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Ehrenfest oscillations in the level statistics of chaotic quantum dots
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We study the crossover from a classical to quantum picture in the electron energy statistics in a system with
broken time-reversal symmetry. The perturbative and nonperturbative parts of the two level correlation func-
tion R(w) are analyzed. We find that in the intermediate reglos w~tz" <tg), wheretg andte,q are the
Ehrenfest and ergodic times, respectiv&w) consists of a series of oscillations with the periods depending
on tg, deviating from the universal Wigner-Dyson statistics. These Ehrenfest oscillations have the period
dependence a@l in the perturbative partFor systems with time-reversal symmetry, this oscillation in the
perturbative part oR(w) was studied in an earlier wort. L. Aleiner and A. I. Larkin, Phys. Rev. E55,
R1243(1997]). In the nonperturbative part they have the period dependenta™4s atg)™! with « a uni-
versal numerical factor. The amplitude of the leading order Ehrenfest oscillation in the nonperturbative part is
larger than that of the perturbative part.
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[. INTRODUCTION retical justification of the universal RMT result came up with
e supersymmetric field theory due to Efetosssuming
at o is much smaller than the Thouless energy;,

In the last decade, there has been increasing intere:strjfiﬁ1
=AD/L? with D being the diffusion constant aridthe size

investigating interference phenomena of electronic motion i
ballistic quantum dot$.In semiconductor quantum dots the . . ;
confining potential has the length scale much larger than th8f thg grain. Th? behavior OfR_(“’_) beyond ETh IS
Fermi wavelength, and therefore one may expect that eledlonuniversal. That is, the level statistics @ = Ery is sys-
tron motion in such systems may be described by methods ¢¢M dependent. In Ref. 10 it was found that there is a small
classical trajectories. Typically, the classical electron motiorfONStant correction t&(w) atw~A due to the nonuniversal
inside dots is chaotic. An important question is, what ha _behavu_Jr of electron motion. Recently, the weak localization
pens to the energy spectrum. It turns out that the energ§Prection toR(w) beyond the Thouless energy, was stud-
spectrum of a single electron in chaotic quantum dots i4ed in Ref. 11 with the help of replica technigtre. _
highly sensitive to the parameters of the systeny., Fermi Bohigas, Giagonni, and SchmBGS) proposed a conjec-
momentum, the strength of the applied magnetic field, thdure that the ﬂuctuatlons_ of levels of quantum chaotl_c sys-
impurity configuration, the shape of the boundary of ballistictems may follow the universal RMT resuftéOne routine
guantum dots, etg. Substantial progress has been made bynethod to study the behavior &f(w) in ballistic quantum
studying the statistics of energy levels. The level statistic§lots is to employ the Gutzwiller formufd.A cornerstone
has played an important role in the theories of atomicwas put by Berry® By taking into account the diagonal con-
nuclei2? disordered metals;® and quantum chadsA par-  tributions, he was able to use the Hannay-Ozorio de Almeida

ticularly interesting quantity in the level statistics is the so-(HOA) sum rulé® to reproduce the leading perturbative term

called two level correlation functioR(w): of the universal RMT results. Proceeding along this line, an
important progress was made in Ref. 17, where the off-
R(w) = A2 5<6+ w |:|>5(8 _w |:|> , (1) diagonal cor_ntributions were studied and the oscillation simi-

2 2 lar to the universal RMT results was thereby found.

) ) N o In this paper, we will study the ballistic quantum dot with
whereA is the mean level spacing afdlis the Hamiltonian.  weak diffractions, where the classical electronic motion is

(:--) denotes the average over a wide energy idmdindi-  chaotic(chaotic quantum dofsin such case, there is a new
vidual quantum dogs or the impurity configuration(for  scalet, so-called Ehrenfest time, which has logarithmic de-
quantum disordejs pendence ork:

In his pioneering work, Dyson divided the Hamiltonian
matrices into three classes: Gaussian orthogonal ensemble 1 L 1
(GOE), Gaussian unitary ensemb{&UE), and Gaussian te=1|n - NX“” fil. 2

sympletic ensemblgGSE and used the random matrix

theory (RMT) to find thatR(w) follows different universal Here \ is the Lyapunov exponent, is some macroscopic
behavior for these ensembf&¥.Gor’kov and Eliashberg size, and\q is the Fermi wavelength. Physically, it is the
were the first to use Wigner-Dyson ensemble to study trangime scale for an initial Gaussian wave packeith the typi-

port properties in small metallic graifiszor disordered met- cal spatial spreading-\¢) to develop to some macroscopic
als, the behavior oR(w) is now well understood. For grains size. At this scale, the electron motion shows a crossover
in the presence of a lot of quantuBorn) impurities, theo- from a classical to quantum picture. Such a crossover also
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exists in other phenomena. Larkin and Ovchiniofound listic quantum dots, surprisingly, we find that in the cross-
that it is possible to use the method of classical trajectories iover regionts' ~ w <t the behavior of the two level cor-
the theory of superconductor fox tg only. In addition they relation function deviates from the universal Wigner-Dyson
were able to estimatg for Lorentz gases of semiclassical statistics given by Eq’5). More exactly, such deviations are
impurities. The logarithmic dependence drof tg was also  formulated as

found by Berman and Zaslavsky in the studies of classical

chaos of the kicked rotator mod€lIn the past two decades, ARY(w) = AR () + AR (w), (6)

it has been found that the Ehrenfest time plays an important

role in condensed matter. Wilkinson addressed the imporwhere

tance of such a scale in the semiclassical studies of sum rules A . 5
over generic matrix element8 Argaman studied the conduc- ARY(w) = - AT Re s (@)  I'3(w) )
tance in the scal@<tz'2! In Ref. 22, Aleiner and Larkin P 87 T i-iw)?| (Fiw)? (miw)?

not only gave the estimation fag, but also studied the weak
localization correction to the conductivity at the crossoverand
scalew~tg1. They showed that diffusons do not couple at
time t<tg while at timet=tg, the coupling reaches a uni- I'y(w) = 3. o 9 wh\ote
versal value. As a result, the amplitude of the coupling be- @) =ex 2"" E a4 \2 )
tween diffusongHikami box)?2 is an oscillating function of
wtg. Later it was found that such amplitude has important 3
applications in studying the crossover from a classical to AR ( ):ZA— L 2Tw Re{l‘z( ) - iﬁ(ﬂ) _1}
w Sin W)~ w .
quantum picture of shot noisé2>and the density of states P W A 2 dw 2\ 2
(DOS) in Andreev billiard?6:2” (9)
For chaotic quantum dots with one macroscopic stale S _
the ergodic timeteq~ L/vg, which is of the same order of ~ Compared to Eq3), the deviations in systems with bro-
)\_l_ In the semic|assic§E opens a new regioﬁ<tél~w ken time-reversal symmetry are more Interesting. First, we

<ty The manifestation o in the level statistics of chaotic Point out that the main feature of these deviations is the
quantum dots was first studied in Ref. 28. According to theappearance of two types of oscillations in addition to the
RMT, asymptotica”y, for |argew the two level correlation oscillation described by the Wigner-Dyson statistics. One
function consists of two parts: One part is perturbative intype correcting the perturbative terms has the peridg’,
Alw. The other is nonperturbative, which oscillates with thewhich has a similar origin as EQ). In fact, as we will show
periodA. In Ref. 28, it was found that there is a small oscil- in Sec. lll, Eq.(3) comes from the two loop approximation.

lation with the period proportional tg:* correcting the per-  In the broken time-reversal system, the two loop approxima-

8

turbative part of the univers&(w) for GOE2° tion vanishes. Instead, E@7) comes from the three loop
5 ) approximation. They are the weak localization corrections to
AR (o) = A Re #  Tyw) 3) the perturbative part of the universB{w) in the crossover
P 2 d-iw)? —iw region. Equation(9) belongs to the other type of oscillation,

which corrects the nonperturbative part of the univeR{al)
described by the universal Wigner-Dyson statistics and was
] w0\ ote not found in the previous work It has the period(A™*
I'y(w) = exp iwtg - N2 (4) +atg)™! with a a universal numerical factor. Both of them
have tg.-dependent periods. In this way, we term them the
Here \, characterizes the fluctuations bf[see Eqs(A15)  Ehrenfest oscillations. In the broken time-reversal system,
and(A16) for the general definitiorjsTypically, A and\, are  the oscillation with the periodA™1+atg)™! is stronger than
of the same order. the oscillation with period~tz*. For the time-reversal sys-
In this paper, we study the two level correlation functiontem, the Ehrenfest oscillation with the periéd 1+ atg) L
in the system with broken time-reversal symmetry. We recaljoes exist, but the amplitude is smaller than that described
that in this case, the RMT predicts the famous result that th%y the Wigner-Dyson statistics. The latter is already small.
two level correlation function is described by the elegant ™ |, Ref. 30, it is proposed that the amplitudes of both per-

wherel's(w) is

formula turbative and nonperturbative parts Bfw) are related to
! 2 20w each other through the classical spectrum determinant, which
Ri(w)=1- 22,2 1- cos— — ). (5 depends on the eigenvalues of the Perron-Frobenius operator.

In the universal Iimitw<t;rlg, it coincides with the result of
Asymptotically, for largew, the two level correlation func- RMT. Indeed, for the broken time-reversal system, we see
tion is exactly truncated at th&\/ w)? term>8 An important  from Eq.(5) that the amplitudes of both parts are in the same
guestion is whether it is the property of generic systems wittorder. However, such a conjecture is no longer true once the
broken time-reversal symmetry or just comes out with thequantum corrections are taken into account. In fact, the lead-
RMT for GUE. In this paper, we will show that E¢p) just  ing quantum correction in the perturbative part, i.e., &9.
comes out with RMT, or describes the universal limit of thecomes from the three loop approximation, while the leading

two level correlation function in quantum disorders. For bal-quantum correction in the nonperturbative part, i.e., @4.

035305-2



EHRENFEST OSCILLATIONS IN THE LEVEL.. PHYSICAL REVIEW B 70, 035305(2004)

comes from the two-loop approximation. As a result, the R(w) = Reﬁ( )
leading order quantum corrections lead to the Ehrenfest os- '
cillations with different power iM\/ w.

2
It is worth pointing out that the methods of calculating ~R(w) - 1 J DQ(f d>q|STrkAQ(x,)) &S (10)
coupled multidiffusongsee Sec. IY involved in the three 64

loop approximation are general. The idea may be applied Piere the subscript irx, means that the integration is re-

find the weak localization correction to other physical quan-_, . . . .
tities (e.g., conductivity in the ballistic quantum dots. stricted on the energy shelk is a supermatrix defined as

Technically, it is convenient to use the ballistic nonlinear 1
supermatrixc model (BNSoM).3%-32We will introduce this A= (0
model in the next section. The quantum transport time, es-

sential to the regularizer will be estimated. The supersymThe ballistic supersymmetric actidis

metric action has two saddle pointsand kA.33 The per-

0
B 1) ® 13® 1y, (11)
p

P+ 2
turbative expansion around gives the weak localization SzﬂfdlsT{liAQ—T‘lAiT+ l(@) }
corrections to the leading perturbative term in the Wigner- 2 2 Tq\ 0
Dyson statistics, while the perturbative expansion around (12)

—-kA gives the quantum corrections to the leading Wigner- ) ) ) o N

Dyson oscillation. In Sec. Ill, we consider the perturbativeWherew”=w+i0" with 0" being an arbitrarily small positive

R(w) for systems with time-reversal symmetry. The pertur-number. 1=r,n), dl=drdn/2#. L=v-V-=-VU(r)-(d/dp) is

bation theory neai will be developed. In Sec. IV, we con- the Liouville operator witHJ(r) being the classical potential.

sider systems with broken time-reversal symmetry. The perThe matrixQ is generated by

turbation theory neaA will be employed to study the weak 1

localization corrections iR,(w). The products of the pertur- Q=T AT, 13

bative eXpanSion involve the prOdUCt of multidiffusons. Weand takes the value on the Corresponding Symmetry

will calculate such coupled diffusons. Immediately, the leadspace H=G/K, where G and K are groups. For

ing order quantum corrections give the Ehrenfest oscillationgsye, H=U(1,1/2/U(1/)®U(1/1). For GOE, H

in Ry(w). In Sec. V, with the help of the global transforma- =y (2,2/4/U(2/2) © U(2/2). T(1) satisfies

tion, we will perform the perturbation expansion ne&nA-

Consequently, we find the Ehrenfest oscillations in the non- TIOLT(D) =L, (14)

perturbative part oR(w) but with different dependence of wherel is a matrix defined as

the period ortg. The obtained results are summarized in Sec.

VI. Some of the calculations of multidiffusons are included (1 0) ‘o (1 0 )
0 k/,7™ o -1/

in the Appendix. = _1 (15)

The form of the regularizer is determined by the proper-
Il. BALLISTIC NONLINEAR SUPERMATRIX o MODEL ties of the Liouville operator and diffraction mechanisms for
(BNSoM) particular systems. In the presence of quantum impurities
with small-angle scattering, the regularizer has the form pre-
Diffusive nonlinear supermatrix- model has become a gented in Eq(12) with 1/7, proportional to the impurity
powerful tool in the studies dR(w) in quantum disorder3™  gensity?228 In this paper, we will use it to regularize the
A natural question is whether such a technique can be gen-ouville operator. According to the geometric theory of
eralized to the ballistic case, especially individual quantumiffractions3® when an electron glances off a hard disk with
dots, where the average over impurity configurations becomghe radiusp, it emits diffraction rays into the shadowed
impossible. Towards this direction, the first suggestion isegion deviating from the incident ray at the angle
given in Ref. 31, where a ballistic action was phenomeno19~()\F/p)2/3_37 This leads to the estimation #f

logically proposed. The formal justification is obtained in — (,_/L)(\¢/p)?3, which coincides with the estimation in
Ref. 30 under some crucial assumptidh3he complete mi- Ref 38. For smooth potentials, it is estimated that

croscopic derivation is given for long-ranged disord&r¥. ~ e/ L2182 hich is also obtained in Ref. 26 by analyz-
In this section, we will introduce BN&M. Moreover, the ing the spreading of the wave packet. In any cages/i. It
roles played by the regularizer will be discussed. is important that the regularizer is not zero but small. In Ref.

22 (see also Sec. Il p it was shown that the Ehrenfest time
te=(1/N)In N7, For A7y>1, tg depends onr, logarithmi-
cally. In the semiclassicsg, is large but not infinite. Any

It is a standard method to introduce a supermatrix fi@ld change of the form of the regularizer accounts only for the
It is defined on the superspap& g®d, wherep stands for  value of the parameter, under logarithm.
the advanced/retarded blodgk stands for the fermion/boson

A. Ballistic supersymmetric action

block, andd stands for the time-reversal block. Similarly to B. The perturbation theory near A
the quantum disordered ca$% ), Eq.(1) can be expressed  To integrate over all the modes in Eq40) and (12), we
as the integral ove®: will use the saddle point approximation. In quantum disor-
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ders, the Gaussian approximation leads to Altshuler and Sh- - = S R

klovski’'s result® For o <t_}, only the zero mode is impor- ght=—- — f dx>, ST (- )I*PI* Y~ iw* + ALRP].

tant, which is coordinate independent. The coupling between 2 =1

diffusive modes accounts for the higher order term in the (25)

saddle point approximation. Similarly, in chaotic quantum

dots, the eigenmodes of the regularized Liouville operatofyere the Perron-Frobenius operatdy is defined a¥

may contribute toR(w) independently in the Gaussian ap-

proximation. Moreover, there is coupling between these R g 1 &

eigenmodes also. Lr=Vv-V=-VU() —-——3. (26)
The action(12) has two saddle pointd and KkA.33 In B TP

Sec. I e_md IV, we will study t_he case wil close 'FOA' AS These expansions are essential to the perturbative calcula-
in the disordered cas®,(w) is dominated by this saddle tions

int 30,33 |t i i i _ . .
Ioom;. T-It is convenient to choose the parametrization be Keeping the terms up t&2, we reproduce the leading
ow for 1 terms of the universal Wigner-Dyson results Ry(w) [see
T=14ip (16) Egs.(27) and(28)]. In Sec. Il and IV, we will calculate the

B ' weak localization correction t&,(w). The feature of finite
The Jacobian of this transformation is unianticommutes terg implies the existence of the gap in the spectrum of

with A: Perron-Frobenius operator, which has been found in many
chaotic system&4*we will drop out theP?**A LgP term in
0B the effective interactiorS™ hereafter since it gives much
AP+PA=0, P= 50 (17) smaller contribution at»<t;;

According to Eq(14), P(1) satisfies the following condition: C. Quantum disorders

Now we discuss the, dependence oR(w). In the pres-
ence of many quantum impuritig€ge., quantum disordeys
74 becomes very smallvg/L<1/7,). The last term in the
action suppresses all the nonuniform modes. In this case, one

P(1)*=- CP(1)CT, (18)

where_lz(r ,—n) andC is the charge conjugation matrix

. 0 can drop out the last two terms in Ed2) and putQ to be a
C=1® <_ '72 ) (19) ~ constant matrix.In this way, the universal RMT results are
P 0 7/ reproduced. For GOE,
The Pauli's matrices () =1 - A4 - ﬂi[l sinﬂ}fw 1 o W—a)tdt
(1 O) (0 1) (O —i) T AR A do| o At A
T = L T = L T = . L
Vo 1/y tT\10/y P \i 0/ L A7 A (§+5coszm) @7
(20) T Pe? met\2 2 A )
(1 0 ) For GUE,
T3=
0 ~1/ uo A? _nzﬂ'w_ A? 27w
act on the time-reversal block. Under the parametrization " ()=1- 2,25 = 1- 2202 1 -cos A )
(16), we have the following expansion: (28)
STIKAQ] = 22 STHk(- 1)jP2j], (21) In the second line of Eq27), we take the limitw>A. Ac-
-1 tually, for largew, R(w) can be asymptotically expressed as
" R(w) = Ry(w) + Ryp(w), (29)
STHAQ] =22 STH(- 1)'P?] (22)
j:l A n
o Ry(w) =1+ (;) Cr, (30)
n
S=S+™, 23 27w A" 27w A"
Rop(®) = cOS—— >, (—) D, +sin—, (—) En,
A T\ A T\
TV - -
L= > J dxST{P(-iw*+ ALg)P], (24 (31
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where C,, D,, and E, are universal numerical constants. associating with the Ehrenfest oscillation in chaotic quantum
R(w) consists of two parts: Ongenoted byR,(w)] is per-  dots.

turbative inA/w and the othefdenoted byR, ()] is non- In this paper, we will studyR(w) in the regionA<w
perturbative. It is important that expandiRg(w) in terms of <t;rlg. For typical quantum dots, there is only one macro-
Al w is a result of making the saddle point approximation toscopic scalel. The Lyapunov exponent is of the same
Egs.(10) and(12) (see Sec. ). That is, we expan® near  order ofve/L~t;L Thus in the crossover from a semiclas-
A (i.e., T near J and take into account the fluctuationsTof sical to quantum picture, the Ehrenfest time effectively opens
perturbatively. In particular, terms such &4/w)",n>2 a new regiom<tgl~w<t;}g
come from perturbative corrections to the Gaussian approxi-

mation in Eq.(10). Actually in the zero mode nonlinear E. Classical limit 74— o
model, the action depends only on the parametek. As a
result, the expansion dR(w), Egs.(29—(31) has no other It is important that the regularizer introduces couplings

parameter dependence. The reason is that in the disorderbdtween different primitive periodic orbits. In the absence of
case, the Hikami bdX of zero modes has dispersion only at diffractions or quantum impuritiesy goes to the infinity. In
w~r{rl> Eth, Which are unimportant in the universal region such a limit, Efetov and Kogan proved that E¢$0) and
o <Eqy,. For o= Eqy,, nonzero diffusive modes are important (12) are compatible with the Gutzwiller trace formdfaFur-
andR,(w) becomes nonunivers&lin the disordered case, the thermore one may apply the HOA sum rule to reproduce the
weak localization correction to nonunivers’.%rj(w)6 is stud-  leading perturbative term iRy(w), which is of the order of
ied in Ref. 11. 1/w? [see Eqs(27) and (28)]. It is important that the con-
stant term I(so-called Weyl termin Ry(w), is pure classical
which characterizes the phase space volume of the energy
D. The Ehrenfest timetg shell’ So is thew™? term, which arises from the interference
between two identical primitive periodic classical orkids-

As in the diffusive case,one may try to use uniforn® agonal contributioh15'17Recently, by taking into account the
only, dropping out the free Liouville term as well as the off-diagonal contributions, an oscillation similar to those in
regularizer in Eq(10) in the regionw <ty to recover uni- ~ EQs.(27) and(28) was found'’
versal RMT results. However, this procedure may miss im- Thus, we conclude that in the classical limjt— , Egs.
portant physics as we will present in this paper. To favor(10) and(12) give the leading perturbative and nonperturba-
uniform Q, a necessary condition is that the strength of thelive terms. We obtain the same results by making the Gauss-
regularizer becomes comparable to that of the Liouville termian approximation to Eqg10) and(12). This is not surpris-
The latter is of the order of vi/L. As the initial nonuniform  ing. We argue that to pass from the Gutzwiller formula to the
Q relaxes to the uniform one, the regularizer gets increasintgading 14? term, the only condition is the ergodicity, hence
N(l/Tq)eM due to the Lyapunov instability. The two terms it is reasonable to expect that the saddle point approximation
become comparable at~tz=\"YIn(vgr,/L). Hence we remains good enough in the regidn<w <ty Actually, -
conclude that only in the region<tz!, Q may be put to be such a term results from the free motion of |ffu5|ons_. It is
a constant matrix in the supersymmetric action to reproduc¥/0rth noticing that so far the next to leading terai/w* in
the universal RMT results. Ry(w), as one may expect from the universal RMT results

It is important that as usual, in the regian<t!, the  [Se€ EQ(27)], has not yet been identified in the framework
diffusons become Se|f-averaging in an individual quantunpf Gutzwiller formula. As we discussed in Sec. Il D,itis a
dot. The reason is that the time scale for the deterministi®ure quantum effeaweak localization correctign
chaos to become random tig, However, the time for two
identical trajectoriequp to the Heisenberg uncertaiptio
decouple(i.e., become independent of each ojhisrmuch
longer, as we will show in Secs. Ill and 1V, is of the order of
te. Thus diffusons with the same coordinates are strongly For systems with time-reversal symmetry, the weak local-
coupled in the regiotc'~ w<t.i. The Hikami box thereby ization correction tR,(w) in chaotic quantum dots was first
acquires an additional dispersionat- tz* and crossovers to - studied by Aleiner and Larkif® Furthermore, we show in
the disordered limit at»<tz". We point out that for GOE,  this subsection that such a correction can be written as the
the appearance ofA/w)* term is a pure quantum effect. second derivative of the free function at the two loop levels.
Indeed, it comes from the coupling zero mode diffusons. INThis is important because it suggests that the result here, in
this way, it is appropriate to identify such a term as the weakrinciple, is possible to be reproduced by using the replica
localization correction t&R,(w). For GUE, the exact trunca- techniquet42
tion at(A/w)? term by no means implies the invalidity of the
perturbation theory, but is due to the exact cancellation of the A. Weak localization corrections to the perturbative R(ew)
weak localization correction t®,(w) arising from Hikami
boxes with four-leg and six-leg vertexes, respectively. In Sec. From Eqgs.(10), (21), and(25), we can find thaR(w) in
IV C and V C, we will see that th¢A/w)* term shows up the order of(A/w)3 is

Ill. THE PERTURBATIVE R(w) IN SYSTEMS WITH
TIME-REVERSAL SYMMETRY
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ARg(w)=—é Re f DPe & f d1ST{kPA(1)] f dZSTI[sz(Z)]—1—16Re f DPe & f d1STIKPX(1)] f d2STikP?(2)]

X (%iwvw) J d3STIP*3)], (32

where we keep the term with=1 in the effective interactioS™.
To calculate Eq(32), we need to use the Wick’s theorem, which implies that any even order moments of the Gaussian
integral can be factorized as the product of the moniénof the Gaussian integral. The contraction rulesare

2mvP(MP(2) = D°(1,2) AfSTH{M AT+ D°(1,2) A;STHMA 1+ D°(1,2) ATMA + DY(1,2) ATMA; (33
and
2mSTHMP(1)ISTHNP(2)] = STr{[D*(1,2)M - D°(1,2)M]A;NA} +[D°(1,2)M - D°(1,2)M]ATNA; }. (34)
[
Here Af=1(1+A) and M=KCMT'C'K. The diffusion Lo (A 3(_. ) [ d1d2ds
DY(1,2) is the solution of the regularized Liouvili@erron- T A\ & 1@

Frobeniug equation _ _
x(D%(3,1)D%1,3)DP°3,2D°2,3)

. ~ _ _ 3 L
(—iw+ Er)DY(1,2) = 2781~ 2. (35) :_<é) (_iw)jd3<{a(—&i )90(3,3)]
DY(1,2:1) is the conditional probability for the particle ini- _
tially at 2 to appear at 1 at time At the limit 74—, X{ , D°(3,3)} . (39
D1, 2:)=JR1-R,(1)]8[n;—nx(t)] with [Ry(t),n(t)] the I(=iw)

classical trajectory starting froffR,(0),n,(0)]=(R,,n,).

Th d to th tractio(®, and (3) in Fig. 1,
By using Eqs(33) and(34) and the following relation: ese correspond to the contractio®, and (3) in Fig

respectively. Herg---) denotes the self-averaging over the
energy spectrum. Adding them together, we find that(Bg).

J ives the weak localization correction as
J po1,3)= f d20%(1,27%2,3, (36 9 By(w)
diw) A2 2
ARY(w) = (—) Re———F (o), (40)
we can calculate the first term in E@®2) as ™ I(-iw)

RE where the free energly,(w) is
|1:2<—) f d1d2(D°(1,2D°(2,1)D%(1, 1))

™ iw Orn O
A3 J Fy(w) = E f di(D°(1,1)D"(1,1)). (41
:-2<—) fd1<[ : Do(l,l)]D°(1,1)>.
. d=iw) Actually in the right-hand sid¢RHS) of Eq. (41), one D°
(387)  comes from the diffusion and the oth®° comes from the
Cooperorf3

This gives the contraction shown in Fig1l Then using the Fo(w) is the ballistic counterpart of the free energy in
contraction rules, Eqg33) and(34) we can find the second disordered systems, which is obtained by using the replica
term consists of two parts: technique! In the disordered case or in the limk<w

<tg!, one can justify thaF,(w) is imaginary by substituting

A\ - o zero mode diffuson, i.eD%1,2)=1/(-iw) into Eq.(41). As
l,= 2(—) iwf d1d2d3(D%1,2D°%(2,3D%3,1)D%3,3)) a result, according to Eq40), AR(w) vanishes.
a

__ é ° o & 0/n 0/ B. The Ehrenfest oscillations
= (77) ( |w)fd3<[ D (3,3)}7) (3,3)>

FPRY:
I(=iw) Now we show that for chaotic quantum dots, in the cross-
(38)  over regionts'~w<t;, Egs. (40) and (41) lead to the
Ehrenfest oscillations with the periodtz'. We note that the

and diffusionsD°(1,1) andD%1,1) are decoupled, which means
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(D%1,1)D%(1,0) =(D%1,)XDL,D). (42

Actually Do(l,T) stands for the probability of a trajectory (0)]
initiating from 1 and returning to in the phase space, while
DY(1,1) stands for the probability of a trajectory initiating

from 1 and returning to 1. Such two trajectories start from
the same place in the real space with opposite directions. In
this way, they are distant parts in the phase space. Therefore,
we have Eq(42).

In Ref. 22, it was found that )
@
z(w)

DY1,1) = (43)

As a result,

5(w)
(miw)?’

From this we see thdfg(w) is the effective Hikami box. In
the limit w<tz',T'5(w) — 1. The Hikami box becomes a con-
stant, as in the diffusive disordered cd3d¢n the crossover
region, it acquires an additional dispersiom&%tgl.
Substituting Egs(42) and (44) into Eg. (40), we obtain e =i X =0 =1
Eq.(3).2#°ThusRy acquwes an Ehrenfest oscillation correc-
tion with the per|0d~tE Such an oscillation originates from
the coupling between a diffuson and a Cooperon, which is
the reminiscence of Hikami box in the quantum disorders. In
this way, essentially it is different from the Wigner-Dyson

. . . . ~ _1 . .
oscillation 'f‘ t.h‘? lowe limit A af<.tE , such a.n oscillation in systems with time-reversal symmetry. The cross and the square
gradually diminishes. Actually similar corrections Ry(w)  _gyrp2] and~StkP?], respectively, come from the expansion in
persist in higher order terms. the prefactor, see Eq21). The dot~iwSt{P*], comes from the

Alternatively, one may Fourier transforR(w) as the  effective interaction, see E5). In the figure, we put=1.
form factorK(t)=(/A) [ R%(w)e™ (™/Mdg before taking the
real part.R(w)=ReR°(w) [see EQq.(3)]. The RMT predicts R (A 2 P
K(t)=2t-t2? att<1.58 We know that the linear term is pure p(®) e[;)(_ )2
classical(see Sec. Il E In fact, from Eq.(3) we see that . ] ) )
K(t)=2t—t26(t—tg) atA,=0. At t<tg thet? term disappears, Equation(45) was first established for quantum disorders by
while att>tg it coincides with that predicted by the zero- USing the replica techniquéWe are not aware of any proof
dimensional nonlinear model® In Ref. 44, it is proven that &Pout it in quantum chaos.
in the case of,=0, classical trajectories do not contribute to

2 . . . .

the t° term even if the off-diagonal contributions are con- \\, te PERTURBATIVE R() IN SYSTEMS WITH

(D°(1,)D°(1,1)) =

(44)

3

-p%1p

FIG. 1. The diagrams contribute Ry(w) in the order of(A/ w)®

Flw). (45)

sidered. To reproduce this term, the authors of Ref. 44 intro- BROKEN TIME-REVERSAL SYMMETRY
duce some correction to the probability of self-crossing clas-
sical trajectories. In Sec. lll we see that the weak localization correction to

In this section, we prove the existence of the free energyR,(w) at the two loop level originates from the coupling
at the two loop level by using BNSM [see Eqs(40), (41), between a diffuson and a Cooperon. In the broken time-
and (3)]. In fact, as we will see in the next section, at thereversal systems, Cooperon modes are suppressed by the ap-
three-loop level, the free energy does exist also. In this wayplied magnetic field. As a result @, the components are
it is natural to expect that in general, we can write the perrestricted onk=0,3 only in thed space[see Eq.(20)]. No
turbative part ofR(w) as the second order derivative of the longer exist the contraction rules E¢83) and(34). Instead,
free energyF(w), i.e., we can find the contraction rules below:

—

4mvP(1)MP(2) = D°(1,2)ATSTIM A1+ D°(1,2)A; ST MA; 1+ D°(1,2) A} STr(M A 73) + D°(1,2) A} 73S Tr(M A 73) )
46)

and
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2mvST{MP(1)]STH{NP(2)] = STH{[D°(1,2)M — D°(1,2)M]ATNAT + [D°(1,2)M - D°(1,2)M]ATNA;} (47)

by direct calculations. Then applying the Wick’s theorem andnot exactly zero as expected by the universal Wigner-Dyson
the contraction rules to E¢32), we find that it vanishes as statistics. Instead, it exhibits an Ehrenfest oscillation, which
expected. shows a crossover to its universal limitats tgl.

In the disordered case, it was first found that the leading
weak localization corrections tB,(w) in the broken time-
Feversarl] systgrln_rare at lghe tkll(ree Iloc()jp IeVﬁl by uskinlg thlt_a rep- A. Weak localization corrections to the perturbative R(w)
ica technique:* To our best knowledge, the weak localiza- , .
tion of Ry(w) in the quantum chaotic systems with the From Eqs.(10),4(?1), and(25), we can find thaRy(w) in
broken time-reversal symmetry has not yet been studied. 1i1€ order of(A/w)" is
this section, we prove that for the latter caBg(w) can be Ul N _ ApU u
expressed as the second derivative of the ?rie energy at the AR (@) = ARj () + ARy () (48)
three loop level. Moreover, we find that tha/w)* term is  Here

AFQ;‘,&,(Q)):l—l6 Re J DPe J d1STIKPA(1)] J dst.[kPG(z)]+l—16 Re f DPe f d1STIKPA(1)] f d2ST{kP?(2)]
X(%iwvw) J d3STIP®(3)], (49)
where we keep the term with=2 in the effective interactio®™:
ARg'3d(w):1i6 Re f DPeS f d1STIKPY(1)] f d28Tr[kP4(2)]+1—16 Re f DPe f d1STIKPA(1)] f d2STIKkPY(2)]
X(%iwvw) f d35T|[P4(3)]+312Re f DPe™ f dLSTIKPA(D)] f d2STIKP(2)]
X(%iwvw)z f d3ST{P*3)] | d4ST{P*4)]. (50

In Eqg. (50), we consider up to the second order effective interaction with the jerinkept.
First, we consider Eq49). The first term in Eq(49) is found to be

u 3 A N 0 0 0 0 3 A ¢ 4 0 0 0
ARSp(w)==2( = | | d1dD%1,2D%2,0D°2,29D%2,2)=| = | | d1 D%2,2) |D%(2,2D°(2,2)

4\ 7 (- iw)
(52)
by using Eqs(46) and(47). This gives the contraction shown (b1), Fig. 2. The other term in Eq49) gives
3(A\*
ARS,bz(w)=Z<;> (-iw) f d1d2d3(P°(1,3D°(3,)D%2,3)D%(3,2)D(3,3))
_3(A) 7o o } 0
= 4(7T> ( |w)fd3<[(9(_iw)D (3,3)”0(_iw)2) (3,3 |D"(3,3 (52

and
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4
AR‘;,bg(w)=§(7A—T> (-iw) f d1d2d3(D°(3,1)D%(1,2)D°%2,3)D°(3,3)D°(3,3)

_3(AV &
-g(%) (-iw) J d3<[ a(_iw)zp‘)(s,a)}DO(s,s)DO(s,3)>, (53

which corresponds to two ways of contraction showrikig) and(b3) Fig. 2. Adding them together, we find the free energy
Fap(w) to be[cf. EqQ. (45)]

AZ
ng(w):g(—iw) f d1(P%1,)D°1,1)D°(1,1)). (59
Now we turn to consider Eq50). The first term in Eq(50) is reduced into
u 1(A\ 0 0 0 0
ARj g1(w) == 2\ d1d2(D"(1,2)D"(1,2)D"(2,1)D"(2,1)) (55)
’ a
by using Eqs(46) and(47), which gives the contraction shown (d1), Fig. 3. The second term in E¢G0) is

4
ARS,dz(w)=2(A> (miw) f d1d2d3(D%2,3D°%2,3P°(3,2D°%3,1)D%(1,2)

aw

4
:—2(%) (—iw) f d2d3<D°(2,3)D0(2,3)D°(3,2){a(_aiw)DO(B, )D (56)

which gives the contraction shown (d2), Fig. 3. The diagram&3) and(d4) in Fig. 3 come from the third term in Eg50):
A 4
AR} j3(w) = - (7—7) (—iw)? f d1d2d3d4(D°(3,4D°(3,4D%4,3)D°(4,2)D°(2,1)D%1,3))

1(A\* 2 0 0 0
=-3(= (—iw) fd3d4 D (3,4D(3,4D"(4,3)

D4, 3)} > , (57)

A—iw)?

4
AR‘;M(w):—(%) (—iw)? f d1d2d3d4(D°(3,2)D°2,4)D°3,4D%4,3D°4,1)D°(1,3))

4
—%(%) (—iw)? f d1d2d3d4(D°(3,1)D°(1,4D°(4,3)D°(3,2D°(2,4D(4,3))
=—<é>4(—iw)2 j d3d4 [ ? o3 4)]1)0(3 4D(4 3)[ ?_poa 3)}
T J(-iw) ' ' T a-iw) '
2(77) (miw) fd3d4<{&(_iw)2) (3,9 &(—iw)D (3,4 |D°(4,3D°(4,3) ). (58)
[

Collecting Eqgs.(55)—58) together, we find the free energy y A\? &
Faq(w) to be[cf. Eq. (45)] ARp(w) = (;) Rem(F?,b(w) +Fgy(w)). (60

AZ
Fag(w) =~ Q(_ iw)?
B. The couplings of diffusons

0 0 0 0 In this subsection we will calculate the product of diffu-
Xf dlaxD(1, 21,212, )DH2, D). sions appearing in Eqé54) and(59). We emphasize that it is

(59) difficult to use the standard diagram technitfute calculate
these quantities. Instead, it is more convenient to use the
Hence we prove Eq45) at the three loop level. We see semiclassical method. In this section, we will follow the
that Egs.(49) and(50) give the weak localization correction techniques of Ref. 22. This immediately leads to the Ehren-
to Ry(w), up to the order ofA/w)* as fest oscillations in the perturbati(w). It is important that
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h @
(dD (d3)

(bl)

(d2) (d4)
-io

.:
m- x =1 @=ivo X--! =p’(1.2)

FIG. 3. The diagrams with four-leg vertex contributeRig ) in
_ Do(l 2) the order of(A/ w)* in systems with broken time-reversal symmetry.
’ The cross and the squareStfkP?] and ~St{kP*], respectively,
come from the expansion in the prefactor, see &4). The dot
~iwSt{P*] comes from the effective interaction, see E25). In
the figure, we pun=1.

S
S

FIG. 2. The diagrams with six-leg vertex contributeRg(w) in
the order of(A/w)* in systems with broken time-reversal symmetry.
The cross and squareStkP?] and ~St{kP?], respectively, come
from the expansion in the prefactor, see EH@1). The dot
~iwStP%] comes from the effective interaction, see E25). In 2:1 + Ez - 2:0 L+ Z:r .
the figure, we pun=1. ' '

J J
the averagé: - ) is performed over the energy for fixed po- Le1=veNy - R VU(Ry e
tentials, not impurity configurations. 1 P1

o 9 U d
1. The couplings of two diffusons Li1=—vpp— + S P1 T (63

dp1  PedR 1 TPy
where R, denote the coordinate perpendicular to the mo-
mentum direction. For the convenience below, we further
introduce the change of variables

To calculate Eq(59), we notice that there is the following
relation:

(D%1,2D%1,2D%2,)D%2,1)

p1 2(1/2 ¢1L
- <D0(1,2)D0(l,2)><D0(2, 1)D0(2, 1)> (61) Zy = In[ d)i + (r) :| , a1 = arctanz. (64)

At w<\, the deterministic motion of the center of mass
for similar reasons as discussions of Hg42). Actually  becomes random. Thus, the quanti®f(1,,2)D%1,,2) is
D%(1,2) stands for the probability of a trajectory initiating self-averaging oveR,,n,. In this way, we can introduce the
from 1 and ending at 2 in the phase space, wifiifé2,1)  following quantity:
stands for the probability of a trajectory initiating from 2 and _ 0 o
ending at 1. Thus such two trajectories are distant parts and M(¢1,p1;2,2) = (D7(11,2D(1,2))
decoupled. ButD°(1,2)D%1,2)) cannot be factorized at the dR,dn,
region near 1 or 2, where two trajectories become very close =f
to each other.

We will study the quantitfD°(1,,2)D%1,,2)) instead of By definition we imply thaiz|=|z,|> 1. In this way, we
(P%1,2D%1,2) and put 1=1, in the final answer. Here can see that the particular solution due to the RHS of Eq.
we use the subscripts 1 and 2 to denote the small deviatior{§2) is of the order of 1Xw and depends om;-z,=0.
in the momentum direction and position. From E85), we  Therefore, we can ignore the RHS of E2) since the par-

bl 7K 0
Py D°(1,,2)D°(1,,2). (65

find the motion equation to be ticular solution is much smaller than a# in the universal
region: w<<\. Then averaging Eq63) overn,,R; and a4,
we obtairf?
( PP Y SE A )Do(l 2)D(1,,2) g NP ey (1-y 4
-2iw 1 12—: > T T 2 1 2 . 2 e ( -y ) .
d Tqd Qo+t N—+ S+ ——— | ——+ M(zy;2,2
@b, Taddi, T 202 21y 0n\ 2 oz 7) M@i2.2
= 277{511,2790(12, 2)+ 512,2730(11, 2)]. (62 -0 (66)

) , Equation (66) exists only at the Lyapunov region, i.ep,
We will qse(nl,Rl) to denote the mqtlon of.the center of <L,$<1(-z>1). At z~0, Eq.(66) is not applicable and
mass while(¢,, p;) to denote the relative motidi.The 0p-  he solution ofM does not depend an any more. Since we

erator(ﬁll+212) is written as are interested in the regiozn~tgl, the coordinates 1 and 2
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are independent from each other. Hemgce z,, by definition, ()

. . .. . . 0 0 — — 2

implies that the deterministic relative motiofLyapunov (D°(1,2D°(1,2) =M= Cia)? (74)
asymptotic instability of z; must reactz; =0 in the course of

time. In this way, Eq.(66) must be supplemented by the At w<A,

boundary conditioM(w, z,;=0)=M’. M’ will be calculated

2
below. 0 0 _ /0 0 _ F2(w)
The solution of Eq(66) is (DAL, )DL,0))=(D(1,2D"(1,2)) = Cia? (75)
M = Wy(w,2))M’, (67) We would like to mention that in the case of long-ranged
_ disorders with7y=, an equation similar to Eq66) was
wherew,(w,z,) is found to bé? found by using the path integral technigtfdn fact, in this

case\ and\, were calculatedsee Appendix of Ref. 221t

iw wz)\2> AT, } ;
Wo(w,2)) = exp | — - In q 68 is found thatk,=4A\.
2(00 1) 4:( N )\3 )\qu221+ 7/2 ( )

. . . . 2. The couplings of three diffusons
up to the logarithmic accuracy=<1 is a numerical factor.

Any other regularizer with the form of the second order el- Now we turn to calculate Eq54). First, we note that
liptic operator changes the value pbnly. tg is the Ehrenfest ~ although the coordinates i®°(1,1) coincide with each
time other, they are not related to each other at the regief,
because the trajectory travels for a long time before returning
to the same position in the phase space. Thus, to calculate
(P%1,1)DP%1,1)D°(1,1) in Eq. (54), we will calculate a
more general quantity, sayP%(1,2D%1,2D%1,2)).

We proceed along the line of calculating two coupled dif-
fusions. Similarly to Eq(62), we have the following equa-
tion:

1

In the limit z; — -, M becomes
M =T, (w)M". (70)

At the classical limitry— , w,— 0 asz;— —. But this is 1 2 1 2

not the case for finite,. As we see from Eq(68), the clas- (- Biw+ Ly + Ly + Ly - —— -
sical solutionw,(w,z;) (74=2) thereby acquires a lower cut- YO g Tqddh,
off at zl=—% In A7, That is, we may regareh,(w,-=) as

1 &
Wolw, =3 In \7g). - ——2)90(11,2)1)0(12,2)2)0(13,2)
To find M’, we repeat the procedure of deriving £62) Tq ‘94’13
and study a more general quantity(w;2;,2;),M’ = 27-,[5112@0(12,2)@0(13,2) " 512’27)0(11,2)@0(13,2)
=U(w;2,2). Similarly to Eq.(66), U(z; w) is the solution of 0 0
the equation + 0,2D(11,2)D7(1,2)]. (76)

~27, _ Then we can separate the motion into the part of the center of
. d NP €29 (1l-y 4 . : . .
Qo+ N+ S+ —| ——+7| |UZ o) mass and the relative part by introducing the change of vari-
(922 2 522— ZTq (922 2 (“722 ables
R. = Ri, + Ry, + Ry, b= b1t d,t Py,
=0, (71 S < S-S
wherez,=z, characterizes the separation of two nearby tra- ri, =Ry, =Ry, 61= ¢y — 1,
jectories centered at. 2Ve drop out the RHS for the same r, =Ry, ~Ry, 6= ¢y~ . 77

reasons as deriving E¢66). To find the solution of E¢(71).

We repeat the procedure of Eq§.7)70), except that the Here(¢,,R;) denotes the coordinates of the center of mass.
boundary condition is replaced by The relative motion is described by the set of variables
(rll,rlz; 01, 0,). The transverse componentsr@}c andr 1,are

U(z=0,0) = % (72) denoted ag, and p,. With such a change of variables, we
(-iw) rewrite Eq.(76) as
Equation (72) means that if the deviationp;~ p,~L(z; _ . . . 1 2 21/ &
=2,=0), then the two trajectories, connecting dnd 2, 1, “SlotLr + Ly + Ly, - 3rod 5:(% YR
and 2, respectively, are independent from each other. Thus av ar"rL 2
e have(D°D% =(D%2. Similarly, we have &
e have(DTD)=(D". Similarly we hav - ) DO(14,2D%(15,2)D%(15,2) =0,
90,06,
M’ =U(z,= - ) = Ty0) ——. (73)
(miw) A J J

Lr =veny-— - VU(Ry) - —,

Substituting Eq(73) into Eq.(70), we find that Ry~ VR IR (Ry) ap1
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7 N #U d
=0V —_— _— —,
E P b pFaRi,lplaal
. d #U )
Ly =—vpbp— +———S—pr—. 78
r, F 20p2 ppﬁRi,lpzaﬁz (78)

Here we expand, p up to the first order. We again drop out

the RHS of Eq(76). In Eq.(78), the form of the regularizer
has changed compared to E®2). However, as we dis-

PHYSICAL REVIEW B 70, 035305(2004)

packet?® It is in order to make the following observations:
For I',(w), the oscillating part does not depend on the par-
ticular choice of the regularizer except thatdepends orr,
parametrically.

C. The Ehrenfest oscillations inR;(w)

Fap(w) and Fgy(w) are the ballistic counterparts of the
zero mode approximation of the free energy in disordered

; : . 1
cussed in Sec. Il A, such a change accounts only for théystems. In the disordered limit ak<w<tg", one can

value of 7, under logarithm. Consequently, up to the loga-

verify that F5,(w) andF34(w) cancel each other and E@O)

rithmic accuracyte remains unchanged. In view of this, we gives vanishing result foAR)(w) by puttingD%1,2) to be
ignore the regularizer in the discussions below. To solve Eqzero mode diffuson, i.eD%(1,2)=1/(-iw). However, as we
(78), we will proceed along the line of calculating two will see below, it is not so for chaotic quantum dots in the
coupled diffusons. Here we will show the main result andcrossover regiong1~w<t;,1. Instead, Eqs(54), (59), and

give the details in the Appendix. Equati@iA8) can be re-
duced as

<3iw+)\i+&i>N(X;2,2):0,
oX

2 X2

1 p 2 p 2
x=§<ln\/0§+<f> +In\/0§+(r2> . (79
where  N(x;2,2) is the self-averaging of

D%(1,,2)D%(1,,2)D%15,2) over the center of madR,,n;:
N(x;2,2) =N(6,p;2,2) = (D%1,,2)D°(1,,2)D%13,2))

:f %Dom,2)D°<12,2>D°<13,2>- (80)

(60) lead to the Ehrenfest oscillation with the periedgl.
Substituting Eq(83) into Eq. (54), we find that

_ A T3

Fap(w) = 872 (- iw)g- (84)
Taking Eq.(61) into account, we find
__ A’ ()

Fag(w) = - 872 (- im)? (85)

Therefore, we obtain Eq7). We see thaRg(w) acquires an
oscillation correction atwtg ~ 1 with the period~tg1.

We should emphasize that the appearance of the Ehrenfest
oscillations ~€"'€,.n=1,2,3,..., do nodepend on a par-
ticular form of the regularizer, although does. This can be
understood in the following way. In the Lyapunov region,

The similar equation was proposed in Ref. 26. It is impor-coupled diffusiongHikami box with 2n-leg vertey contrib-
tant that heren and\, stay exactly the same as those appearyte to R(w) (in the disordered limjt an additional factor

ing in I',(w) (see the Appendijx Compared to Eq66), Eq.
(79) differs from it in the frequenc&wﬂgw) and the vari-

able(z— x). Therefore, in the limitr,— o, the homogeneous

solution of EQ.(79), sayws(X; w) is

(81)

3
W3(X; ) —WZ(X,Ew>

supplemented by the boundary condition, whichwg(x
=0;w)=1. Up to the logarithmic accuracy, we obtain

Ia(w) = lim w;(X; @) = wa(= AN A 75 @)
X—s—00

3 9 w2t
= EX[<—ith— _0) 22 E)
2 4 A
Then we follow the procedure of Eq&7)—74) to get
3
(miw)?*
(83)

In fact, we have a general expression fiecoupled diffu-
sions, sayl',(w). One is able to prove thdf,(w) is also

(82)

(DY(1,2D%1,2D%1,2)) = N(X — — %, w) =

~(GR .G, )" In the semiclassicsGR~€9/’F and G2

~ e '#lle with | being the length of the trajectory piece. Up to
the logarithmic accuracy, the Lyapunov regions have the
same lengttvte. In this way(GR,,G2 )"~ €"“E. In gen-
eral, R,(w) can be expressed as

A\D AZ 2
Rp(w) =1 +2 (;) Chlotg) =1 +?$F(w)l

A L-1 -
Flw)=2 <_—i ) > Sv-siCelotd),  (86)
L w V&S

whereL,V andS characterize the topology of the diagram of
the free energy, from whicR,(w) is obtainedL,SandV are
the number of loops, sidgsliffusong and verticegHikami
boxeg, respectively. The constraint comes from the well
known Euler’s theorem in the topolody.For a topological
diagram of the free energy withsides(diffusions, we have
(GR, .G )5~ €5E, In the systems with time-reversal
symmetry, the leading corrections come from the two loop
diagram,L=2, S=2, andV=1, hence the leading Ehrenfest
oscillation inR,(w) is ~e2¢%e_|n systems with broken time-

oscillating: ~exp(inwtg/2) in the same spirit, which can be reversal symmetry, the leading corrections come from three
obtained in an alternative method, i.e., averaging the classloop diagrams. The diagram with the Hikami box of six-leg
cal solution (7;—o) over a minimal Gaussian wave vertex(L=3,S=3, andV=1) leads to the~€'3“. The dia-
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gram with two Hikami boxesL =3, S=4, andV=2) leads to B=SpB & B=>8. ® 91
the Ehrenfest oscillation-€4'e, zk" K Tdko zk" K Tdke D

The modesk=0,3 stand for the diffusion and the mod&s
=1, 2stand for the Cooperon. They satisfy the same equation
(35) in the absence of magnetic fields. In this way, we call
In Secs. IIl and IV, we study the perturbative expansionP0th of them diffusion modes in this paper unless special
around the saddle poink. As a result, it gives the weak €Xplanation. The modek=1,2 aresuppressed in systems
localization corrections to the leading perturbative term of¥ith broken time-reversal symmetry due to the destruction of
the universal Wigner-Dyson statistics. However, it is knownt€ interference between a trajectory and its time-reversed
that such an expansion cannot reproduce the Wigner-Dysdf@rtner. In this paper, we will study only this case. Due to
oscillation33 Instead, Andreev and Altshuler found that suchEq. (14), the matriced3, and By satisfy
a nonperturbative term is controlled by other nontrivial —
saddle point$? In this section, we apply their method to B.=kB{, k=0,1,2,3. (92
study the leading order corrections to the universal Wigner
Dyson oscillation in the region < w~tz' <t

V. THE NONPERTURBATIVE PART OF R(w) IN SYSTEMS
WITH BROKEN TIME-REVERSAL SYMMETRY

By may be parametrized as

=8 iO'k
i Bk: x . y (93)
A. The global transformation 7 by

For GOE and GUE, the other saddle point is\=*3 To  wherea(1) andb,(1) are ordinary variables, while,(1) and
establish a perturbation theory, a trick, so-called global transy, (1) are Grassmann variables. Then we substitute Egs.
formation onH is introduced, which maps the saddle point (91)«93) into Eq. (89) and keep the quadratic terms in
—-kA to A. That is, we perform a global coordinate transfor-ak,bkygk, and 7,; to rewrite Eq.(90) as
mation g _

. Sp=-2imw+S. (94)
Q—Q =UyQUy T— T =TUy, (87

whereU, € H satisfies ¥5'kAUp=A. Itis important thatthe = wa dx, > [a;(x”)(iw* + LR)agx) + br(x) (- i
Jabobian is unity and, does not depend on the coordinates. k=0,3

Under the transformatio(87), - A ~
+ Lr)b(X)) + 0y (X)) Lro(X)) + 77k(X||)ER77k(X\|)]- (95)

Q =T AT (88) o . ~
It is important to see that the new Gaussian ac@moes
Thus, we can rewrit®R(w), Eq. (10), as not include zero mode contribution of Grassmann fields.
L ) Thus, for a generic Gaussian integral with the act8mot
R(w) = — R DO’ TIAO' ~Sert to vanish, the prefactor must consist of all the independent
(@) 64 ef Q (f dxSTIAQ (X”)]) e zero mode Grassmann variables. In this way, by expanding

(89) Q' in the prefactor up to the second order, and taking into
account the zero mode bosonic and Grassmann fields only,
= . the universal Wigner-Dyson oscillation is reproduced in
where S, is the action Refs. 30 and 33.
iﬁz mv f d)qSTr[— EKAQ’ _T/—lAzT/ + i(a_Q,)z} B. Quantum corrections
2 2 Tq\ 99 The leading order corrections to the universal Wigner-
(90) Dyson oscillation has the amplitude(A/w)® at o> A. To
see this, one need to expafd* and keepQ up to P* and
t ake into account the first order effective interaction similarly
0 Eq.(25). As a result, we obtain

Although the findings in Ref. 33 are asymptotic, it is im-
portant that the perturbation near the nontrivial saddle poin
take into account nonzero mode approximations, which, i
principle, cannot be done by zero-dimensional supermatrix 1 , )
model. Indeed, for BN&M, the Gaussian appro>§imati0n is AR ()= o4 ReJ DPe? m/Ag”

orr HIOW-

not applicable® in the nonuniversal regiow> te

ever, we believe that the perturbation near saddle points is ) 4
applicable in the universal regicm<tgrlg, because the rep- X| -8 | d1ST{PA(1)] | d2ST{P*(2)]

etition problem!’ is not essential in this case. In the ballistic

case, the new regiog' ~ w <ty appears, within which the B 2 2/ oy Taint
relaxation of the momentum is not complete. As a result, one 4 | dISTEPYL)] | d2STIPY2)1Sr |,
cannot putQ to be a constant matrix. The parametrization

(16)—«18) still holds forT’. Furthermore, we can expaidn ~int -

terms of the Pauli's matrices SH=— 7|wf dx STIKP*(x,)]. (96)
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To calculate Eq(96), we need to separate the zero mode
Grassmann fields from all the other fields and integrate therr
out first. Consequently we are left with a Gaussian integral - el ) Koo 3)
. . . . >r< “ e Sao-
involving the bosonic and nonzero mode Grassmann fields X
Then we can factorize the integral into the product of the
following pairs:

4zt f Dla* ab* bo* oy * Ja(Dad2e ™ L P

K% ) e
SN 2 S N @
:DO(l,Z;_w), (97) ><\‘ ’/" Q ) » O

y S = =m =1
47TVZ_1J D[a* ab* bo* apn* ]bk(l)bk(Z)e_So e =i X =m
- b2
=D, 2;w), o s

-1 * -
4mvZ J Dla* ab* bo* onn* Joy(1)ow(2)e FIG. 4. Nonvanishing diagrams contributeRg,(w) in the order

0 of (A/w)® for systems with broken time-reversal symmetry. The
=D"(1,2;0, (990  cross and the square St{P?] and ~St{P*], respectively, come
from the expansion in the prefactor, see H@2). The dot

1 . 0 ~iwSt{kP*] comes from the effective interaction. The solid line
AmvZ Dla* ab* bo* onn* Jn(1) n(2)e stands for the bosonic propagator, the dashed line stands for the
zero mode Grassmann propagator, and the dashed-dotted line stands
=D%1,2;0), (100 for the nonzero mode Grassmann propagator. In the figure, we put
A=1.

wherek=0,3, andD°(1,2;0 satisfies the following equa-
tion: the existence of these diagrams results from the supersym-
LrD%(1,2;0 =2a{8(1-2) - 1]. (101  metry breaking.
The first term in the RHS of Eq96) gives
In the square integrable space, the overall factocan be

. . !
— 2 ARGpa(0) ==2—5— Re<e2mmf d3[(D°(3,3;-w))
S A 1 o)
Z:f Pla b b o Je = (4m? o’ A3
n - <D0(3,3;w))]) ~ — 4—— Im g2/
(102 —
(103

We note thaZ # 1 becausé’ is not supersymmetric and do
not integrate out zero mode Grassmann fields. Actually withyhich is the contraction shown in Fig(}. Above we use
nonzero modes integrated out, we come up with a factothe fact that aw<\, we need to take into account only the
(1-a), wherea=2kw2/)\ﬁ and the sum is over all the non- zero mode in the diffusons.

zero eigenvalues, of the Perron-Frobenius operat8i®48 The second term in Eq96) has two nonvanishing con-
In the universal regionw<<\, this factor crossovers to the traction. One is shown in Fig.(3) while the other is shown
universal value 1. Furthermore, after integrating out zerdn Figs. 43) and 44). In Fig. 42), only the bosonic fields
mode bosonic fields, we obtain E@¢102. The measure are involved. By using Eqg97) and(98), we find it to be
D[a* ab* bo* on7* ] is on all the independent bosonic and A3

nonzero mode Grassmann fields. In addition, one needs tq u _ . miwlA 0 )
take into account Eq.14) to reduce the number of integra- %R”p'z(w) T B2 Re((— lw)e? szf d3[<D 3.2,

tion variables by half.

Equation(96) involves the Gaussian integral of bosonic - 0)D%(2,3:-w)) + (D%(3,2:0)D°(2 3.w)>]>_
and nonzero mode Grassmann fields, which can be reduced Y Y o
into the sum with each term the products of pdiEs. (104)

(97)«100)]. Equation(96) corresponds to four nonvanishing

diagrams shown in Fig. 4. One should not confuse thesé should be emphasized that the order of the arguments ap-
diagrams with Fig. 1. Here the Hikami box in the eight- pearing in the product of two diffusons above is essentially
shaped diagram stands for the coupling between two diffudifferent from what we calculated in Sec. IV B[see Eq.
sions, not a diffusion and a Cooperon, as in the orthogonal74)]. we can use Eq.36) to reduce the two diffusons in Eqg.
case. It is important that such a diagram is exactly zero in th€104) into one diffuson. Thus, we can approximate the prod-
unitary case without the global transformation. In this way,uct of two diffusons as I#iw)? in the regionw<\.
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Figure 43) differs from Fig. 44) in that there the cou-
pling occurs between bosonic fields. While in Figdy the

PHYSICAL REVIEW B 70, 035305(2004)

(D°(3,3;w)D%3,3;0) = - 5%1‘5(%) . (110

coupling occurs between the bosonic and nonzero mode

Grassmann fields. By using Eq®.7) and(98), we find that
Fig. 43) corresponds to

A3
ARnp3( w) = _773(1)2 e(( |w)92ﬂlw/Afd3[<Do(3,3;

- w)D%(3,3;-w)) + (DO(3,3;w)D°(3,3;w))]> :

(109

By using Eqs(97)—(100), we find that Fig. §4) corresponds
to

3
ARy, 4(@) = Wﬁ—wz Re((— iw)e?moA f d3[(D°(3,3;

- )D(3,3;0) + <D°(3,3;w)D°(3,3i0)>]> :

(106)

In the disordered case, one is easy to checkNRﬁg)(w)
vanishes using the zero mode diffus¢d®(1,2;w))=1/
(-iw") and (D%1,2:0)=0. However, it is not so in the
crossover region < o~ t=* <t} Instead, as we see below,
Egs. (103106 lead to the E%renfest oscillation with the
period (A™+ atg) ™t with @ a universal numerical factor.

C. The Ehrenfest oscillation in Rﬁp(w)

Now we show that in the crossover region, Egs.

(103<106) lead to the Ehrenfest oscillation, but with differ-
ent dependence of the period thcompared to the pertur-
bative part. First, according to E¢r5), we can rewrite Eq.
(109 as

3 ) -
ARnupys(w) = % Re{ezm/AM

-iw
(107
In the case oh,w?/\3<1, Eq.(107) is simplified as
3

2 sin 2me COS 2wt
in— .
3w® A E

AR () = (108

To calculate Eq(106), first we understan®°(3,3;0) in the
way of D%3,3;0=lim, _o[D%3,3;0)+D%3,3;-w)]/2,

where D%(1,2;w,) should be considered as the solution of

the equation

(—iwt+ LRDY(1,2;0) =2m{ 81 -2 - 1]. (109

Then following the procedure of deriving E(74), we find
that (D°(3,3;w)D%3,3;0,)) =T (0+w)/ 2]/ ©* w;. Thus
we obtain

Substituting Eq(110) into Eq.(106), we find thatARn”pA(w)

is
A3 . 27w Jd _of @
3w3 sin A [w Re&—wrz(aﬂ .
(111)
In the case oh,w?/\3<1, Eq.(111) is simplified as

3

ARnp4(w) 2 = 3sln (112

mTw .

A [ wtg sin wtg].
Collecting Eqs(103), (104), (107), and(111) together, we
find that the leading quantum corrections in the nonperturba-

tive part of R(w) is Eq. (9). TherebyRu (w) acquires an
oscillation correction with the perio\~ l+ ate)™t with « a
universal numerical factor. Actually we can find the similar
results for systems with time-reversal symmetry, but the am-
plitudes are much smaller, which are proportional to
(A w)® cog2mw/ A) or (Al w)® sin(27w! A).

In the low o limit wte<1, AR, (0)~A%E/w. It is a
small quantum correction to the universal Wigner-Dyson sta-
tistics. However, we are not able to find this term by using
the method developed in Ref. 10. In the largdimit wtg
>1, we see that the universal Wigner-Dyson statistics ac-
quires a small universal correction(A/ w)3e?™ 2, But it is
smaller than the nonuniversal correction, which
~(A/)\)2e277iw/A.

Taking into account Eqg86) and (9), we can formally
expressR(w) as

is

Rw)=1+a’ + >, <é>ncn(th)
+ {cosziTTwE (é>nDn(th)

n

+s5in 270y (é> En(th)} (113

A T\
The factora’ ~ A?/\? arises from making the Gaussian ap-
proximation to the nonzero modes of the Perron-Frobenius
operator®48We do not study this term in this paper because
it does not lead to the Ehrenfest oscillations. For disordered
systems, a similar term-A?/EZ, was found in Ref. 10. In
general,C,, D,, andE, are oscillating functions obtg and
proportional tol',(w). In the disordered limitC,, D, andE,
become universal constants.

VI. CONCLUSIONS

In this paper, we studied the electron energy statistics in
chaotic quantum dots with one macroscopic siz&or such
systems, the inverse ergodic time and the Lyapunov expo-
nent are of the same ordeg,lg~)\~v,:/L. Consequently, in
the semiclassical limit, the Ehrenfest timgeopens an inter-

mediate regiom\ <tg'~ w<terg We studied the behavior of
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the two level correlation functioR(w) in the universal re- In this paper, we considered chaotic quantum dots where
gion A<w<t;rlg in systems with broken time-reversal sym- )\~t;rlg~v,:/L. Actually, it is possible tham>t;r1. In the
metry. Surprisingly, it was found th&(w) deviates from the latter case, the dot has large enough size to contain a lot of
universal Wigner-Dyson statistics. Basically, we found thatclassical impurities inside. In this case, the Lyapunov expo-
R(w) acquires two types of oscillation corrections in the nentA ~navg, wheren is the concentration of impurities and
crossover regioniz' ~ w<t;1 The oscillation periods have @ is the size of classical impuriti€. The ergodic time
different dependence dg. The Ehrenfest oscillations in the (Thouless timgte,=L?/D>\"1. HereD is the classical dif-
perturbative part have the period proportionaltgb while  fusion constant. In this case, it is possible to describe contri-
the Ehrenfest oscillations in the nonperturbative part havéutions from nonzero modes using the saddle point approxi-
the period(A™1+ atg) ! with « being some universal numeri- mation. The similar Ehrenfest oscillations are expected to
cal factor. These additional Ehrenfest oscillations are smafXist atto=< o ~tz"<\. We leave this work in the future.
corrections to the universal RMT results. In particular, for ~Based on the present work, it is unclear whether the BGS
Ri(w) described by Eq(28), the exact truncation at the term conjecturé® may hold in the universal regiow <t for
~w2 does not imply the disappearance of quantum correcdeneric quantum chaotic systems. I_n other words, are the
tions. Instead, it is due to the cancellations of contributiondluctuations of energy levels described by the universal
arising from Hikami boxes associating with different kinds Yigner-Dyson statistics in such systems? According to Eq.
of vertices at the limitt=— 0. The Ehrenfest oscillations are (113, we point out that in chaotic quantum billiards, the
just the reminiscence of such cancellations. Ehrenfest time appears, which results in the Ehrenfest oscil-
In this paper, only the leading Ehrenfest oscillation cor-lations atw~tg". These oscillations are beyond the frame-
rections were calculated. Actually there is a general expres¥ork of RMT, zero mode nonlinear supermatiix model,
sion (113 in the regionA<w<t;r1g The functionsCy(x) and the Gutzwiller trace formula. Secondly, despite the ap-

o pearance of the Ehrenfest oscillations in the regdﬂﬂtg1
[henceCy(x)], Dn(xland Eq(x) are oscillating awtg = 1. In > A, their amplitudes are small. In this waR(w) is still

the limit note<1, C, (henceC,), D, and E, crossover to  gominated by the universal Wigner-Dyson statistics. Finally,
their universal values. In partlt_:u_lar, in th_e GUE ca@g,: the behavior ofR(w) at w~A remains an open problem.
—D2=—1/g, and all other coefficients vanish. The unlversalmdeed, in the present work we use the saddle point approxi-
values ofC,(x) [henceC,(x)], Dy(x) and E,(x) do not de- mation to take into account the zero mode contributions. Fur-
pend on the magnitude of the regularizéire last term in Eq.  thermore, the perturbation theory near the saddle points pre-
(12)]. But it depends on the order of how we take the limits:dicts the regions for the terms in the expansidi3 to
0—0 and 7;— . Actually we take the limito— 0 before  approach their universal limits. However, we are not aware
74— . In contrast, the boundary of the region where theof the limit of the sum of such asymptotic series.
universality existfw<tz) does logarithmically depend on Note added in proofAfter the submission of the manu-
the magnitude ofr,. The regularizer describe the coupling script, the results similar to Secs. Il and IV were published
between classical trajectories. In this sense, it plays a rolgS. Heusler, S. Mdiller, P. Braun, and F. Hoake, J. Phy37,A
similar to that played by the interaction between particles inL31 (2004].
nonideal Bose gases. There the scaling theory describes the
universal behavior at the transition point and the critical ex-

ponents do not depend on interactions. However, the region

f_or the s_cal?ng_ to be applicable do_es o_lepend on th_e i_nterac- We thank I. L. Aleiner, K. B. Efetov, A. Kamenev, B. I.
tion. While in ideal gases, the scaling is absent. It is IMpor-ghyjoyskii, and M. G. Vavilov for fruitful discussions. C.T. is
tant that the results.presente(_:i he.re hold onI;Aam»«).\, grateful to I. Ussishkin for illuminating discussions on Ref.
where the saddle point approximation to EG€) and(12)is 35 A | . thanks Aspen Center for Physics for their hospital-

possible. ity. Th ki ted by NSF Grant No. 0120702
We note thaf’(w) is not analytical at 17, in the largew . The Worie s stipporied by rant e '

limit tgl< w<N\. Actually following from Egs.(4) and(82),
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we find that APPENDIX: THE DERIVATION OF EQUATION
79
@IS+ w/ . (79)
I'n(w) ~ (:) JE<o<N. (119 In this Appendix we prove Eq79). We will follow the
a

general method developed in Ref. 22. In the discussions be-
From this, we see that corrections Rfw), predicted by the low, we ignore the small regularizer in E(78) for the mo-
Gutzwiller formula, are proportional tg;%,0< a<1. In this ~ment. Moreover, we turn to the time representation. Then
way, any attempts of establishing a7} expansion are pro- employing the change of variables
hibited.

At higher o (2)\~t;rlg), the nonzero mode contributions 2=(21,2), a=(ay,ay),
turn out to be important. In this case, the saddle point ap-
proximation is no longer applicable. A refined technique is 212
desired to study the oscillation, claimed in Ref. 48 for ge- 7= In[&f+ (&) } ,

6.L
. : a = arctan——,
neric chaotic quantum dots. L

P1
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211/2
6L
22=In{0§+<p—2) } , wy=arctan—>,  (Al)

L p2

we rewrite Eq.(78) as(after averaging over the coordinates

of the center of mags

J o~ A
(a‘l‘Dl‘l‘ Dz)N(Z,a’;Z,Z):O,

~ . Jd J
Dy = - By(t)sin 20y~ +[By(t)cos 2y + By(1)]—,
(921 &al

A . J d
D, == By(t)sin 2a,—— +[By(t)cos 2, + By(1) ] —,
(922 &az
ve _ L U
By ot) = Er— — . (A2)
2L 2pe OR| R=R(LRy)
Introducing the change of variables
1+
x:%, y=2 -2, (A3)

we obtain
- 1 . . d :
D;+D,=- EBl(t)(sm 2001 + sin 2a2)&_)< + By (t)(sin 204

. d d
—Sin 2&2)07_y + [Bl(t)COS 2&1 + Bz(t)]?‘(l

+[B;(t)cos 2, + Bz(t)]ﬁi. (A4)
(2%)

The formal solution of Eq(A2) is

N(t;x,y;2,2) = exp[ Ci(t, al'Z)aix} N[O;x,y,a%(a,1);2,2],

(A5)

whereC; is

t

1 R R
Cl(t,alvz) = Ef dtlBl(tl)(Sin 2&1 +Sin 2&2) .
0

(A6)

The functions ofy(t) and &1’2(a(1)’2,t) satisfy the following
equations:

%y =B, (t)(sin 2a4 - sin 2a,), (A7)
d .
aal,zz Bi(t)cos Zv; ,+ B,(t),

511,2(012,21 0)= a?yz, (A8)

with a; , implicitly defined by

PHYSICAL REVIEW B 70, 035305(2004)

&1’i&(1)’2(a1,2,t),t] =ag,. (A9)
The formal solution ofy(t) is
t
y(t) =y(0) + f dt;B;(ty)(sin 2oy - sin 2a;)  (A10)
0

with y(0) being the initial condition.

We are interested in the regior=\"1. In this case,
al,z(agz,t) become self-averaging over the coordinates of
the center of mass and no longer depend on the initial con-
ditions. Consequently, at such large timgs) reaches a con-
stant depending on the initial valysee Eq.(A10)]. In this
way, N(t;x,y;2,2) depends ory parametrically and has no
a1 , dependence. The evolution Nft;x,y;2,2) is governed
by the Fokker-Planck type equation

[ﬁ—f<i)]m- 12,2=0
/) [NExy:2,2)=0,

p (A11)

where F(d/ dx) is defined as

J 1 dndR d
f(d—)()—tlmzlnf oA exp{B(t)(d—x)}. (A12)

Here we keep in mind the important fact that
{)dtBl(t)sir{Z&l,z(agz,t)] does not depend om; , due to

the  self-averaging at large times, so that
LdtB,(t)sin 2, (af, 1)]= [LdtB, (1)si2a,(ad,t)]. In  this
way, F has nod/dy dependence:
t
B(t) = f dtB(t)sin2a(a°1)], (A13)
0

where« can take the subscript either 1 or 2.
Because\(t;x,y;2,2) slowly varies ovex, we expandF
up to the second order i# dx to get

f<i> AN i (AL14)
x) Tox o 2 ox%
where
1 ( dndR
)\:Iim—f—B(t) (A15)
t%fﬁt 27TA
and

Ay = !m %{ { f d;:? Bz(t)] - )\ztz}. (A16)

It is important that here. and \, are exactly the same as
those appearing if'y(w) becauseB(t) is the same as that in
Ref. 22. This is not surprising because mathematicallig
determined by the eigenvalue of the stability matrix of a
trajectory®® Returning to the frequency representation, we
find Eq. (79).

035305-17



C. TIAN AND A. I. LARKIN PHYSICAL REVIEW B 70, 035305(2004)

1See, for examples, H. U. Baranger,Nianotechnologyedited by ~ 26M. G. Vavilov and A. I. Larkin, Phys. Rev. B7, 115335(2003).
G. Timp (American Institute of Physics, New York, 1998Y. 27Ph. Jacquod, H. Schomerus, and C. W. J. Beenakker, Phys. Rev.
Alhassid, Rev. Mod. Phys72, 895(2000. Lett. 90, 207004(2003.
ZE. P. Wigner, Ann. Math53, 36 (195). 28| L. Aleiner and A. I. Larkin, Phys. Rev. 55, R1243(1997).
3Statistical Theory of Spectra: Fluctuatigredited by C. E. Porter 29\We notice that in Ref. 28, it is a mistake to pyt+1, [see Egs.

4L(Alg:agen’1kic Pres(,js,GNi/lw gﬁrk’hEQBS pis'ma Zh. Eksp. T Fi (37) and (38)] to be zero. Consequently, the result there is in a
- T S0rkov and . M. Elashberg, Fis ma £n. £ksp. 1eor. Fiz. slight difference from what we show in E¢3) and cannot be

48, 1407(1965 [Sov. Phys. JETR21, 940(1965]. S
5 S . expressed as the second derivative of the free erfesgy).
K. B. Efetov, Supersymmetry in Disorder and Cha@ambridge 4. V. Andreev, B. D. Simons, O. Agam, and B. L. Altshuler,

University Press, Cambridge, UK, 1997Adv. Phys. 32, 53 .
y 9 » y Nucl. Phys. B482 536(1996); B. D. Simons, O. Agam, and A.

1983.
6B(. L. ,2tshuler and B. I. Shklovskii, Zh. Eksp. Teor. Fig1, 220 V. Andreev, J. Math. Phys38, 1982(1997.

(1986 [Sov. Phys. JETR64, 127 (1986). B. A. Muzykantskii and D. E. Khmelnitskii, Pis’'ma Zh. Eksp.
M. C. Gutzwiller, Chaos in Classical and Quantum Mechanics __ T€or- Fiz. 62, 68 (1999 [JETP Lett. 62, 76 (1999].

(Springer, New York, 1990 32K, B. Efetov and V. R. Kogan, Phys. Rev. 87, 245312(2003.
8M. L. Mehta, Random MatricesAcademic Press, New York, -°A. V. Andreev and B. L. Altshuler, Phys. Rev. Let75, 902

1990. (1995; J. Math. Phys.37, 4968(1996.
9F. J. Dyson, J. Math. Phys3, 140, 157, 1661962. 34A. Altland, C. R. Offer, and B. D. Simons, iBupersymmetry and
10y, E. Kravtsov and A. D. Mirlin, Pis’'ma Zh. Eksp. Teor. Fi80, Trace Formulag(Ref. 17.

645 (1994 [JETP Lett. 60, 656 (1994)]. 35K. B. Efetov and A. |. Larkin(unpublishegl
1R, A. Smith, I. V. Lerner, and B. L. Altshuler, Phys. Rev. B 36J. B. Keller, J. Opt. Soc. Am52, 116 (1962.

58,10343(1999. 37G. Vattay, A. Wirzba, and P. E. Rosenqvist, Phys. Rev. Leg.

12K, B. Efetov, A. I. Larkin, and D. E. Khmelnitskii, Zh. Eksp. 2304(1994).
Teor. Fiz. 79, 1120(1980 [Sov. Phys. JETR2, 568(1980)]; F. 38H. Primack, H. Schanz, U. Smilansky, and |. Ussishkin, Phys.

J. Wegner, Zh. Eksp. Teor. Fi5, 207 (1979. Rev. Lett. 76, 1615(1996); J. Phys. A30, 6693(1997; R. S.
130, Bohigas, M.-J. Giannoni, and C. Schmit, Phys. Rev. LB#. Whitney, I. V. Lerner, and R. A. Smith, Waves Random Media
1(1984. 9, 179(1999.
14M. C. Gutzwiller, J. Math. Phys12, 343 (1971). 39D. Ruelle, Phys. Rev. Lett56, 405 (1986; M. Pollicot, Ann.
M. v, Berry, Proc. R. Soc. London, Ser. A0Q, 229 (1985 Math. 131, 331(1990.
163, H. Hannay and A. M. Ozorio de Almeida, J. Phys1& 3429 40gee, for example, P. Gaspard, Phys. Retv34379(1996), and
(1984). references therein.

7E. B. Bogomolny and J. P. Keating, Phys. Rev. LétZ, 1472  *'C. Beck and F. SchléglThermodynamics of Chaotic Systems
(1996; J. P. Keating, inSupersymmetry and Trace Formulae: (Cambridge University Press, Cambridge, UK, 1993
Chaos and Disorderedited by I. V. Lerner, J. P. Keating, and D. 4?A. Kamenev and M. Mezard, J. Phys. 22, 4373(1999; Phys.
E. Khmelnitskii, Vol. 370 of NATO Advanced Studies Institute Rev. B 60, 3944(1999; I. V. Yurkevich and I. V. Lernerjbid.

Series B: PhysicgKluwer Academic Press, Dordrecht, 1999 60, 3955(1999.
18A. I. Larkin and Yu. N. Ovchinnikov, Zh. Eksp. Teor. Fi&5  “3In the language of quantum disorders, the diffuson stands for the
2262(1968 [Sov. Phys. JETF28, 1200(1969)]. interference between a path and itself, and the Cooperon stands

19G. P. Berman and G. M. Zaslavsky, Dokl. Akad. Nauk USSR for the interference between a path and its time-reversed partner.
240, 1081(1978; Physica A 91, 450(1978; see also the re- “*M. Sieber and K. Richter, Phys. ScF90, 128 (2001).
view G. M. Zaslavsky, Phys. Re@0, 157 (1981); F. M. Izrai-  “5A. A. Abrikosov, L. P. Gor’kov, and Ye. |. DzyaloshinskiQuan-

lev, ibid. 196, 299 (1990. tum Field Theoretical Methods in Statistical Physi€grgamon

20M. Wilkinson, J. Phys. A20, 2415(1987. Press, New York, 1969

2IN. Argaman, Phys. Rev. LetfZ5 2750,(1995;Phys. Rev. B53,  4I. V. Gornyi and A. D. Mirlin, J. Low Temp. Phys126, 1339
7035(1996. (2002.

22| L. Aleiner and A. 1. Larkin, Phys. Rev. B54, 14423(1996. 47s. willard, Basic Topology(McGraw-Hill, Berkshire, England,

233, Hikami, Phys. Rev. B4, 2671(1981). 1979.

240. Agam, I. L. Aleiner, and A. I. Larkin, Phys. Rev. Let85 ~ “8Ya. Blanter, A. D. Mirlin, and B. A. Muzykantskii, Phys. Rev. B
3153(2000. 63, 235315(2001).

25J. Tworzydlo, A. Tajic, H. Schomerus, and C. W. J. Beenakker,*’H. van Beijeren and J. R. Dorfman, Phys. Rev. Létt, 4412
Phys. Rev. B 68, 115313 (2003; P. G. Silvestrov, M. C. (1995.
Goorden, and C. W. J. Beenakker, Phys. Rev. L@®.116801  5CA. J. Lichtenberg and M. A. LiebermarmRegular and Chaotic
(2003. Dynamics 2nd ed.(Springer-Verlag, Berlin, 1992

035305-18



