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The two-dimensional electron syste(@DES in Si metal-oxide field-effect transistors consists of two
distinct electron fluids interacting with each other. We calculate the total energy as a function of the mensity
and the spin polarizatiod in the strongly correlated low-density regime, using a classical mapping to a
hypernetted-chaifCHNC) equation inclusive of bridge terms. The ten distribution functions arising from spin
and valley indices are calculated to obtain the total free energy, the chemical potential, the compressibility, and
the spin susceptibility. Th&=0 results are compared with the two-valley quantum Monte Q&MC) data
of Conti and Senatorgeurophys. Lett.36, 695(1996)] (at T=0, {=0) and found to be in excellent agreement.
Unlike in the one-valley 2DES, it is shown th#tie unpolarized phase is always the stable phase in the
two-valley systenright up to Wigner crystallization at,~ 40. Henceg' is insensitive to the spin polarization
and to the density. The compressibility and the spin-susceptibility enhancement calculated from the free energy
validate a simple approach to the two-valley response based on coupled-mode formation. The local-density
approximation of density-functional theory is shown to fail, especially mgatl, even though the 2DES is
uniform. The spin-susceptibility enhancement calculated from the coupled-valley response and directly from
the two-valley energies is discussed. The three methods, QMC, CHNC, and coupled-mode theory, agree
closely. Our results contain ram hocfit parameters and lead to general agreement with available experimental
results.
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[. INTRODUCTION to new effects. It was shown experimentélthatm’'g” rises
rapidly with decreasing density in Si MOSFETSs, and that this

The two-dimensional electron system@DES in  rise is due to a dramatic increasenm, independent of the
GaAs-like structures, as well as those found in Si metalspin polarization, whileg" remains essentially constant. Cal-
oxide field-effect transistor@MOSFETY9 access a wide range culations for the Si system which account for the intervalley
of electron densities under controlled conditions, providing aCoulomb coupling quantitatively predfcthe sharp increase
wealth of experimental observatiohsThe nature of the inm'g’. It was also shown thaj" remained essentially con-
physics depends on the “coupling paramefér= (potential  stant, in strong contrast to the behavior found theoretically
energy/(kinetic energy. Thel for the 2DES at the density  for the simple one-valley 2DESThe effective mass was
happens to be equal to the mean-disk radigg 7n) Y2 per  also shown to be practically independent of the spin polar-
electron, expressed in effective atomic units that depend oization ¢, in excellent agreement with the data of of Shashkin
the bandstructure mass, and “background” dielectric con- et al# for Si MOSFETs. The enhancement wfg" in the
stante,. ThusI'=r, is used as a small parameter in Fermi-one-valley 2DES of GaAs-like systems is found to be depen-
liquid-like perturbation approaches to the 2DES. In this pa-dent on the spin polarizatichin strong contrast to the Si
perr is simply the electron-disk radius and the perturbationMOSFET case. Our calculatichshow that the physics of
theory isnotused. The 2DES in GaAs-like structures will be the one-valley system is dominated by the presence of a tran-
called a simple 2DES or one-valley 2DES to distinguish itsition to a fully polarized state, which makes increase
from the two-valley system found in, e.g., Si MOSFETs. Therapidly with rg as the transition density is approached. The
inversion layer adjacent to an oxide layer grown on the Siwo-valley system showsio such transition to the spin-
(001 surface contains two equivalent valleys which host twopolarized stateand is relatively insensitive to the spin polar-
equivalent electron fluids. Various aspects of such multiization.
valley systems were studigédy Sham and Nakayama, Rasolt ~ The perturbation theory becomes questionabler {or 1.
et al, and others, mainly in the high-density limit. The Instead, we use a direct evaluation of the total free energy
simple 2DES is also a two-component syst@wo spin spe- F(n,{,T). The second derivative of the total free enefgy
cies, while the two-valley system involves four componentswith respect to the spin polarizatighgives a value fom'g’
and ten pair-distribution function$DF9. of the two-valley system. This requires thielependent two-

In a recent study of the effective mass and the effec- valley energy, which is not yet available from quantum
tive Landég factor of the 2DES, the Coulomb coupling be- Monte Carlo(QMC) simulations. However, we can evaluate
tween the electrons of the two valleys was shown to have &(n,,T) using CHNC, and also show that the hypernetted-
dramatic effect at low densities when the coupling becomesghain (CHNC) results agree with QMC dat@vailable at/
large? In effect, the elementary excitations of the two fluids =0 andT=0). Another approach, which avoids the need for a
in the two valleys interact to form coupled modes, giving risefull four-component calculation is to build up the two-valley
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susceptibility by noting that the one-valley enefgén,{,T)  a quantum temperatur@,(rg). It contains the essential
is available atT=0 from QMC, and at anyT#0 from  “many-body” input to the problem. In a brief outline, in
CHNC. The coupling of the excitations in the two valleys CHNC we assume that the 2D electrons are mapped onto a
can be included in the coupled response function in a starelassical system where the distribution functions are given
dard way. Then we find that the increaseginin the GaAs by a finiteT classical density functional form,
2DES is associated with the “blow up” of the single-valley
spin response, while the behavior of the Si-MOSFET 2DES
is related to the properties of the coupled-mode responsejere, BP(r) is a “Pauli exclusion potential,” which acts only
The static smalg limit of the spin response function pro- for parallel spins, i.e, ik=I. It is constructed such thaf(r)
vides the needegt/ x,- o becomes identical with the noninteracting PDF, vg(r),
The objective of this paper is () presenf(n, ) datafor  \yhich is known from quantum mechanics when the Cou-
the two-valley system by a four-component CHNC calcula-jomp interactionV,,(r) and the associated correlation cor-
tion involving the ten pair distributions that are needed 'ntherectionsvc(r) are zero. The Coulomb interaction between

two-valley slystemh, ahnd establlslh tre_close agreement of thg, ejectrons in the equivalent classical picture involves a
CHNC results with the QMC calculations, ad) construct . vection arising from their mutual diffraction effects. Thus

the coupled-mode response functions using the We"Vgou(r) is obtained by solving a two-electron Schrodinger

established one-valley data, and show that these results : ; ;
also validated by QMC and full four-component CHNC re—a(5 uation. The result is parametrized by the fdrm,

gk|(r) = @ BPMSHVeoD+Vri(ge)l} 1)

sults. We will not present detailed finilecalculations(and Veour) = (N)[1 = exg= k)], (2
hencem’ calculations, as detailed in Ref) B this paper, as

such calculations would make the paper too long and un- kin/Kgs = 1.1587%1%3 (3)
wieldy. Also, finite-T data are not presently available from

QMC simulations for comparison. A brief account of the kyg = (27rm Top) Y2, Tgf:(T§+T2). (4)

CHNC method is given in Sec. Il. In Sec. lll we discuss the

construction of the coupled-mode response functions whicllerekyg is the de Broglie momentum of the scattering pair
useonly the one-valley exchange-correlation dateobtain ~ with the effective pair mass =1/2, andT; is the classical
the two-valley behavior. The compressibility predicted viafluid temperature which reduces T at T=0. The correla-
the smallg limit of the so constructed coupled-mode re- tion potentialV(r) occurring in Eq.(1) is taken to be the
sponse is found to agree very well with that from QMC orsum of hypernetted-chain diagrams inclusive of a bridge
the full four-component CHNC calculations. This validatesterm. ThusV, is nonlocal and is a function of thgy(r),

the coupled-mode model used in the calculaiiBef. 3) of  which have to be self-consistently calculated. The bridge
them'g” enhancement in Si MOSFETs. The full two-valley term mimics the higher-order correlations which aot cap-
energy calculations enable us to examine the usual oneured by the simplest HNC equations. These were shown to
valley local-density approximatio(LDA) in Si MOSFETs be important in 2D electron systems in Ref. 7. Particles hav-
and the corrections arising from coupled-mode effects. Fiing identical indicegk=1) are restricted from close approach
nally, we discuss the spin-susceptibility enhancement obby the Pauli exclusion effect modeled I®(r)s(kl). How-
tained from these calculations, and the question of relatingver, singlet pairs of electrons, or electrons in two different
the electron-disk radiuss used in these calculations to the valleys, contribute to strong Coulomb correlations, and
experimental densities. Although the main thrust of thishence a bridge term is included in all such “off-diagonal”
study is for two-valley systems, we give comparisons withPDFs. The bridge term,(r) for k# | applies to six different

one-valley results, and with suitable experiments. PDFs, and we have taken this to be given by the usual hard-
disk functional form discussed in Ref. (Khanh and Totsufi

Il. FOUR-COMPONENT CHNC CALCULATIONS FOR have studied a more detailed implementation of the hard-disk
THE TWO-VALLEY ELECTRON ELUID bridge function in CHNC, while Bulutay and Tanatdrave

studied the 2D CHNC without a bridge correctiph.should

We consider a 2DES in a Si MOSFET at a total densjty pe emphasized that both the HNC approximation, as well as
with r2=1/zm, while the density in each valley=a orb, is  the need for a bridge function, can be avoided by using the
taken to ben,=n/2. Hence thes parameter in each valley classical mapping to a quantum fli@MQF), where we use
becomes's,=rs,2. Thus we do not consider density polar- classical molecular dynamigdD) to generate the PDFs of
izations leading tm, # n,,. Also, the electrons in both valleys the classical fluid under consideration. In such a scheme we
have the same spin polarizatigrand the same temperature yse the pair potential given by E¢®), plus the Pauli poten-
T. This is consistent with recent studies that show that theial in an MD simulation for a classical plasma at the tem-
valley splitting is very slighf. If the two spin species are peratureT,;. Such a CMQF-MD scheme would be numeri-
denoted by=1,2, wehave a four-component 2DES with ten cally more demanding than the CHNC, much simpler than
independent PDFs, vizg;; ,w(r). We definek=1,2 for the  the full QMC simulations, and have the advantage of not
two spins in valleya, andk=3,4 for the twospins in valley = making the HNG-bridge approximations. However, the
b, and write the PDFs ag(r). The CHNC method for 2DES  two-valley (four-componentsystem examined here has been
has been described fully in Ref. 7, where the quantum fluidtudied by QMC and we use those results to confirm the
atT=0 is considered to be equivalent to the classical fluid atalidity of our methods.
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TABLE |. Comparison of the total energy(rs) and the corre- TABLE II. The correlation energy.(rs,{) per electron, as a
lation energye.(rg), in atomic units af=0,,=0 for the two-valley  function of ¢, estimated using the one-valley polarization factor of
2DES obtained from CHNC, with the QMC data of Coeti al. Eq. (5), and from the full two-valley CHNC calculation.

(Ref. 10.

e Ef:it 6CCHNC E(f:it ECCHNC

QMC CHNC QMC CHNC
s €otl(T's) €otl(T's) &(rs) &(ry) — 0.5 0.5 075 0.75
2.0 —-0.29302 -0.29172 -0.14315 -0.14202 &5 -0.07686 -0.07757 -0.06286 -0.06434
10.0 -0.08611 -0.08647 -0.04607 -0.04649 10.0 -0.04518 —-0.04562 -0.03765 -0.03831
20.0 —-0.04641 —-0.04643 -0.02577 -0.02581 20.0 —-0.02529 -0.02535 -0.02134 -0.02151
30.0 -0.03196 -0.03183 -0.01806 -0.01795 3p.0 -0.01772 -0.01764 -0.01477 -0.01504

The main difference in the physics of the one-valley sys-
tem and the two-valley system arises from the preponderandg€ spins in valleyo are also oriented, but independently of
of direct Coulomb interactiongfrom six PDFs in the two- the orientation of the spins ia. This degeneracy would be
valley, and one in the one-vallppver the exchange interac- resolved in real Si MOSFETSs, but not in the model used
tions (from four PDFs in the two-valley, and two in the one- here, or in Conti and Senatore. For instance, the three-body
valley). This is the main reason for the lack of a transition tocorrelations for intervalley interactions may be slightly dif-
a stable/=1 state at low density. Since the transition to aferent from those in théntravalley interactions, and hence
(=1 state does not occur as increases, they’ remains may require two different bridge parameters, to be deter-
insensitive to increasing,, as found theoretical§, and mined variationally by an energy minimization using the
experimentallyt hard-disk reference fluid approach. We have not done this,
The ten coupled equations fg(r) are self-consistently and simply used the same bridge parameter as in Ref. 7 for
solved for many values of the coupling constardpplied to  all interactions. In the QMC calculation this would require
the Coulomb interaction. Usually seven to 13 values are sufindependent optimization of the model for back-flow correc-
ficient, depending on the convergence. The resulligg:\)  tions. Finally, the correlation energy of the fully spin-
are used in the adiabatic connection formula to determine thgolarized (degenerate two-valley system can be param-
exchange-correlation free energy of the two-valley 2DESE€trized using the Tanatar-Ceperley form wétg=-0.19162,
While our calculations are easily carried out for any value ofé1=3.6123,8,=1.9936, anda=1.4714 in atomic units.
£, T, andrg, the four-component QMC calculations at finite
T, are a major computational undertaking which has not ) )
been attempted. However, Bt0,7=0, Conti and Senatote A. The energy of unpolarized and polarized phases
have presented QMC results for 2D electron bilayers sepa- The T=0 correlation energy at finite values ¢fwere
rated by a distance, . They give total energies and also a fit calculated using the CHNC procedure and compared with
to the correlation energy/electrag(rs,{=0,T=0) atd =0, the values predicted from the polarization factor used for the
i.e, the case where both electron gases reside in the sarpee-valley 2DES. This has the fofm
layer. In Table | we compare the four-component CHNC
with the available four-component QMC datacat=0. The
energies e,(r)*°M¢ are from the Rapisarda-Senatore fit
formulat! with the parameters quoted in Table | of Ref. 10.
~ These results show that the CHNC method provides a a(rd = Cy = Cylrg+ Cyfr2P = Cyiril, (5)
simple and accurate approach to the treatment of exchange
and correlation in the four-component system. In situationdiere, {:=(1%{). It turns out that the coefficient€,-C,
where QMC results are available for the correlation energiepbtained for the one-valley 2DES, i.e., 1.5404, 0.030544,
we adopt the QMC parametrizations. Thus one may use th@.29621, and 0.23905, respectively, work quite well for the
parametrization ofe, given by Conti and Senatore for two-valley system as well, even at high Thus, using the
the T=0,/=0 case. For rg>1 applications, the TC-type fit formula for the two-valleyel(rs,{=1) and
Tanatar-Ceperléy form may also be used for parametrizing €:(rs,{=0), the estimated values @f(rs,¢) and the CHNC
the two-valley system as well, with the parameter valuessalues are given in Table Il. Our spin-dependent function
a,=-0.40242,a,=1.1319,a,=1.3945, anda;=0.67883 fit- respects the Hartree-Fock limit. Attaccaliet al?® have
ted to a database from=1 to 30. given a functional representation for 2D spin-polarized sys-
The T=0,{=1 case is particularly interesting, since this tems, where they have attempted to carefully respect the
system(i.e, a two-valley system at density is mathemati- high-density and low-density behaviors of theenergy. We
cally identical to the one-valley system at the same densityiind that their parametrization could also be adapted to the
but with =0, for the Hamiltonian considered by Conti and present problem.
Senatore, and by us in this study. In this case the two-valley The finite{ calculations show that there i® ferromag-
system has a twofold symmetry since the energy is the samagtic phase transitiofin this system af=0, since the total
irrespective of the orientation of the spin in each valley. Thatenergy of the/=0 phase is always more negative than any
is, =1 means all the spins in valleyare oriented, while all polarized phase. This is expected from the dominance of the

elrsd) — elrs0) _ 89 +¢219 -2
€(re1) — e(r,0) 20l9 2

p(rs,$) =
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TABLE IIl. Comparison of the exchange-correlation energy I I
&.(rg per electron, and the Kohn-Sham potentigl(rg), in atomic or” |
units atT=0,{=0 for the two-valley 2DES obtained from QMC fit I
or CHNC, and from the LDA. 0ol —— 2-valley
_: — l-valley |
Is fxc(rs)LDA exc(rs)QMc ch(rs)LDA ch(rs)QMC -~ o :
=

1.0 —-0.70960 —-0.62843 -1.02897 -0.88608 I 02 ll
2.0 -0.38213 —-0.35535 -0.55189 -0.50271 0.3 —|| // — Lovalley \\
10.0 —-0.09007 —-0.08851 -0.13133 -0.12835 04 \// _ ~ —— 2-valley \\ —-20
20.0 —-0.04742 —-0.04699 -0.06957 -0.06874

05 I B B Ll 1 Y s

rS l‘S

many off-diagonal terms contributing to direct Coulomb in- 0 I I I I
teractions, but without exchange interactions. This was -
pointed out in Ref. 3, where the insensitivity of g" to £ —— D-valley
obtained from the theory was in excellent agreement with the — l-valley
experiments of Shashkiet al* The stabilization energ@E 5 o2l N
of the (=0 phase with respect to the fully polarized phase is = 7 lvalley
0.12734x 102 a.u. atrg=25, and diminishes to 0.89929 ,’ — = 2valley
X 10 a.u. atr;=40. These are very small energy differences /
and within the error of the CHNC method, and possibly of ,’ 1*
the two-valley QMC calculations. However, the pattern of .04 ' ' [ Ll L1

0 2 4 6 8 0 2 4 6 8 10

n (1011 elec. cm™) n (10ll elec. cm"z)

stability of the {=0 phase holds for altg investigated. We
arrive at the conclusiorthere is no spin-phase transition in

he two-vall At
the two-valley syste FIG. 1. Left panels: Comparison of the total chemical potential

B. LDA-type calculations for Si MOSFETs M, i.e, the total Kohn-Sham potential, calculated at the total density
n andrg for the two-valley system, and if the LDA were used
(labeled 1-valley, ignoring the two-valley nature. Right panels:
Same for the compressibility ratio.

In most density-functional calculations of Si/SiQuan-
tum wells, the Kohn-Sham exchange-correlatimo poten-
tial V,(r) is calculated using the LDA, where the total den-
sity n(r) is considered without taking account of the valley
degeneracy. In effect, the electron gas is assumed to be
single electron gas at a densitys and its exchange-
correlation energye,(rs and the Kohn-Sham potential

V,dry are calculated at the given densifyVe recall that tems (e.g, 2DES, 3DES, and fluid hydrogeht4-16 For ¢
ch(rs) is SImply thexc contribution to the Chem|Cal potential =0 the fOl,Jr diagolnal PDlégKk are identical, and Similarly, all
Mxe:] Results fore,c and u, for electrons in a Si MOSFET ¢ the six off-diagonal PDFs are also identical. Hence there
calculated correctly, i.e., taking account its degenerate valley, o actually only two distinct PDFs, just as in the single-
structure, and in the usual LDA approach, are compared i'i}alley case, wherg,; andg,, define the’=0 case. These are
Table 1ll. The full chemical potentigk, as well as the com-  ghown forre=2, 10, and 20 in the top panel of Fig. 2. It is
pressibility ratiok°/K calculated for the two-valley system, 54 clear that the correlation effects are mainly determined
and that obtained within the LDA approach, are also showry,y, ihe off-diagonal PDFs. This is in keeping with our under-
in Fig. 1. It is noteworthy that the total chemical potential gtanding that singlet-like correlations are more important
has a minimum near,,~ 1. In effect, a low-density electron o parallel spinferromagnetit correlations in the two-
fluid (rs>rsy) whose chemical potential is equal to that of a,5)jey system. At finiteZ there are five independent PDFs.
high-density gagrs<rs,) exists and this could lead to spon- There are two independent diagonal PDES=gass and gy,
taneous density inhomogeneities in these systems. =044 The three independent off-diagonals @8=0,3=0z4
When the actual electron densities in Si MOSFETs are-q,, g,, andg,, These are shown for the case=10 and
converted to effectives units(see below, thersrange 1-6is =05 in the lower panel of Fig. 2.
the most important for device applications, and hence, over-
estimates inV,. contained in the usual LDA approach could
be significant. This becomes even more significant in spin-
density functional applications to Si-based nanostructures.  In the following we discuss the linear response functions,
since the static smakl-limit can be related to the derivatives
of the total energies that were calculated from CHNC or
QMC, if available. This enables us to verify a simple proce-
The PDFs, denoted kg (r), embody the detailed particle dure for the construction of the two-valley response func-
correlations in the system. In Fig. 2 we display an illustrativetions usingonly single-valley exchange correlation ddta.

set of pair-distribution functions. QMC-based PDFs have not

Been reported in the literature and hence we do not have a
direct comparison. However, good agreement between
CHNC and QMC-based PDFs have been found in other sys-

Ill. RESPONSE FUNCTIONS

C. Pair-distribution functions in the Si-MOSFET
system
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n(r,lz - n(r,lz+c'j

xRk w) =2 (8)

o O+t €~ €
Herelz,ci are two-dimensional vectors, while the correspond-
ing single-particle energies are denotedepyetc. The Fermi
occupation numben, , may be chosen to be the noninteract-
ing value, in which casg® is the 2D Lindhard functioR.An
alternative is to use the fully interacting density, evaluated
from the fully interacting chemical potential, as in the
density-functional theoryDFT).

The smallk limits of the local-field factorss4(k, w) and
G4k, w) can be obtained from the second derivatives of the

exchange-correlation free-energy functiongl(n,{) of
DFT, with respect to the charge densities or the spin
densities'® These second-order derivatives, together with the
second derivative ofF,(n,{) with respect toT for a two-
valley system, were used in omi” andg’ calculations re-
ported in Ref. 3, using the CHNC technique. Here we look at
the compressibility and spin susceptibility of the two-valley
system obtained from the smdllimit of the coupled-mode
response functiotibuilt up from one-valley dajaand com-
pare it with that obtained directly from the two-valley CHNC
and QMC.

polarized
=05

g(n)-1

y A. Response functions of the two-valley system
I/r

The theory of the one-valley fluid can be used for the

FIG. 2. Pair-distribution functiond®DFS of the two-valley sys-  two-valley (four-componentfluid if there is no valley polar-
tem. For{=0 the ten PDFs reduce to two independent PDFs. Thdzation(i.e., the two valleys are assumed equivalent although
top panel gives this case fog=2,10, and 20. Fof#0 there are  distinc), as in Ref. 3. As this may not be completely clear
five independent PDFs. These are shownrfer10. from the abbreviated discussion in Ref. 3, we present some

details here.

The density-density response functigtk, ) will be called In the theory of classical fluids, the response functions are
the d-d response for brevity. We emphasize that this is not imply related to the structure factors, while the LFFs are
“fluctuation” analysis, but a strictly thermodynamic approachsimply related to the direct correlation functions of Ornstein-
based on the smakdimit of the static response functions, as Zernike (O2) theory. Since this paper is directed more to-
discussed below. wards electron-fluid studies, we follow the language of the

The response function is expressed in terms of a referendé™Fs and the related response methodology, rather than the

“zero-order” x%(k, ) and a local-field facto(LFF), denoted ~OZ presentation.
by G(k, w). Let us indicate the specigahich may be a valley index

or a spin index by u or v, taking the values 1 and 2, and

consider a weak external potent'ka,](lz,w) that acts only on
the electrons of species. The external potential induces

density deviationsﬁhv(lz,w) such that®

x(k, ) = xp(k 0)/[1 = V{1 - Gy(k, )}xr(k, )] (6)

The s-s responsdor “spin susceptibility) is written as éhu(lz )= X (|2 w)id (|2 ). (9)

These equations define the linekd response functions in-
volving the species andv. The longitudinal dielectric func-

tion S(E,w) is now given by

xe(k, @) = = uaxn(k, 0)[1 - V{1 - Gyk, o)} x(k,o)],
(7

ek w) =1+ V>, xu (K o). (10)

uv

where ug is the Bohr magneton. Note that our definition of
the spin LFF differs somewhat from a commonly used
definition!’” Our form makes thel-d and s-s LFFs appear HereV, is the 2D Coulomb interaction72 k. Note that we
formally similar, at least at this stage. Hence, a single discusare using effective atomic unitélartrees, etg, such thaie?
sion applies to both, and we drop the subscripgsds. The  divided by the background dielectric constant is taken to be
reference functior)(g(k,w) has the form unity (see Sec. VY. To relate the response functions to the
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local fields, we consider the effective potentidlg(k,) We consider the smak-limit, we see that the termsg; oc-
such that curring inD are directly related to the second-density deriva-

tive or magnetization derivative of the free-energy contribu-
U, (K, w) = V{1 -Gy (K, w)]gmv(ﬁ, w). (11)  tionsF; arising from the PDFg;;. We know theséndividual
) _ _ free-energy contributions for the one-valley problem.
Thus the bare Coulomb interaction between the particles of | ot ys first consider the smaklimit of the static response
type u andv is modified by the LFFs5,,. Hence, we can  fynctions to make contact with the compressibility and sus-
write the density deviationsn,(k, ) in terms of the effec- ceptibility sum rules.
tive potentials and the zeroth-order response functions as fol-

lows (we drop thek, w labels for brevity: B. Smallk limit of the static response

Ny = x| dut Vi (1 —Gu,,)bhv]. (12 The smallk behavior of the static response is related to
v the second derivative with respect to the dengitymagne-

Now, by a comparison of the Eqe) and(12), we can write tization), and this provides well-known sum rules that we
down the response functions of the coupled two-componerﬁXplo't here. For simplicity, and for comparison with the de-
system in terms of the zeroth-order response functions and€nerate two-valley case, let us review the one-valley para-

the LFFs. magnetic case/=0, and consider the calculatibrof the
o o smallk, static (w=0) limit of the simple (one-valley re-
X11= X1 G2/D,  x22= x di/D, (13)  sponse function,
- .0 - - 0

X12:VkX(1)Xg[1_G1ﬂ/D1 (14) Xo(ny) = x"(N)/[1 - V(1 -G, ) x"(n,)]. (21)

The density-density response function is associated with the
d, =1 —kag[l -Gy, (15 proper polarization functiodl,. Dropping the species sub-
scriptv for the present, we have
_ Orq _
02 = Viasl1 = Gral, (16) I1 = 11%(1 +V,GIT°), (22)
D =dd; — dy 051 17) 0= - 0. (23)

We have suppressed thew dependence in the above equa-the smallk behavior of this function states that
tions, and also not explicitly giveg,,, d,, andd,, for brev-

ity. We now define a total coupled-mode response function [/, = «/ k. (29
xr(k, o) via The compressibility is calculated via the chemical potential
> > M, starting from the total free energy per unit volume ob-
Ve(k,w) =1 +Vigr(k ). (18)  tained from the CHNC calculation.
Then the total two-component 2DES response is given by F=Fy+F, +F,, (25)
x1=0X3 + X5+ Vixix3Gs D, (19)
F=2n,[eh(n,) + €(n,)] +nec(n), (26)
Gy =611+ G~ G2~ Gy (20) v e ‘
The evaluation ofy; using only one-valley xc-datas our ) o 12
objective. In the following, we sometimes denateby xem €= (1+)l2rg,, (27)
to emphasize the coupled-mode nature of the total response.
If we are dealing with a simpléone-valley electron fluid, b 2)2 32 a3
e.g., a partially spin-polarized electron gas, the species index &= 37Trsv[(1 9P (=077, (28)
v is simply the spin index. Notice that the coupling between
the two systemsgbe they spins or valleygeplaces the indi- dE
vidual denominatorsd; and d, by a new denominatob, K=gn = Mo+ iy + e, (29
common to both systems, and containing the cross tefims n
That is, instead of the two sets of excitations given by the
zeros ofd; andd,, we now have &ommon set of “coupled- Uk = ngd_,u (30)
mode” excitationgdefined by the zeros dd. We emphasize dn’
that in this analysis we haveot used any form of CHNC , L
theory. At T=0, the chemical potential is givegin Hartree$ by

All the response functions prior to the switching on of the w=n,m— 2(2/m)H2nY2 + Le. (31)
Coulomb interaction between the two valleys are known. v

The problem is to determine the cross terd)s i.e, the in- The compressibility calculated directly from the four-
tervalley term,d,,, occurring in the coupled-mode denomi- component calculation should agree with that obtained from
natorD, using only the free-energy data for a single valley. Ifthe coupled-valley formalism. There, the smiallmit of the
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denominator of the density-density proper-polarization func- 0 ' ' ' ' ' ' '
tion is given by /

1 +V,Ggx° = «/ k.

Here Gy is the LFF of the density-density polarization func-
tion. Hence the denominatat;, or d, of the d-d response

occurring in Eq.(13), for any particular species is available
for the density-density response function in each valley. But coupled-modes
the cross density-density LFFs, e.@5;, and the cross- 8 __ 4.components

denominatorsd;, needed to form the coupled-valley forms . | . | .
are not yet specified. 105 4 6 8 10

In the case of the spin susceptibility, the role played by @ r;(au)

the compressibility is taken over by the spin stiffness, which 0.04 I I I
is the second derivative of the free enefgyvith respect to
the spin polarizatiori. Here we have, for a single valley, —  4-components

-0.06 — coupled-modes
xdxe = 1+ e, (32 e I

Hence the denominatodg andd, of the spin susceptibilities
of both 2DES are known, at the valley densitiss=n, 008
=n/2, from a simple CHNC calculation or from a QMC
energy parametrization. However, here again the cross terms
d;» andd,; (which are equalneeded to complete the calcu- |
lation of the coupled susceptibilifeqgs. (13) and (19)] are e 4 6 8 10
not yet specified. (b) 1, (au)
The cross term for thel-d response, or for tha-s re- ] o
FIG. 3. (a) Comparison of the compressibility ratidy/TI.,

sponse, can be calculated if the free-energy contriblEign ¢ ; ; " | h ¢ h
arising from the Coulomb interaction among the electrons i < /K obtained from the coupled-mode approach, and from the

the two valleys is known. The interaction is among the elec>¢¢ond-density derivative of the total free energy of the four-
trons of valleyu, at densityn/2, and the electrons of valley component systemb) The energy estimate(rs,;=0) from the

v at densityn/2. The intervalley free-energy contribution coupled-mode form and from the four-component QUREf. 10.
Fuw(n/2,n/2) is purely Coulombic, and hence, it is clearly ~ The calculation of the susceptibility enhancement was
analogous to the correlation free-energy term arising frongiven briefly in Ref. 3. We consider the susceptibility en-
the antiparallel-spin PDF, i.eg;,(n,{=0) of the simple one- hancement in more detail. Equati@®) involves the second
valley 2DESat density nwith two spin species. The cage ¢ derivative of the correlation energy. It is well known that
=0 ensures that the total density is splitgsn,=n/2. Thus  the {-dependent QMC calculations are more prone to errors,
the d;, term needed for the spin-susceptibility calculationsince a whole shell of spins need to be reversed. In fact, the

. 0
comp. ratio K'/K

EC (a.uw.)
T

and the density-density response calculations are one-valley 2DES calculations of Rapisarda and Sendtore
using diffusion Monte CarldDMC) predict a value ofr
s—s o= d{r2F g ]}1d2?, (33)  ~20 for the spin transition, different from thét,~ 26) pre-
dicted by Attaccaliteet al,?° who also use very similar DMC
d-d dy,= - (2/m)d?F [g;,)/dr?. (34) ~ methods. This difference may be due to improvements in

computers and techniques. It is also partly an indication of
Note thatd, is calculated fromF,(n/2,{=0), while di; is  the type of uncertainty that may be had in QMC calculations.
from F.(n,{=0) of the simple one-valley 2DES. Hence, QMC simulates a finite system of electrons with periodic
knowing d,, d;, (which are equal tal, and d,;, since the boundary conditions corresponding to closed-shell configu-
valleys are degeneragtewe can calculate the susceptibility rations. This means that only sorNeare “good” and, oncél
enhancemengs/ xp, as well as the compressibility ratio' x, s fixed, only some values afare allowed. Changiny, the
of the interacting two-valley 2DES, without actually solving possible values of change. Thus, one has to perform the
the coupled system of ten distribution functions needed ireXxtrapolation to infiniteN and at the same timeonstruct an
the full CHNC calculation of the four-component system. analytic fit to the dependence. Ng-dependent QMC data
are as yet available for the two-valley system. Using 4.
1. Results for the compressibility ratio and the susceptibility  we can write arapproximateexplicit form atT=0,

. ratlo_ . . €rsd) = €(rs,0) +[€c(rs, 1) — €(rs,0]p(rg, &),
We consider the compressibility ratk,/K obtained by
the coupled-mode analysis and from the two-valley QMC Pey(rs ) dp(rg,0)
datal® or equivalently, from the four-component CHNC d—gZ:AE(l’O)d—gz'
data, in Fig. 3. The excellent agreement shows that the
coupled-mode procedure for using the one-valley data tdhus the energy difference between the polarized and unpo-
generate two-valley data is successful. larized phases appears directly. This becomes zero in systems
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n (1011 elecrons per em’ ) K

6 | | | | | | | 6 . |2 . ? . ? . ;
O I
/
51 — — l-valley, {=0 !
[m| — coupled-mode — — 2-valley, Z=0 //
4L %—X Expt., Sashkin et al. — 4L XX L-valley Zhu etal. / |
— - 4-components (a)
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FIG. 5. Comparison of the susceptibility enhancement/ xp
. o =m'g’ if a given total electron density is assumed to be entirely in
FIG. 4. Comparison of the susceptibility enhancement/xe  a one-valley 2DES, or equally divided to form a two-valley 2DES.

=m'g’ obtained from the coupled-mode approach and from the Secrere ¢ is the spin polarization. The experimental data of Zba.
ond /¢ derivative of the total free energy of the 4-component systemgq, the one-valley GaAs 2DES are also shown.

The curves marked “4-components), (b) differ by ~5% in the
value of the second derivative of the correlation energy, showing QMC or the four-component CHNC, and in fitting to the
the strong sensitivity to this energy derivative. polarization dependence of the numerically calculated corre-
lation energies. We find that the coupled-mode approach,
like the one-valley 2DES that show a spin transition. Even inwhich involves a particular set of numericédnd mode)
the two-valley system, where there is no transition to a stablepproximations, happens to give the best agreement with
(=1 state, we can expect the calculajgedyp Or xcm/ xp tO Sashkin’s experiments, while the four-component CHNC
be quite sensitive tdE(1,0), and to the details of the form calculation has a different set of numerical approximations
of the {-dependent function. We find that this is very muchand captures the coupled-mode formation via the OZ equa-
the case. In Fig. 4 we display the coupled-mode evaluatiotions. These results imply that the simple ideal two-valley
of m'g" =xem/ xp, With the value ofys/ xp obtained from the 2DES quite closely models the experimental Si-MOSFET
{-second derivative of the energy obtained from the full four-samples, even though any actual differences in the two val-
component calculation. We give curves labeled “four-leys, the effect of impurities, etc., are not included in the
component”(a), and (b), where the contribution from the theory.
d?e./dz?-derivative term differs by~5%. Clearly, this small Coupled-mode formation implies that the excitation spec-
change has a drastic effect on timég” evaluation. We have trum of the system no longer shows the features of the indi-
also included the experimental results of Sashddral. for ~ vidual valleys, and hence is consistent with the conclusions
m'g" to show that the coupled-mode result, which differsof Ref. 6, where no evidence for intervalley scattering was
slightly (see Fig. 3 from the full four-component result, is seen. In this context, it is interesting to compare the spin-
actually in close agreement with the experiment. In the lowesusceptibility enhancement if the two-valley nature of the
panel of Fig. 3 we compare the two-valley correlation energy2DES is ignored and treated as if it were a one-valley sys-
€.(rs,£=0) from the coupled-mode analysis and from the di-tem. This is shown in Fig. 5. This figure shows that there are
rect four-component QMC calculation. As expected, a smalsome ranges of density aridwhere the susceptibility ratio
difference appears at low densities. This type of error is quitelecreases if the one-valley system could be switched to a
within the errors that are possible in the four-componentwo-valley systent! However, for/=0 and 0.5 we see that
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T with the Attaccalite data, as well as the CHNC theory, for the
0 , f , 1|° , 15 range 3<ry<10. We also note that the CHNC method is
] based on the use of a quantum temperafiy éitted to the
¥—X Zhu et al. - ; :
C L OMCAt, ! g polarized 2D energies of Tanatar and Ceperley, r.ather.than to
o cHNC i the recent Attaccalite data. All this suggests th_at impurity gnd
8= QMC + 20 ; ,’- layer ttmikness effects, as well as the theoretical uncertainty
L - QMC -2% i ] in A(m'g), lead to a “fan of uncertainty” of about 2% —3%
A Vadlietal :,-A AR / in the estimate oim g . The width of the “fan” increases

with r,. We also remark thaa(m'g") is divergent forz=1.
That is, the ease of polarizing the spi(iee susceptibility
increases with the degree of polarization and becomes infi-
nite at{=1. Hence, experimental results for higher values of
¢ would be even more sensitive to various quenching effects
which are not included in the idealized theory.

IV. RELATION BETWEEN DENSITY n AND THE rg
PARAMETER IN Si MOSFETs

i T In the 2DES of GaAs/AlAs-type structures, the dielectric
constants of the two materials are nearly identical. The lattice
0 5 10 15 constants are also well matched and hence the calculation of
T the effective atomic units needed in converting the experi-
) _ o mental densityn to the effective electron-disk radigs;) can
FIG. 6. Corr:p:arlson of the theoretical susceptibility enhance-be carried out in an unambiguous, transparent way. This is
mentyem/xp=m g for a one-valley system with experimental re- 3, ) rant since the many-body theory is formulated within
sults. The spin-polarizatiog=0. The effect of a 2% error in the the Iangu,age of. and effective atomic units. Of course. if
exchange-correlation tenfiq. (35)] on the theoreticam* g* is the electron gassis not ideally thin, the 2DES becomes ’a 3D
shown as QMCt2%. . '
slab and further corrections are necessary.

. .. ] Unlike in GaAs, the situation for Si MOSFETs is more
the two-valleymg exceeds the one-valleyw g at suffi-  complicated. The lattice mismatch between crystalline Si and
ciently highrs. _ _ _ most crystalline varietiege.qg., crystobalitgof SiO, turns out

A quantitative comparison with the experimental resultsyy he 359 —40%. The dielectric constants are also strongly
of Shkolnikovet al. for one-valley systems “switched” to a mismatched, being-11.5 and~3.9 for Si and Si@. The
two-valley system in AlAs is not yet possible. For this, the |3rge attice mismatch ensures that theradgssharp Si/SiQ
ellipticity in the Fermi disk in the AlAs 2DES, and the layer jnterface. The reconstruction of the Si atomic layers between
thickness, have to be taken into account. However, in thene crystalline Si and the Sibulklike region still contains
upper figure(£=0) we have given a comparison of the tetrahedral-bonding networks, but with strongly modified
CHNC-calculatedn’'g with the one-valley experimental re- pond angles, bond lengths, etc., characteristic of the amor-
sults of Zhuet al.® Here we have used their parametrized phization of the Si layers immediately adjacent to the oxide
formula for {=0. The excellent agreement is somewhat for-|ayer, Many decades of experimental and theoretical work
tuitous, since corrections for layer thickness and impurityhave gone into sharpening our understanding of this inter-
effects are not included in the theory. An even more impor{ace. More recently, first-principles density-functional calcu-
tant aspect of the comparisons between theory and expellgtions by Carrieret al,?® starting from tight-binding
ment is shown in Fig. 6, where we look at the experimentainodels24 have presented a clearer picture of the atomic ar-
data of Zhuet al,, the more recent data of Vakiit al,”> and  rangements near the interface region. A series of similar stud-
several predictions ah* g*. It is seen that the experimental jeg by Pasquerell@t al?5 establish the geometry of the
data of Vakili et al. are in quite good agreement with the sj/sjO,/vacuum interface. Thus, a reliable atomic model of
QMC datd® of Attaccaliteet al. However, the correction to  the Sj/SiQ interface obtained via geometry optimization of
the xc-susceptibility enhancement arises via the term, the total energy is now availab? The essential point is that

. the Si/SiQ interface contains approximately five regions

A(m'g") = d¥(r) *Fyel/dg®. (35) containinggcrystalline Sic-Si), am%ephized S{a—Si), su%—
This term contains am? and also the second-polarization 0Xide layers, amorphized silicon dioxida-SiO,), and crys-
derivative of thexc energy. It becomes very sensitive to the talline Si0,. These are indicated schematically as,
errors in assigning as well as to the estimate of the stabi- A . . .
lization energy of the unpolarized phase with respect to the [001)(z— )Ic-Sila-Silsuboxide-SiOylc-Si0y|.  (36)
polarized phase. The issue of assigning avalue to a given The amorphousgor bond distortegiregions ofa-Si should be
2D density is discussed in Sec. IV. In Fig. 6 we have considconsidered as the true insulator that separates the 2DES that
ered a +2% deviation ith\(m'g’) and shown two new esti- reside at the interface betweerSi anda-Si. Let the location
mates. This shows that the Zhu data also fall into agreememf this amorphization edge be atz, This edge can be
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defined to within a few atomic planes within the first-  Another class of problems where the choice of the aver-
principles theoretical modelsee Ref. 23 for more detajls age dielectric constant is an issue is in calculating electric
If we are dealing with a thick electron gas, then envelopesubband energigsAlthough the eigenvalues of the Kohn-
function methods for describing the form factor may be rea-Sham equation are not to be considered as effective excita-
sonable. Otherwise, a more detailed atomic description intion energies, such an assumption is often made. The input
volving Bloch functions is needed. In any case, if thedielectric constanfwhich decides the effective) enters into
electron gas is very thin, its growth-direction density profilethe exchange-correlation functions as well as the Poisson po-
may be considered to b&z-z,). That is, crystalline Si and tential used. Most calculations are in the high-density re-
a-Si flank the two sides of the 2D electron layer, witSi  gime, and it turns out that, given the uncertainties of the
playing the role of the insulator. The valence bonds of thequantum-well potentials and other parameters, the results can
a-Si still form a quasirandom tetrahedral network, evenbe equally well explained by a range of values of the effec-
though distorted, and hence the “background” dielectric contive dielectric constant.
stant ofa-Si, is essentially that of Si. That is, the effective  This situation becomes quite different when it comes to
dielectric constant, guantitativecalculations folow-densityMOSFETSs, e.g., in
the regimen=1x 10" electrons/crA Our CHNC calcula-
€= 0.5eg+ €0, (37) tions for m_* andg” presented in Ref. 3 and Fig. 4 clearly
favor the first formula, Eqg. 38 of Andet al.? as the correct
formula. This is also the formula that is consistent with the

often used for the 2DES in the MOSFET positioned at acar-Parrinello optimized atomic structure of the Si/Si®-
abrupt Si/SiQ interface, ignores the effect of the strong lat- terface obtained from the calculations of Care¢ral>® and

I 1 0f — 0
tice mismatch of~359% —40%. The second formula of Ando. . ¢ Pasquerellet al?> We believe that the problem of the

3;‘25 Sﬁeﬁ%p;‘n? ';( gri?ffizjr;?:ngzgvﬁsslt%z dtothres’ firstco_rrect Qielectric constant at the Si/Sinterface has_ re-
formula of Ref. 2 |e ' ' ceived little scrutiny within the 2D elect_ron community in
e the past, because there was no analytic many-body theory
o2 o2 |12 capable of giving q'ua.mt.itative r'esults for Iow-d_ensity elec-
rJa = 1_75][ 10 cm } [EH m ] (3 tron systems. Also, it is interesting to note that if the second
0.19my |’ formula of Andoet al. were used instead of the first formula
that we recommend, then the calculatethl rg is close to
is clearly the one consistent with the first-principles atomicthe n/2 value(per valley,~1.414 ) of r calculated by the
structure of the Si/SiQinterface referred to abové.If we  first formula. This is consistent with the calculations that we
look at the Si-MOSFET literature, we find that the formula advocate, at the Hartree-Fock leyeg, at the single-electron
which uses the average dielectric constant of 7.7, valid foleve. This fact can also lead to some confusion in assessing
the abrupt Si/SiQinterface, has been used by a number ofthe validity of numerical calculations.
authors. These authors use a valueficreased by a factor ~ The CHNC programs for electron-gas calculations men-
of ~1.49 compared to what we recommend. Thus, Pudalotioned here and in Ref. 7 may be accessed via the internet at
et al26 and Okamoteet al?” have used the mean dielectric the address given in Ref. 31.
constant of 7.7 for their calculation af. However, both
these studies use thig parameter mainly as a plotting vari-
able in the figures, and not for any many-body calculations. V. CONCLUSIONS
Hence a choice of, which differs from that used in our
work by a factor of~1.49, is immaterial. In the review ar- We draw the following conclusions from this study. The
ticle by Kravchenko and Sarachtkvalues ofrg are further CHNC method applied to a four-component electron fluid
modified by the experimentally obtained to discuss the gives results in very close agreement with available diffusion
interactions in Si MOSFETSs. Thus the*gis explicitly modi-  Monte Carlo calculations, without the use of any adjustable
fied to serve a specific purpose. Das Sarma and Hatangparameters specific to the two-valley problem. The ground
have also examined Si-MOSFET resistivities, using arstate of the two-valley 2DES is the unpolarized phase for all
impurity-scattering calculation which requires defining ther,, and hence, there is no spin-polarization transition, in con-
effective background dielectric constant. They point out thatrast to the one-valley 2DES. The coupled-mode approach to
their results are qualitative. Their results would not be af-constructing the two-valley properties from one-valley data
fected by the choice of either formula given by Ref. 2, i.e,is also fully confirmed. The calculation of the spin-
using €=7.7 or 11.5. Altshuler and Maslé¥actually con-  susceptibility enhancement/ xp from the second deriva-
sider the implications of the suboxide layer and how thistive of the spin-dependent energy is found to be very sensi-
could play a significant role in the theory. However, they tootive to the energy difference between the polarized and
point out that their effort is essentially to indicate a “mecha-unpolarized phases and to the form of the polarization de-
nism” rather than a theory of the metal-insulator physics ofpendence. Errors in the assignment of th@arameter also
Si MOSFETSs. Hence, once again, the results are too qualitgslays an increasing role for large The idealized theoretical
tive to make any difference. Similarly, the results of other2DES models ignore layer thickness and impurity effects,
workers? also do not discriminate sufficiently to make the and yet seem to be withir-2% —3% of the experimental
choice ofe a significant issue. results for the susceptibility enhancement. The coupled-

s €sc
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mode form is very successful in capturing the required phys2DES in Si MOSFETs. Finally, we note that the methods
ics. Thus the QMC, the two-valley CHNC, and the coupled-used in this paper can be used to study bilayers of electrons
mode approach based on the one-valley data, provide thremnd/or holes which are separated by a physical distdpce

independent methods for the study of the strongly coupledhe present work being fai, =0.
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