the same dynamics at all en
gies!.

FIG. 4. Extracted values of the decay rate of the LE as a fu
tion of the perturbation strength for the three concentrations of
3. The rates are normalized to the group velocity of the initial wa
packet n, and we present 1/(ntf) in units of a21; c50.157
~circles!, 0.195~squares!, and 0.289~triangles!. The solid lines are
the corresponding classical Lyapunov exponents and the da
lines are fits to the quadratic behavior predicted by Eq.~3.23!. The
predicted coefficients for the three concentrations are 72a21,
55a21, and 33a21, while the obtained ones are 92a21, 50a21, and
37a21, respectively. Inset: a log-log scale of the same data to s
the quadratic increase of 1/tf for small perturbations.
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We conclude that, in the semiclassical limit, any perturb
tion will be strong enough to put us in the Lyapunov regim
in consistency with the hypersensitivity expected for a cla
sical system. It is then in this limit that the Lyapunov regim
of the LE becomes universal, just as the case of class
chaos. This is not unexpected as in this limit the Ehrenf
time diverges and the correspondence principle should p
vail.

We can draw a diagram separating FGR from Lyapun
regimes using the perturbation versus a scaling param
determined by the particle energy~or inverse\), as shown in
Fig. 6. The gray shaded region corresponds to the Fe
golden rule regime and the clear one to the Lyapunov
gime. The line that divides both phases is given by the cr
cal perturbation, Eq.~3.36!, which agrees with the numerica
values ofac extracted from Figs. 4 and 5~black dots!. The
perturbative regime~PT, when the typical matrix element o
S is smaller than the mean level spacingD) is sketched by
the white dashed region of Fig. 6. This part of the diagram
only qualitative since the variables used in the figure are
the appropriate to describe the transition from this regime
the FGR. The transition value of the perturbation betwe
FGR and PT regimes goes to zero in the semiclassical li
of lB→0 faster thanac . Finally, the Lyapunov regime is
bounded from above by an\ independent critical valueap
~not shown in the figure due to the scale!, marking the clas-
sical breakdown that we discuss below.

The interesting conceptual feature highlighted by Fig. 6
the importance of the order in which we take the limits ofS
and lB going to zero. Two distinct results are obtained f
the different order in which we can take this double limit. A
depicted in the figure~with arrows representing the limits!,
limlB→0@ limS→0(1/tf)#50. On the other hand, taking th

-
.

e

ed

w

FIG. 5. Decay rates 1/tf for different wavelengthslB of the
initial wave packet for a concentrationc50.195 with the same units
as in Fig 4. Solid line: classical Lyapunov exponent. Dashed li
the FGR quadratic behavior. Note that for decreasinglB the critical
perturbation diminishes, implying a collapse of the Fermi gold
rule regime.
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inverse ~more physical! ordering limS→0@ limlB→0(1/tf)#

5l the semiclassical result is obtained. The resulting ‘‘pha
diagram’’ representation for the different regimes of the L
is useful to illustrate that most often one is working in th
region corresponding to the Lyapunov behavior.

Our semiclassical theory clearly fails when the perturb
tion is strong enough~or the times long enough! to apprecia-
bly modify the classical trajectories. This would give an u
per limit ~in perturbation strength! for the results of Sec. III.
A more stringent limitation comes from the finite value of\,
due to the limitations of the diagonal approximations a
linear expansions of the action that we have relied on.
other systems, such as the quenched disorder in a sm
stadium,25 the upper critical value of the perturbation~for
exiting the Lyapunov regime! can be related to the transpo

mean free path of the perturbation,̃ tr , which is defined as
the length scale over which the classical trajectories are
fected by the disorder.46

We can obtain in our system an estimate of,̃ tr by consid-
ering the effect of the perturbation on a single scatter
event. The differencedu between the perturbed and unpe
turbed exit angles after the collision can be obtained us
Eqs.~3.13!, which results in

du;4nxnyS v•n

v D 2

a, ~4.1!

FIG. 6. Regime diagram for the Loschmidt echo as a function
the perturbation and the energy~or inverse\). The gray area is the
FGR regime with ana-dependenttf , while the clear one is the
Lyapunov regime withtf5l21. The line that divides both regime
is Eq.~3.36!. The dots are the numerical values obtained from Fi
4 and 5. The clear dashed region corresponds to typical param
where perturbation theory applies. The arrows schematize the
sible ordering of the double limit of the perturbation and the wav
length going to zero. Notice that the former ordering yields a va
ishing tf , while the latter one yieldsl since we remain in the
Lyapunov regime. For a strong enough perturbation~independent of
\ and out of scale in this figure! there is a breakdown of the
Lyapunov regime.
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where v is the initial velocity of the particle andn is the
normal to the surface.

Assuming that the motion of the particle is not affected
chaos~nondispersive collisions!, one can do a random-wal
approach and estimate the mean-square distance after a
t tr from the fluctuations of the angle in Eq.~4.1!. We esti-
mate the transport mean free time as that at which the fl
tuations are of the order ofR, and obtain

,̃ tr.
4R2

3a2,
, ~4.2!

assuming a uniform probability for the angle of the veloc
as before. Equation~4.2! is used to get the upper boun
perturbationap for the end of the Lyapunov plateau,

ap5A4lR2

3,v
. ~4.3!

We obtainap.0.23,0.29, and 0.43, respectively, for increa
ing magnitude of the three concentrations shown in Fig. 4
is rather difficult to reach numerically these perturbations
our system, since the initial Gaussian decay drivesM (t) very
quickly towards its saturation value, preventing the obser
tion of an exponential regime. Despite this difficulty, we o
serve in Fig. 4 that the Lyapunov regime plateau appear
end for sufficiently strong perturbations. For the range
could explore the limiting values are in qualitative agreem
with the estimation from Eq.~4.3!.

C. Ehrenfest time and thermodynamic limit

We studied in the preceding section the behavior of
Lyapunov regime in the semiclassical limit\→0; let us now
turn our attention to the consequences of having a fin
value of \. In this case, one expects the propagation o
quantum wave packet to be described by the classical e
tions of motion up to the Ehrenfest timetE , after which the
quantum-classical correspondence breaks down.37 Typically,
tE is the time when interference effects become relevant,
in a classically chaotic system it typically scales as ln@\#.

In other systems where the Lyapunov regime of the
has been observed, such as chaotic maps or kicked sys
tE coincides with the saturation timets51/l ln@N#. This is
because in these systems the number of statesN plays the
role of an effective Planck’s constant\eff51/N. Therefore,
when in these systems the LE is governed by a class
quantity, the whole range of interest occurs before the Ehr
fest time. It is then impossible from that evidence to co
clude if the independence of the decay rate on the pertu
tion strength is a trivial consequence of the quantu
classical correspondence beforetE , a possibility that is
supported by the fact that this is the regime of validity of t
semiclassical theory.

In the Lorentz gas, however, we can differentiate betwe
the time scalests and tE by appropriately controlling the
parameters. This is a property not shared by finite syste
but robust for extended ones such as the Lorentz gas.
does not imply an unbounded exponential decay of the
as discussed below. The saturation time is given by

f
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ts.
2

l
lnFL

sG , ~4.4!

while the Ehrenfest time, defined as the time it takes fo
minimal wave packet of wavelengthlB to spread over a
distance of the order ofR,54 is given by

tE.
1

l
lnF2R

lB
G . ~4.5!

Our numerical calculations support these approximatio
The dependence of the saturation valueM` as a function

of the inverse system size 1/L2 was previously studied in
Ref. 16. Supposing that for long times the chaotic nature
the system will equally mix theÑ5(L/s)2 levels apprecia-
bly represented in the initial state with random phasesf j ,
we write

M`5
1

Ñ2 U(j
exp@ i ~f j2f j8!#U2

5
1

Ñ
. ~4.6!

We find numericallyM`5(0.660.1)(s/L)2 which con-
firms the prediction.

According to the above results, the Lyapunov regim
shares the universality of its classical counterpart for a
trarily large times in the thermodynamic limit of the size
the system going to infinity. However, this occurs only f
times smaller than the critical time where the saturat
value coincides with the space explored by the particle
other words, for infinite unbounded systems there could b
breakdown of the exponential decay of the LE when
wave function expands over the ‘‘available’’~time depen-
dent! Hilbert space, which in the case of the Lorentz g
would follow a diffusive law. Therefore, the exponential d
cay of the quantum yields to a power law associated with
Pollicot-Ruelle diffusive modes when exp(2lt)'s2/r2(t),
wherer 2(t)52dDt. In the case of the Lorentz gas, this tim
ts* is independent of the box sizeL and is approximately the
solution of

ts* ;
1

l
ln

,vts*

s2
. ~4.7!

While the precise determination of Eq.~4.7! is beyond the
reach of our computational resources, for times shorter t
ts* , the expanding range of the exponential withL for times
larger thantE , where the correspondence principle does
prevail, was exemplified in Fig. 3 of Ref. 21. The survival
a classical signature of the quantum dynamics after
Ehrenfest time is due to a more complex effect, namely,
environment which, through the perturbation, randomizes
phase of the wave function and washes out terms of quan
nature. We will discuss this process and its relation to de
herence in detail in the following section.

D. Individual versus ensemble-average behavior

In order to make analytical progress, in our semiclass
calculations as well as in those of Ref. 18, an ensemble
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erage was introduced~over realizations of the quenched di
ordered perturbation or over initial conditions!. This approxi-
mation raises the question of whether the exponential de
of M (t) is already present in individual realizations or, o
the contrary, the averaging procedure is a crucial ingred
in obtaining a relaxation rate independent of t
perturbation.60

As it was discussed in Secs. II and III, for trajectori
longer than the correlation lengthj of the perturbation, the
contributions toDS from segments separated by more thanj
are uncorrelated. This leads us to consider that the de
observed for a single initial condition will be equivalent
that of the average. In this section we test this idea num
cally.

For large enough systems presenting a large satura
time, we expectM (t) to fluctuate around an exponential d
cay. This expectation is clearly supported by our numeri
results shown in Fig. 7, where we presentM (t) for three
different initial conditions in a system withL5800a and
fixed a50.024. An exponential decay with the semiclassi
exponent is shown for comparison~thin solid line!.

In order to obtain the exponent of the decay with a go
precision, we can calculateM (t) for a single initial condition
in a large enough system. Alternatively, our results show t
it is correct to obtain the exponent through an ensemble
erage to reduce the size of the fluctuations. However, as
former method is computationally much more expensive,
resort to the latter.

This situation is analogous to the classical case where
obtains the Lyapunov exponent from a single trajectory t
ing the limit of the initial distance going to zero and the tim
going to infinity, or else resorts to more practical metho
such as the algorithm of Benettinet al. that averages dis
tances over short evolutions.

Notice that in the Lorentz gas the average over init
conditions and the average over realizations of the impuri
positions are equivalent. In all cases we have implemen

FIG. 7. M (t) for three different single initial conditions of the
wave packet. All the curves oscillate around the straight line, wh
is the decay corresponding to the Lyapunov exponent.
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the last choice, for its computational convenience, and
use the term initial conditions to refer also to realizations
H0.

In particular, for our calculations, the average is co
strained to those systems where the classical trajectory o
wave packet collides with at least one of the scatterers. T
restriction helps avoid those configurations where a ‘‘co
dor’’ exists, in which caseM (t) presents a power-law deca
possibly related to the behavior found in integrab
systems.31,32

The averaging of quantities that fluctuate around an ex
nential decay is a delicate matter, since different procedu
can lead to quite different results. In particular, for the LE
has been noted that averagingM (t) over initial conditions
can result in an exponential decay different than the one
single initial condition.23,60 Given the exponential depen
dence of M (t) in l, the phase-space fluctuations of t
Lyapunov exponent will induce a difference between the
erage lnM(t) and that ofM (t). The former procedure is mor
appropriate in order to have averages of the order of
typical values. On the other hand, if the fluctuations of
exponent are small, both procedures give similar results. T
is the situation we found in our model system.

For the Lorentz gas we calculated^M (t)& and ^ ln M(t)&
and extracted the decay rates of the exponential regime u
the fit described in Sec. IV A. We observe that the differen
of the rates obtained through both averaging procedure
smaller than the statistical error. However, the observed r
tive error in the time regime of interest is smaller when a
eraging the logarithm ofM (t). Also, the difference in the
actual values of̂M (t)& and^ ln M(t)& is constant throughou
the decay, the latter being larger.

V. ANALYSIS OF DECOHERENCE THROUGH
THE LOSCHMIDT ECHO

A. Classical evolution of the Wigner function

As discussed in the Introduction, the Loschmidt echo c
be obtained from the evolution of the Wigner function wi
the perturbed and unperturbed Hamiltonians@Eq. ~1.2!#.
Such a framework is particularly useful in the study of d
coherence, as the Wigner function is a privileged tool
understand the connection between quantum and clas
dynamics.35,45

The evolution of the wave functions in terms of the prop
gators@Eq. ~2.2!# can be used to express the time depende
of the Wigner function as

W~r ,p;t !5
1

~2p\!dE ddrE dr̄E dd r̄E dp̄W~ r̄ ,p̄;0!

3expF i

\
~p•dr2p̄•d r̄ !GKS r2

dr

2
, r̄2

d r̄

2
;t D

3K* S r1
dr

2
, r̄1

d r̄

2
;t D , ~5.1!

whereW( r̄ ,p̄;0) is the initial Wigner function. The semiclas
sical expansion of the propagators@Eq. ~2.4!# leads to the
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propagation of the Wigner function by ‘‘chords,’’61–63where
pairs of trajectories (s,s̃) traveling from (r̄2d r̄ /2,r̄1d r̄ /2)
to (r2dr /2,r1dr /2) have to be considered. In the leadin
order in \ we can approximate the above propagators
sums over trajectories going fromr̄ to r , and the semiclas-
sical evolution of the Wigner function is given by

W~r ,p;t !5~2p\!dE dr̄E dp̄W~ r̄ ,p̄;0!(
s,s8

dS p̄2
p̄s1p̄s8

2
D

3dS p2
ps1ps8

2 DKs~r , r̄ ;t !Ks8
* ~r , r̄ ;t !, ~5.2!

wherep̄s (ps) andp̄s8 (ps8) are the initial~final! momenta of
the trajectoriess ands8, respectively. The dominant contr
bution arises from the diagonal terms5s8

Wc~r ,p,t !5E dr̄ (
s( r̄ ,r ,t)

Csd~p2ps!W~ r̄ ,p̄s ;0!. ~5.3!

Using the fact thatCs is the Jacobian of the transforma
tion from r̄ to ps , we have

Wc~r ,p;t !5E dpsd~p2ps!W~ r̄ ,p̄s ;0!, ~5.4!

where the trajectories considered now are those that arriv
r with momentump. We note that (r̄ ,p̄) is the preimage of
(r ,p) by the equations of motion acting on a timet. That is,
(r ,p)5Xt( r̄ ,p̄). The momentum integral is trivial, and w
obtain the obvious result

Wc~r ,p;t !5W~ r̄ ,p̄;0!, ~5.5!

FIG. 8. Four classical trajectories used to compute semicla
cally the Loschmidt echo through the evolution of two Wigner fun
tions associated with different Hamiltonians.
1-16
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with ( r̄ ,p̄)5Xt
21(r ,p). Since Xt conserves the volume in

phase space, at the classical level the Wigner func
evolves by simply following the classical flow.

B. Fine structure of the Wigner function and nonclassical
contributions to the Loschmidt echo

As indicated in Eq.~1.2!, the Loschmidt echo is given b
the phase-space trace of two Wigner functions associ
03531
n
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with slightly different Hamiltonians (H0 and H01S). In
order to facilitate the discussion, we introduce the density~or
partial trace! f S writing the LE as

M ~ t !5E dr f S~r ,t ! ~5.6!

with
r

s
e

f S~r ,t !5
1

~2p\!dE dpE ddrE dr̄E dd r̄E dp̄E ddr 8E dr̄ 8E dd r̄ 8E dp̄8W~ r̄ ,p̄;0!

3W* ~ r̄ 8,p̄8;0!expF i

\
~p•dr2p̄•d r̄ !GexpF2

i

\
~p•dr 82p̄8•d r̄ 8!G

3KS r2
dr

2
, r̄2

d r̄

2
;t DK* S r1

dr

2
, r̄1

d r̄

2
;t D K̃* S r2

dr 8
2

, r̄ 82
d r̄ 8
2

;t D K̃S r1
dr 8
2

, r̄ 81
d r̄ 8
2

;t D . ~5.7!

K andK̃ represent the propagators associated withH0 andH01S, respectively. The semiclassical evolution off S is given by
sets of four trajectories, as illustrated in Fig. 8.

As we have consistently done in this work, we take Gaussian wave packet~of width s) as initial state. Its associated Wigne
function reads

W~ r̄ ,p̄;0!5
1

~p\!d
expF2

~ r̄2r0!2

s2
2

~ p̄2p0!2s2

\2 G . ~5.8!

Assuming thatS constitutes a small perturbation, after a few trivial integrations we obtain

f S~r ,t !5
s2

~2p3\4!d/2EddrE dr̄E dd r̄E dp̄E dd r̄ 8E dp̄8 expF i

\
~ p̄8•d r̄ 82p̄•d r̄ !GexpF2

2

s2
~ r̄2r0!2G

3expF2
s2

\2
@~ p̄2p0!21~ p̄82p0!2#G(

s,s8
(
s̃,s̃8

expF2
P 2s2

8\2 GKsS r2
dr

2
, r̄2

d r̄

2
;t DKs8

* S r1
dr

2
, r̄1

d r̄

2
;t D

3Ks̃
* S r2

dr

2
, r̄2

d r̄ 8
2

;t DKs̃8S r1
dr

2
, r̄1

d r̄ 8
2

;t D , ~5.9!

where we have defined

P5p̄s1p̄s̃2p̄s82p̄s̃8 . ~5.10!

Now the trajectoriess and s̃ (s8 and s̃8) arrive to the same final pointr̄2d r̄ /2 (r1dr /2). Since the initial wave packet i
concentrated aroundr0, we can further simplify and work with trajectoriess and s̃ (s8 and s̃8) that have the same extrem
points. Therefore, we have

f S~r ,t !5
s2

~2p3\4!d/2E ddrE dr̄E dd r̄ expF2
2

s2
~ r̄2r0!2G(

s,s8
(
s̃,s̃8

expF2
P 2s2

8\2
2

2s2

\2 S R
4

2p0D 2

2
d r̄ 2

2s2G
3KsS r2

dr

2
, r̄2

d r̄

2
;t DKs8

* S r1
dr

2
, r̄1

d r̄

2
;t DKs̃

* S r2
dr

2
, r̄2

d r̄

2
;t DKs̃8S r1

dr

2
, r̄1

d r̄

2
;t D , ~5.11!

with

R5p̄s1p̄s̃1p̄s81p̄s̃8 . ~5.12!
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By the same considerations as before, we can reduce all four trajectories to start at the centerr0 of the initial wave packet
~Fig. 9!

f S~r ,t !5~4ps2!dE ddr(
s,s̃

(
s8,s̃8

expF2
~P 21S 21T 2!s2

8\2 GexpF2
2s2

\2 S R
4

2p0D 2G
3KsS r2

dr

2
,r0 ;t DKs8

* S r1
dr

2
,r0 ;t DKs̃

* S r2
dr

2
,r0 ;t DKs̃8S r1

dr

2
,r0 ;t D , ~5.13!

with

S5p̄s2p̄s̃1p̄s82p̄s̃8 , ~5.14a!

T5p̄s1p̄s̃2p̄s82p̄s̃8 . ~5.14b!

Given that

P 21S 21T 25~ p̄s2p̄s̃!
21~ p̄s2p̄s8!

21~ p̄s2p̄s̃8!
21~ p̄s̃2p̄s8!

21~ p̄s̃2p̄s̃8!
21~ p̄s82p̄s̃8!

2, ~5.15!

and since the pairs of trajectories (s,s̃) and (s8,s̃8) have the same extreme points, the dominant contribution tof S will come
from the terms withs5 s̃ ands85 s̃8. Such an identification minimizes the oscillatory phases of the propagators, and
sponds to the first diagonal approximation of the calculation of Sec. II and Ref. 18. Within such an approximation w

f S~r ,t !5S s2

p\2D dE ddr(
s,s8

CsCs8expF2
~ p̄s2p̄s8!

2s2

2\2
2

2s2

\2 S p̄s1p̄s8
2

2p0D 2G
3expH i

\ FDSsS r2
dr

2
,r0 ,t D2DSs8S r1

dr

2
,r0 ,t D G J . ~5.16!

As in Eq.~2.10!, DSs,s8 is the extra contribution to the classical action that the trajectorys̃ ( s̃8) acquires with respect tos (s8)
by effect of the perturbationS.

We have two different cases, depending on whether or not there are trajectories leaving fromr0 with momentum close to
p0 that arrive to the neighborhood ofr after a timet. In the first caser is in the manifold that evolves classically from the initi
wave packet~Fig. 10!. Such a contribution is dominated by the terms where the trajectorys8 remains close to its partners.
Calling f S

d this diagonal component, we get

f S
d ~r ,t !5S s2

p\2D dE ddr(
s,s8

Cs
2expF2

2s2

\2
~ p̄s2p0!2GexpH i

\ FDSsS r2
dr

2
,r0 ,t D2DSs8S r1

dr

2
,r0 ,t D G J . ~5.17!
o he
Assuming, as in Sec. II and Ref. 18, thatH0 stands for a
chaotic system and that the perturbationS represents a
quenched disorder, upon average we obtain

K expH i

\ FDSsS r2
dr

2
,r0 ,t D2DSs8S r1

dr

2
,r0 ,t D G J L

5expF2
1

2\2
Adr 2G , ~5.18!

whereA is given by Eq.~2.30!. We therefore have

f S
d ~r ,t !5S 2s4

p\2A
D d/2

(
s(r0 ,r ,t)

Cs
2expF2

2s2

\2
~ p̄s2p0!2G ,

~5.19!

and the corresponding contribution to the Loschmidt ech
03531
is

Md~ t !5E dr f S
d ~r ,t !

5S 2s4

p\2A
D d/2E dp̄ C expF2

2s2

\2
~ p̄2p0!2G .

~5.20!

As in Eqs.~2.9! and ~2.23! we have usedC as the Jaco-
bian of the transformation fromr to p̄. Now the dominant
trajectories are those starting fromr0 and momentump0. We
are then back to the case of the previously discussed@Eqs.
~2.31! and ~3.33!# diagonal contribution

Md~ t !.Āe2lt, ~5.21!

whereC5(m/t)de2lt is assumed andĀ5(ms/A1/2t)d. The
decay rate of the diagonal contribution is set by t
1-18



e

as

d
t

e

-
o

ites

s-

at

n-

an

s-
os

as

la

o-
e
r-

UNIVERSALITY OF THE LYAPUNOV REGIME FOR THE . . . PHYSICAL REVIEW B 70, 035311 ~2004!
Lyapunov exponentl, and therefore it is independent on th
perturbationS.

The second possibility we have to consider is the c
where there does not exist any trajectory leaving fromr0

with momentum close top0 that arrives to the neighborhoo
of r after a timet. It is a property of the Wigner function tha
in the region of phase space classically inaccessible byXt the
pointsr halfway between branches of the classically evolv
distribution will yield the largest values off S ~Fig. 11!. The
trajectoriess and s8 visit now different regions of the con
figuration space, therefore the impurity average can be d
independently for each of them. As in Eq.~2.20!, we have

FIG. 9. For a fairly localized initial wave packet, the four cla
sical trajectories contributing to the LE can be reduced to th
starting at its centerr0.

FIG. 10. Classical trajectories in the manifold that evolves cl
sically from r0 to r , representing the diagonal component off S .
The action differencesDS associated with the trajectoriess ands8
are correlated. The shaded regions depict the initial and final c
sical densities.
03531
e

d

ne

K expF i

\
DSsG L 5expF2

1

2\2
^DSs

2&G5expF2
v0t

2,̃
G .

~5.22!

Such an average only depends on the lengthL5v0t of the
trajectories. Thus, after average the nondiagonal term wr

f S
nd~r ,t !5S s2

p\2D d

expF2
v0t

,̃
G E ddr(

s,s8
CsCs8

3expF2
s2

\2
@~ p̄s2p0!21~ p̄s82p0!2#G .

~5.23!

The trajectorys (s8) goes from the pointr0 to r2dr /2 (r
1dr /2). That is why the largest values off S

nd(r ,t) are at-
tained whenr is in the middle of two branches of the cla
sically evolved distribution. Other pointsr result in much
smaller values off S

nd(r ,t), since the classical trajectories th

go betweenr0 and r7dr /2 require initial momentap̄s (p̄s8)
very different fromp0. Thus, exponentially suppressed co
tributions result.

The nondiagonal contribution to the Loschmidt echo c
now be written as

Mnd~ t !5E dr f S
nd~r ,t !5S s2

p\2D d

expF2
v0t

,̃
G

3U E dr(
s

CsexpF2
s2

\2
@~ p̄s2p0!2#GU2

5expF2
v0t

,̃
G . ~5.24!

e

-

s-

FIG. 11. Nondiagonal contribution to the LE given by traject
ries departing fromr0 and arriving to points equidistant from th
point r where the Wigner function is evaluated. The action diffe
encesDS associated with both trajectories are uncorrelated.
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As in Eqs.~2.23! and ~3.22!, we have made the change

variable fromr to p̄, and accordingly, we have obtained th
nondiagonal contribution to the LE.18 As discussed before
such a contribution is a Fermi golden rule like.22 In the limit
of \→0 our diagonal term, Eq.~5.21!, obtained from the
final points who follow the classical flow, dominates the L
consistent with our findings of Sec. IV B.

C. Decoherence and emergence of classicality

Decoherence in a quantum system arises from its inte
tion with an external environment, over which the observ
have neither information nor control.64–66 The states more
sensitive to decoherence are those with quantum super
tions ~Schrödinger cat states!, since they depend strongly o
the information coded in the phase of the wave functi
which is blurred by the interaction with the environment.

The studies of decoherence have traditionally conside
one-dimensional systems, and often ignored the crucial
of its underlying classical dynamics.67 On the other hand, it
has been proposed19 and later corroborated numerically68

that for a classically chaotic system the entropy product
rate ~computed from its reduced density matrix! is given by
the Lyapunov exponent. Moreover, as shown in Ref. 18
thoroughly discussed in this work, the decay rate of
Loschmidt echo in a multidimensional classically chao
system becomes independent of the strength of the pertu
tion that breaks the time reversal between two well-defin
limits ~and set by the Lyapunov exponent!. The connection
between decoherence and Loschmidt echo has been
cussed in Refs. 18 and 69 and has induced us to denotetf
the relaxation rate of the LE.

Decoherence is typically analyzed through the time de
of the off-diagonal matrix elements of the reduced dens
matrix ~where the environmental degrees of freedom of
total density matrix of the system and its environment
traced out!, while the wave-function superposition definin
the LE can be cast as a trace of reduced density matrice
Wigner functions evolving with different Hamiltonians@Eq.
~1.2!#. Zurek has recently proposed to consider the releva
of sub-Planck structure~in phase space! of the Wigner func-
tion for the study of quantum decoherence.38 These struc-
tures appear when the wave function is made of a supe
sition of states, and they have large oscillations betw
large positive and negative values~called interference fringes
for their similitude with a double-slit experience!. It has then
been proposed that the fringes substantially enhance the
sitivity of the quantum state to an external perturbation
strong coupling with an environment suppresses the fring
and the resulting Wigner function becomes positive eve
where and similar to the corresponding Liouville distributi
of the equivalent classical system~with statistical mixtures
instead of superpositions!.66 Jacquod and collaborators43

have contested this approach, by demonstrating that the
hanced decay is described entirely by the classical Lyapu
exponent, and hence insensitive to the quantum interfere
that leads to the sub-Planck structures of the Wigner fu
tion.
03531
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Working with the superposition of two Wigner function
~as in the case of the echo! and with genuinely multidimen-
sional classically chaotic systems allows us to give a con
tent description of the connection between quantum deco
ence and the Loschmidt echo the emergence of class
behavior. Here we remind the reader of our approach to
coherence: rather than introducing an environment in
quantum evolution and then tracing it out, we consider
effect on the system as a perturbation added to the Ha
tonian. We assume then that when the time reversal of
evolved wave function is performed, all uncontrolled degre
of freedom leave a mark as a unitary perturbation to
original Hamiltonian of the system. Of course, such a cor
spondence between environment and perturbation can be
tremely cumbersome or even impossible to prove in a g
eral case. In the particular case of an environment made
bath of harmonic oscillators in the limit of high temperatur
one can show that it is equivalent to having a random wh
noise perturbation in the Hamiltonian.69 Although more re-
search on this equivalence is desirable, we assume it is
at least in some general level. Therefore, we understand
LE as a measure of decoherence, and the results of the
ceding section will be interpreted from the known behav
of the Wigner function in open systems.

From the semiclassical evolution of the Wigner functi
we were able to identify the nondiagonal componentMnd as
the contribution to the LE given by the values of the Wign
function between the branches of the classically evolved
tial distribution ~Fig. 11!. In this region both of the Wigner
functions contributing to Eq.~1.2! are highly oscillating, and
quite different from each other. The overlap, which is perf
for zero coupling~ensuring the unitarity requirement!, is rap-
idly suppressed with increasing perturbation strength. As
cussed earlier in the text~see also Refs. 18 and 22!, when
Mnd is the dominant contribution toM, we are in the Fermi
golden rule regime. We have seen that this weak perturba
regime collapses as\→0 @Eqs.~2.32! and ~3.36!#.

Beyond a critical perturbation, when the overlap comi
from the oscillating part of the Wigner functions is su
pressed, the diagonal componentMd takes over as the domi
nant contribution to the LE. It is given by the values of th
Wigner function on the regions of phase space that re
from the classical evolution of the initial distribution. This
the Lyapunov regime, where the decay rate ofM (t) is given
by l. Notice that this behavior is still of quantum origin, a
we are comparing the increase of the actions of nearby
jectories by the effect of a small perturbation, assuming t
the classical dynamics is unchanged. The behavior in
Lyapunov regime does not simply follow from the classic
fidelity, where the change in the classical trajectories is ta
into account, and the finite resolution with which we follo
them plays a major role. The upper value of the perturbat
strength for observing the Lyapunov regime is a class
one, i.e.,\ independent@, tr.L in Sec. II D and Eq.~4.3!#.

For stronger perturbations~see discussions in Secs. II D
and IV B! the classical trajectories are affected and the de
rate of the LE is again perturbation dependent. The Wig
function approach to the LE also helps us to develop
intuition about the quantum to classical transition. T
1-20
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Lyapunov regime is the correct classical limit of a chao
system weakly coupled to an external environment.

VI. CONCLUSIONS

In this work we have studied the decay of the Loschm
echo in classically chaotic systems and presented evid
for the universality of the Lyapunov regime, where the rela
ation rate becomes independent of the perturbation,
given by the Lyapunov exponent of the classical system.
ing analytical and numerical calculations we have de
mined the range~in perturbation strength! of the Lyapunov
regime, its robustness with respect to the classical limit,
form of the perturbation, the initial state, and the avera
conditions.

We presented semiclassical calculations in two differ
Hamiltonian systems: a classically chaotic billiard perturb
by quenched disorder and a Lorentz gas where the pertu
tion is given by an anisotropy of the mass tensor. In the la
model, the numerical simulations were found in good agr
ment with the analytical calculations, and showed that
Lyapunov decay extends well beyond the Ehrenfest t
~where the quantum-classical correspondence is no lo
expected to hold!.

We remark that both our examples included some kind
disorder, rather in the perturbation or in the Hamiltonia
This is not crucial for the observation of the Lyapunov r
gime, as shown by numerical experiments in the Bunimov
stadium24 and in the many maps studied. This independe
from disorder can be related to the chaoticity of the Ham
tonian which randomizes the actions along a particular
jectory after a certain typical distance. However, the m
tioned systems are bounded and therefore cannot rule ou
relevance of disorder in the Lyapunov decay after the Ehr
fest time. Clarifying the role of disorder in this regime and
systems with weak or nonexistent chaos is certainly an in
esting problem for future research.

Using a Wigner function representation, we have be
able to present an alternative interpretation of the two c
tributions to the Loschmidt echo. The nondiagonal~Fermi
golden rule! regime obtained for weak perturbation w
shown to arise from the destruction of coherence betw
nonlocal superpositions, thus suppressing the nonclas
part of the distribution. In contrast, the diagonal~Lyapunov!
regime obtained for stronger perturbation or more class
systems was shown to be given by the classical part of
evolved initial distribution. Thus, the Lyapunov regime
associated with the classical evolution~even though is of
quantum origin!, while the Fermi golden rule has a pure
quantum nature. In this way, the persistence of the Lyapu
regime after Ehrenfest time is understood as the emerg
of classical behavior due to the fast dephasing of the pu
quantum terms. This is in consistency with the understand
of the quantum-classical transition in quantum syste
coupled to an environment driven by the decoherence.65

The existence and universality of an environme
independent regime and its consequence in the phase-s
behavior of the Wigner function provide a highlight on th
connection between the Loschmidt echo and quantum d
03531
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herence. Such a connection, as well as the experiments
ing the universal behavior, are promising subjects for fut
research.

The universal behavior of the Loschmidt echo requires
underlying classically chaotic system, such as the ones
have considered in this work. Hamiltonian systems w
regular dynamics have been shown to exhibit nonunive
behavior. Power laws31 as well as Gaussian32 behavior have
been reported for the decay of the Loschmidt echo, depe
ing on the form of the perturbation. This behavior is app
ently quite different from the one we obtain for chaotic sy
tems, and therefore we see that the Loschmidt e
constitutes a relevant concept in the study of quant
chaos.13 Such a connection clearly deserves further stud
The Loschmidt echo in the Lorentz gas has been rece
calculated for short times,70 and a rate given by twice the
Lyapunov exponent has been proposed. It would be inter
ing to investigate if the difference in time scales is respo
sible for the departure from our results.
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APPENDIX A: CLASSICAL DYNAMICS WITH
AN ANISOTROPIC MASS TENSOR

Let us assume a particle in a free space with mass te
mJ surrounded by an infinite potential surface~hard wall!.
Suppose that the particle departs from a pointr0 at time t0
and arrives to a final pointr at timet. We must calculate the
time tc and positionr c along the surface at which the partic
collides. The action along the trajectory is

S5
~r c2r0!mJ ~r c2r0!

2~ tc2t0!
1

~r2r c!mJ ~r2r c!

2~ t2tc!
. ~A1!

We can solve the problem by minimizing the action, ta
ing the derivative of Eq.~A1! along the surface. Introducing
unitary vectorn normal to the surface at the point of coll
sion, we can express the minimization condition as

n3“ rc
S50. ~A2!

Denoting the initial and final velocities asvi5(r c
2r0)/(tc2t0) andvf5(r2r c)/(t2tc), we can write

n3mJ ~vi2vf !50. ~A3!
1-21
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This, along with the conservation of energyE5vmJ v/2, re-
sults in Eqs.~3.13!. The same result is obtained in the case
stretched boundaries.

APPENDIX B: NUMERICAL METHOD TO SIMULATE
THE QUANTUM DYNAMICS

In order to compute the quantum dynamics of the sys
we resort to a lattice discretization~tight-binding model! in a
scalea much smaller than the wavelength of the packe
This condition is relevant to accurately recover the disp
sion relation of the free particleEk5\2k2/(2m), from the
energy spectrum of the~open boundaries! discretized system

Ek5
2\2

ma2
2

\2

ma2
@cos~kxa!1cos~kya!#. ~B1!

Setting the lattice step as the unit length (a51) we typically
worked withR520, except for the calculations in Sec. IV
where, in order to keep the precision for smaller wav
lengths,a was reduced keeping the productka constant.

The discretization results in a Hamiltonian matrix who
ch

or

ky

G

03531
f

m

.
r-

-

diagonal elements are the on-site energies. The off-diag
elements are hopping termsV5\2/(2ma2) which is the
maximum kinetic energy represented by the discretizatio

The quantum dynamics on the lattice was carried out
ing a Trotter-Suzuki algorithm,71 which is a remarkably pre-
cise and efficient numerical method. At the lowest order, i
a decomposition of the evolution operatorU for a small time
t in a product of analytically solvable evolution operato
Typically one searches for a way to write the Hamiltonian
the system asH5(k

QHk , whereHk are 232 matrices, and
thus

U~t!5exp@ iHt/\#.Ũ~t!5)
k

Q

exp@ iHkt/\#, ~B2!

whereUk(t)5exp@iHkt/\# are rotation matrices.
The highest orders involve a fractal decomposition ot

that preserves the unitarity of the approximated evolut
operator. In our calculations, a fourth-order algorithm with
time stept50.1\/V was precise enough for the time regim
of interest.
-
w
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