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The two-dimensional electron system(2DES) in Si metal-oxide field-effect transistors consists of two
distinct electron fluids interacting with each other. We calculate the total energy as a function of the densityn
and the spin polarizationz in the strongly correlated low-density regime, using a classical mapping to a
hypernetted-chain(CHNC) equation inclusive of bridge terms. The ten distribution functions arising from spin
and valley indices are calculated to obtain the total free energy, the chemical potential, the compressibility, and
the spin susceptibility. TheT=0 results are compared with the two-valley quantum Monte Carlo(QMC) data
of Conti and Senatore[Europhys. Lett.36, 695(1996)] (at T=0, z=0) and found to be in excellent agreement.
Unlike in the one-valley 2DES, it is shown thatthe unpolarized phase is always the stable phase in the
two-valley system, right up to Wigner crystallization atrs,40. Henceg* is insensitive to the spin polarization
and to the density. The compressibility and the spin-susceptibility enhancement calculated from the free energy
validate a simple approach to the two-valley response based on coupled-mode formation. The local-density
approximation of density-functional theory is shown to fail, especially nearrs=1, even though the 2DES is
uniform. The spin-susceptibility enhancement calculated from the coupled-valley response and directly from
the two-valley energies is discussed. The three methods, QMC, CHNC, and coupled-mode theory, agree
closely. Our results contain noad hocfit parameters and lead to general agreement with available experimental
results.
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I. INTRODUCTION

The two-dimensional electron systems(2DES) in
GaAs-like structures, as well as those found in Si metal-
oxide field-effect transistors(MOSFETs) access a wide range
of electron densities under controlled conditions, providing a
wealth of experimental observations.1 The nature of the
physics depends on the “coupling parameter”G 5 (potential
energy)/(kinetic energy). TheG for the 2DES at the densityn
happens to be equal to the mean-disk radiusrs=spnd−1/2 per
electron, expressed in effective atomic units that depend on
the bandstructure massmb and “background” dielectric con-
stanteb. ThusG=rs is used as a small parameter in Fermi-
liquid-like perturbation approaches to the 2DES. In this pa-
per rs is simply the electron-disk radius and the perturbation
theory isnot used. The 2DES in GaAs-like structures will be
called a simple 2DES or one-valley 2DES to distinguish it
from the two-valley system found in, e.g., Si MOSFETs. The
inversion layer adjacent to an oxide layer grown on the Si
(001) surface contains two equivalent valleys which host two
equivalent electron fluids. Various aspects of such multi-
valley systems were studied2 by Sham and Nakayama, Rasolt
et al., and others, mainly in the high-density limit. The
simple 2DES is also a two-component system(two spin spe-
cies), while the two-valley system involves four components
and ten pair-distribution functions(PDFs).

In a recent study of the effective massm* and the effec-
tive Landé-g factor of the 2DES, the Coulomb coupling be-
tween the electrons of the two valleys was shown to have a
dramatic effect at low densities when the coupling becomes
large.3 In effect, the elementary excitations of the two fluids
in the two valleys interact to form coupled modes, giving rise

to new effects. It was shown experimentally4 that m*g* rises
rapidly with decreasing density in Si MOSFETs, and that this
rise is due to a dramatic increase inm* , independent of the
spin polarization, whileg* remains essentially constant. Cal-
culations for the Si system which account for the intervalley
Coulomb coupling quantitatively predict3 the sharp increase
in m*g* . It was also shown thatg* remained essentially con-
stant, in strong contrast to the behavior found theoretically
for the simple one-valley 2DES.3 The effective mass was
also shown to be practically independent of the spin polar-
izationz, in excellent agreement with the data of of Shashkin
et al.4 for Si MOSFETs. The enhancement ofm*g* in the
one-valley 2DES of GaAs-like systems is found to be depen-
dent on the spin polarization,5 in strong contrast to the Si
MOSFET case. Our calculations3 show that the physics of
the one-valley system is dominated by the presence of a tran-
sition to a fully polarized state, which makesg* increase
rapidly with rs as the transition density is approached. The
two-valley system showsno such transition to the spin-
polarized stateand is relatively insensitive to the spin polar-
ization.

The perturbation theory becomes questionable forrs.1.
Instead, we use a direct evaluation of the total free energy
Fsn,z ,Td. The second derivative of the total free energyF
with respect to the spin polarizationz gives a value form*g*

of the two-valley system. This requires thez-dependent two-
valley energy, which is not yet available from quantum
Monte Carlo(QMC) simulations. However, we can evaluate
Fsn,z ,Td using CHNC, and also show that the hypernetted-
chain (CHNC) results agree with QMC data(available atz
=0 andT=0). Another approach, which avoids the need for a
full four-component calculation is to build up the two-valley
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susceptibility by noting that the one-valley energyFsn,z ,Td
is available atT=0 from QMC, and at anyTÞ0 from
CHNC. The coupling of the excitations in the two valleys
can be included in the coupled response function in a stan-
dard way. Then we find that the increase ing* in the GaAs
2DES is associated with the “blow up” of the single-valley
spin response, while the behavior of the Si-MOSFET 2DES
is related to the properties of the coupled-mode response.
The static small-q limit of the spin response function pro-
vides the neededxs/xp.

The objective of this paper is to(i) presentFsn,zd data for
the two-valley system by a four-component CHNC calcula-
tion involving the ten pair distributions that are needed in the
two-valley system, and establish the close agreement of the
CHNC results with the QMC calculations, and(ii ) construct
the coupled-mode response functions using the well-
established one-valley data, and show that these results are
also validated by QMC and full four-component CHNC re-
sults. We will not present detailed finite-T calculations(and
hencem* calculations, as detailed in Ref. 3) in this paper, as
such calculations would make the paper too long and un-
wieldy. Also, finite-T data are not presently available from
QMC simulations for comparison. A brief account of the
CHNC method is given in Sec. II. In Sec. III we discuss the
construction of the coupled-mode response functions which
useonly the one-valley exchange-correlation datato obtain
the two-valley behavior. The compressibility predicted via
the small-q limit of the so constructed coupled-mode re-
sponse is found to agree very well with that from QMC or
the full four-component CHNC calculations. This validates
the coupled-mode model used in the calculation(Ref. 3) of
the m*g* enhancement in Si MOSFETs. The full two-valley
energy calculations enable us to examine the usual one-
valley local-density approximation(LDA ) in Si MOSFETs
and the corrections arising from coupled-mode effects. Fi-
nally, we discuss the spin-susceptibility enhancement ob-
tained from these calculations, and the question of relating
the electron-disk radiusrs used in these calculations to the
experimental densities. Although the main thrust of this
study is for two-valley systems, we give comparisons with
one-valley results, and with suitable experiments.

II. FOUR-COMPONENT CHNC CALCULATIONS FOR
THE TWO-VALLEY ELECTRON FLUID

We consider a 2DES in a Si MOSFET at a total densityn,
with rs

2=1/pn, while the density in each valleyv=a or b, is
taken to benv=n/2. Hence thers parameter in each valley
becomesrsv=rsÎ2. Thus we do not consider density polar-
izations leading tonaÞnb. Also, the electrons in both valleys
have the same spin polarizationz and the same temperature
T. This is consistent with recent studies that show that the
valley splitting is very slight.6 If the two spin species are
denoted byi =1,2, wehave a four-component 2DES with ten
independent PDFs, viz.,gij ,vwsrd. We definek=1,2 for the
two spins in valleya, andk=3,4 for the twospins in valley
b, and write the PDFs asgklsrd. The CHNC method for 2DES
has been described fully in Ref. 7, where the quantum fluid
at T=0 is considered to be equivalent to the classical fluid at

a quantum temperatureTqsrsd. It contains the essential
“many-body” input to the problem. In a brief outline, in
CHNC we assume that the 2D electrons are mapped onto a
classical system where the distribution functions are given
by a finite-T classical density functional form,

gklsrd = e−bhPsrddkl+Vcousrd+Vcfr:sgkldgj. s1d

Here,bPsrd is a “Pauli exclusion potential,” which acts only
for parallel spins, i.e, ifk= l. It is constructed such thatgklsrd
becomes identical with the noninteracting PDF, viz.,gkl

0 srd,
which is known from quantum mechanics when the Cou-
lomb interactionVcousrd and the associated correlation cor-
rectionsVcsrd are zero. The Coulomb interaction between
two electrons in the equivalent classical picture involves a
correction arising from their mutual diffraction effects. Thus
Vcousrd is obtained by solving a two-electron Schrodinger
equation. The result is parametrized by the form,7

Vcousrd = s1/rdf1 − exps− kthrdg, s2d

kth/kdB = 1.1587Tcf
0.103, s3d

kdB = s2pm*Tcfd1/2, Tcf
2 = sTq

2 + T2d. s4d

HerekdB is the de Broglie momentum of the scattering pair
with the effective pair massm* =1/2, andTcf is the classical
fluid temperature which reduces toTq at T=0. The correla-
tion potentialVcsrd occurring in Eq.(1) is taken to be the
sum of hypernetted-chain diagrams inclusive of a bridge
term. ThusVc is nonlocal and is a function of thegklsrd,
which have to be self-consistently calculated. The bridge
term mimics the higher-order correlations which arenot cap-
tured by the simplest HNC equations. These were shown to
be important in 2D electron systems in Ref. 7. Particles hav-
ing identical indicessk= ld are restricted from close approach
by the Pauli exclusion effect modeled byPsrddskld. How-
ever, singlet pairs of electrons, or electrons in two different
valleys, contribute to strong Coulomb correlations, and
hence a bridge term is included in all such “off-diagonal”
PDFs. The bridge termBklsrd for kÞ l applies to six different
PDFs, and we have taken this to be given by the usual hard-
disk functional form discussed in Ref. 7.(Khanh and Totsuji8

have studied a more detailed implementation of the hard-disk
bridge function in CHNC, while Bulutay and Tanatar9 have
studied the 2D CHNC without a bridge correction.) It should
be emphasized that both the HNC approximation, as well as
the need for a bridge function, can be avoided by using the
classical mapping to a quantum fluid(CMQF), where we use
classical molecular dynamics(MD) to generate the PDFs of
the classical fluid under consideration. In such a scheme we
use the pair potential given by Eq.(2), plus the Pauli poten-
tial in an MD simulation for a classical plasma at the tem-
peratureTcf. Such a CMQF-MD scheme would be numeri-
cally more demanding than the CHNC, much simpler than
the full QMC simulations, and have the advantage of not
making the HNC1bridge approximations. However, the
two-valley (four-component) system examined here has been
studied by QMC and we use those results to confirm the
validity of our methods.
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The main difference in the physics of the one-valley sys-
tem and the two-valley system arises from the preponderance
of direct Coulomb interactions(from six PDFs in the two-
valley, and one in the one-valley) over the exchange interac-
tions (from four PDFs in the two-valley, and two in the one-
valley). This is the main reason for the lack of a transition to
a stablez=1 state at low density. Since the transition to a
z=1 state does not occur asrs increases, theg* remains
insensitive to increasingrs, as found theoretically,3 and
experimentally.4

The ten coupled equations forgklsrd are self-consistently
solved for many values of the coupling constantl applied to
the Coulomb interaction. Usually seven to 13 values are suf-
ficient, depending on the convergence. The resultinggklsr :ld
are used in the adiabatic connection formula to determine the
exchange-correlation free energy of the two-valley 2DES.
While our calculations are easily carried out for any value of
z, T, and rs, the four-component QMC calculations at finite
T,z are a major computational undertaking which has not
been attempted. However, atT=0,z=0, Conti and Senatore10

have presented QMC results for 2D electron bilayers sepa-
rated by a distancedL. They give total energies and also a fit
to the correlation energy/electronecsrs,z=0,T=0d at dL=0,
i.e, the case where both electron gases reside in the same
layer. In Table I we compare the four-component CHNC
with the available four-component QMC data atdL=0. The
energies ecsrsdQMC are from the Rapisarda-Senatore fit
formula11 with the parameters quoted in Table I of Ref. 10.

These results show that the CHNC method provides a
simple and accurate approach to the treatment of exchange
and correlation in the four-component system. In situations
where QMC results are available for the correlation energies,
we adopt the QMC parametrizations. Thus one may use the
parametrization ofec given by Conti and Senatore for
the T=0,z=0 case. For rs.1 applications, the
Tanatar-Ceperley12 form may also be used for parametrizing
the two-valley system as well, with the parameter values
a0=−0.40242,a1=1.1319,a2=1.3945, anda3=0.67883 fit-
ted to a database fromrs=1 to 30.

The T=0,z=1 case is particularly interesting, since this
system(i.e, a two-valley system at densityn) is mathemati-
cally identical to the one-valley system at the same density,
but with z=0, for the Hamiltonian considered by Conti and
Senatore, and by us in this study. In this case the two-valley
system has a twofold symmetry since the energy is the same,
irrespective of the orientation of the spin in each valley. That
is, z=1 means all the spins in valleya are oriented, while all

the spins in valleyb are also oriented, but independently of
the orientation of the spins ina. This degeneracy would be
resolved in real Si MOSFETs, but not in the model used
here, or in Conti and Senatore. For instance, the three-body
correlations for intervalley interactions may be slightly dif-
ferent from those in theintravalley interactions, and hence
may require two different bridge parameters, to be deter-
mined variationally by an energy minimization using the
hard-disk reference fluid approach. We have not done this,
and simply used the same bridge parameter as in Ref. 7 for
all interactions. In the QMC calculation this would require
independent optimization of the model for back-flow correc-
tions. Finally, the correlation energy of the fully spin-
polarized (degenerate) two-valley system can be param-
etrized using the Tanatar-Ceperley form witha0=−0.19162,
a1=3.6123,a2=1.9936, anda3=1.4714 in atomic units.

A. The energy of unpolarized and polarized phases

The T=0 correlation energy at finite values ofz were
calculated using the CHNC procedure and compared with
the values predicted from the polarization factor used for the
one-valley 2DES. This has the form7

psrs,zd =
ecsrs,zd − ecsrs,0d
ecsrs,1d − ecsrs,0d

=
z+

asrsd + z−
asrsd − 2

2asrsd − 2
,

asrsd = C1 − C2/rs + C3/rs
2/3 − C4/rs

1/3. s5d

Here, z±=s1±zd. It turns out that the coefficientsC1−C4

obtained for the one-valley 2DES, i.e., 1.5404, 0.030544,
0.29621, and 0.23905, respectively, work quite well for the
two-valley system as well, even at highrs. Thus, using the
TC-type fit formula for the two-valleyecsrs,z=1d and
ecsrs,z=0d, the estimated values ofecsrs,zd and the CHNC
values are given in Table II. Our spin-dependent function
respects the Hartree-Fock limit. Attaccaliteet al.20 have
given a functional representation for 2D spin-polarized sys-
tems, where they have attempted to carefully respect the
high-density and low-density behaviors of thexc energy. We
find that their parametrization could also be adapted to the
present problem.

The finite-z calculations show that there isno ferromag-
netic phase transitionin this system atT=0, since the total
energy of thez=0 phase is always more negative than any
polarized phase. This is expected from the dominance of the

TABLE I. Comparison of the total energyetotsrsd and the corre-
lation energyecsrsd, in atomic units atT=0,z=0 for the two-valley
2DES obtained from CHNC, with the QMC data of Contiet al.
(Ref. 10).

rs etotsrsdQMC etotsrsdCHNC ecsrsdQMC ecsrsdCHNC

2.0 −0.29302 −0.29172 −0.14315 −0.14202

10.0 −0.08611 −0.08647 −0.04607 −0.04649

20.0 −0.04641 −0.04643 −0.02577 −0.02581

30.0 −0.03196 −0.03183 −0.01806 −0.01795

TABLE II. The correlation energyecsrs,zd per electron, as a
function of z, estimated using the one-valley polarization factor of
Eq. (5), and from the full two-valley CHNC calculation.

rs ec
fit ec

CHNC ec
fit ec

CHNC

z→ 0.25 0.25 0.75 0.75

5.0 −0.07686 −0.07757 −0.06286 −0.06434

10.0 −0.04518 −0.04562 −0.03765 −0.03831

20.0 −0.02529 −0.02535 −0.02134 −0.02151

30.0 −0.01772 −0.01764 −0.01477 −0.01504
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many off-diagonal terms contributing to direct Coulomb in-
teractions, but without exchange interactions. This was
pointed out in Ref. 3, where the insensitivity ofm*g* to z
obtained from the theory was in excellent agreement with the
experiments of Shashkinet al.4 The stabilization energyDE
of the z=0 phase with respect to the fully polarized phase is
0.12734310−3 a.u. at rs=25, and diminishes to 0.89929
310−4 a.u. atrs=40. These are very small energy differences
and within the error of the CHNC method, and possibly of
the two-valley QMC calculations. However, the pattern of
stability of thez=0 phase holds for allrs investigated. We
arrive at the conclusion:there is no spin-phase transition in
the two-valley system.13

B. LDA-type calculations for Si MOSFETs

In most density-functional calculations of Si/SiO2 quan-
tum wells, the Kohn-Sham exchange-correlationsxcd poten-
tial Vxcsrd is calculated using the LDA, where the total den-
sity nsrd is considered without taking account of the valley
degeneracy. In effect, the electron gas is assumed to be a
single electron gas at a densityrs and its exchange-
correlation energyexcsrsd and the Kohn-Sham potential
Vxcsrsd are calculated at the given density.[We recall that
Vxcsrsd is simply thexc contribution to the chemical potential
mxc.] Results forexc andmxc for electrons in a Si MOSFET
calculated correctly, i.e., taking account its degenerate valley
structure, and in the usual LDA approach, are compared in
Table III. The full chemical potentialm, as well as the com-
pressibility ratioK0/K calculated for the two-valley system,
and that obtained within the LDA approach, are also shown
in Fig. 1. It is noteworthy that the total chemical potential
has a minimum nearrsm,1. In effect, a low-density electron
fluid srs. rsmd whose chemical potential is equal to that of a
high-density gassrs, rsmd exists and this could lead to spon-
taneous density inhomogeneities in these systems.

When the actual electron densities in Si MOSFETs are
converted to effectivers units(see below), thers range 1–6 is
the most important for device applications, and hence, over-
estimates inVxc contained in the usual LDA approach could
be significant. This becomes even more significant in spin-
density functional applications to Si-based nanostructures.

C. Pair-distribution functions in the Si-MOSFET
system

The PDFs, denoted bygklsrd, embody the detailed particle
correlations in the system. In Fig. 2 we display an illustrative

set of pair-distribution functions. QMC-based PDFs have not
been reported in the literature and hence we do not have a
direct comparison. However, good agreement between
CHNC and QMC-based PDFs have been found in other sys-
tems (e.g, 2DES, 3DES, and fluid hydrogen).7,14–16 For z
=0 the four diagonal PDFsgkk are identical, and similarly, all
of the six off-diagonal PDFs are also identical. Hence there
are actually only two distinct PDFs, just as in the single-
valley case, whereg11 andg12 define thez=0 case. These are
shown forrs=2, 10, and 20 in the top panel of Fig. 2. It is
also clear that the correlation effects are mainly determined
by the off-diagonal PDFs. This is in keeping with our under-
standing that singlet-like correlations are more important
than parallel spin(ferromagnetic) correlations in the two-
valley system. At finitez there are five independent PDFs.
There are two independent diagonal PDFs,g11=g33 andg22
=g44. The three independent off-diagonals areg12=g23=g34
=g14, g13, andg24. These are shown for the casers=10 and
z=0.5 in the lower panel of Fig. 2.

III. RESPONSE FUNCTIONS

In the following we discuss the linear response functions,
since the static small-k limit can be related to the derivatives
of the total energies that were calculated from CHNC or
QMC, if available. This enables us to verify a simple proce-
dure for the construction of the two-valley response func-
tions using only single-valley exchange correlation data.3

TABLE III. Comparison of the exchange-correlation energy
excsrsd per electron, and the Kohn-Sham potentialVxcsrsd, in atomic
units atT=0,z=0 for the two-valley 2DES obtained from QMC fit
or CHNC, and from the LDA.

rs excsrsdLDA excsrsdQMC VxcsrsdLDA VxcsrsdQMC

1.0 −0.70960 −0.62843 −1.02897 −0.88608

2.0 −0.38213 −0.35535 −0.55189 −0.50271

10.0 −0.09007 −0.08851 −0.13133 −0.12835

20.0 −0.04742 −0.04699 −0.06957 −0.06874

FIG. 1. Left panels: Comparison of the total chemical potential
m, i.e, the total Kohn-Sham potential, calculated at the total density
n and rs, for the two-valley system, and if the LDA were used
(labeled 1-valley), ignoring the two-valley nature. Right panels:
Same for the compressibility ratio.
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The density-density response functionxsk,vd will be called
the d-d response for brevity. We emphasize that this is not a
“fluctuation” analysis, but a strictly thermodynamic approach
based on the small-k limit of the static response functions, as
discussed below.

The response function is expressed in terms of a reference
“zero-order”xR

0sk,vd and a local-field factor(LFF), denoted
by Gsk,vd.

xsk,vd = xR
0sk,vd/f1 − Vkh1 − Gdsk,vdjxR

0sk,vdg. s6d

The s-s response(or “spin susceptibility”) is written as

xssk,vd = − mB
2xR

0sk,vd/f1 − Vkh1 − Gssk,vdjxR
0sk,vdg,

s7d

wheremB is the Bohr magneton. Note that our definition of
the spin LFF differs somewhat from a commonly used
definition.17 Our form makes thed-d and s-s LFFs appear
formally similar, at least at this stage. Hence, a single discus-
sion applies to both, and we drop the subscriptsd ands. The
reference functionxR

0sk,vd has the form

xR
0sk,vd = o

kW,s

ns,kW − ns,kW+qW

v + ekW − ekW+qW
. s8d

HerekW ,qW are two-dimensional vectors, while the correspond-
ing single-particle energies are denoted byekW, etc. The Fermi
occupation numberns,kW may be chosen to be the noninteract-
ing value, in which casex0 is the 2D Lindhard function.2 An
alternative is to use the fully interacting density, evaluated
from the fully interacting chemical potential, as in the
density-functional theory(DFT).

The small-k limits of the local-field factorsGdsk,vd and
Gssk,vd can be obtained from the second derivatives of the
exchange-correlation free-energy functionalFxcsn,zd of
DFT, with respect to the charge densities or the spin
densities.18 These second-order derivatives, together with the
second derivative ofFxcsn,zd with respect toT for a two-
valley system, were used in ourm* and g* calculations re-
ported in Ref. 3, using the CHNC technique. Here we look at
the compressibility and spin susceptibility of the two-valley
system obtained from the small-k limit of the coupled-mode
response function(built up from one-valley data) and com-
pare it with that obtained directly from the two-valley CHNC
and QMC.

A. Response functions of the two-valley system

The theory of the one-valley fluid can be used for the
two-valley (four-component) fluid if there is no valley polar-
ization (i.e., the two valleys are assumed equivalent although
distinct), as in Ref. 3. As this may not be completely clear
from the abbreviated discussion in Ref. 3, we present some
details here.

In the theory of classical fluids, the response functions are
simply related to the structure factors, while the LFFs are
simply related to the direct correlation functions of Ornstein-
Zernike (OZ) theory. Since this paper is directed more to-
wards electron-fluid studies, we follow the language of the
LFFs and the related response methodology, rather than the
OZ presentation.

Let us indicate the species(which may be a valley index
or a spin index) by u or v, taking the values 1 and 2, and

consider a weak external potentialfvskW ,vd that acts only on
the electrons of speciesv. The external potential induces

density deviationsdnvskW ,vd such that:19

dnuskW,vd = o
v

xuvskW,vdifvskW,vd. s9d

These equations define the lineard-d response functions in-
volving the speciesu andv. The longitudinal dielectric func-

tion «skW ,vd is now given by

1/«skW,vd = 1 +Vko
u,v

xuvskW,vd. s10d

HereVk is the 2D Coulomb interaction 2p /k. Note that we
are using effective atomic units(Hartrees, etc.), such thate2

divided by the background dielectric constant is taken to be
unity (see Sec. IV). To relate the response functions to the

FIG. 2. Pair-distribution functions(PDFS) of the two-valley sys-
tem. Forz=0 the ten PDFs reduce to two independent PDFs. The
top panel gives this case forrs=2,10, and 20. ForzÞ0 there are
five independent PDFs. These are shown forrs=10.
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local fields, we consider the effective potentialsUvskW ,vd
such that

UvskW,vd = Vkf1 − GuvskW,vdgdnvskW,vd. s11d

Thus the bare Coulomb interaction between the particles of
type u and v is modified by the LFFsGuv. Hence, we can

write the density deviationsdnuskW ,vd in terms of the effec-
tive potentials and the zeroth-order response functions as fol-

lows (we drop thekW ,v labels for brevity):

dnu = xu
0Ffu + Vko

v
s1 − GuvddnvG . s12d

Now, by a comparison of the Eqs.(9) and(12), we can write
down the response functions of the coupled two-component
system in terms of the zeroth-order response functions and
the LFFs.

x11 = x1
0 d2/D, x22 = x2

0 d1/D, s13d

x12 = Vkx1
0x2

0f1 − G12g/D, s14d

d1 = 1 −Vkx1
0f1 − G11g, s15d

d12 = Vkx1
0f1 − G12g, s16d

D = d1d2 − d12d21. s17d

We have suppressed thekW ,v dependence in the above equa-
tions, and also not explicitly givenx21, d2, andd21 for brev-
ity. We now define a total coupled-mode response function

xTskW ,vd via

1/«skW,vd = 1 +VkxTskW,vd. s18d

Then the total two-component 2DES response is given by

xT = fx1
0 + x2

0 + Vkx1
0x2

0GSg/D, s19d

GS = G11 + G22 − G12 − G21. s20d

The evaluation ofxT using only one-valley xc-datais our
objective. In the following, we sometimes denotexT by xcm
to emphasize the coupled-mode nature of the total response.
If we are dealing with a simple(one-valley) electron fluid,
e.g., a partially spin-polarized electron gas, the species index
v is simply the spin index. Notice that the coupling between
the two systems(be they spins or valleys) replaces the indi-
vidual denominatorsd1 and d2 by a new denominatorD,
common to both systems, and containing the cross termsdij .
That is, instead of the two sets of excitations given by the
zeros ofd1 andd2, we now have acommon set of “coupled-
mode” excitationsdefined by the zeros ofD. We emphasize
that in this analysis we havenot used any form of CHNC
theory.

All the response functions prior to the switching on of the
Coulomb interaction between the two valleys are known.
The problem is to determine the cross termsdij , i.e, the in-
tervalley term,duv, occurring in the coupled-mode denomi-
natorD, using only the free-energy data for a single valley. If

we consider the small-k limit, we see that the termsdij oc-
curring inD are directly related to the second-density deriva-
tive or magnetization derivative of the free-energy contribu-
tionsFij arising from the PDFsgij . We know theseindividual
free-energy contributions for the one-valley problem.

Let us first consider the small-k limit of the static response
functions to make contact with the compressibility and sus-
ceptibility sum rules.

B. Small-k limit of the static response

The small-k behavior of the static response is related to
the second derivative with respect to the density(or magne-
tization), and this provides well-known sum rules that we
exploit here. For simplicity, and for comparison with the de-
generate two-valley case, let us review the one-valley para-
magnetic casez=0, and consider the calculation3 of the
small-k, static sv=0d limit of the simple (one-valley) re-
sponse function,

xvsnvd = x0snvd/f1 − Vks1 − Gvvdx0snvdg. s21d

The density-density response function is associated with the
proper polarization functionPv. Dropping the species sub-
script v for the present, we have

P = P0/s1 + VkGP0d, s22d

P0 = − x0. s23d

The small-k behavior of this function states that

P/P0 = k/k0. s24d

The compressibilityk is calculated via the chemical potential
m, starting from the total free energy per unit volume ob-
tained from the CHNC calculation.

F = F0 + Fx + Fc, s25d

F = o
v

nvfe0
vsnvd + ex

vsnvdg + necsnd, s26d

e0
v = s1 + z2d/2rsv

2 , s27d

ex
v = −

2 Î 2

3prsv
fs1 + zd3/2 + s1 − zd3/2g, s28d

m =
dF

dn
= m0 + mx + mc, s29d

1/k = n2dm

dn
. s30d

At T=0, the chemical potential is given(in Hartrees) by

m = nvp − 2s2/pd1/2nv
1/2 + mc. s31d

The compressibility calculated directly from the four-
component calculation should agree with that obtained from
the coupled-valley formalism. There, the small-k limit of the
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denominator of the density-density proper-polarization func-
tion is given by

1 + VkGdx0 = k/k0.

HereGd is the LFF of the density-density polarization func-
tion. Hence the denominatord1, or d2 of the d-d response
occurring in Eq.(13), for any particular species is available
for the density-density response function in each valley. But
the cross density-density LFFs, e.g.,G12, and the cross-
denominatorsd12 needed to form the coupled-valley forms
are not yet specified.

In the case of the spin susceptibilityxs, the role played by
the compressibility is taken over by the spin stiffness, which
is the second derivative of the free energyF with respect to
the spin polarizationz. Here we have, for a single valley,

xs/xP = 1 +d2hrsv
2 Fxcj/dz2. s32d

Hence the denominatorsdu anddv of the spin susceptibilities
of both 2DES are known, at the valley densitiesnv=nu
=n/2, from a simple CHNC calculation or from a QMC
energy parametrization. However, here again the cross terms
d12 andd21 (which are equal) needed to complete the calcu-
lation of the coupled susceptibility[Eqs. (13) and (19)] are
not yet specified.

The cross term for thed-d response, or for thes-s re-
sponse, can be calculated if the free-energy contributionFuv
arising from the Coulomb interaction among the electrons in
the two valleys is known. The interaction is among the elec-
trons of valleyu, at densityn/2, and the electrons of valley
v at densityn/2. The intervalley free-energy contribution
Fuvsn/2 ,n/2d is purely Coulombic, and hence, it is clearly
analogous to the correlation free-energy term arising from
the antiparallel-spin PDF, i.e.,g12sn,z=0d of the simple one-
valley 2DESat density nwith two spin species. The casez
=0 ensures that the total density is split asnu=nv=n/2. Thus
the d12 term needed for the spin-susceptibility calculation
and the density-density response calculations are

s− s d12 = d2hrs
2Fcfg12gj/dz2, s33d

d − d d12 = − s2/pdd2Fcfg12g/dn2. s34d

Note thatd1 is calculated fromFxcsn/2 ,z=0d, while d12 is
from Fcsn,z=0d of the simple one-valley 2DES. Hence,
knowing d1, d12 (which are equal tod2 and d21, since the
valleys are degenerate), we can calculate the susceptibility
enhancementxs/xP, as well as the compressibility ratiok /k0
of the interacting two-valley 2DES, without actually solving
the coupled system of ten distribution functions needed in
the full CHNC calculation of the four-component system.

1. Results for the compressibility ratio and the susceptibility
ratio

We consider the compressibility ratioK0/K obtained by
the coupled-mode analysis and from the two-valley QMC
data,10 or equivalently, from the four-component CHNC
data, in Fig. 3. The excellent agreement shows that the
coupled-mode procedure for using the one-valley data to
generate two-valley data is successful.

The calculation of the susceptibility enhancement was
given briefly in Ref. 3. We consider the susceptibility en-
hancement in more detail. Equation(32) involves the second
z derivative of the correlation energy. It is well known that
the z-dependent QMC calculations are more prone to errors,
since a whole shell of spins need to be reversed. In fact, the
one-valley 2DES calculations of Rapisarda and Senatore11

using diffusion Monte Carlo(DMC) predict a value ofrs
,20 for the spin transition, different from thatsrs,26d pre-
dicted by Attaccaliteet al.,20 who also use very similar DMC
methods. This difference may be due to improvements in
computers and techniques. It is also partly an indication of
the type of uncertainty that may be had in QMC calculations.
QMC simulates a finite system ofN electrons with periodic
boundary conditions corresponding to closed-shell configu-
rations. This means that only someN are “good” and, onceN
is fixed, only some values ofz are allowed. ChangingN, the
possible values ofz change. Thus, one has to perform the
extrapolation to infiniteN and at the same timeconstruct an
analytic fit to thez dependence. Noz-dependent QMC data
are as yet available for the two-valley system. Using Eq.(5)
we can write anapproximateexplicit form atT=0,

ecsrs,zd = ecsrs,0d + fecsrs,1d − ecsrs,0dgpsrs,zd,

d2ecsrs,zd
dz2 = DEs1,0d

d2psrs,zd
dz2 .

Thus the energy difference between the polarized and unpo-
larized phases appears directly. This becomes zero in systems

FIG. 3. (a) Comparison of the compressibility ratioP0/Pcm

=K0/K obtained from the coupled-mode approach, and from the
second-density derivative of the total free energy of the four-
component system.(b) The energy estimateecsrs,z=0d from the
coupled-mode form and from the four-component QMC(Ref. 10).
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like the one-valley 2DES that show a spin transition. Even in
the two-valley system, where there is no transition to a stable
z=1 state, we can expect the calculatedxs/xP or xcm/xP to
be quite sensitive toDEs1,0d, and to the details of the form
of the z-dependent function. We find that this is very much
the case. In Fig. 4 we display the coupled-mode evaluation
of m*g* =xcm/xP, with the value ofxs/xP obtained from the
z-second derivative of the energy obtained from the full four-
component calculation. We give curves labeled “four-
component”(a), and (b), where the contribution from the
d2ec/dz2-derivative term differs by,5%. Clearly, this small
change has a drastic effect on them*g* evaluation. We have
also included the experimental results of Sashkinet al. for
m*g* to show that the coupled-mode result, which differs
slightly (see Fig. 3) from the full four-component result, is
actually in close agreement with the experiment. In the lower
panel of Fig. 3 we compare the two-valley correlation energy
ecsrs,z=0d from the coupled-mode analysis and from the di-
rect four-component QMC calculation. As expected, a small
difference appears at low densities. This type of error is quite
within the errors that are possible in the four-component

QMC or the four-component CHNC, and in fitting to the
polarization dependence of the numerically calculated corre-
lation energies. We find that the coupled-mode approach,
which involves a particular set of numerical(and model)
approximations, happens to give the best agreement with
Sashkin’s experiments, while the four-component CHNC
calculation has a different set of numerical approximations
and captures the coupled-mode formation via the OZ equa-
tions. These results imply that the simple ideal two-valley
2DES quite closely models the experimental Si-MOSFET
samples, even though any actual differences in the two val-
leys, the effect of impurities, etc., are not included in the
theory.

Coupled-mode formation implies that the excitation spec-
trum of the system no longer shows the features of the indi-
vidual valleys, and hence is consistent with the conclusions
of Ref. 6, where no evidence for intervalley scattering was
seen. In this context, it is interesting to compare the spin-
susceptibility enhancement if the two-valley nature of the
2DES is ignored and treated as if it were a one-valley sys-
tem. This is shown in Fig. 5. This figure shows that there are
some ranges of density andz where the susceptibility ratio
decreases if the one-valley system could be switched to a
two-valley system.21 However, forz=0 and 0.5 we see that

FIG. 4. Comparison of the susceptibility enhancementxcm/xP

=m*g* obtained from the coupled-mode approach and from the sec-
ondz derivative of the total free energy of the 4-component system.
The curves marked “4-components”(a), (b) differ by ,5% in the
value of the secondz derivative of the correlation energy, showing
the strong sensitivity to this energy derivative.

FIG. 5. Comparison of the susceptibility enhancementxcm/xP

=m*g* if a given total electron density is assumed to be entirely in
a one-valley 2DES, or equally divided to form a two-valley 2DES.
Here,z is the spin polarization. The experimental data of Zhuet al.
for the one-valley GaAs 2DES are also shown.
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the two-valleym*g* exceeds the one-valleym*g* at suffi-
ciently high rs.

A quantitative comparison with the experimental results
of Shkolnikovet al. for one-valley systems “switched” to a
two-valley system in AlAs is not yet possible. For this, the
ellipticity in the Fermi disk in the AlAs 2DES, and the layer
thickness, have to be taken into account. However, in the
upper figure sz=0d we have given a comparison of the
CHNC-calculatedm*g* with the one-valley experimental re-
sults of Zhuet al..5 Here we have used their parametrized
formula for z=0. The excellent agreement is somewhat for-
tuitous, since corrections for layer thickness and impurity
effects are not included in the theory. An even more impor-
tant aspect of the comparisons between theory and experi-
ment is shown in Fig. 6, where we look at the experimental
data of Zhuet al., the more recent data of Vakiliet al.,22 and
several predictions ofm* g*. It is seen that the experimental
data of Vakili et al. are in quite good agreement with the
QMC data20 of Attaccaliteet al. However, the correction to
the xc-susceptibility enhancement arises via the term,

Dsm*g*d = d2hsrsd2Fxcj/dz2. s35d

This term contains anrs
2 and also the second-polarization

derivative of thexc energy. It becomes very sensitive to the
errors in assigningrs as well as to the estimate of the stabi-
lization energy of the unpolarized phase with respect to the
polarized phase. The issue of assigning anrs value to a given
2D density is discussed in Sec. IV. In Fig. 6 we have consid-
ered a ±2% deviation inDsm*g*d and shown two new esti-
mates. This shows that the Zhu data also fall into agreement

with the Attaccalite data, as well as the CHNC theory, for the
range 3, rs,10. We also note that the CHNC method is
based on the use of a quantum temperatureTq fitted to the
polarized 2D energies of Tanatar and Ceperley, rather than to
the recent Attaccalite data. All this suggests that impurity and
layer thickness effects, as well as the theoretical uncertainty
in Dsm*g*d, lead to a “fan of uncertainty” of about 2% –3%
in the estimate ofm*g* . The width of the “fan” increases
with rs. We also remark thatDsm*g*d is divergent forz=1.
That is, the ease of polarizing the spins(the susceptibility)
increases with the degree of polarization and becomes infi-
nite atz=1. Hence, experimental results for higher values of
z would be even more sensitive to various quenching effects
which are not included in the idealized theory.

IV. RELATION BETWEEN DENSITY n AND THE rs

PARAMETER IN Si MOSFETs

In the 2DES of GaAs/AlAs-type structures, the dielectric
constants of the two materials are nearly identical. The lattice
constants are also well matched and hence the calculation of
the effective atomic units needed in converting the experi-
mental densityn to the effective electron-disk radiussrsd can
be carried out in an unambiguous, transparent way. This is
important, since the many-body theory is formulated within
the language ofrs and effective atomic units. Of course, if
the electron gas is not ideally thin, the 2DES becomes a 3D
slab and further corrections are necessary.

Unlike in GaAs, the situation for Si MOSFETs is more
complicated. The lattice mismatch between crystalline Si and
most crystalline varieties(e.g., crystobalite) of SiO2 turns out
to be 35% –40%. The dielectric constants are also strongly
mismatched, being,11.5 and,3.9 for Si and SiO2. The
large lattice mismatch ensures that there isno sharp Si/SiO2
interface. The reconstruction of the Si atomic layers between
the crystalline Si and the SiO2 bulklike region still contains
tetrahedral-bonding networks, but with strongly modified
bond angles, bond lengths, etc., characteristic of the amor-
phization of the Si layers immediately adjacent to the oxide
layer. Many decades of experimental and theoretical work
have gone into sharpening our understanding of this inter-
face. More recently, first-principles density-functional calcu-
lations by Carrier et al.,23 starting from tight-binding
models,24 have presented a clearer picture of the atomic ar-
rangements near the interface region. A series of similar stud-
ies by Pasquerelloet al.25 establish the geometry of the
Si/SiO2/vacuum interface. Thus, a reliable atomic model of
the Si/SiO2 interface obtained via geometry optimization of
the total energy is now available.23 The essential point is that
the Si/SiO2 interface contains approximately five regions
containing crystalline Sisc-Sid, amorphized Sisa-Sid, sub-
oxide layers, amorphized silicon dioxidesa-SiO2d, and crys-
talline SiO2. These are indicated schematically as,

f001gsz→ duc-Siua-Siusuboxidesua-SiO2uc-SiO2u. s36d

The amorphous(or bond distorted) regions ofa-Si should be
considered as the true insulator that separates the 2DES that
reside at the interface betweenc-Si anda-Si. Let the location
of this amorphization edge be atz=za. This edge can be

FIG. 6. Comparison of the theoretical susceptibility enhance-
ment xcm/xP=m*g* for a one-valley system with experimental re-
sults. The spin-polarizationz=0. The effect of a 2% error in the
exchange-correlation term[Eq. (35)] on the theoreticalm* g* is
shown as QMC±2%.
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defined to within a few atomic planes within the first-
principles theoretical models(see Ref. 23 for more details).
If we are dealing with a thick electron gas, then envelope-
function methods for describing the form factor may be rea-
sonable. Otherwise, a more detailed atomic description in-
volving Bloch functions is needed. In any case, if the
electron gas is very thin, its growth-direction density profile
may be considered to bedsz−zad. That is, crystalline Si and
a-Si flank the two sides of the 2D electron layer, witha-Si
playing the role of the insulator. The valence bonds of the
a-Si still form a quasirandom tetrahedral network, even
though distorted, and hence the “background” dielectric con-
stant ofa-Si, is essentially that of Si. That is, the effective
dielectric constant,

ē = 0.5sesi + einsd, s37d

often used for the 2DES in the MOSFET positioned at an
abrupt Si/SiO2 interface, ignores the effect of the strong lat-
tice mismatch of,35% –40%. The second formula of Ando
et al. (see Appendix of Ref. 2) for the conversionn to rs,
using a meanē of 7.7, is not recommended. Instead, the first
formula of Ref. 2, i.e.,

rs/a
* = 1.751F1012 cm−2

ns
G1/2F11.5

esc
GF m

0.19m0
G , s38d

is clearly the one consistent with the first-principles atomic
structure of the Si/SiO2 interface referred to above.23 If we
look at the Si-MOSFET literature, we find that the formula
which uses the average dielectric constant of 7.7, valid for
the abrupt Si/SiO2 interface, has been used by a number of
authors. These authors use a value ofrs increased by a factor
of ,1.49 compared to what we recommend. Thus, Pudalov
et al.26 and Okamotoet al.27 have used the mean dielectric
constant of 7.7 for their calculation ofrs. However, both
these studies use thers parameter mainly as a plotting vari-
able in the figures, and not for any many-body calculations.
Hence a choice ofrs, which differs from that used in our
work by a factor of,1.49, is immaterial. In the review ar-
ticle by Kravchenko and Sarachik,1 values ofrs are further
modified by the experimentally obtainedm* to discuss the
interactions in Si MOSFETs. Thus theirrs

* is explicitly modi-
fied to serve a specific purpose. Das Sarma and Hawang28

have also examined Si-MOSFET resistivities, using an
impurity-scattering calculation which requires defining the
effective background dielectric constant. They point out that
their results are qualitative. Their results would not be af-
fected by the choice of either formula given by Ref. 2, i.e,
using ē=7.7 or 11.5. Altshuler and Maslov29 actually con-
sider the implications of the suboxide layer and how this
could play a significant role in the theory. However, they too
point out that their effort is essentially to indicate a “mecha-
nism” rather than a theory of the metal-insulator physics of
Si MOSFETs. Hence, once again, the results are too qualita-
tive to make any difference. Similarly, the results of other
workers30 also do not discriminate sufficiently to make the
choice ofē a significant issue.

Another class of problems where the choice of the aver-
age dielectric constant is an issue is in calculating electric
subband energies.2 Although the eigenvalues of the Kohn-
Sham equation are not to be considered as effective excita-
tion energies, such an assumption is often made. The input
dielectric constant(which decides the effectivers) enters into
the exchange-correlation functions as well as the Poisson po-
tential used. Most calculations are in the high-density re-
gime, and it turns out that, given the uncertainties of the
quantum-well potentials and other parameters, the results can
be equally well explained by a range of values of the effec-
tive dielectric constant.

This situation becomes quite different when it comes to
quantitativecalculations forlow-densityMOSFETs, e.g., in
the regimen=131011 electrons/cm2. Our CHNC calcula-
tions for m* and g* presented in Ref. 3 and Fig. 4 clearly
favor the first formula, Eq. 38 of Andoet al.,2 as the correct
formula. This is also the formula that is consistent with the
Car-Parrinello optimized atomic structure of the Si/SiO2 in-
terface obtained from the calculations of Carrieret al.23 and
also of Pasquerelloet al.25 We believe that the problem of the
correct dielectric constant at the Si/SiO2 interface has re-
ceived little scrutiny within the 2D electron community in
the past, because there was no analytic many-body theory
capable of giving quantitative results for low-density elec-
tron systems. Also, it is interesting to note that if the second
formula of Andoet al. were used instead of the first formula
that we recommend, then the calculatedtotal rs is close to
the n/2 value(per valley,,1.414rs) of rs calculated by the
first formula. This is consistent with the calculations that we
advocate, at the Hartree-Fock level(i.e, at the single-electron
level). This fact can also lead to some confusion in assessing
the validity of numerical calculations.

The CHNC programs for electron-gas calculations men-
tioned here and in Ref. 7 may be accessed via the internet at
the address given in Ref. 31.

V. CONCLUSIONS

We draw the following conclusions from this study. The
CHNC method applied to a four-component electron fluid
gives results in very close agreement with available diffusion
Monte Carlo calculations, without the use of any adjustable
parameters specific to the two-valley problem. The ground
state of the two-valley 2DES is the unpolarized phase for all
rs, and hence, there is no spin-polarization transition, in con-
trast to the one-valley 2DES. The coupled-mode approach to
constructing the two-valley properties from one-valley data
is also fully confirmed. The calculation of the spin-
susceptibility enhancementxs/xP from the secondz deriva-
tive of the spin-dependent energy is found to be very sensi-
tive to the energy difference between the polarized and
unpolarized phases and to the form of the polarization de-
pendence. Errors in the assignment of thers parameter also
plays an increasing role for largers. The idealized theoretical
2DES models ignore layer thickness and impurity effects,
and yet seem to be within,2% –3% of the experimental
results for the susceptibility enhancement. The coupled-
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mode form is very successful in capturing the required phys-
ics. Thus the QMC, the two-valley CHNC, and the coupled-
mode approach based on the one-valley data, provide three
independent methods for the study of the strongly coupled

2DES in Si MOSFETs. Finally, we note that the methods
used in this paper can be used to study bilayers of electrons
and/or holes which are separated by a physical distancedL,
the present work being fordL=0.
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