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Universality of the Lyapunov regime for the Loschmidt echo
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The Loschmidt ech@LE) is a magnitude that measures the sensitivity of quantum dynamics to perturbations
in the Hamiltonian. For a certain regime of the parameters, the LE decays exponentially with a rate given by
the Lyapunov exponent of the underlying classically chaotic system. We develop a semiclassical theory,
supported by numerical results in a Lorentz gas model, which allows us to establish and characterize the
universality of this Lyapunov regime. In particular, the universality is evidenced by the semiclassical limit of
the de Broglie wavelength going to zero, the behavior for times longer than Ehrenfest time, the insensitivity
with respect to the form of the perturbation, and the behavior of indivitumhaveragedinitial conditions.

Finally, by elaborating a semiclassical approximation to the Wigner function, we are able to distinguish
between classical and quantum origin for the different terms of the LE. This approach renders an understanding
for the persistence of the Lyapunov regime after the Ehrenfest time, as well as a reinterpretation of our results
in terms of the quantum-classical transition.
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[. INTRODUCTION the reversible elastic scattering with impuritte€.The com-
mon feature of both intrinsic behaviors is the complexity of
Controlling the phase in the evolution of a quantum systhe dynamics that justifies th&osszahlansatar molecular
tem is a fundamental problem that is becoming increasinglghaos hypothesis.
relevant in many areas of physics. In relatively simple sys- However, such a hypothesis does not seem to be compat-
tems, such as a quantum dot in an Aharanov-Bohmlri]h@, ible with our basic knowledge of quantum dynamics. Unlike
phase can even be measured by transport experiments. TRi@ssical mechanics, quantum dynamics does not exhibit hy-
development of the quantum information field requires thePersensitivity to initial condition$!*? That is why the field
control of the phase of increasingly complex systésich ~ known as quantum chaos deals mainly with the quantum
a control is hindered by interactions with the environment instationary properties of systems whose underlying classical
a way which is not completely understood at present. dynamics is chaotic. Among these properties, the ones more
Nuclear magnetic resonance provides a privileged framefrequently studied are the level statistiéswave-function
work to test our ideas on the evolution and degradation of thécarring;” and parametric correlatiolSA notable exception
quantum phase. The phenomenon of spin echo, through trMong these studies was that of Péfesho realized that,
reversal of the time evolution, allows us to study how anfor long times, classically chaotic and integrable systems be-
individual spin, in an ensemble, loses its phase merhdhe  have differently under imperfect time reversal. It is through
randomization of its phase appears as a consequence of tHte experimental findings above cited that the study of time
interaction with other spins that act as an environment. Reévolution of classically chaotic systems has gained a privi-
cently, it has become possible to test the phase of the colledeged place in nowadays research.
tive many-spin state through the experiments of nfagit A simplified version of the echoes experimentally studied
polarizatiorl echoes. In these cases an initial polarizationis the so-called Loschmidt echtE)
“diffuses” away as consequence of the spin-spin interactions
in the effective Hamiltoniarf{. The whole many-body dy- M (t)=|m(t)|?=|{yo| & o™ W ig=1Haol/k| y; 3|2 (1.1)
namics can be reversed by the sudden transformétien
—H. However, there is a failure to recover the initial polar- where| ) is an arbitrary initial state that evolves forward in
ization state which increases with the time elapsed before thgme under the system Hamiltoniai, for a timet, and then
reversal. Such a failure is a consequence of the fluctuatiorBackwards under a slightly perturbed Hamiltoniafy+3
of the phase of the complex quantum stated constitutes a betweent and 2. The amplitudem(t) of the LE also repre-
measure of the entropy growth. sents the overlap between the two slightly different evolu-
Surprisingly, the rate of phase information loss appears atons of the same initial state alM(t) quantifies the depar-
an intrinsic property of the system, quite insensitive to howture from the perfect overlap. Because of this important
small the coupling to the external degrees of freedom is, oproperty, within the field of quantum information the LE is
to the precision of the revers&iThis may be interpreted as referred to adidelity."” Alternatively, M (t) can also be writ-
analogous to the residual resistivity of impure metals. Wherien as the trace of the product of two pure-state density ma-
the direct coupling to the thermal bath is decreased by lowtrices p or Wigner functionsW evolving with different
ering the temperature, the resistivity becomes controlled bydamiltonians,
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M(t):tr{pﬁo+2(t)PHo(t)} over, the classical counterpart of the LE is problematic since
a wide range of dynamic behaviors is obtained in different
situations?>3334

=(2Wﬁ)df drf APWig+ (1, ) Wi (T, P31). The LE has also been studied in different disordered

(1.2 system£2% |t has been shown in both cases that the long

' range of the perturbing potential, as emphasized in Ref. 18,

We have used the standard definitions is crucial in order to obtain a perturbation-independent re-

. ime.
pr=l)(ul  with  [y)=e "), 13 ’ The various approximations that the semiclassical theory
of Ref. 18 relies on were further corroborated using an initial
1 i momentum representation of the wave pacRefThis

Wa(r.pit) = (Zwﬁ)dJ dorexp — p-or changes the sum over an uncontrolled number of trajectories

into only one, which allows the exact numerical evaluation

or or of the semiclassical expression for the echo.

X < r+ o |PH r—- 7>= (1.9 Taking the perturbation as the action of an external envi-

ronment allows us to think of the LE as a measure of the

whered is the dimensionality of the space. decoherence. This approach has been advocated by #urek,

In consistency with the experimental behavior of the po-and later extendéd by studying the decay dfl(t) as ex-
larization echo, the LE of a classically chaotic one-bodypressed by a product of Wigner functidrzg. (1.2)]. A semi-
Hamiltonian H, was found to exhibit an intrinsic decay classical approximation to the Wigner function allows us to
rate® This result is valid beyond some critical value of the separate the different contributions to the LE coming from
perturbation. Interestingly, the decay rate is precisely thelassical and nonclassical processes. As we discuss in detail
Lyapunov exponenin of the classical system. A related in the sequel, such distinction enables us to understand the
relevance of the classical dynamics had been hinted from theelation to decoherence, and how it builds in until the clas-
analysis of the entropy growth of dissipative systéms. sical terms finally dominate the LE.

The purely Hamiltonian character of the model of Ref. 18, With the goal of addressing experimentally relevant
as well as the result of a classical parametegoverning a  system$?—#? we illustrate our findings in a simple model
bona fidequantum property, attracted considerable atten- with classical chaotic dynamics: the Lorentz gas. This sys-
tion. A quite intense activity has been devoted in the last twdem has been shown to exhibit a well-defined Lyapunov
years in order to test these predictions in various model sysegime?! The semiclassical theory that we develop, as well
tems and pursue further developments of the th&br). as the extensive numerical results that we present in this

The Lyapunov behavior has been numerically obtained irwork, allows us to establish and characterize the range where
models of a Lorentz gas, kicked tops’>?® Bunimovich  the perturbation-independent regime has the universality ob-
stadium?* bath tube stadiurf® and sawtooth maff. The  served in classical chaos.
analytical results have been mainly focused in the small per- This universality manifests itself by the robustness of the
turbation region. Jacquod and collaboratbiislentified the  Lyapunov regime with respect to various effects. First, in the
regime below the critical perturbation as following a Fermi semiclassical limit of the de Broglie wavelengtg going to
golden rule through the energy uncertainty produced by theero, the borders of the regime extend from zero perturbation
perturbation which was also analyzed with semiclassicalip to a classical upper bound. Second, and as stated above,
tools?’ Prosen and collaboratdfgshowed thaM (t) inthe  for finite A the Lyapunov regime extends up to times arbi-
perturbative regime depends on the specific time dependencerily larger than Ehrenfest's time. Finally, universality is
of the perturbation correlation functions. The transition be-also evidenced by the insensitivity of the Lyapunov regime
tween the perturbative Gaussian regime to the Fermi goldewith respect to the form of the perturbation or tfm®naver-
rule has also been studied using the semiclassical approxaged behavior of individual semiclassical initial conditions.
mation as well as random matrix thedfy. The paper is organized as follows. In Sec. Il we develop

The Lyapunov regime bears a clear signature of the unthe semiclassical approach to the LE with a quenched disor-
derlying classical dynamics. Investigations on boundedler playing the role of the perturbation, as proposed in Ref.
system&>?*could not study the behavior of the LE after the 18. We then discuss the main assumptions and set the theo-
Ehrenfest timglas defined by Berman and Zaslavdhybe-  retical framework that will be further developed in the rest of
cause of the finite-size long-time saturation. This raises théhe paper. In Sec. Ill we consider a specific model, the Lor-
question of whether the independence of the decay rate centz gas. In this model we apply a completely differéait
the perturbation strength is a consequence of the quantunthough still global perturbation than in the previous case,
classical correspondence principle. As we will analyze in thisvhich allows us to study the dependence of the Lyapunov
work, the situation is far less trivial. Using that the Lorentz regime on the form of the perturbation. We first characterize
gas is an extended system, we are going to show that ththe classical dynamics of the Lorentz gas, as well as that of
regime persists for times much larger than the Ehrenfesthe perturbation, and then present a semiclassical calculation
time. In addition, the quantum LE is functionally different of the LE, discussing the different regimes predicted by the
than what a direct estimation would yield for the classical LEtheory. In Sec. IV we concentrate on the main results of this
(for the chaotid® as well as the integrabte®? cases More-  work. The universality of the Lyapunov regime is discussed
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and supported with numerical results on the semiclassicahe trajectorys and L the Lagrangian. The JacobiaDg
limit, the behavior after the Ehrenfest time, and the effects of=|detB,| accounts for the conservation of classical prob-
averaging. In Sec. V we discuss the relation of the LE toabilities, with the matrix

decoherence by studying the semiclassical approximation to

the Wigner function and reinterpreting the results of Sec. Il 7S,
under this highlight. We conclude in Sec. VI with some final (By)ij=——=, (2.5
remarks. aridr;

obtained from the derivatives of the action with respect to
the various components of the initial and final positions. We
denote byug the Maslov index, counting the number of con-

A. Semiclassical evolution jugate points of the trajectorg. Since we will work with

In this section we calculate the Loschmidt ecsq. faLrIy 7con_cenEated_ |n.|t|al vyave packets, we u.se. _that
(1.1)] for a generic chaotic systefiy and a perturbatio V'iSS|f:fo_ ~Ps;i (Psi Is theith component of the initial

arising from a quenched disorder. We follow the analyticalmomentum of the trajectorg) and we expand the action as
scheme of Ref. 18, discussing the main assumptions and the

Il. THE LOSCHMIDT ECHO—SEMICLASSICAL
ANALYSIS

generality of the results. We choose as initial state a Gaussian Sq(r It = Si(r,ro;t) _H;. (r— ro). (2.6
wave packetof width o), which is the closest we can get to
a classical state: We are led to work with trajectories that joinry to r in a

time t, which are slightly modified with respect to the origi-
nal trajectoriess(r,r,t). We can therefore write

as T
— 1 i — 1 — )
lﬂ(r,t=0)=(¥> ex;{gpo-(r—ro)—ﬁ(r—ro) :

(2.1 _ i— — —
pr= > Ks<r,ro;t)f dr ex;{— gps«r—ro)}w(r,m
We will keep the spatial dimensiaharbitrary in the analyti- s(ro.r.)
cal calculations, but it will be fixed td= 2 for the numerical
studies of Sec. IV. It has been shdt¥that if the initial state =(4ma®) ¥ D K (r,roit)
is a superposition ol Gaussians, the final result is the same s(ro.r.)
exponential decay one obtains with a single Gaussian but 2
normalized byN. Thus, our results will be valid only when xex;{ - —Z(HS— Po)? |, 2.7
the initial state can be decomposed as a sum of Gaussians. 2h

The exponential decay is observed also with momentum
eigenstate$’ but it is not universal for a random state or an where we have neglected second-order termsSah (r
eigenstate of the system. o —rg) since we assume that the initial wave packet is much
The time evolution of the statg(r,0) is given by larger than the de Broglie wavelengtrt Ag). Equation
(2.7 shows that only trajectories with initial momentywg

— — — closer than:/o to py are relevant for the propagation of the
w<r,t>=fdrK(r,r;t>w<r,0>, @2 ave packet. propag

with the propagator
propag B. Semiclassical Loschmidt echo

K(rr;t)=(r|e”""r), (2.3 The amplitude of the Loschmidt echo, defined in Eqg.
(1.1), for the initial condition(2.1), can be approximated
We will use the semiclassical expansion of theSemiclassically as
propagatct**° as a sum over classical trajectoris,r,t),

_ dr2
going fromr to r in a timet, m(t) = o ) f drE a2
wh? g S s
K(rr= 2 K1), i im
sty X ex %(%_SE)—?(MS_ME)
— 1 \92 i — T 2
THy — 1/2, o Ty [ _
Ks(r'r't)_(zﬂ.iﬁ) Cs exﬁ{hss(r’r't) '2/’“5}- XGX%—Z_hZ[(ps_pO)z"'(p%_pO)z] . (29

(2.9

valid in the limit of large energies for which the de Broglie  Without perturbation ¥ =0) and restricting ourselves to

wavelength kg=2m/ke=2mh/po) is the minimal length  the terms withs='s (which leaves aside terms with a highly
scale. S(r,r;t)=ftdtLJ gs(t),as(t);t] is the action over oscillating phasewe simply have
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o2 | 9?2 o’ _ - seconddiagona) s’ remains close te. Such a distinction is
m(t)= 2 f dfs(;r ) Csexg — —(ps—pp)°| =1 essential when considering the effect of the perturbation over
T o the different contributions.
(2.9
We have performed the change from the final position vari- C. Quenched disorder as a perturbation

abler to the initial momentunps using the Jacobia@, and

X . o . . In order to calculate the different components to the LE
then carried out a simple Gaussian integration over the varl[E

i gs.(2.12 and (2.13] we need to characterize the pertur-
ableps. bation>.. One possible choi¢®is a quenched disorder given

For perturbations: that are classically weakas not to  py N; impurities with a Gaussian potential characterized by
change appreciably the trajectories governed by the dynamne correlation lengtl,

ics of Hy), we can also neglect the terms of Eg8.8) with

s+#s and write ~ % u 1 ,
3=V(r=2 ———exp ——(r—R,)?|.
0-2 dr2 | ( a=1 (27T§2)d/2 252(
m(t)z(7> Jer Csex;{%ASS} (2.14
S
i The independent impurities are uniformly distributed po-
g’ _ sitions R,) with densityn;=N;/V, (V is the sample vol-
xexp — —[(ps—Po)?1|, (210 ume. The strengthsi, obey(u,ug)=u?s,s. The correla-
h tion function of the above potential is given by

whereAS; is the modification of the action, associated with

the trajectorys, by the effect of the perturbatiah. It can be Cy(la—a'h=(V(@V(a))
obtained as 5
uen; r{ 1 ( ,)2]
=———exg ———=(q—q')?|.
t L 2\d/2 2
AS~— [ dtsda.am) (2.1 (4m ) 4
0 (2.19

in the case where the perturbation appears as a potential efhe perturbation(2.14 does not lead to the well-known

ergy in the Hamiltoniar{like we discuss in this chapterf . . . ~
S o .- . physics of disordered systems, since the potenfias not
Egecﬁe;;u.rgast'gg II]SI ':r?e'{rge'sk;]neFL(r:efgrr;]n?]::r:gi Za:)nfwl'goglan part of Hy, but of . Then, it acts only in the backward
u ! ) : : v 9 'gn. propagation of the LE setup. On the other hand, the analogy

1ally P , 9 app lytical developments. The finite range of the potential allows
tion of Eq. (2.10 would sustain only for logarithmically

short times, rendering our following calculations useless-> to apply the semiclassical togirovidedékg> 1), as has

However. it has been arau¥dthat this approximation is been extensively used in the calculation of the orbital re-
. : 1 arg pp > sponse of weak disordered quantum d6té® The finite
valid for much longer times because of the structural stabilit

Yran ial i ial i ient i

. 2 : ; ge of the potential is a crucial ingredient in order to
of the manifold oflnltlal states_that e_volve _classm&ﬁ)l'hls bridge the gap between the physics of disordered and dy-
allows for the existence of trajectories arrivingradnd de-

oarting exponentially close t, namical systenis*’ and to obtain the Lyapunov regim@.
Within the approximation of Eq(2.10, the LE is ex- Moreover, taking a finite is not only helpful for computa-

ressed as a double intearal containing two traiectories: tional or conceptual purposes, but it constitutes an appropri-
P 9 9 J * ate approximation for an uncontrolled error in the reversal

5\ d procedureHy— — (Ho+2) as well as an approximate de-
M(t)=(0—) f ar | darr > > cC.o scription f_or an external environment. W|t_hout entering into
wh? S(Fout) s/ (1o, ) a discussion about what kind of perturbation more appropri-

ately represents an external environment, it is reasonable to

[ admit that the interaction with the environment will not be
X ex %(ASS_ASS’) local (or short range but will extend over certain typical
length.
o? ) ) As discussed in the preceding section, in the leading order
X exg — ﬁ[(ps_ Po)+(Psr—Po)°]|- (212 of 4 and for sufficiently weak perturbations, we can neglect

the changes in the classical dynamics associated with the
disorder. We simply modify the contributions to the semi-
classical expansion of the LE associated with a trajecsory
_nnd d (or in general to any quantity that can be expressed in terms
M) =MTO+M(D), 213 of the propagatojsby adding the extra phas&S of Eq.
where the first ternfnondiagonal contains trajectoriesand ~ (2.11). For the perturbatiort2.14 we can make the change
s’ exploring different regions of phase space, while in theof variablesg=vt and write

As in Ref. 18, we can decompose the LE as
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1 In the nondiagonal term the impurity average can be done
ASs=— U—f V(g)da. (216  independently fos ands’, since the two trajectories explore
07Cs different regions of phase space. Therefore, upon impurity
The integration is now over the unperturbed traject6fy ~ average the nondiagonal term becomes
and we have assumed that the velocity along the trajectory 5\ d
remains unchanged with respect to its initial valu o
et P ° M“d(t>=|<m<t>>|2=(ﬁ)

For trajectories of lengti.g>¢&, the contributions ta\ S

from segments separated more tifaare uncorrelated. The 2

f dr>, C
S
o’ i

stochastic accumulation of action along the path can be Xexr{——z(ps— Po)? <exr{ﬁASS}>
therefore interpreted as determined by a random-walk pro- h
cess, resulting in a Gaussian distribution 08(Lg). This (2.22
has also been verified numerically in Ref. 36. The ensemble ) o
average over the propagat(#.4) [or over independent tra- e have kept the same notation for the averaged and indi-
jectories in Eq(2.12] is then obtained from vidual LE, in order to simplify the notation, and because it

will be demonstrated that this distinction is not crucial. Ac-

i (AS?) cording to Eq.(2.20 we have®
exp-AS|)=exp — , (2.17
fi 2h2 2\d
MM(t)=| — e
and therefore entirely specified by the variance (1= h2 ex 7 r = s
2 1 ’ ’ 0'2 — 2
(AS5)= U_gfcngLgdq (M()Vv(a")). (218 Xexr{ - ﬁ(ps— pO)Z]
Since the length ¢ of the trajectory is supposed to be ot
much larger tharg, the integral overq—q’ can be taken =exg — = (2.23
from —o to +oo, while the integral on ¢+q’)/2 gives a ¢

factor of Lg. We thus have _ ) ~
This term depends on the perturbation, throdgland can be

Le interpreted as a Fermi golden rule reilt.
(AS%)=— | dqC(a), (2.19 In the diagonal term the trajectorissnds’ of Eq. (2.12)
Yo remain close to each other. The existence of such types of
resulting in trajectories is based on the structural stability of the

manifolc?”-*¢ (opposed to the exponential sensitivity of indi-
i Ls vt vidual trajectories The actionsAS; andAS,, accumulated
<exr{%ASS > =expg — —=|=exg ——=|. (2.20 by effect of the perturbation cannot be taken as uncorrelated,
2¢ 2¢ like in the previous case. A special treatment should be ap-
In analogy with disordered systedf&”we have defined the Plied to the terms arising frore=s’. The small difference
typical length over which the quantum phase is modified b}petweers ands’ is only considered through the difference of

the perturbation as actions, and therefore
d 2
1 1 u?n, g o’ f J ) 20 —
== = ME(t)=| — dr | dr' 2, Csexg — —5(ps—
7 ﬁzvéquc(q) a2 v (wﬁ2 2 Cio =57 (Pso

The “elastic mean free path? and the mean free time ><<9XF{;,L—(ASS—AS§)

={/v, associated with the perturbatfSrwill constitute a
measure of the strength of the coupling.

Taking impurity averages is technically convenient, but
not crucial. Results like that of Eq2.20 would also arise ‘
from considering a single-impurity configuration and a large ASS_ASS,ZJ dt VV(as(t))-[as(t)—qe (t)].
number of trajectories exploring different regions of phase 0
space. (2.29

_ _ _ _ The difference between the intermediate points of both tra-
D. Loschmidt echo in a classically chaotic system jectories can be expressed using the mariaf Eq. (2.5):
Once we have settled the hypothesis with respect to the . o -
perturbation, we can go back to Eq2.12 and (2.13 to as(t)—0s(t)=B (1) (ps—ps ) =B H(t)B(t)(r—r").
calculate the two contributions to the Loschmidt echo. (2.26

>. (2.29

Sinces ands’ are nearby trajectories, we can write
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In the chaotic case the behavior fl(t_) is dominated

by the largest eigenvalue*'. Therefore we make the sim-

plification B‘l(t_)B(t)=exr[)\(t_—t)]I, where | is the unit

matrix and\ the mean Lyapunov exponent. Here, we use our
hypothesis of strong chaos which excludes marginally stable
regions® with anomalous time behavior. Assuming a Gauss-

ian distribution for the random variableS;—AS,/ , in anal-
ogy with Eq.(2.17), we have

(o as-as|)
1 [t [t _ _
=ex;{—%fodtfodt exgA(t+t' —2t)]

X Cyil|as(t) —as(t)|1(r—r")2|. (2.27)

PHYSICAL REVIEW B70, 035311 (2004
o2 d , 25,2\ 12
wh? fdrES: CS( A )

202 _ )
xexpg — ?(ps_ Po)

M(t)=

The factorcg reduces toaCg when we make the change of

variables fronr toa In the long-time Iimithloc eM, while
for short timesC_ *= (t/m)¢. Using a form that interpolates
between these two limits we have

o2 d 27#2) 412/ m)\ d
Md(t)z(%> fdd A ) (T exf — \t]
202 _
xexr{—?(p—po)zl
=Aexg —\t], (2.3))

Unlike the nondiagonal case, which was obtained throughyiin K:[O_m/(Al/Z[)]d_ Since the integral ovq?is concen-

the correlation potentidEg. (2.15], we are now led to con-
sider the “force correlator”

Cyv(la—a')=(VV(q)- VV(q"))
il
262 | 282

. (2.29

B Uzni
(47T§2)d/2

1 2
X ex _4_§2(q_q )

Using the fact thaCyy is short rangedin the scale off),
and working in the limitat>1, the integrals of Eq(2.27)
yield

[ B A o
ex g(ASS—ASS,) =ex —%|r—r|

(2.29

with

_ (d-1u*n,
4)\U0§2(47T§2)(d71)/2'

(2.30

Therefore, we have

0'2 d

— drf dr' >, C?
wh? f z S

A "2
ex —ﬁ(r—r ).

A Gaussian integration over r’) results in

M(t)=

202 )
xexpg — ?(ps_ Po)

trated aroung,, the exponenk is taken as the phase-space
average value on the corresponding energy shell. The cou-

pling 3 appears only in the prefact@hroughA) and there-
fore its detailed description is not crucial in discussing the
time dependence d¥1¢.

The limits of smallt and weak?, yield an infiniteA, and
thus a divergence in Eq2.31). However, our calculations
are only valid in certain intervals df and strength of the

perturbation. The times considered should verifg/¢=1.

Very long times, resulting in the failure of our diagonal ap-
proximations Egs.(2.12 and(2.24)] or our assumption that
the trajectories are unaffected by the perturbation, are ex-
cluded from our analysis. Similarly, the small valuesoére

not properly treated in the semiclassical calculation of the
diagonal termM9(t), while for strongS the perturbative
treatment of the actions is expected to break down and the
trajectories are affected by the quenched disorder. This last
condition translates into a “transport mean free p&tH”

ztr=4(k§)2? much larger than the typical dimensid of
our system. In the limiké>1 that we are working with, we

are able to verify the conditiofi,>R>¢.

Within the above limits, our semiclassical approach made
it possible to estimate the two contributions of E2.13 to
M(t). The nondiagonal componekt™(t) will dominate in
the limit of smallt or 3. In particular, such a contribution
ensures thaMs_q(t)=1 [see Eq.(2.9], and thatMs(t
=0)=1. The diagonal term will dominate over the nondi-
agonal one for perturbations strong enough to verify

~ Uy
(<—.

X (2.32

This crossover condition is extremely important, and will be
discussed in detail in the sequel.

It is worth noting that the widtho of the initial wave
packet appears as a prefactor of the diagonal contribution.
The nondiagonal term, on the other hand, is independent on
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the initial wave packet. Therefore, as explained in Ref. 43,
changing our initial stat¢2.1) into a coherent superposition
of N wave packets would redudé® by a factor ofN without
changingM™. The localized character of the initial state is
then a key ingredient in order to obtain the universal behav-
ior. In particular, only a Fermi golden rule regime is ob-
ser\g?d when the initial state is rand@hor an eigenstate of
Ho.

IIl. LOSCHMIDT ECHO IN THE TWO-DIMENSIONAL
LORENTZ GAS

A. Classical dynamics ofH,

We consider in this section the case where the systen
HamiltonianH, represents a two-dimensional Lorentz gas,
i.e., a particle that moves free{with speed) between elas-
tic collisions(with specular reflectionson an irregular array
of hard-disk scatterer@émpurities of radiusR. Such a bil-
liard system is a paradigm of classical dynamics, and has
been proven to exhibit mixing and ergodic behavior, while
its dynamics for long distances is diffusiv&.>* The exis-
tence of rigorous results for the Lorentz gas has made it @
preferred playground to study the emergence of irreversible £ 1. schematics of a Lorentz gas showing the dispersion of
behavior out of the reversible laws of classical dynarﬁ?cs. two trajectories initially close to each otheith a differencedx in
Moreover, antidot lattices defined in a two-dimensional eleCthe impact parametes). The anglesd between the two trajectories
tron gas:”**or in acoustic and microwave caviti&sconsti-  increases after each collision as described in the text.
tute an experimentally realizable quantum system where
classical features have been identified and measured. We will
use the terms antidot, impurity, and disk indistinctly.

In our numerical simulations we are limited to finite sys- the defocusing nature of the collisions. The separation be-
tems, therefore we will work in a square billiard of aled  tween a particle with impact parameteand a second one
(with N scatterers and impose periodic boundary condi- with impact parametex+ 6x that have traveled a distanse

tions. The concentration of disks is after a collision will grow agsee Fig. 1
c=NmR?/L2. (3.1 g
_ _ _ 5d= Sx+ 505= x| 1+ ——|. (3.2
We require that each scatterer has an exclusion reBion R%—x?

from its border, such that the distance between the centers of
any pair of disks is larger than a valudR2>2R. Such a  The next collision will further amplify the separation, due to
requirement is important to avoid the trapping of the classithe new impact parameters and the different incidence
cal particle and the wave-function localization in the quan-angles.
tum case. The antidots density is set to be roughly uniform, Within the above restrictions, the exclusion distafe
and the concentration is chosen to be the largest one compaempletely determines the dynamical properties of the Lor-
ible with the value ofRR., obtained numerically as entz gas. Among them, we are interested in the Lyapunov
=O.77TR2/4R§. exponent(measuring the rate of separation of two nearby
The Lorentz gas has been thoroughly studiednd we trajectorie$, the elastic mean free path(given by the typi-
will not discuss here its classical dynamics in detail. We will cal distance between two collisionsind the transport mean
simply recall some of its properties that will be used in thefree path(, (defined as the distance over which the momen-
sequel, and present the numerical simulations that allow utim is randomized and the dynamics can be taken as effec-
to extract some important physical parameters. tively diffusive).
The chaotic character of the dynamics is a consequence of A shifted Poisson distribution

exp[—s/[€—2(R.—R)]} .
f 2(R.—R
P(s)=1 [{—2(Re—R)Jexp{—2(Re—R)/[£ —2(Re—R)1} T 5>2(ReR) (3.3
0 if s<2(Re—R)
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is a reasonable guess for the distribution of lengths betwee 0.05

successive collisions, which yields)=¢=uv 7., and is con- "
sistent with numerical simulations in the range of antidot 10
concentration that we are interested in. Within this billiard 0.04- 10 \
model, the magnitude of the velocity and momentum are
constants of motion, which we denote byand p, respec- T 107 ."'.,.
tively. 0.03- o,

The elastic mean free path that we obtain numerically ’ 10* e, |
compares favorably with a simple estimation of the mear < , , . ,
free distance in a strip of length and width R with 0.02- 10' 10® 10° 10° 10°
2cL/7R disks, . /

7R @R R§ 7R
=% 2 03m 2 34 0.01-

The diffusive character of the Lorentz gas can be put ir
evidence from the time evolution of the root-mean-square 0.00 T T T T T
displacement over a collection of initial conditions. We nu- 0 100 200 300 400 500 600
merically obtairr?)=2dDr, (with d=2). 7,= €, /v is the V4
mean time required to randomize the direction abd )
—v€,/2d is the diffusion coefficient. The difference between  FIG. 2. Lyapunov exponent of the Lorentz gas as a function of
¢ and ¢, arises from the angular dependence of the scattefthe mean fr_ee _path. The bIa(_:k dots represent our numerical values
ing cross section. Taking this factor into account we obtain £&nd the solid line the analytical estimate of &8,10. The dashed
ratio €, /€ which is in good agreement with the one obtained('jr:)fs 'g:jéiateezul‘ﬂ:gm'C;uaenggi(;?gzgoﬁii?ﬁ iﬁéﬁgeigs ;??mgrén
from the independently determinédand ¢, .

. - . 4 in the sequgl Inset: the same plot in log-log scale highlighting
Various estimations of the Lyapunov exponent of the I‘Or'the agreement between the different approximations in the region of

entz gas are known. Considering the three-disk problerr\,ery small concentrationdarge €).
Gaspard and Nicolf$ obtained

work with distances in phase space, rather than in configu-
(3.5) ration space, but the local instability makes this precision
unnecessary.
L o N Benettin’s algorithm can also be used for a semianalytical
Considering a periodic Lorentz gasepeated Sinai billiard g icylation of the Lyapunov exponent. Taking the length dis-
Laughlin proposed the fortf tribution of Eq.(3.3) to obtain the average separation after a
collision from Eg.(3.2), and identifying the average over

2R~ R+ (4RZ—4RR)?
R

v

M= SRR

A= Em 1+ 'B_€ (3.6) pieces of the trajectory with a geometrical average over im-
¢ R/ pact parameters, we can write
where B is a geometrical factor of order 1. In the diluted R
limit (c<1), van Beijeren and Dorfmahshowed that \= Lf dxinl 1+ 2¢ ' 3.9
R€Jo R%2—x?
N R? : : o
)\=2F Ru|{ 1-In2—-0.577-1In ? . (3.7 Performing the integration yields
Numericall th dure of Benetinal *” t N e T 2 s 77)
umerically, we use the procedure of Bene >to L R 2 e arcsinzz| = |.

obtain the Lyapunov exponents. Two nearby trajectories are
followed, and their separation is scaled down to the initial (3.10

value &x, after a characteristic time(which we take to be  Ag shown in Fig. 2, the above expression reproduces remark-
larger than the collision time The Lyapunov exponent re- ably well the numerical calculations of the Lyapunov expo-

2‘;':?”‘12:\?;2_6 average over the expanding rates in the diffefzens 1t agrees also with the result of van Beijeren and Dor-

fman in the dilute limit, and gives good agreement with
. Laughlin’s estimation.
v 1
A=lim— —In
n j§=:1 Sj

SX.
i
EJ ' (3.8 B. Perturbation Hamiltonian

n—o

In Sec. Il C we studied the case of a quenched disorder

wheres; is the length of thgth interval anddx; the separa- perturbation as in Ref. 18. In order to shed light on the de-
tion just before the normalization. Technically, we shouldpendence of the results on the details of the perturbation, we
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consider a radically different perturbation for the case of thg3.11). We adapt to the present perturbation the semiclassical
Lorentz gas: a distortion of the mass tensor introduced irapproach of Sec. Il and Ref. 18. As before, we take as initial
Ref. 21, and briefly discussed in the sequel. state a Gaussian wave packet of widtHEq. (2.2)].

The isotropic mass tensor &fy, of diagonal components The semiclassical approach to the LE under a weak per-
mo, can be distorted by introducing an anisotropy such thaturbation, is given by Eq.(2.12), with the extra phase
M,=Mg(1+ ) andmyy=mgy/(1+ @). This perturbation is t
inspired by the effect of a slight rotation of the sample in the — — =
problem of dipolar spin dynamic§which modifies the mass AS= fothS(q(t),q(t)). (3.19
of the spin-wave excitations. The kinetic part of the Hamil-
tonian is now affected by the perturbation, which is written The sign difference with Eq2.11) results because the per-

as turbation is now in the kinetic part of the Hamiltonian. On
the other hand, as explained before, this sign turns out to be
p)z, a pi irrelevant.
2(a)= “2me 1+a2my (3.19 With the perturbation of Eq(3.12) we have to integrate a

piecewise constant functiofin between collisions with the
In our analytical work we will stay within the leading-order scattererg obtaining

perturbation ine. That is,

N
_aMy o2 2
2(a)=2imo(|05—|0§). (3.12 AS=—5= 2, mi(2v—v?). (3.19

We have used;+v;=v? and have defined; as the free

. o e : ___ time of flight ending with théth collision,v, is they com-
consider a positivee) modifies the equations of motion o _ i
s ponent of the velocity in such an interval, ah as the

without changing the potential part of the Hamiltonian. It i o . )
important to notice that, unlike the case of quenched disor?umber of collisions that the trajectosysuffers during the

der, the perturbatiori3.11) is nonrandom, and will not be tmet

able to provide any averaging procedure by itself, but AS We saw in Sec. Il A, the time of flight; (or the
through the underlying chaotic dynamics. inter-collision lengthv 7;) has a shifted Poisson distribution

Numerical simulations of the evolution of two trajectories [Ed- (3-3]. This observation will turn out to be important in
with the same initial conditions, the first one governedy the analytical calculz?\tlons that follow since the sum of Eq.
and the second one bito+3, show that the distance in (3.15 for a long trajectory can be taken. as composed of
phase space grows exponentially with the same Lyapunovncorrelated random variables following the above-

exponent that amplifies initial distances. The classical dymentioned distribution. Unlike the case of Sec. II, the ran-

namics is then equally sensitive to changes in the Hamildomness is not associated with the perturbatiehich is

tonian as to changes in the initial conditictis. fixed), but with the diffusive dynamics generated .
For a hard wall model, such as the one we are consider- _ o

ing, the perturbatiori3.11) is equivalent to having nonspecu- D. Nondiagonal contribution

lar reflections. One can resort to the minimum-action prin-  As in the case of Sec. Il, the nondiagonal contribution is
ciple (see Appendix Ato obtain a generalized reflection law: given by the second moment

Making the particle “heavier” in thex direction (i.e., we

2 2
vx(Mny —myni) — 2v,myn,ny a?m? | Ns
I= . (3.13 2y ¢ Mo (202 —12)(2p2 — 2
Uy mxn§+myn)2( ( a (ASE)= 7 i,jzzl 7i7(2vy, —v )(ZUyj v9) ).
(3.16
vy(Myn?—m,n?)—2v,m,nn o . . . .
pl= Y X XV Xy (3.13p  Separating in diagonal € j) and nondiagonalij) contri-
Y myng+myng butions(in pieces of trajectofywe have
wherevy, andv;, are the two components of the velocity after 2m?2

o
a collision against a surface defined by its normal unitary ~ (ASZ)= #[<Ti2>(4<v§i>—4UZ<U§i>+U4)
vector (ny,ny). Equations(3.13 allow us to show that the

distortion of the mass tensor is equivalent to an area conserv- +(Ng— 1)(7)2(4(v2 )2~ 4v%(v2 ) +vH)].
ing deformation of the boundaries as—x(1+¢), y Vi Vi
—yl(1+ &), as used in other works on the Ewhere ¢ (3.17

=V1ta—1is the stretching parameter. We have assumed that different pieces of the trajectory (

#]) are uncorrelated, and that within a given piéce and

vy, are also uncorrelated. According to the distribution of
We calculate in this chapter the Loschmidt echo for thetimes of flight(3.3) we have

system whose classical counterpart was previously dis-

cussed;H, describes a Lorentz gas axdis given by Eq. (1) =7, (3.183

C. Semiclassical Loschmidt echo
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(%)= 275. (3.18H  tion dominate the LE, while in Sec. IV we will test the above

_ S results against numerical simulations.
Assuming that the velocity distribution is isotropi®(6)

=1/27, whered is the angle of the velocity with respect to

a fixed axig is in good agreement with our numerical simu- E. Diagonal contribution
lations, and results in As in Sec. Il, we have to discuss separately the contribu-
2 tion to the LE[Eq. (2.12] originated by pairs of trajectories
<v§>=v2<sin20): v (3.199 sands’ that remain close to each other. In that case the
2’ '

termsAS; andAS,, are not uncorrelated. The corresponding
3y diagonal contribution to the LE is given by E®.24), and
WAy _ v then we have to calculate the extra actionsders’. As in
(vy)=v¥(sin6)= 8 (3199 Fig. 1, we represent bg (6+ 6) the angle of the trajectory
(s’) with a fixed direction(i.e., that of thex axis). We can
We thus obtain that @7 )*~4v?(vj ) +v*=0, implying  then write the perturbatiofEq. (3.11] for each trajectory as
a cancellation of the cross terms(@S?2), consistently with
the lack of correlations between different pieces that we have

assumed. We therefore have zs:%pz(z sirf6—1), (3.253
0
a®mZNgr2v?
(AS)) = —045 S (3.20
. _ _ S =5—p%(2sifg—25sin20—1)+O( ).
For a givent, Ny is also a random variable, but for 7, we 2mg
can approximate it by its mean valtier, and write (3.25h
ASD) — azm3047et 32 Assuming that the time of flight; is the same fos ands’

(ASg)= 4 ) (3.2 we have

We therefore have for the average echo amplitude )
a t _
ASS—ASS,=m—pf dts(t)sin26(t)]. (3.26
0 JO

azm(z)v4Tet

8#72

(m(t))zexr{—

52 | 92
dr2, C
( 7Tﬁ2> j Es s
o2 The angless alternate in sign, but the exponential diver-
X ex;{ — —(ps— Po)? gence between nearby trajectories allows one to approximate
h the angle difference after collisions as|8,|=|5,|e". A
. detailed analysis of the classical dynamics shows that the
v

(3.22 distance between the two trajectories grows with the number
' of collisions asd,=|é8;|vry, d,=d;+|8|v7,, and there-

fore
where we have aLgain us&tl as a Jacobian of the transfor-
mation fromr to ps and we have defined an effective mean Ng Ng
free path of the perturbation by dy =v >, |85 mj=v7d 8>, eli=hrre
s j=1 =1
1 my?
== o a?. (323) eNsh7e— 1
¢ 4R? =6 ——— (3.27)
ete—1

The effective mean free path=v 7 should be distin- By eliminating | 5,] we can express an intermediate angle
guished from€ =v 7, since the former is associated to the y g. 1 , P i , 9
dynamics ofS, andH,, while the latter is only fixed by¢,. ~ O(t) as afunction of the final separation—r'|=dy,,
Obviously, our results are only applicable in the case of a
weak perturbation verifying>¢. From Eq.(3.22 we ob-

. . — fr=r'| ete—1 —
tain the nondiagonal component of the LE as 8(t)=

At
7 e“—le , (3.28

(3.29

M”d(t)=|<m(t)>|2:eXF{ —v% :

where again we have used that N¢7, is valid on average.
Assuming that the action difference is a Gaussian random

In the following sections we study the conditions undervariable, in the evaluation of Eq2.24 we only need its
which the correlations not contained in the FGR approximasecond moment
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((AS—ASy)?)
2
[r—r'|2[ee—1
22 4
= mov €2 e)\t_l

><< fthftd?e“*“'sir[ZH(t_)]sir{Z0(?)]>.
0 0
(3.29

As before, we assume that the different pieces are uncor-
related and the angleg; uniformly distributed. Therefore

(sin26]sin26,])=6;/2 and

2 'map?) 2 eMe— 1 2
(a5-25,9=5 ™ |r—r'|2( e"‘—l)

B a2 mOUZ 2 , 2(6)\79_ 1)4 eZ)\NSTe_l
_? N | | (e)\t_l)Z e2)\7'e_1
=Alr—r’|?, (3.30

where we have taken the limitt>1, and defined

(3.31

a2 ( mOUZ)Z(e)\Te_ 1)3
2

ATz eMet+1

Our result(3.30 is analogous to Eq(2.29 obtained in

PHYSICAL REVIEW B 70, 035311 (2004

effects appears. In the following section we will study the
competition between the diagonal and nondiagonal contribu-
tions.

F. Diagonal versus nondiagonal contributions

As we have previously shown, the Loschmidt echo is
made out of nondiagonal and diagonal components, and
within the time scales specified above, it can be written as

F{ vt
M(t)=exp — =
¢

Such a result holds for the perturbati@nthat we have dis-
cussed in this sectiodEq. (3.1)], as well as for the
guenched disorder of Sec.[Eq.(2.14]. The only difference

lies in the form of the elastic mean free panhand the

prefactorK, both of which are perturbation dependent. The
decay of the LE will be controlled by the slowest of the two

rates. A weak perturbation impIi&S>v/)x and a dominance
of the nondiagonal term, while for sufficiently strong pertur-

bations verifying¢ <v/\ (but weak enough in order not to
modify appreciably the classical trajectodiethe diagonal
term(governed by the Lyapunov expongsets the decay of
the LE. This perturbation-independent behavior, predicted in
Ref. 18 has been observed in numerical simulations done on
a number of systenf®° In Ref. 22 the regime of domi-
nance of the nondiagondtiagona] component has been
interpreted and referred to as a Fermi golden (Ly@punoy
regime, and we will use both terminologies in the discus-
sions that follow.

+Aexg —\t]. (3.39

the case of a perturbation by a quenched disorder. Obviously, From the previous discussion it is clear that the Lyapunov
the factorA is different in both cases. We use the same notegime can only be observed beyond a critical value of the

tation to stress the similar role played by this prefactoidf
in both cases. Performing again a Gaussian integra¥l bf
overr—r' we obtain

M(t)=

Zﬂﬁz) d/2

0'2 d
o 2
wﬁz) fdr}s‘, CS< A

202 _ )
X ex _?(ps_pO)

(3.32

perturbation. The condition stated above for the strength of
the perturbation, along with E@3.23), yields for the model
discussed in this section a critical value of the perturbation
parameterr beyond which the Lyapunov regime is obtained:

2h A

My V 3¢

(3.39

ag

We will discuss in Sec. IV the physical consequences of the
above critical value and its dependence on various physical
parameters.

Under the same assumptions as in Sec. Il D, we are led to

a result equivalent to that of E¢2.31):

MA(t)=Ae M, (3.33

with A=[omy/(AY%)19. Therefore, for long times the diag-

IV. UNIVERSALITY OF THE LYAPUNOV REGIME

A. Correspondence between semiclassical and numerical
calculations

The semiclassical results obtained in the previous sections

onal part of the Loschmidt echo decays with a rate given by,re yajid in the small-wavelength limit, and rely on various

the classical Lyapunov exponent of the system,

=\. (3.39

1
—fm['\/'d(t)]

lim
t—oo

Of course this limit actually implies a time>1/\, but still

uncontrolled approximations. It is then important to perform
numerical calculations for various model systems in order to
compare against the semiclassical predictions, and to explore
parameter regimes inaccessible to the theory. In this section
we use the same numerical method of Ref.(@é&scribed in
detail in Appendix B to study the Lorentz gas with the mass

lower than the time at which either localization or finite-size tensor perturbation introduced in Sec. Ill. We extend previ-
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of the perturbed and unperturbed wave packets whose cen-
ters separate linearly with time by the sole effect of the per-
turbation. This regime ends approximately at the typical time
of the first collision.

Second, for intermediate times we find the region of in-
terest for the semiclassical theory. In this time scale the LE
decays exponentially with a characteristic timg. We re-
serve the symbot, for the decay rate, in view of its inter-
pretation in terms of quantum decoherelfas we discuss in
Sec. V). For small perturbations;, depends onv. We ob-
serve that for all concentrations there is a critical valye
beyond whichr, is independent of the perturbation. Clearly,
the initial perturbation-dependent Gaussian decay prevents
the curves to be superimposed.

Finally, for very large times the LE saturates at a value
M., that depends on the system slzebut could also depend
on the diffusion constard. This regime is discussed in de-
tail in the following sections. However, let us observe that in
the crossover between the exponential decay and the long-
time saturation there is a power-law decay with a
perturbation-independent exponent. This is a manifestation
of the underlying diffusive dynamics that leads to the isotro-
pic state.

In order to compare our numerical results Mf{(t) with
j T ' T ) T ' the semiclassical predictions, we extragtby fitting In M(t)
0 130 300 450 600 to Inf[Aexp(~t/7,)+M.]. The dashed Iir%es in Fig. 3 corre-
t spond to the best fits obtained with this procedure. The val-

FIG. 3. Time decay of the Loschmidt ect(t) for different ues Qf 7, for the dif‘fere_nt concentrqtion; are shown as a
values of the perturbation strengthand concentration of impuri- fu_nCt'on of the _perturbatlon strength in F_Ig. 4. In_agreement
tiesc. Top panelc=0.157 andw=0.004, 0.007, 0.01, 0.015, 0.02, with our analytical resu!ts of th_e preceding segtlon, we see
0.03, 0.05, 0.07, 0.1from top to bottorh. Middle panel:c  that 1/, grows quadratically with the perturbation strength
=0.195 ande'=0.004, 0.007, 0.01, 0.015, 0.02, 0.03, 0.04, 0.05,UP to a critical valuex., beyond which a plateau appears at

0.06, 0.07, 0.08, 0.1, 0.15. Lower panek0.289 ande=0.004,  the corresponding Lyapunov exponent. The dashed lines are
0.007, 0.01, 0.015, 0.02, 0.03, 0.04, 0.05, 0.06, 0.07. The time ithe best fits to a quadratic behavior. The values obtained in

measured in units ofi/V, whereV is the hopping term of the this way agree with those predicted by the semiclassical
tight-binding model(see Appendix B The dashed lines represent theory [Eq. (3.23] for the nondiagonalFGR) term. The

the best fits to the decay, as described in the text. saturation values abowve, are well described by the corre-
sponding Lyapunov exponentsolid lineg, in agreement
fith the semiclassical predictidiEg. (3.34]. The very good
uantitative agreement between the semiclassical and nu-
erical calculations for the Lorentz g&as well as in the
case of other modei$2*? strongly supports the generality

of the saturation ofr, at a critical value of the perturbation

-In M(?)

ously known results in order to sustain the discussion on th
universality of the Lyapunov regime. We will first focus on
the behavior of the ensemble-averaged Loschmidt echo, fol-
lowed by a thorough discussion of individual behavior and
the averaging procedure.

We typically worked with disks of radiuR=20a, and

: . . strength.
with a de Broglie wavelengthg=27/k=16/3. Here,a is ;
the irrelevant lattice unit of our tight-binding model, which is The FGR exponent, which depends Bfg but not much

; on its chaoticity??>*is given by the typical squared matrix

. ) %lement of¥, and the density of connected final states.1/
tween physical parameters. The smallest system size a||0Vﬁence different, change the wave functions. That is why
ing us to observe the exponential decayvoft) over a large ' 0

interval was found to bé =200 which leads to a Hilbert we observe that, for fixed perturbation strengththe factor

space with 4 10 states. We calculateM (t) for different  v/€ depends on the concentration of impurities?éf (see

strengths of the perturbatian and concentration of disks ~ InSet of Fig. 4, where a log-log scale has been chosen in

In Fig. 3 we show our results foc=0.157, 0.195, and order to magnify the small perturbation region

0.289, and different values af. Notably, the dependence of¢ with H, leads to a coun-
The time evolution of the LE presents various regimesterintuitive effect(clearly observed in the inset of Fig),4

First, for very short timesM (t) exhibits a Gaussian decay, namely, that the critical value needed for the saturation of

M (t) =exd —ba?t?], whereb is a parameter that depends on 1/, is smaller for less chaotic systentsmaller\). The

the initial state, the dynamics df;, and the form of the reason for this is that in more dilute systelsis constant

perturbation>.. This initial decay corresponds to the overlap over larger straight pieces of trajectorigés between colli-
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FIG. 5. Decay rates %, for different wavelengths\g of the
_ FIG. 4. Extracted values of the decay rate of the LE as a funcypjtja| wave packet for a concentratian- 0.195 with the same units
tion of the perturbation strength for the three concentrations of Figgs in Fig 4. Solid line: classical Lyapunov exponent. Dashed line:
3. The rates are normalized to the group velocity of the initial waveihe FGR quadratic behavior. Note that for decreasigghe critical
packet », and we present 1#r,) in units of a % €=0.157  pertyrbation diminishes, implying a collapse of the Fermi golden
(circles, 0.195(squarep and 0.28qtriangles. The solid lines are  je regime.

the corresponding classical Lyapunov exponents and the dashed
lines are fits to the quadratic behavior predicted by BR3). The ) ) ] o
predicted coefficients for the three concentrations ara ¥2 We conclude that, in the semiclassical limit, any perturba-

5521, and 3%~ !, while the obtained ones are®2!, 50a~%, and  tion will be strong enough to put us in the Lyapunov regime,
37a~ 1, respectively. Inset: a log-log scale of the same data to shovin consistency with the hypersensitivity expected for a clas-
the quadratic increase of7/ for small perturbations. sical system. It is then in this limit that the Lyapunov regime
of the LE becomes universal, just as the case of classical
%haos. This is not unexpected as in this limit the Ehrenfest
time diverges and the correspondence principle should pre-
vail.

We can draw a diagram separating FGR from Lyapunov
regimes using the perturbation versus a scaling parameter

Our semiclassical analysis yielded a critical value of thedetermined by the particle ener@yr inversef), as shown in
perturbation to enter in the Lyapunov regirfieq. (3.36], Fig. 6. The gray shaded region corresponds to the Fermi
which vanishes in the semiclassical limit,—0 for # (or  golden rule regime and the clear one to the Lyapunov re-
Ag) —0, implying the collapse of the Fermi golden rule gime. The line that divides both phases is given by the criti-
regime. This behavior is reproduced by our numerical calcueal perturbation, Eq3.36), which agrees with the numerical
lations (Fig. 5). There, we decreased; while keeping fixed values ofa, extracted from Figs. 4 and ®lack dot3. The
the sizeo of the initial wave packet. We note that, for a perturbative regiméPT, when the typical matrix element of
given value of the parametar, the perturbation® [Eq. > is smaller than the mean level spacify is sketched by
(3.11)] scales with the energy in a way that the underlyingthe white dashed region of Fig. 6. This part of the diagram is
classical trajectories are always affected in the same way bgnly qualitative since the variables used in the figure are not
the perturbation. The extracted crossover values odire in - the appropriate to describe the transition from this regime to
guantitative agreement with E¢3.36), decreasing withgy ~ the FGR. The transition value of the perturbation between
in the interval that we were able to test. FGR and PT regimes goes to zero in the semiclassical limit

Other choices of the perturbati@n such as the quenched of A\g—0 faster thana.. Finally, the Lyapunov regime is
disorder of Refs. 18 and 25, can be shown to give criticabounded from above by ah independent critical value,
values that decrease with decreasings in Eq.(3.36, pro-  (not shown in the figure due to the scalmarking the clas-
vided that the perturbation is scaled to the proper semiclassical breakdown that we discuss below.
sical limit. That is, for a fixed perturbation potential, we  The interesting conceptual feature highlighted by Fig. 6 is
should take the limit oihg—0. As a result, if we keeg the importance of the order in which we take the limitsSof
constant and decreagg by increasing the particle energy, andAg going to zero. Two distinct results are obtained for
we should scale up the perturbation potential consistentlyhe different order in which we can take this double limit. As
(assuming thaf{, generates the same dynamics at all enerdepicted in the figuréwith arrows representing the limj{s
gies. IimABHO[IimEHO(llr(ﬁ)]:O. On the other hand, taking the

siong, leading to a larger perturbation of the quantum phas
and resulting in a stronger effective perturbation.

B. Universality of the Lyapunov regime
in the semiclassical limit

035311-13



CUCCHIETTI, PASTAWSKI, AND JALABERT PHYSICAL REVIEW B70, 035311 (2004

wherev is the initial velocity of the particle and is the

A normal to the surface.
Assuming that the motion of the particle is not affected by
T 450 chaos(nondispersive collisionsone can do a random-walk
T approach and estimate the mean-square distance after a time
T 375 7, from the fluctuations of the angle in E¢t.1). We esti-
1 mate the transport mean free time as that at which the fluc-
+ 300 S__tuations are of the order &% and obtain
Lyapunov : s

1 225 & ~  4R?

S Cy=——F—, (4.2
] = 3a?¢
+ 150 <&~

"], assuming a uniform probability for the angle of the velocity

-
o

_-_ as before. Equatiori4.2) is used to get the upper bound
PT FGR ] perturbationa,, for the end of the Lyapunov plateau,
T T T 1 T o 4)\'R
000 001 002 003 004 005 0.06 ap= \/ 300 (4.3
1%

(04
_ _ ) _ We obtaina,=0.23,0.29, and 0.43, respectively, for increas-

FIG. 6. Regime diagram for the Loschmidt echo as a function ofing magnitude of the three concentrations shown in Fig. 4. It
the perturbation and the energyr inverses). The gray area is the s yather difficult to reach numerically these perturbations in
FGR regime with ana-dependentr,,, while the clear one is the - o\ system, since the initial Gaussian decay drés) very
Lyapunov regime withr, =\ =, The line that divides both regimes ., icy towards its saturation value, preventing the observa-
is Eq.(3.36). The dots are the n_umerlcal values obtaln.ed from Flgs‘tion of an exponential regime. Despite this difficulty, we ob-
4 and 5. The clear dashed region corresponds to typical parameters

where perturbation theory applies. The arrows schematize the pog_erve in Fig. 4 that the Lyapunov regime plateau appears to

sible ordering of the double limit of the perturbation and the Wave-end for sufficiently strong perturbations. For the range we

length going to zero. Notice that the former ordering yields a van.could explore the limiting values are in qualitative agreement

ishing 7,,, while the latter one yielda. since we remain in the with the estimation from Eq(4.3).

Lyapunov regime. For a strong enough perturbatindependent of

fi and out of scale in this figuyethere is a breakdown of the C. Ehrenfest time and thermodynamic limit
Lyapunov regime.

We studied in the preceding section the behavior of the

; ; ; ; ; Lyapunov regime in the semiclassical lintit-0; let us now
inverse (more physical ordering limy _o[lim, _ o(1/7 . 1 -
( physica g lim; ol ‘s o(1/7y)] turn our attention to the consequences of having a finite

=\ the semiclassical result is obtained. The resulting “phase | .« of%. In this case. one expects the propagation of a
_d|agram" representatlon for the different regimes .Of the I‘Equantum wave packet t(,) be described by the classical equa-
is useful to illustrate that most often one is working in the ;< ¢ 1 otion up to the Ehrenfest timig, after which the

region corresponding to the Lyapunov behavior. quantum-classical correspondence breaks d8liypically,

. O.ur semiclassical theory' clearly fails when the perFurba-tE is the time when interference effects become relevant, and
tion is strong enougkor the times long enougto apprecia-

: . : ! . . in a classically chaotic system it typically scales d%]n
bly "_‘OF"fY the classu_:al trajectories. This would give an up- In other systems where the Lyapunov regime of the LE
per limit (in perturbation strengitfor the results of Sec. Ill.

A more stringent limitation comes from the finite valuefof has been observed, such as chaotic maps or kicked systems,
due to the I?mitations of the diagonal approximations andtE coincides with the saturation timig=1/\ In[NJ. This is
. . dag PP : because in these systems the number of stdtptays the
linear expansions of the action that we have relied on. In

other systems, such as the quenched disorder in a smooy le of an effective Planck's constaft;=L/N. Therefore,

. e - . when in these systems the LE is governed by a classical
stqdmmz, the upper cr|t|pal value of the perturbatigfor quantity, the whole range of interest occurs before the Ehren-
exiting the Lyapunov regimecan be related to the transport

~ fest time. It is then impossible from that evidence to con-
mean free path of the perturbatidy, which is defined as clude if the independence of the decay rate on the perturba-
the length scale over which the classical trajectories are ation strength is a trivial consequence of the quantum-
fected by the disordéf. ~ classical correspondence befote, a possibility that is
We can obtain in our system an estimate/gfoy consid- ~ supported by the fact that this is the regime of validity of the
ering the effect of the perturbation on a single scatteringsemiclassical theory.
event. The differencég between the perturbed and unper-  In the Lorentz gas, however, we can differentiate between
turbed exit angles after the collision can be obtained usinghe time scaless and tg by appropriately controlling the
Egs.(3.13, which results in parameters. This is a property not shared by finite systems,
but robust for extended ones such as the Lorentz gas. This
does not imply an unbounded exponential decay of the LE,

2
v-n
50~4nxny( ) @ (4.) as discussed below. The saturation time is given by

v
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2
tsz Xln

L

4.9

while the Ehrenfest time, defined as the time it takes for a
minimal wave packet of wavelengthg to spread over a
distance of the order d®>*is given by

1
th Xln

2R

=
| (4.5

Our numerical calculations support these approximations.
The dependence of the saturation valie as a function
of the inverse system sizel® was previously studied in
Ref. 16. Supposing that for long times the chaotic nature of
the system will equally mix th&l=(L/c)? levels apprecia-
bly represented in the initial state with random phages
we write

0 100 200 300 400 500 600

t
1 2 1 . . . ..
M. =— Z exdi(di— )] == (4.6) FIG. 7. M(t) for three different single initial conditions of the
© N2 i ! J N wave packet. All the curves oscillate around the straight line, which

is the decay corresponding to the Lyapunov exponent.

We find numericallyM .= (0.6+0.1)(¢/L)? which con-
firms the prediction. erage was introduce@ver realizations of the quenched dis-

According to the above results, the Lyapunov regimeordered perturbation or over initial condition$his approxi-
shares the universality of its classical counterpart for arbimation raises the question of whether the exponential decay
trarily large times in the thermodynamic limit of the size of of M(t) is already present in individual realizations or, on
the system going to infinity. However, this occurs only for the contrary, the averaging procedure is a crucial ingredient
times smaller than the critical time where the saturationn obtaining a relaxation rate independent of the
value coincides with the space explored by the particle. Irperturbatior?
other words, for infinite unbounded systems there could be a As it was discussed in Secs. Il and I, for trajectories
breakdown of the exponential decay of the LE when thdonger than the correlation lengthof the perturbation, the
wave function expands over the “availablétime depen- contributions toAS from segments separated by more tigan
dend Hilbert space, which in the case of the Lorentz gasare uncorrelated. This leads us to consider that the decay
would follow a diffusive law. Therefore, the exponential de- observed for a single initial condition will be equivalent to
cay of the quantum yields to a power law associated with théhat of the average. In this section we test this idea numeri-
Pollicot-Ruelle diffusive modes when expkt)~d?/ri(t),  cally.
wherer?(t)=2dDt. In the case of the Lorentz gas, this time ~ For large enough systems presenting a large saturation
t* is independent of the box sizeand is approximately the time, we expecM(t) to fluctuate around an exponential de-

solution of cay. This expectation is clearly supported by our numerical
results shown in Fig. 7, where we presévi{t) for three
1 Coutd different initial conditions in a system with =800a and
ts~ yin—. (4.7)  fixed «=0.024. An exponential decay with the semiclassical
g exponent is shown for comparisdthin solid line.
While the precise determination of E@.7) is beyond the In order to obtain the exponent of the decay with a good

reach of our computational resources, for times shorter thafrecision, we can calculaté(t) for a single initial condition
t* , the expanding range of the exponential witlor times ~ in @ large enough system. Alternatively, our results show that
larger thantz, where the correspondence principle does noft is correct to obtain t'he exponent thrqugh an ensemble av-
prevail, was exemplified in Fig. 3 of Ref. 21. The survival of €rage to reduce the size of the fluctuations. However, as the
a classical signature of the quantum dynamics after thé&rmer method is computationally much more expensive, we
Ehrenfest time is due to a more complex effect, namely, thé€Sort to the latter. _
environment which, through the perturbation, randomizes the This situation is analogous to the classical case where one
phase of the wave function and washes out terms of quantuf@Ptains the Lyapunov exponent from a single trajectory tak-
nature. We will discuss this process and its relation to decol"d the limit of the initial distance going to zero and the time
herence in detail in the following section. going to infinity, or else resorts to more practical methods
such as the algorithm of Benettigt al. that averages dis-
tances over short evolutions.
Notice that in the Lorentz gas the average over initial
In order to make analytical progress, in our semiclassicatonditions and the average over realizations of the impurities
calculations as well as in those of Ref. 18, an ensemble apositions are equivalent. In all cases we have implemented

D. Individual versus ensemble-average behavior
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the last choice, for its computational convenience, and weropagation of the Wigner function by “chord§*®3where
use the term initial conditions to refer also to realizations ofpairs of trajectories §s) traveling from ¢ — or/2,r + 5r/2)

Ho. _ ) ) to (r—éor/2y+ 6r/2) have to be considered. In the leading
In particular, for our calculations, the average is con-order in# we can approximate the above propagators by

strained to those systems where the classical trajectory of tlﬁjms over trajectories going fromto r. and the semiclas-
wave packet collides with at least one of the scatterers. Thi :

restriction helps avoid those configurations where a “corri-§|cal evolution of the Wigner function is given by

dor” exists, in which casévi(t) presents a power-law decay e — petpe

possibly related to the behavior found in integrabIeW(r,p;t)=(Zwﬁ)dJ drj dpW(r,p;0) >, 5( p—

systems132 5.8’ 2
The averaging of quantities that fluctuate around an expo-

nential decay is a delicate matter, since different procedures

can lead to quite different results. In particular, for the LE it X0

has been noted that averagiiMyt) over initial conditions

can result in an exponential decay different than the one of a _ _

single initial conditior?®®° Given the exponential depen- Whereps (ps) andps: (ps/) are the initial(final) momenta of

dence ofM(t) in A\, the phase-space fluctuations of thethe trajectoriess ands’, respectively. The dominant contri-

Lyapunov exponent will induce a difference between the avbution arises from the diagonal terss-s’

erage IM(t) and that ofM (t). The former procedure is more

appropriate in order to have averages of the order of the - L

typical values. On the other hand, if the fluctuations of the W (r,p,t)=| dr X, Cs8(p—psgW(r,ps;0). (5.3

+ Py _ _
p— %)Ks(r,r;t)K;‘,(r,r;t), (5.2

exponent are small, both procedures give similar results. This s(r,rt)
is the situation we found in our model system.
For the Lorentz gas we calculaté¥ (t)) and (In M(t)) Using the fact thaC, is the Jacobian of the transforma-

and extracted the decay rates of the exponential regime usiighn fromr to p,, we have

the fit described in Sec. IV A. We observe that the difference

of the rates obtained through both averaging procedures is

smaller than the statistical error. However, the observed rela- Wc(r,p;t)zf dp<S(p—ps)W(T,ps;0), (5.4

tive error in the time regime of interest is smaller when av-

eraging the logarithm oM (t). Also, the difference in the where the trajectories considered now are those that arrive to
actual values ofM(t)) qnd(ln M(t)) is constant throughout | \\ith momentump. We note that I(,p) is the preimage of
the decay, the latter being larger. (r,p) by the equations of motion acting on a timeThat is,

(r,p)=Xi(r,p). The momentum integral is trivial, and we

V. ANALYSIS OF DECOHERENCE THROUGH . .
obtain the obvious result

THE LOSCHMIDT ECHO
A. Classical evolution of the Wigner function S
9 W(r,p;t) =W(r,p;0), (5.5

As discussed in the Introduction, the Loschmidt echo can
be obtained from the evolution of the Wigner function with
the perturbed and unperturbed Hamiltonigi&g. (1.2)].
Such a framework is particularly useful in the study of de-
coherence, as the Wigner function is a privileged tool to

understand the connection between quantum and classical F +31 ¥ ,
dynamics®>4° 2, r+dr
The evolution of the wave functions in terms of the propa- ! \
gators|Eq. (2.2)] can be used to express the time dependence ! ¢\ 481
of the Wigner function as I F+5_2f Q/\(__A/,o 2
) Fé N ‘i
W(r,pit)= fdarfdr_f dér_f dpW(r.p:0) ! re s br

(27h)¢ ) / \\
I e m
) — F-OF \
or — or i 2

| -
xex;{%(p'ér—p'ér)}K(r—7,r—?;t) ! 1"%' v\ b

. 2
— f"&'w
S — or 2
XK*|r+—,r+—:t], (5.2

2 2

FIG. 8. Four classical trajectories used to compute semiclassi-
whereW(r,p;0) is the initial Wigner function. The semiclas- cally the Loschmidt echo through the evolution of two Wigner func-
sical expansion of the propagatdisq. (2.4)] leads to the tions associated with different Hamiltonians.
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with (r,p)=X; X(r,p). Since X, conserves the volume in with slightly different Hamiltonians ¥, and Ho+3). In
phase space, at the classical level the Wigner functio@rder to facilitate the discussion, we introduce the der{sity
evolves by simply following the classical flow. partial trace fs writing the LE as

B. Fine structure of the Wigner function and nonclassical
contributions to the Loschmidt echo M(t):J drfs(r,t) (5.6

As indicated in Eq(1.2), the Loschmidt echo is given by
the phase-space trace of two Wigner functions associatedith

J
fz(r,t)=(27jh)df dpf dﬁrfdr_f d5r_J dHJ d5r’f de déFdeW(Tp;O)

_ i —
x\Al*(r',p’;O)exp{f—L(p- or—p-or)

S — or )
K*

i -
ex;{—%(p-ér —p'-or )}

o — o o =S
r+7,r+7,t r—T,r _71t

o' o'
r+—,r’+—;t). (5.7

XK > >

r—7,r—7;t

K andK represent the propagators associated &fgrand,+ 3, respectively. The semiclassical evolutionfefis given by
sets of four trajectories, as illustrated in Fig. 8.

As we have consistently done in this work, we take Gaussian wave p@tkeilth o) as initial state. Its associated Wigner
function reads

— 1 (r=r9)® (p—po)°c?
W(r,p;0)= exp — — . 5.8
(r,p;0) () p[ = PR (
Assuming thaf, constitutes a small perturbation, after a few trivial integrations we obtain
o’ o Iy Il A Y Py’ i s 2 —
fz(r,t)=WJd&fdrfd5rJdpf dor fdp ex %(p -Or’'—p-or) |ex —;(r—ro)
2 2.2 - -
T =024 (B — D)2 _Pe L Y R
Xexr{ 3 L(P=Po)*+(P'~Po) ]E‘z‘ exp[ e Ks(r > = ot [K |t it
oo — s’ o O s’ 6o
X < I’—?,I’—T,t 3 I’+?,I’+T,t , (5.9
where we have defined
P=pstPz—Ps — Pz - (5.10

Now the trajectories and's (s’ and's’) arrive to the same final point—&r/2 (r+ 8r/2). Since the initial wave packet is

concentrated around,, we can further simplify and work with trajectorissands (s’ ands’) that have the same extreme
points. Therefore, we have

fo(r 1) _r fda fd_f dorexd - 2 (=123 S
r,Bn)= r r rexpg — r—r ex
2 (2342 o2 0 sS4

> "5, |72 Po
e 8r2 #2\4 207
i | O = o o[ O — o oo — o O = o -
sl I 7,r 7,1: o r+7,r+7,t 2\ T ?,I’ ?,t 3 r+7,r+7,t , (5.11
with
R=ps+ Pt Pe + Pz . (5.12
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By the same considerations as before, we can reduce all four trajectories to start at theycefntiee initial wave packet

(Fig. 9)
(P?+82+7%)0” 202(R )2
fs(r,t)=(4 2dfd&r expg — exg — —|——
s(r,t)=(4m0?) 22 ;{ o 7| P
or N or . or or
XK r—f,ro;t Ko r+?,r0;t K3 r—?,ro;t Kz r+7,r0;t , (5.13
with
S=ps—Ps+Ps — Py, (5.14a
T=ps+ Pi— Ps — Pz - (5.14b
Given that
P2+ 824 T%=(ps— Ps) 2+ (Ps— Ps1) >+ (Ps— P3r) >+ (P Psr) 2+ (P5— s ) 2+ (Psr — P )2, (5.19

and since the pairs of trajectories €) and (s’,s’) have the same extreme points, the dominant contributidr will come

from the terms withs='s ands’ =s’. Such an identification minimizes the oscillatory phases of the propagators, and corre-
sponds to the first diagonal approximation of the calculation of Sec. Il and Ref. 18. Within such an approximation we have

2\d 2.2 2/ 2
- ’ 2 + ’
=2 ) [aS cicuen - PP 20 ﬁ_po)
wh? ss' 2

}. (5.1

y i A or A N or
ex 7 S\ r ?,ro,t S| 1 7,r0,t
Asin Eq.(2.10, AS, ¢ is the extra contribution to the classical action that the trajecdds/) acquires with respect ®(s’)
by effect of the perturbatiol..

We have two different cases, depending on whether or not there are trajectories leaving fwitihn momentum close to
po that arrive to the neighborhood pfafter a timet. In the first case is in the manifold that evolves classically from the initial
wave packetFig. 10. Such a contribution is dominated by the terms where the trajestorgmains close to its partner

Calling f% this diagonal component, we get

2\d 2 ;
f%(r,t)=(#) Jdérz Cﬁex;{—%(ﬁs—po)z exp{;i—[ASS(r—%,ro,t)—ASS,(r+%,ro,t)H. (5.17

Assuming, as in Sec. Il and Ref. 18, tHH} stands for a g g
chaotic system and that the perturbati@n represents a M (UZJ dr fs(r,t)
guenched disorder, upon average we obtain

4\ d2 2
| o p |22 [ c exp[ -2 o2,
expl | ASy| r— = ,ro,t| —ASy| r+—=,ro,t mhA h
h 2 2
(5.20
1
:ex;{ - —2A5r2 , (5.18 As in Egs.(2.9 and(2.23 we hav_e used as the Jaco-
2h bian of the transformation from to p. Now the dominant

trajectories are those starting fragnand momentunp,. We
are then back to the case of the previously discuskeg.
(2.3) and(3.33)] diagonal contribution

whereA is given by Eq.(2.30. We therefore have

4

f9(r,t)=

di2 252
> Cgex;{ - ?(Ps— Po)?

s(rg.r,t)

’ MA(t)=Ae M, (5.21)
(5.19

ah2A

whereC=(m/t)% M is assumed and=(ma/AY%)9. The
and the corresponding contribution to the Loschmidt echo islecay rate of the diagonal contribution is set by the
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[ 1 vot
<exp{gASS}> =ex;{ - §<AS§> =ex;{ - %1
(5.22

Such an average only depends on the lergtvt of the
trajectories. Thus, after average the nondiagonal term writes

o? ¢ vot
29 rit)y=|—=| exg — =
2 (ﬁﬂ) 7

o’ 9, — 2
X ex —ﬁ[(ps—po) +(Ps —Po)°]|-

r+or

f dor>, CLCq
s,s’

r-or
> (5.23

The trajectorys (s’) goes from the pointy to r—6r/2 (r
: d
FIG. 9. For a fairly localized initial wave packet, the four clas- +.5r/§). Jhat.ls.w?ﬁ/ thgdlglrge?ttvalubes égh(r’t)fa::]e atl
sical trajectories contributing to the LE can be reduced to thosé"’_‘Ine whemr IS |r_1 _e n.“ e ortwo _ranc es O. € clas-
starting at its center,. sically evolved distribution. Other points result in much
smaller values ofgd(r,t), since the classical trajectories that

Lyapunov exponent, and therefore it is independent on the 90 bet_weerro andr =+ or/2 require |n|t|a_1l momentas (Ps')
very different fromp,. Thus, exponentially suppressed con-

perturbation.. tributions result.

The second p053|b|I|ty-we have Fo con5|der.|s the case The nondiagonal contribution to the Loschmidt echo can
where there does not exist any trajectory leaving fram o\ be written as

with momentum close tp, that arrives to the neighborhood
of r after a timet. It is a property of the Wigner function that o2\ ¢ oot
in the region of phase space classically inaccessiblg, hilye M"d(t) = J drfgd(r,t) = ( —2) ex;{ - TO]
pointsr halfway between branches of the classically evolved wh

distribution will yield the largest values df (Fig. 11. The

trajectoriess and s’ visit now different regions of the con- %
figuration space, therefore the impurity average can be done
independently for each of them. As in E®.20, we have

2

0'2 J—
[ars csexp[— ﬁups—po)z]l

=ex;{ - vTotl . (5.24

¢
r+or
P, 2
r
S
r, S’
FIG. 10. Classical trajectories in the manifold that evolves clas-

sically fromrq to r, representing the diagonal componentfef. FIG. 11. Nondiagonal contribution to the LE given by trajecto-
The action differenced S associated with the trajectorissands’ ries departing front, and arriving to points equidistant from the
are correlated. The shaded regions depict the initial and final clagpoint r where the Wigner function is evaluated. The action differ-
sical densities. encesA S associated with both trajectories are uncorrelated.
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As in Egs.(2.23 and (3.22, we have made the change of  Working with the superposition of two Wigner functions

variable fromr to p, and accordingly, we have obtained the (@s in the case of the echand with genuinely multidimen-
nondiagonal contribution to the LE.As discussed before, sional classically chaotic systems allows us to give a consis-
such a contribution is a Fermi golden rule Ifeln the limit  tent description of the connection between quantum decoher-
of #—0 our diagonal term, Eq(5.21), obtained from the ence and the Loschmidt echo the emergence of classical
final points who follow the classical flow, dominates the LE, behavior. Here we remind the reader of our approach to de-
consistent with our findings of Sec. IV B. coherence: rather than introducing an environment in the
quantum evolution and then tracing it out, we consider its
effect on the system as a perturbation added to the Hamil-
C. Decoherence and emergence of classicality tonian. We assume then that when the time reversal of the

) . o evolved wave function is performed, all uncontrolled degrees
Decoherence in a quantum system arises from its interags freedom leave a mark as a unitary perturbation to the

tion with_an e>.<ternal gnvironment, over which the observer%riginm Hamiltonian of the system. Of course, such a corre-
have neither information nor contrl= The states more spondence between environment and perturbation can be ex-
sensitive to decoherence are those with quantum superposfemely cumbersome or even impossible to prove in a gen-
tions (Schralinger cat statgssince they depend strongly on eral case. In the particular case of an environment made of a
the information coded in the phase of the wave functionbath of harmonic oscillators in the limit of high temperature,
which is blurred by the interaction with the environment.  one can show that it is equivalent to having a random white
The studies of decoherence have traditionally consideredoise perturbation in the Hamiltoni&h Although more re-
one-dimensional systems, and often ignored the crucial roleearch on this equivalence is desirable, we assume it is true
of its underlying classical dynami€8.0n the other hand, it at least in some general level. Therefore, we understand the
has been propos&dand later corroborated numeric&fly LE as a measure of decoherence, and the results of the pre-
that for a classically chaotic system the entropy productiorceding section will be interpreted from the known behavior
rate (computed from its reduced density majrig given by  of the Wigner function in open systems.
the Lyapunov exponent. Moreover, as shown in Ref. 18 and From the semiclassical evolution of the Wigner function
thoroughly discussed in this work, the decay rate of thewe were able to identify the nondiagonal componirit as
Loschmidt echo in a multidimensional classically chaoticthe contribution to the LE given by the values of the Wigner
system becomes independent of the strength of the perturbfunction between the branches of the classically evolved ini-
tion that breaks the time reversal between two well-definedial distribution (Fig. 11). In this region both of the Wigner
limits (and set by the Lyapunov expongnthe connection functions contributing to Eq(1.2) are highly oscillating, and
between decoherence and Loschmidt echo has been diguite different from each other. The overlap, which is perfect
cussed in Refs. 18 and 69 and has induced us to denetg as for zero couplingensuring the unitarity requiremenis rap-
the relaxation rate of the LE. idly suppressed with increasing perturbation strength. As dis-
Decoherence is typically analyzed through the time decagussed earlier in the texsee also Refs. 18 and R2avhen
of the off-diagonal matrix elements of the reduced densityM™ is the dominant contribution t™, we are in the Fermi
matrix (where the environmental degrees of freedom of thegolden rule regime. We have seen that this weak perturbation
total density matrix of the system and its environment argegime collapses as— 0 [Egs.(2.32 and(3.36)].
traced oux, while the wave-function superposition defining Beyond a critical perturbation, when the overlap coming
the LE can be cast as a trace of reduced density matrices énom the oscillating part of the Wigner functions is sup-
Wigner functions evolving with different Hamiltoniafi&q.  pressed, the diagonal componéft takes over as the domi-
(1.2)]. Zurek has recently proposed to consider the relevanceant contribution to the LE. It is given by the values of the
of sub-Planck structurén phase spageof the Wigner func-  Wigner function on the regions of phase space that result
tion for the study of quantum decohereritelhese struc- from the classical evolution of the initial distribution. This is
tures appear when the wave function is made of a superpdhe Lyapunov regime, where the decay ratdvifft) is given
sition of states, and they have large oscillations betweeby \. Notice that this behavior is still of quantum origin, as
large positive and negative valugzlled interference fringes we are comparing the increase of the actions of nearby tra-
for their similitude with a double-slit experiencdt has then jectories by the effect of a small perturbation, assuming that
been proposed that the fringes substantially enhance the sethe classical dynamics is unchanged. The behavior in the
sitivity of the quantum state to an external perturbation. ALyapunov regime does not simply follow from the classical
strong coupling with an environment suppresses the fringedidelity, where the change in the classical trajectories is taken
and the resulting Wigner function becomes positive everyinto account, and the finite resolution with which we follow
where and similar to the corresponding Liouville distribution them plays a major role. The upper value of the perturbation
of the equivalent classical systefwith statistical mixtures strength for observing the Lyapunov regime is a classical
instead of superposition®® Jacquod and collaboratdfs one, i.e. independenf{,=L in Sec. Il D and Eq(4.3)].
have contested this approach, by demonstrating that the en- For stronger perturbationsee discussions in Secs. Il D
hanced decay is described entirely by the classical Lyapunoand IV B) the classical trajectories are affected and the decay
exponent, and hence insensitive to the quantum interferenaate of the LE is again perturbation dependent. The Wigner
that leads to the sub-Planck structures of the Wigner funcfunction approach to the LE also helps us to develop our
tion. intuition about the quantum to classical transition. The
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Lyapunov regime is the correct classical limit of a chaoticherence. Such a connection, as well as the experiments test-

system weakly coupled to an external environment. ing the universal behavior, are promising subjects for future
research.

The universal behavior of the Loschmidt echo requires an

VI. CONCLUSIONS underlying classically chaotic system, such as the ones we

In this work we have studied the decay of the Loschmigthave consider_ed in this work. Hamiltoniarj _systems_ with
ggular dynamics have been shown to exhibit nonuniversal

echo in classically chaotic systems and presented eviden{) X ¥ i3 .
for the universality of the Lyapunov regime, where the relax-€havior. Power laws as well as Gaussianbehavior have

ation rate becomes independent of the perturbation, anp€en reported for the decay of the Loschmidt echo, depend-

given by the Lyapunov exponent of the classical system. UsiNd on the form of the perturbation. This behavior is appar-
ing analytical and numerical calculations we have deter€nty quite different from the one we obtain for chaotic sys-
mined the rangéin perturbation strengihof the Lyapunov tems, and therefore we see that the Loschmidt echo

regime, its robustness with respect to the classical limit, thé’O”S“tgteS a relevant concept in the study of quantum
form of the perturbation, the initial state, and the averagé:haosl' Such a connection clearly deserves further studies.
conditions. The Loschmidt echo in the Lorentz gas has been recently

We presented semiclassical calculations in two differenfalculated for short time®, and a rate given by twice the
Hamiltonian systems: a classically chaotic billiard perturbedY2Punov exponent has been proposed. It would be interes-
by quenched disorder and a Lorentz gas where the perturb19 to investigate if the difference in time scales is respon-
tion is given by an anisotropy of the mass tensor. In the lattepiPl€ for the departure from our results.
model, the numerical simulations were found in good agree-
ment with the analytical calculations, and showed that the ACKNOWLEDGMENTS
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tonian which randomizes the actions along a particular tra-
jgctory after a certain typical distance. However, the men- APPENDIX A: CLASSICAL DYNAMICS WITH
tioned systems are bo_unded and therefore cannot rule out the AN ANISOTROPIC MASS TENSOR
relevance of disorder in the Lyapunov decay after the Ehren-
fest time. Clarifying the role of disorder in this regime and in ~ Let us assume a particle in a free space with mass tensor
systems with weak or nonexistent chaos is certainly an interfi surrounded by an infinite potential surfatieard wal).
esting problem for future research. Suppose that the particle departs from a poinat timet,

Using a Wigner function representation, we have beerand arrives to a final point at timet. We must calculate the
able to present an alternative interpretation of the two contimet, and positiorr . along the surface at which the particle
tributions to the Loschmidt echo. The nondiago@ermi  collides. The action along the trajectory is
golden rule regime obtained for weak perturbation was
shown to arise from the destruction of coherence between (re—Tro)fi(re—ro) (r—romi(r—re)
nonlocal superpositions, thus suppressing the nonclassical S= 2(t—ty) + (=1, . (A1)
part of the distribution. In contrast, the diagoriayapunoy c 0 ¢
regime obtained for stronger perturbation or more classical
systems was shown to be given by the classical part of the
evolved initial distribution. Thus, the Lyapunov regime is \We can solve the problem by minimizing the action, tak-
associated with the classical evolutiéeven though is of ing the derivative of Eq(A1) along the surface. Introducing
quantum origin, while the Fermi golden rule has a purely unitary vectorn normal to the surface at the point of colli-
quantum nature. In this way, the persistence of the Lyapunoion, we can express the minimization condition as
regime after Ehrenfest time is understood as the emergence
of classical behavior due to the fast dephasing of the purely nxV, S=0. (A2)
guantum terms. This is in consistency with the understanding ¢
of the quantum-classical transition in quantum systems . L ) .
coupled to an environment driven by the decoherénce. Denoting the initial and final velocities ag;=(r.

The existence and universality of an environment-~ o)/ (tc—to) andvi=(r—re)/(t—tc), we can write
independent regime and its consequence in the phase-space
behavior of the Wigner function provide a highlight on the
connection between the Loschmidt echo and quantum deco- nX m(v;—v;)=0. (A3)
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This, along with the conservation of enerfy=viiiv/2, re-  diagonal elements are the on-site energies. The off-diagonal
sults in Eqs(3.13. The same result is obtained in the case ofelements are hopping termé=#2/(2ma?) which is the

stretched boundaries. maximum kinetic energy represented by the discretization.
The quantum dynamics on the lattice was carried out us-
APPENDIX B: NUMERICAL METHOD TO SIMULATE ing a Trotter-Suzuki algorithm: which is a remarkably pre-
THE QUANTUM DYNAMICS cise and efficient numerical method. At the lowest order, it is

_ a decomposition of the evolution operatdifor a small time
In order to compute the quantum dynamics of the system. i 3 product of analytically solvable evolution operators.
we resort to a lattice discretizatighght-binding modelina  Typically one searches for a way to write the Hamiltonian of
scglea mggh s.maller than the wavelength of the pac;ketsthe system a§i=EEHk, where’H, are 2x 2 matrices, and
This condition is relevant to accurately recover the dispery, ;o
sion relation of the free particlE,=#%2k?/(2m), from the
energy spectrum of th@pen boundariggiscretized system, Q
op2 72 U(T)=exquT/ﬁ]zO(T)=1;[ exiHer/h], (B2)
Ex=—— — ——[cogksa) +cogkya)]. (B1)
ma~ ma . . .
whereU,(7) =exdiH7/h] are rotation matrices.
Setting the lattice step as the unit lengeéh=1) we typically The highest orders involve a fractal decompositionrof
worked withR=20, except for the calculations in Sec. IV B that preserves the unitarity of the approximated evolution
where, in order to keep the precision for smaller wave-operator. In our calculations, a fourth-order algorithm with a
lengths,a was reduced keeping the prodidat constant. time stepr=0.1%/V was precise enough for the time regime
The discretization results in a Hamiltonian matrix whoseof interest.
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