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We study the crossover from a classical to quantum picture in the electron energy statistics in a system with
broken time-reversal symmetry. The perturbative and nonperturbative parts of the two level correlation func-
tion Rsvd are analyzed. We find that in the intermediate regionD!v, tE

−1! terg
−1, where tE and terg are the

Ehrenfest and ergodic times, respectively,Rsvd consists of a series of oscillations with the periods depending
on tE, deviating from the universal Wigner-Dyson statistics. These Ehrenfest oscillations have the period
dependence astE

−1 in the perturbative part.(For systems with time-reversal symmetry, this oscillation in the
perturbative part ofRsvd was studied in an earlier work[I. L. Aleiner and A. I. Larkin, Phys. Rev. E,55,
R1243(1997)]). In the nonperturbative part they have the period dependence assD−1+atEd−1 with a a uni-
versal numerical factor. The amplitude of the leading order Ehrenfest oscillation in the nonperturbative part is
larger than that of the perturbative part.
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I. INTRODUCTION

In the last decade, there has been increasing interest in
investigating interference phenomena of electronic motion in
ballistic quantum dots.1 In semiconductor quantum dots the
confining potential has the length scale much larger than the
Fermi wavelength, and therefore one may expect that elec-
tron motion in such systems may be described by methods of
classical trajectories. Typically, the classical electron motion
inside dots is chaotic. An important question is, what hap-
pens to the energy spectrum. It turns out that the energy
spectrum of a single electron in chaotic quantum dots is
highly sensitive to the parameters of the system(e.g., Fermi
momentum, the strength of the applied magnetic field, the
impurity configuration, the shape of the boundary of ballistic
quantum dots, etc.). Substantial progress has been made by
studying the statistics of energy levels. The level statistics
has played an important role in the theories of atomic
nuclei,2,3 disordered metals,4–6 and quantum chaos.7 A par-
ticularly interesting quantity in the level statistics is the so-
called two level correlation functionRsvd:

Rsvd = D2KdSe +
v

2
− ĤDdS« −

v

2
− ĤDL , s1d

whereD is the mean level spacing andĤ is the Hamiltonian.
k¯l denotes the average over a wide energy band(for indi-
vidual quantum dots) or the impurity configuration(for
quantum disorders).

In his pioneering work, Dyson divided the Hamiltonian
matrices into three classes: Gaussian orthogonal ensemble
(GOE), Gaussian unitary ensemble(GUE), and Gaussian
sympletic ensemble(GSE) and used the random matrix
theory (RMT) to find thatRsvd follows different universal
behavior for these ensembles.8,9 Gor’kov and Eliashberg
were the first to use Wigner-Dyson ensemble to study trans-
port properties in small metallic grains.4 For disordered met-
als, the behavior ofRsvd is now well understood. For grains
in the presence of a lot of quantum(Born) impurities, theo-

retical justification of the universal RMT result came up with
the supersymmetric field theory due to Efetov,5 assuming
that v is much smaller than the Thouless energyETh
="D /L2 with D being the diffusion constant andL the size
of the grain. The behavior ofRsvd beyond ETh is
nonuniversal.6 That is, the level statistics atv*ETh is sys-
tem dependent. In Ref. 10 it was found that there is a small
constant correction toRsvd at v,D due to the nonuniversal
behavior of electron motion. Recently, the weak localization
correction toRsvd beyond the Thouless energyETh was stud-
ied in Ref. 11 with the help of replica technique.12

Bohigas, Giagonni, and Schmit(BGS) proposed a conjec-
ture that the fluctuations of levels of quantum chaotic sys-
tems may follow the universal RMT results.13 One routine
method to study the behavior ofRsvd in ballistic quantum
dots is to employ the Gutzwiller formula.14 A cornerstone
was put by Berry.15 By taking into account the diagonal con-
tributions, he was able to use the Hannay-Ozorio de Almeida
(HOA) sum rule16 to reproduce the leading perturbative term
of the universal RMT results. Proceeding along this line, an
important progress was made in Ref. 17, where the off-
diagonal contributions were studied and the oscillation simi-
lar to the universal RMT results was thereby found.

In this paper, we will study the ballistic quantum dot with
weak diffractions, where the classical electronic motion is
chaotic(chaotic quantum dots). In such case, there is a new
scaletE, so-called Ehrenfest time, which has logarithmic de-
pendence on":

tE =
1

l
UlnS L

lF
DU ,

1

l
uln "u. s2d

Here l is the Lyapunov exponent,L is some macroscopic
size, andlF is the Fermi wavelength. Physically, it is the
time scale for an initial Gaussian wave packet(with the typi-
cal spatial spreading,lF) to develop to some macroscopic
size. At this scale, the electron motion shows a crossover
from a classical to quantum picture. Such a crossover also
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exists in other phenomena. Larkin and Ovchinikov18 found
that it is possible to use the method of classical trajectories in
the theory of superconductor fort, tE only. In addition they
were able to estimatetE for Lorentz gases of semiclassical
impurities. The logarithmic dependence on" of tE was also
found by Berman and Zaslavsky in the studies of classical
chaos of the kicked rotator model.19 In the past two decades,
it has been found that the Ehrenfest time plays an important
role in condensed matter. Wilkinson addressed the impor-
tance of such a scale in the semiclassical studies of sum rules
over generic matrix elements.20 Argaman studied the conduc-
tance in the scalev! tE

−1.21 In Ref. 22, Aleiner and Larkin
not only gave the estimation fortE, but also studied the weak
localization correction to the conductivity at the crossover
scalev, tE

−1. They showed that diffusons do not couple at
time t, tE while at time t* tE, the coupling reaches a uni-
versal value. As a result, the amplitude of the coupling be-
tween diffusons(Hikami box)23 is an oscillating function of
vtE. Later it was found that such amplitude has important
applications in studying the crossover from a classical to
quantum picture of shot noise24,25 and the density of states
(DOS) in Andreev billiard.26,27

For chaotic quantum dots with one macroscopic scaleL,
the ergodic timeterg,L /vF, which is of the same order of
l−1. In the semiclassics,tE opens a new regionD! tE

−1,v
! terg

−1. The manifestation oftE in the level statistics of chaotic
quantum dots was first studied in Ref. 28. According to the
RMT, asymptotically, for largev the two level correlation
function consists of two parts: One part is perturbative in
D /v. The other is nonperturbative, which oscillates with the
periodD. In Ref. 28, it was found that there is a small oscil-
lation with the period proportional totE

−1 correcting the per-
turbative part of the universalRsvd for GOE:29

DRp
osvd =

D3

2p3 Re
]2

]s− ivd2

G2
2svd

− iv
, s3d

whereG2svd is

G2svd = expSivtE −
v2l2tE

l2 D . s4d

Here l2 characterizes the fluctuations ofl [see Eqs.(A15)
and(A16) for the general definitions]. Typically, l andl2 are
of the same order.

In this paper, we study the two level correlation function
in the system with broken time-reversal symmetry. We recall
that in this case, the RMT predicts the famous result that the
two level correlation function is described by the elegant
formula

Rusvd = 1 −
D2

2p2v2S1 − cos
2pv

D
D . s5d

Asymptotically, for largev, the two level correlation func-
tion is exactly truncated at thesD /vd2 term.5,8 An important
question is whether it is the property of generic systems with
broken time-reversal symmetry or just comes out with the
RMT for GUE. In this paper, we will show that Eq.(5) just
comes out with RMT, or describes the universal limit of the
two level correlation function in quantum disorders. For bal-

listic quantum dots, surprisingly, we find that in the cross-
over regiontE

−1,v! terg
−1, the behavior of the two level cor-

relation function deviates from the universal Wigner-Dyson
statistics given by Eq.(5). More exactly, such deviations are
formulated as

DRusvd = DRp
usvd + DRnp

u svd, s6d

where

DRp
usvd = −

D4

8p4 Re
]2

]s− ivd2F G2
4svd

s− ivd2 −
G3

2svd
s− ivd2G s7d

and

G3svd = expS3

2
ivtE −

9

4

v2l2tE
l2 D , s8d

DRnp
u svd = 2

D3

p3v3 sin
2pv

D
ReFG2

2svd − v
]

]v
G2

2Sv

2
D − 1G .

s9d

Compared to Eq.(3), the deviations in systems with bro-
ken time-reversal symmetry are more interesting. First, we
point out that the main feature of these deviations is the
appearance of two types of oscillations in addition to the
oscillation described by the Wigner-Dyson statistics. One
type correcting the perturbative terms has the period,tE

−1,
which has a similar origin as Eq.(3). In fact, as we will show
in Sec. III, Eq.(3) comes from the two loop approximation.
In the broken time-reversal system, the two loop approxima-
tion vanishes. Instead, Eq.(7) comes from the three loop
approximation. They are the weak localization corrections to
the perturbative part of the universalRsvd in the crossover
region. Equation(9) belongs to the other type of oscillation,
which corrects the nonperturbative part of the universalRsvd
described by the universal Wigner-Dyson statistics and was
not found in the previous work.28 It has the periodsD−1

+atEd−1 with a a universal numerical factor. Both of them
have tE-dependent periods. In this way, we term them the
Ehrenfest oscillations. In the broken time-reversal system,
the oscillation with the periodsD−1+atEd−1 is stronger than
the oscillation with period,tE

−1. For the time-reversal sys-
tem, the Ehrenfest oscillation with the periodsD−1+atEd−1

does exist, but the amplitude is smaller than that described
by the Wigner-Dyson statistics. The latter is already small.

In Ref. 30, it is proposed that the amplitudes of both per-
turbative and nonperturbative parts ofRsvd are related to
each other through the classical spectrum determinant, which
depends on the eigenvalues of the Perron-Frobenius operator.
In the universal limitv! terg

−1, it coincides with the result of
RMT. Indeed, for the broken time-reversal system, we see
from Eq.(5) that the amplitudes of both parts are in the same
order. However, such a conjecture is no longer true once the
quantum corrections are taken into account. In fact, the lead-
ing quantum correction in the perturbative part, i.e., Eq.(7)
comes from the three loop approximation, while the leading
quantum correction in the nonperturbative part, i.e., Eq.(9)
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comes from the two-loop approximation. As a result, the
leading order quantum corrections lead to the Ehrenfest os-
cillations with different power inD /v.

It is worth pointing out that the methods of calculating
coupled multidiffusons(see Sec. IV) involved in the three
loop approximation are general. The idea may be applied to
find the weak localization correction to other physical quan-
tities (e.g., conductivity) in the ballistic quantum dots.

Technically, it is convenient to use the ballistic nonlinear
supermatrixs model sBNSsMd.30–32 We will introduce this
model in the next section. The quantum transport time, es-
sential to the regularizer will be estimated. The supersym-
metric action has two saddle pointsL and −kL.33 The per-
turbative expansion aroundL gives the weak localization
corrections to the leading perturbative term in the Wigner-
Dyson statistics, while the perturbative expansion around
−kL gives the quantum corrections to the leading Wigner-
Dyson oscillation. In Sec. III, we consider the perturbative
Rsvd for systems with time-reversal symmetry. The pertur-
bation theory nearL will be developed. In Sec. IV, we con-
sider systems with broken time-reversal symmetry. The per-
turbation theory nearL will be employed to study the weak
localization corrections inRpsvd. The products of the pertur-
bative expansion involve the product of multidiffusons. We
will calculate such coupled diffusons. Immediately, the lead-
ing order quantum corrections give the Ehrenfest oscillations
in Rp

usvd. In Sec. V, with the help of the global transforma-
tion, we will perform the perturbation expansion near −kL.
Consequently, we find the Ehrenfest oscillations in the non-
perturbative part ofRsvd but with different dependence of
the period ontE. The obtained results are summarized in Sec.
VI. Some of the calculations of multidiffusons are included
in the Appendix.

II. BALLISTIC NONLINEAR SUPERMATRIX s MODEL
„BNSsM …

Diffusive nonlinear supermatrixs model has become a
powerful tool in the studies ofRsvd in quantum disorders.5,33

A natural question is whether such a technique can be gen-
eralized to the ballistic case, especially individual quantum
dots, where the average over impurity configurations become
impossible. Towards this direction, the first suggestion is
given in Ref. 31, where a ballistic action was phenomeno-
logically proposed. The formal justification is obtained in
Ref. 30 under some crucial assumptions.34 The complete mi-
croscopic derivation is given for long-ranged disorders.32,35

In this section, we will introduce BNSsM. Moreover, the
roles played by the regularizer will be discussed.

A. Ballistic supersymmetric action

It is a standard method to introduce a supermatrix fieldQ.
It is defined on the superspacep^ g^ d, wherep stands for
the advanced/retarded block,g stands for the fermion/boson
block, andd stands for the time-reversal block. Similarly to
the quantum disordered case5 Rsvd, Eq. (1) can be expressed
as the integral overQ:

Rsvd = ReR̃svd,

R̃svd =
1

64
E DQSE dxiSTrkLQsxidD2

e−S. s10d

Here the subscript inxi means that the integration is re-
stricted on the energy shell.L is a supermatrix defined as

L = S1 0

0 − 1
D

p
^ 1g ^ 1d. s11d

The ballistic supersymmetric actionS is

S=
pn

2
E d1STrF iv+

2
LQ − T−1LL̂T +

1

tq
S ]Q

]f
D2G ,

s12d

wherev+=v+ i0+ with 0+ being an arbitrarily small positive

number. 1=sr ,nd , d1=drdn /2p. L̂=v ·¹−¹Usr d ·s] /]pd is
the Liouville operator withUsr d being the classical potential.
The matrixQ is generated byT:

Q = T−1LT, s13d

and takes the value on the corresponding symmetry
space H =G /K , where G and K are groups. For
GUE, H =Us1,1/2d /Us1/1d ^ Us1/1d. For GOE, H
=Us2,2/4d /Us2/2d ^ Us2/2d. Ts1d satisfies

T†s1dLTs1d = L, s14d

whereL is a matrix defined as

L = S1 0

0 k
D

p
^ 1d, k = S1 0

0 − 1
D

g
. s15d

The form of the regularizer is determined by the proper-
ties of the Liouville operator and diffraction mechanisms for
particular systems. In the presence of quantum impurities
with small-angle scattering, the regularizer has the form pre-
sented in Eq.(12) with 1/tq proportional to the impurity
density.22,28 In this paper, we will use it to regularize the
Liouville operator. According to the geometric theory of
diffractions,36 when an electron glances off a hard disk with
the radiusr, it emits diffraction rays into the shadowed
region deviating from the incident ray at the angle
u,slF /rd2/3.37 This leads to the estimation 1/tq

,svF /LdslF /rd2/3, which coincides with the estimation in
Ref. 38. For smooth potentials, it is estimated thattq

−1

,vFlF /L2,18,22 which is also obtained in Ref. 26 by analyz-
ing the spreading of the wave packet. In any cases,tq,"a. It
is important that the regularizer is not zero but small. In Ref.
22 (see also Sec. II D), it was shown that the Ehrenfest time
tE=s1/ldln ltq. For ltq@1, tE depends ontq logarithmi-
cally. In the semiclassics,tq is large but not infinite. Any
change of the form of the regularizer accounts only for the
value of the parametertq under logarithm.

B. The perturbation theory near L

To integrate over all the modes in Eqs.(10) and(12), we
will use the saddle point approximation. In quantum disor-
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ders, the Gaussian approximation leads to Altshuler and Sh-
klovskii’s result.33 For v, terg

−1, only the zero mode is impor-
tant, which is coordinate independent. The coupling between
diffusive modes accounts for the higher order term in the
saddle point approximation. Similarly, in chaotic quantum
dots, the eigenmodes of the regularized Liouville operator
may contribute toRsvd independently in the Gaussian ap-
proximation. Moreover, there is coupling between these
eigenmodes also.

The action(12) has two saddle pointsL and −kL.33 In
Sec. III and IV, we will study the case withQ close toL. As
in the disordered case,Rpsvd is dominated by this saddle
point.30,33 It is convenient to choose the parametrization be-
low for T:

T = 1 + iP. s16d

The Jacobian of this transformation is unity.P anticommutes
with L:

LP + PL = 0, P = S0 B

B̄ 0
D . s17d

According to Eq.(14), Ps1d satisfies the following condition:

Ps1d* = − CPs1̄dCT, s18d

where 1̄=sr ,−nd andC is the charge conjugation matrix

C = 1p ^ S− it2 0

0 t1
D

g

. s19d

The Pauli’s matrices

t0 = S1 0

0 1
D

d
, t1 = S0 1

1 0
D

d
, t2 = S0 − i

i 0
D

d

,

s20d

t3 = S1 0

0 − 1
D

d

act on the time-reversal block. Under the parametrization
(16), we have the following expansion:

STrfkLQg = 2o
j=1

`

STrfks− 1d jP2jg, s21d

STrfLQg = 2o
j=1

`

STrfs− 1d jP2jg s22d

and

S= S0 + Sint, s23d

S0 =
pn

2
E dxiSTrfPs− iv+ + LL̂RdPg, s24d

Sint = −
pn

2
E dxio

j=1

`

STrfs− 1d j+1P2j+1s− iv+ + LL̂RdPg.

s25d

Here the Perron-Frobenius operatorL̂R is defined as39

L̂R = v · ¹ − ¹ Usr d ·
]

]p
−

1

tq

]2

]f2 . s26d

These expansions are essential to the perturbative calcula-
tions.

Keeping the terms up toP2, we reproduce the leading
terms of the universal Wigner-Dyson results forRpsvd [see
Eqs.(27) and(28)]. In Sec. III and IV, we will calculate the
weak localization correction toRpsvd. The feature of finite
terg implies the existence of the gap in the spectrum of
Perron-Frobenius operator, which has been found in many

chaotic systems,40,41we will drop out theP2j+1LL̂RP term in
the effective interactionSint hereafter since it gives much
smaller contribution atv! terg

−1.

C. Quantum disorders

Now we discuss thetq dependence ofRsvd. In the pres-
ence of many quantum impurities(i.e., quantum disorders),
tq becomes very smallsvF /L!1/tqd. The last term in the
action suppresses all the nonuniform modes. In this case, one
can drop out the last two terms in Eq.(12) and putQ to be a
constant matrix.5 In this way, the universal RMT results are
reproduced. For GOE,

Rosvd = 1 −
D4

p4v2 sin2 pv

D

d

dv
F 1

v
sin

pv

D
GE

1

` 1

t
sin

pvt

D
dt

. 1 −
D2

p2v2 −
D4

p4v4S3

2
+

1

2
cos

2pv

D
D . s27d

For GUE,

Rusvd = 1 −
D2

p2v2 sin2 pv

D
= 1 −

D2

2p2v2S1 − cos
2pv

D
D .

s28d

In the second line of Eq.(27), we take the limitv@D. Ac-
tually, for largev, Rsvd can be asymptotically expressed as

Rsvd = Rpsvd + Rnpsvd, s29d

Rpsvd = 1 +o
n
SD

v
Dn

Cn, s30d

Rnpsvd = cos
2pv

D
o
n
SD

v
Dn

Dn + sin
2pv

D
o
n
SD

v
Dn

En,

s31d
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where Cn, Dn, and En are universal numerical constants.
Rsvd consists of two parts: One[denoted byRpsvd] is per-
turbative inD /v and the other[denoted byRnpsvd] is non-
perturbative. It is important that expandingRpsvd in terms of
D /v is a result of making the saddle point approximation to
Eqs.(10) and (12) (see Sec. III). That is, we expandQ near
L (i.e., T near 1) and take into account the fluctuations ofT
perturbatively. In particular, terms such assD /vdn,n.2
come from perturbative corrections to the Gaussian approxi-
mation in Eq.(10). Actually in the zero mode nonlinears
model, the action depends only on the parameterv /D. As a
result, the expansion ofRsvd, Eqs. (29)–(31) has no other
parameter dependence. The reason is that in the disordered
case, the Hikami box23 of zero modes has dispersion only at
v,ttr

−1@ETh, which are unimportant in the universal region
v!ETh. For v*ETh, nonzero diffusive modes are important
andRpsvd becomes nonuniversal.6 In the disordered case, the
weak localization correction to nonuniversalRpsvd6 is stud-
ied in Ref. 11.

D. The Ehrenfest time tE

As in the diffusive case,5 one may try to use uniformQ
only, dropping out the free Liouville term as well as the
regularizer in Eq.(10) in the regionv! terg

−1 to recover uni-
versal RMT results. However, this procedure may miss im-
portant physics as we will present in this paper. To favor
uniform Q, a necessary condition is that the strength of the
regularizer becomes comparable to that of the Liouville term.
The latter is of the order of,vF /L. As the initial nonuniform
Q relaxes to the uniform one, the regularizer gets increasing
,s1/tqdelt due to the Lyapunov instability. The two terms
become comparable att, tE=l−1ulnsvFtq/Ldu. Hence we
conclude that only in the regionv! tE

−1, Q may be put to be
a constant matrix in the supersymmetric action to reproduce
the universal RMT results.

It is important that as usual, in the regionv! tE
−1, the

diffusons become self-averaging in an individual quantum
dot. The reason is that the time scale for the deterministic
chaos to become random isterg. However, the time for two
identical trajectories(up to the Heisenberg uncertainty) to
decouple(i.e., become independent of each other) is much
longer, as we will show in Secs. III and IV, is of the order of
tE. Thus diffusons with the same coordinates are strongly
coupled in the regiontE

−1,v! terg
−1. The Hikami box thereby

acquires an additional dispersion atv, tE
−1 and crossovers to

the disordered limit atv! tE
−1. We point out that for GOE,

the appearance ofsD /vd4 term is a pure quantum effect.
Indeed, it comes from the coupling zero mode diffusons. In
this way, it is appropriate to identify such a term as the weak
localization correction toRpsvd. For GUE, the exact trunca-
tion at sD /vd2 term by no means implies the invalidity of the
perturbation theory, but is due to the exact cancellation of the
weak localization correction toRpsvd arising from Hikami
boxes with four-leg and six-leg vertexes, respectively. In Sec.
IV C and V C, we will see that thesD /vd4 term shows up

associating with the Ehrenfest oscillation in chaotic quantum
dots.

In this paper, we will studyRsvd in the regionD!v
! terg

−1. For typical quantum dots, there is only one macro-
scopic scaleL. The Lyapunov exponentl is of the same
order ofvF /L, terg

−1. Thus in the crossover from a semiclas-
sical to quantum picture, the Ehrenfest time effectively opens
a new regionD! tE

−1,v! terg
−1.

E. Classical limit tq\`

It is important that the regularizer introduces couplings
between different primitive periodic orbits. In the absence of
diffractions or quantum impurities,tq goes to the infinity. In
such a limit, Efetov and Kogan proved that Eqs.(10) and
(12) are compatible with the Gutzwiller trace formula.32 Fur-
thermore one may apply the HOA sum rule to reproduce the
leading perturbative term inRpsvd, which is of the order of
1/v2 [see Eqs.(27) and (28)]. It is important that the con-
stant term 1(so-called Weyl term) in Rpsvd, is pure classical
which characterizes the phase space volume of the energy
shell.7 So is thev−2 term, which arises from the interference
between two identical primitive periodic classical orbits(di-
agonal contribution).15,17Recently, by taking into account the
off-diagonal contributions, an oscillation similar to those in
Eqs.(27) and (28) was found.17

Thus, we conclude that in the classical limittq→`, Eqs.
(10) and(12) give the leading perturbative and nonperturba-
tive terms. We obtain the same results by making the Gauss-
ian approximation to Eqs.(10) and(12). This is not surpris-
ing. We argue that to pass from the Gutzwiller formula to the
leading 1/v2 term, the only condition is the ergodicity, hence
it is reasonable to expect that the saddle point approximation
remains good enough in the regionD!v! terg

−1. Actually,
such a term results from the free motion of diffusions. It is
worth noticing that so far the next to leading term,1/v4 in
Rpsvd, as one may expect from the universal RMT results
[see Eq.(27)], has not yet been identified in the framework
of Gutzwiller formula. As we discussed in Sec. II D, it is a
pure quantum effect(weak localization correction).

III. THE PERTURBATIVE R„v… IN SYSTEMS WITH
TIME-REVERSAL SYMMETRY

For systems with time-reversal symmetry, the weak local-
ization correction toRpsvd in chaotic quantum dots was first
studied by Aleiner and Larkin.28 Furthermore, we show in
this subsection that such a correction can be written as the
second derivative of the free function at the two loop levels.
This is important because it suggests that the result here, in
principle, is possible to be reproduced by using the replica
technique.11,42

A. Weak localization corrections to the perturbative R„v…

From Eqs.(10), (21), and(25), we can find thatRpsvd in
the order ofsD /vd3 is
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DRp
osvd = −

1

8
Re E DPe− S0E d1STrfkP4s1dg E d2STrfkP2s2dg −

1

16
Re E DPe− S0E d1STrfkP2s1dg E d2STrfkP2s2dg

3S1

2
ipnvD E d3STrfP4s3dg, s32d

where we keep the term withj =1 in the effective interactionSint.
To calculate Eq.(32), we need to use the Wick’s theorem, which implies that any even order moments of the Gaussian

integral can be factorized as the product of the momentP2 of the Gaussian integral. The contraction rules are28

s33d

and

s34d

Here Li
±= 1

2s1±Ld and M̄ =KCMTCTK. The diffusion
D0s1,2d is the solution of the regularized Liouville(Perron-
Frobenius) equation

s− iv + L̂R,1dD0s1,2d = 2pds1 − 2d. s35d

D0s1,2;td is the conditional probability for the particle ini-
tially at 2 to appear at 1 at timet. At the limit tq→`,
D0s1,2;td=dfR1−R2stdgdfn1−n2stdg with fR2std ,n2stdg the
classical trajectory starting fromfR2s0d ,n2s0dg;sR2,n2d.

By using Eqs.(33) and (34) and the following relation:

]

]sivd
D0s1,3d =E d2D0s1,2dD0s2,3d, s36d

we can calculate the first term in Eq.(32) as

I1 = 2SD

p
D3E d1d2kD0s1,2dD0s2,1̄dD0s1̄,1dl

= − 2SD

p
D3E d1KF ]

]s− ivd
D0s1,1̄dGD0s1̄,1dL .

s37d

This gives the contraction shown in Fig. 1(1). Then using the
contraction rules, Eqs.(33) and (34) we can find the second
term consists of two parts:

I2 = 2SD

p
D3

ivE d1d2d3kD0s1,2dD0s2,3dD0s3̄,1dD0s3,3̄dl

= − SD

p
D3

s− ivd E d3KF ]2

]s− ivd2D0s3̄,3dGD0s3,3̄dL
s38d

and

I3 = − SD

p
D3

s− ivd E d1d2d3

3kD0s3̄,1dD0s1,3dD0s3,2dD0s2,3̄dl

= − SD

p
D3

s− ivd E d3KF ]

]s− ivd
D0s3̄,3dG

3F ]

]s− ivd
D0s3,3̄dGL . s39d

These correspond to the contractions,(2) and (3) in Fig. 1,
respectively. Herek¯l denotes the self-averaging over the
energy spectrum. Adding them together, we find that Eq.(32)
gives the weak localization correction toRpsvd as

DRp
osvd = SD

p
D2

Re
]2

]s− ivd2F2svd, s40d

where the free energyF2svd is

F2svd =
iv

2
E d1kD0s1,1̄dD0s1̄,1dl. s41d

Actually in the right-hand side(RHS) of Eq. (41), one D0

comes from the diffusion and the otherD0 comes from the
Cooperon.43

F2svd is the ballistic counterpart of the free energy in
disordered systems, which is obtained by using the replica
technique.11 In the disordered case or in the limitD!v
! tE

−1, one can justify thatF2svd is imaginary by substituting
zero mode diffuson, i.e.,D0s1,2d=1/s−ivd into Eq.(41). As
a result, according to Eq.(40), DRp

osvd vanishes.

B. The Ehrenfest oscillations

Now we show that for chaotic quantum dots, in the cross-
over region tE

−1,v! terg
−1, Eqs. (40) and (41) lead to the

Ehrenfest oscillations with the period,tE
−1. We note that the

diffusionsD0s1, 1̄d andD0s1̄,1d are decoupled, which means
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kD0s1,1̄dD0s1̄,1dl = kD0s1,1̄dlkD0s1̄,1dl. s42d

Actually D0s1, 1̄d stands for the probability of a trajectory

initiating from 1 and returning to 1¯in the phase space, while

D0s1̄,1d stands for the probability of a trajectory initiating

from 1̄ and returning to 1. Such two trajectories start from
the same place in the real space with opposite directions. In
this way, they are distant parts in the phase space. Therefore,
we have Eq.(42).

In Ref. 22, it was found that

D0s1,1̄d =
G2svd
− iv+ . s43d

As a result,

kD0s1,1̄dD0s1̄,1dl =
G2

2svd
s− ivd2 . s44d

From this we see thatG2
2svd is the effective Hikami box. In

the limit v! tE
−1,G2

2svd→1. The Hikami box becomes a con-
stant, as in the diffusive disordered case.23 In the crossover
region, it acquires an additional dispersion atv, tE

−1.
Substituting Eqs.(42) and (44) into Eq. (40), we obtain

Eq. (3).28,29ThusRp
o acquires an Ehrenfest oscillation correc-

tion with the period,tE
−1. Such an oscillation originates from

the coupling between a diffuson and a Cooperon, which is
the reminiscence of Hikami box in the quantum disorders. In
this way, essentially it is different from the Wigner-Dyson
oscillation In the lowv limit D,v! tE

−1, such an oscillation
gradually diminishes. Actually similar corrections toRpsvd
persist in higher order terms.

Alternatively, one may Fourier transformRsvd as the

form factorKstd=sp /Dde R̃osvde−ispv/Ddtdv before taking the

real part.Rsvd=ReR̃osvd [see Eq.(3)]. The RMT predicts
Kstd.2t− t2 at t!1.5,8 We know that the linear term is pure
classical(see Sec. II E). In fact, from Eq.(3) we see that
Kstd=2t− t2ust− tEd at l2=0. At t, tE the t2 term disappears,
while at t. tE it coincides with that predicted by the zero-
dimensional nonlinears model.5 In Ref. 44, it is proven that
in the case ofl2=0, classical trajectories do not contribute to
the −t2 term even if the off-diagonal contributions are con-
sidered. To reproduce this term, the authors of Ref. 44 intro-
duce some correction to the probability of self-crossing clas-
sical trajectories.

In this section, we prove the existence of the free energy
at the two loop level by using BNSsM [see Eqs.(40), (41),
and (3)]. In fact, as we will see in the next section, at the
three-loop level, the free energy does exist also. In this way,
it is natural to expect that in general, we can write the per-
turbative part ofRsvd as the second order derivative of the
free energyFsvd, i.e.,

Rpsvd = SD

p
D2

Re
]2

]s− ivd2Fsvd. s45d

Equation(45) was first established for quantum disorders by
using the replica technique.11 We are not aware of any proof
about it in quantum chaos.

IV. THE PERTURBATIVE R„v… IN SYSTEMS WITH
BROKEN TIME-REVERSAL SYMMETRY

In Sec. III we see that the weak localization correction to
Rpsvd at the two loop level originates from the coupling
between a diffuson and a Cooperon. In the broken time-
reversal systems, Cooperon modes are suppressed by the ap-
plied magnetic field. As a result ofQ, the components are
restricted onk=0,3 only in the d space[see Eq.(20)]. No
longer exist the contraction rules Eqs.(33) and(34). Instead,
we can find the contraction rules below:

s46d

and

FIG. 1. The diagrams contribute toRpsvd in the order ofsD /vd3

in systems with time-reversal symmetry. The cross and the square
,StrfkP2g and,StrfkP4g, respectively, come from the expansion in
the prefactor, see Eq.(21). The dot,ivStrfP4g, comes from the
effective interaction, see Eq.(25). In the figure, we putD=1.
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s47d

by direct calculations. Then applying the Wick’s theorem and
the contraction rules to Eq.(32), we find that it vanishes as
expected.

In the disordered case, it was first found that the leading
weak localization corrections toRpsvd in the broken time-
reversal system are at the three loop level by using the rep-
lica technique.11 To our best knowledge, the weak localiza-
tion of Rpsvd in the quantum chaotic systems with the
broken time-reversal symmetry has not yet been studied. In
this section, we prove that for the latter case,Rpsvd can be
expressed as the second derivative of the free energy at the
three loop level. Moreover, we find that thesD /vd4 term is

not exactly zero as expected by the universal Wigner-Dyson
statistics. Instead, it exhibits an Ehrenfest oscillation, which
shows a crossover to its universal limit atv& tE

−1.

A. Weak localization corrections to the perturbative R„v…

From Eqs.(10), (21), and(25), we can find thatRpsvd in
the order ofsD /vd4 is

DRp
usvd = DRp,3b

u svd + DRp,3d
u svd. s48d

Here

DRp,3b
u svd =

1

16
ReE DPe−S0E d1STrfkP2s1dg E d2STrfkP6s2dg +

1

16
ReE DPe−S0E d1STrfkP2s1dg E d2STrfkP2s2dg

3S1

2
ipnvD E d3STrfP6s3dg, s49d

where we keep the term withj =2 in the effective interactionSint:

DRp,3d
u svd =

1

16
ReE DPe−S0E d1STrfkP4s1dg E d2STrfkP4s2dg +

1

16
ReE DPe−S0E d1STrfkP2s1dg E d2STrfkP4s2dg

3S1

2
ipnvD E d3STrfP4s3dg +

1

32
ReE DPe−S0E d1STrfkP2s1dg E d2STrfkP2s2dg

3S1

2
ipnvD2E d3STrfP4s3dg E d4STrfP4s4dg. s50d

In Eq. (50), we consider up to the second order effective interaction with the termj =1 kept.
First, we consider Eq.(49). The first term in Eq.(49) is found to be

DRp,b1
u svd = −

3

4
SD

p
D4E d1d2kD0s1,2dD0s2,1dD0s2,2dD0s2,2dl =

3

4
SD

p
D4E d1KF ]

]s− ivd
D0s2,2dGD0s2,2dD0s2,2dL

s51d

by using Eqs.(46) and (47). This gives the contraction shown in(b1), Fig. 2. The other term in Eq.(49) gives

DRp,b2
u svd =

3

4
SD

p
D4

s− ivd E d1d2d3kD0s1,3dD0s3,1dD0s2,3dD0s3,2dD0s3,3dl

=
3

4
SD

p
D4

s− ivd E d3KF ]

]s− ivd
D0s3,3dGF ]

]s− ivd
D0s3,3dGD0s3,3dL s52d

and
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DRp,b3
u svd =

3

4
SD

p
D4

s− ivd E d1d2d3kD0s3,1dD0s1,2dD0s2,3dD0s3,3dD0s3,3dl

=
3

8
SD

p
D4

s− ivd E d3KF ]2

]s− ivd2D0s3,3dGD0s3,3dD0s3,3dL , s53d

which corresponds to two ways of contraction shown in(b2) and (b3) Fig. 2. Adding them together, we find the free energy
F3bsvd to be [cf. Eq. (45)]

F3bsvd =
D2

8p2s− ivd E d1kD0s1,1dD0s1,1dD0s1,1dl. s54d

Now we turn to consider Eq.(50). The first term in Eq.(50) is reduced into

DRp,d1
u svd = −

1

4
SD

p
D4E d1d2kD0s1,2dD0s1,2dD0s2,1dD0s2,1dl s55d

by using Eqs.(46) and (47), which gives the contraction shown in(d1), Fig. 3. The second term in Eq.(50) is

DRp,d2
u svd = 2SD

p
D4

s− ivd E d1d2d3kD0s2,3dD0s2,3dD0s3,2dD0s3,1dD0s1,2dl

= − 2SD

p
D4

s− ivd E d2d3KD0s2,3dD0s2,3dD0s3,2dF ]

]s− ivd
D0s3,2dGL , s56d

which gives the contraction shown in(d2), Fig. 3. The diagrams(d3) and(d4) in Fig. 3 come from the third term in Eq.(50):

DRp,d3
u svd = − SD

p
D4

s− ivd2E d1d2d3d4kD0s3,4dD0s3,4dD0s4,3dD0s4,2dD0s2,1dD0s1,3dl

= −
1

2
SD

p
D4

s− ivd2E d3d4KD0s3,4dD0s3,4dD0s4,3dF ]2

]s− ivd2D0s4,3dGL , s57d

DRp,d4
u svd = − SD

p
D4

s− ivd2E d1d2d3d4kD0s3,2dD0s2,4dD0s3,4dD0s4,3dD0s4,1dD0s1,3dl

−
1

2
SD

p
D4

s− ivd2E d1d2d3d4kD0s3,1dD0s1,4dD0s4,3dD0s3,2dD0s2,4dD0s4,3dl

= − SD

p
D4

s− ivd2E d3d4KF ]

]s− ivd
D0s3,4dGD0s3,4dD0s4,3dF ]

]s− ivd
D0s4,3dGL

−
1

2
SD

p
D4

s− ivd2E d3d4KF ]

]s− ivd
D0s3,4dGF ]

]s− ivd
D0s3,4dGD0s4,3dD0s4,3dL . s58d

Collecting Eqs.(55)–(58) together, we find the free energy
F3dsvd to be [cf. Eq. (45)]

F3dsvd = −
D2

8p2s− ivd2

3E d1d2kD0s1,2dD0s1,2dD0s2,1dD0s2,1dl.

s59d

Hence we prove Eq.(45) at the three loop level. We see
that Eqs.(49) and(50) give the weak localization correction
to Rpsvd, up to the order ofsD /vd4 as

DRp
usvd = SD

p
D2

Re
]2

]s− ivd2sF3bsvd + F3dsvdd. s60d

B. The couplings of diffusons

In this subsection we will calculate the product of diffu-
sions appearing in Eqs.(54) and(59). We emphasize that it is
difficult to use the standard diagram technique45 to calculate
these quantities. Instead, it is more convenient to use the
semiclassical method. In this section, we will follow the
techniques of Ref. 22. This immediately leads to the Ehren-
fest oscillations in the perturbativeRsvd. It is important that
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the averagek¯l is performed over the energy for fixed po-
tentials, not impurity configurations.

1. The couplings of two diffusons

To calculate Eq.(59), we notice that there is the following
relation:

kD0s1,2dD0s1,2dD0s2,1dD0s2,1dl

= kD0s1,2dD0s1,2dlkD0s2,1dD0s2,1dl s61d

for similar reasons as discussions of Eq.(42). Actually
D0s1,2d stands for the probability of a trajectory initiating
from 1 and ending at 2 in the phase space, whileD0s2,1d
stands for the probability of a trajectory initiating from 2 and
ending at 1. Thus such two trajectories are distant parts and
decoupled. ButkD0s1,2dD0s1,2dl cannot be factorized at the
region near 1 or 2, where two trajectories become very close
to each other.

We will study the quantitykD0s11,2dD0s12,2dl instead of
kD0s1,2dD0s1,2dl and put 11=12 in the final answer. Here
we use the subscripts 1 and 2 to denote the small deviations
in the momentum direction and position. From Eq.(35), we
find the motion equation to be

S− 2iv + L̂11
+ L̂12

−
1

tq

]2

]f11

2 −
1

tq

]2

]f12

2 DD0s11,2dD0s12,2d

= 2pfd11,2D0s12,2d + d12,2D0s11,2dg. s62d

We will use sn1,R1d to denote the motion of the center of
mass whilesf1,r1d to denote the relative motion.22 The op-

eratorsL̂11
+L̂12

d is written as

L̂1 + L̂2 = L̂c,1 + L̂r,1,

L̂c,1 = vFn1 ·
]

]R1
− ¹ UsR1d ·

]

]p1
,

L̂r,1 = − vFf1
]

]r1
+

]2U

pF]R',1
2 r1

]

]f1
, s63d

where R' denote the coordinate perpendicular to the mo-
mentum direction. For the convenience below, we further
introduce the change of variables

z1 = lnFf1
2 + Sr1

L
D2G1/2

, a1 = arctan
f1L

r1
. s64d

At v!l, the deterministic motion of the center of mass
becomes random. Thus, the quantityD0s11,2dD0s12,2d is
self-averaging overR1,n1. In this way, we can introduce the
following quantity:

Msf1,r1;2,2d ; kD0s11,2dD0s12,2dl

=E dR1dn1

2pA
D0s11,2dD0s12,2d. s65d

By definition we imply thatuz1u.uz2u@1. In this way, we
can see that the particular solution due to the RHS of Eq.
(62) is of the order of 1/lv and depends onz1−z2.0.
Therefore, we can ignore the RHS of Eq.(62) since the par-
ticular solution is much smaller than 1/v2 in the universal
region: v!l. Then averaging Eq.(63) over n1,R1 and a1,
we obtain22

F2iv + l
]

]z1
+

l2

2

]2

]z1
2 +

e−2z1

2tq

]

]z1
S1 − g

2

]

]z1
+ gDGMsz1;2,2d

= 0. s66d

Equation (66) exists only at the Lyapunov region, i.e.,r
!L ,f!1s−z1@1d. At z1,0, Eq.(66) is not applicable and
the solution ofM does not depend onz1 any more. Since we
are interested in the regionv, tE

−1, the coordinates 1 and 2

FIG. 2. The diagrams with six-leg vertex contribute toRpsvd in
the order ofsD /vd4 in systems with broken time-reversal symmetry.
The cross and square,StrfkP2g and,StrfkP6g, respectively, come
from the expansion in the prefactor, see Eq.(21). The dot
,ivStrfP6g comes from the effective interaction, see Eq.(25). In
the figure, we putD=1.

FIG. 3. The diagrams with four-leg vertex contribute toRpsvd in
the order ofsD /vd4 in systems with broken time-reversal symmetry.
The cross and the square,StrfkP2g and ,StrfkP4g, respectively,
come from the expansion in the prefactor, see Eq.(21). The dot
,ivStrfP4g comes from the effective interaction, see Eq.(25). In
the figure, we putD=1.
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are independent from each other. Hencez1.z2, by definition,
implies that the deterministic relative motion(Lyapunov
asymptotic instability) of z1 must reachz1=0 in the course of
time. In this way, Eq.(66) must be supplemented by the
boundary conditionMsv , z1=0d=M8. M8 will be calculated
below.

The solution of Eq.(66) is

M = w2sv,z1dM8, s67d

wherew2sv ,z1d is found to be22

w2sv,z1d = expFS iv

l
−

v2l2

l3 Dln
ltq

ltqe
2z1 + g/2

G s68d

up to the logarithmic accuracy.g&1 is a numerical factor.
Any other regularizer with the form of the second order el-
liptic operator changes the value ofg only. tE is the Ehrenfest
time

tE =
1

l
uln ltqu. s69d

In the limit z1→−`, M becomes

M = G2svdM8. s70d

At the classical limittq→`, w2→0 asz1→−`. But this is
not the case for finitetq. As we see from Eq.(68), the clas-
sical solutionw2sv ,z1d stq=`d thereby acquires a lower cut-
off at z1=−1

2 ln ltq. That is, we may regardw2sv ,−`d as
w2sv ,−1

2 ln ltqd.
To find M8, we repeat the procedure of deriving Eq.(62)

and study a more general quantityUsv ; 2̄1, 2̄2d ,M8

=Usv ; 2̄, 2̄d. Similarly to Eq.(66), Usz2̄;vd is the solution of
the equation

F2iv + l
]

]z2̄
+

l2

2

]2

]z
2̄

2 +
e−2z2̄

2tq

]

]z2̄
S1 − g

2

]

]z2̄
+ gDGUsz2̄;vd

= 0, s71d

wherez2̄=z2 characterizes the separation of two nearby tra-

jectories centered at 2.̄ We drop out the RHS for the same
reasons as deriving Eq.(66). To find the solution of Eq.(71).
We repeat the procedure of Eqs.(67)–(70), except that the
boundary condition is replaced by

Usz2̄ = 0,vd =
1

s− ivd2 . s72d

Equation (72) means that if the deviationsr1,r2,Lsz1

=z2=0d, then the two trajectories, connecting 11 and 21, 12

and 22, respectively, are independent from each other. Thus
we havekD0D0l=kD0l2. Similarly, we have

M8 = Usz2 = − `d = G2svd
1

s− ivd2 . s73d

Substituting Eq.(73) into Eq. (70), we find that

kD0s1,2dD0s1,2dl ; M =
G2

2svd
s− ivd2 . s74d

At v!l,

kD0s1,1dD0s1,1dl = kD0s1,2dD0s1,2dl =
G2

2svd
s− ivd2 . s75d

We would like to mention that in the case of long-ranged
disorders withtq=`, an equation similar to Eq.(66) was
found by using the path integral technique.46 In fact, in this
case,l andl2 were calculated[see Appendix of Ref. 22]. It
is found thatl2.4l.

2. The couplings of three diffusons

Now we turn to calculate Eq.(54). First, we note that
although the coordinates inD0s1,1d coincide with each
other, they are not related to each other at the regionv!l,
because the trajectory travels for a long time before returning
to the same position in the phase space. Thus, to calculate
kD0s1,1dD0s1,1dD0s1,1dl in Eq. (54), we will calculate a
more general quantity, saykD0s1,2dD0s1,2dD0s1,2dl.

We proceed along the line of calculating two coupled dif-
fusions. Similarly to Eq.(62), we have the following equa-
tion:

S− 3iv + L̂11
+ L̂12

+ L̂13
−

1

tq

]2

]f11

2 −
1

tq

]2

]f12

2

−
1

tq

]2

]f13

2 DD0s11,2dD0s12,2dD0s13,2d

= 2pfd11,2D0s12,2dD0s13,2d + d12,2D0s11,2dD0s13,2d

+ d13,2D0s11,2dD0s12,2dg. s76d

Then we can separate the motion into the part of the center of
mass and the relative part by introducing the change of vari-
ables

R1 =
R11

+ R12
+ R13

3
, f1 =

f11
+ f12

+ f13

3
,

r 11
= R11

− R1, u1 = f11
− f1,

r 12
= R12

− R1, u2 = f12
− f1. s77d

Heresf1,R1d denotes the coordinates of the center of mass.
The relative motion is described by the set of variables
sr 11

,r 12
;u1,u2d. The transverse components ofr 11

andr 12
are

denoted asr1 and r2. With such a change of variables, we
rewrite Eq.(76) as

F− 3iv + L̂R1
+ L̂r 11

+ L̂r 12
−

1

3tq

]2

]f1
2 −

2

3

1

tq
S ]2

]u1
2 +

]2

]u2
2

−
]2

]u1]u2
DGD0s11,2dD0s12,2dD0s13,2d = 0,

L̂R1
= vFn1 ·

]

]R1
− ¹ UsR1d ·

]

]p1
,
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L̂r 11
= − vFu1

]

]r1
+

]2U

pF]R',1
2 r1

]

]u1
,

L̂r 12
= − vFu2

]

]r2
+

]2U

pF]R',1
2 r2

]

]u2
. s78d

Here we expandu ,r up to the first order. We again drop out
the RHS of Eq.(76). In Eq. (78), the form of the regularizer
has changed compared to Eq.(62). However, as we dis-
cussed in Sec. II A, such a change accounts only for the
value of tq under logarithm. Consequently, up to the loga-
rithmic accuracy,tE remains unchanged. In view of this, we
ignore the regularizer in the discussions below. To solve Eq.
(78), we will proceed along the line of calculating two
coupled diffusons. Here we will show the main result and
give the details in the Appendix. Equation(78) can be re-
duced as

S3iv + l
]

]x
+

l2

2

]2

]x2DNsx;2,2d = 0,

x =
1

2
SlnÎu1

2 + Sr1

L
D2

+ lnÎu2
2 + Sr2

L
D2D , s79d

where Nsx;2 ,2d is the self-averaging of
D0s11,2dD0s12,2dD0s13,2d over the center of massR1,n1:

Nsx;2,2d = Nsu,r;2,2d ; kD0s11,2dD0s12,2dD0s13,2dl

=E DR1Dn1

2pA
D0s11,2dD0s12,2dD0s13,2d. s80d

The similar equation was proposed in Ref. 26. It is impor-
tant that herel andl2 stay exactly the same as those appear-
ing in G2svd (see the Appendix). Compared to Eq.(66), Eq.
(79) differs from it in the frequencysv→ 3

2vd and the vari-
ablesz→xd. Therefore, in the limittq→`, the homogeneous
solution of Eq.(79), sayw3sx;vd is

w3sx;vd = w2Sx;
3

2
vD s81d

supplemented by the boundary condition, which isw3sx
=0;vd=1. Up to the logarithmic accuracy, we obtain

G3svd ; lim
x→−`

w3sx;vd = w3s− l−1ln ltq;vd

= expS3

2
ivtE −

9

4

v2l2tE
l2 D . s82d

Then we follow the procedure of Eqs.(67)–(74) to get

kD0s1,2dD0s1,2dD0s1,2dl = Nsx → − `,vd =
G3

2svd
s− ivd3 .

s83d

In fact, we have a general expression forn-coupled diffu-
sions, sayGnsvd. One is able to prove thatGnsvd is also
oscillating:,expsinvtE/2d in the same spirit, which can be
obtained in an alternative method, i.e., averaging the classi-
cal solution stq→`d over a minimal Gaussian wave

packet.26 It is in order to make the following observations:
For Gnsvd, the oscillating part does not depend on the par-
ticular choice of the regularizer except thattE depends ontq
parametrically.

C. The Ehrenfest oscillations inRp
u
„v…

F3bsvd and F3dsvd are the ballistic counterparts of the
zero mode approximation of the free energy in disordered
systems. In the disordered limit orD!v! tE

−1, one can
verify thatF3bsvd andF3dsvd cancel each other and Eq.(60)
gives vanishing result forDRp

usvd by puttingD0s1,2d to be
zero mode diffuson, i.e.,D0s1,2d=1/s−ivd. However, as we
will see below, it is not so for chaotic quantum dots in the
crossover regiontE

−1,v! terg
−1. Instead, Eqs.(54), (59), and

(60) lead to the Ehrenfest oscillation with the period,tE
−1.

Substituting Eq.(83) into Eq. (54), we find that

F3bsvd =
D2

8p2

G3
2svd

s− ivd2 . s84d

Taking Eq.(61) into account, we find

F3dsvd = −
D2

8p2

G2
4svd

s− ivd2 . s85d

Therefore, we obtain Eq.(7). We see thatRp
usvd acquires an

oscillation correction atvtE,1 with the period,tE
−1.

We should emphasize that the appearance of the Ehrenfest
oscillations,einvtE,n=1,2,3, . . ., do notdepend on a par-
ticular form of the regularizer, althoughtE does. This can be
understood in the following way. In the Lyapunov region,n
coupled diffusions(Hikami box with 2n-leg vertex) contrib-
ute to Rsvd (in the disordered limit) an additional factor
,sGe+v/2

R Ge−v/2
A dn. In the semiclassics,Ge

R,eiel/vF and Ge
A

,e−i«l/vF with l being the length of the trajectory piece. Up to
the logarithmic accuracy, the Lyapunov regions have the
same lengthvFtE. In this waysGe+v/2

R Ge−v/2
A dn,einvtE. In gen-

eral,Rpsvd can be expressed as

Rpsvd = 1 +o
n

SD

v
Dn

CnsvtEd = 1 +
D2

p2

]2

]v2Fsvd,

Fsvd = o
L

S D

− iv
DL−1

o
V,S

dL+V−S,1C̃SsvtEd, s86d

whereL ,V andScharacterize the topology of the diagram of
the free energy, from whichRpsvd is obtained.L ,SandV are
the number of loops, sides(diffusons) and vertices(Hikami
boxes), respectively. The constraint comes from the well
known Euler’s theorem in the topology.47 For a topological
diagram of the free energy withSsides(diffusions), we have
sGe+v/2

R Ge−v/2
A dS,eiSvtE. In the systems with time-reversal

symmetry, the leading corrections come from the two loop
diagram,L=2, S=2, andV=1, hence the leading Ehrenfest
oscillation inRpsvd is ,ei2vtE. In systems with broken time-
reversal symmetry, the leading corrections come from three
loop diagrams. The diagram with the Hikami box of six-leg
vertex (L=3, S=3, andV=1) leads to the,ei3vtE. The dia-
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gram with two Hikami boxes(L=3, S=4, andV=2) leads to
the Ehrenfest oscillation,ei4vtE.

V. THE NONPERTURBATIVE PART OF R„v… IN SYSTEMS
WITH BROKEN TIME-REVERSAL SYMMETRY

In Secs. III and IV, we study the perturbative expansion
around the saddle pointL. As a result, it gives the weak
localization corrections to the leading perturbative term of
the universal Wigner-Dyson statistics. However, it is known
that such an expansion cannot reproduce the Wigner-Dyson
oscillation.33 Instead, Andreev and Altshuler found that such
a nonperturbative term is controlled by other nontrivial
saddle points.33 In this section, we apply their method to
study the leading order corrections to the universal Wigner-
Dyson oscillation in the regionD!v, tE

−1! terg
−1.

A. The global transformation

For GOE and GUE, the other saddle point is −kL.33 To
establish a perturbation theory, a trick, so-called global trans-
formation onH is introduced, which maps the saddle point
−kL to L. That is, we perform a global coordinate transfor-
mation

Q → Q8 = U0
−1QU0, T → T8 = TU0, s87d

whereU0PH satisfies −U0
−1kLU0=L. It is important that the

Jabobian is unity andU0 does not depend on the coordinates.
Under the transformation(87),

Q8 = T8−1LT8. s88d

Thus, we can rewriteRsvd, Eq. (10), as

Rsvd =
1

64
Re E DQ8SE dxiSTrfLQ8sxidgD2

e−S̃eff,

s89d

whereS̃eff is the action

S̃eff =
pn

2
E dxiSTrF−

iv+

2
kLQ8 − T8−1LL̂T8 +

1

tq
S ]Q8

]f
D2G .

s90d

Although the findings in Ref. 33 are asymptotic, it is im-
portant that the perturbation near the nontrivial saddle points
take into account nonzero mode approximations, which, in
principle, cannot be done by zero-dimensional supermatrixs
model. Indeed, for BNSsM, the Gaussian approximation is
not applicable32 in the nonuniversal regionv@ terg

−1. How-
ever, we believe that the perturbation near saddle points is
applicable in the universal regionv! terg

−1, because the rep-
etition problem17 is not essential in this case. In the ballistic
case, the new regiontE

−1,v! terg
−1 appears, within which the

relaxation of the momentum is not complete. As a result, one
cannot putQ to be a constant matrix. The parametrization
(16)–(18) still holds forT8. Furthermore, we can expandB in
terms of the Pauli’s matrices

B = o
k

Bk ^ td,k, B̄ = o
k

B̄k ^ td,k. s91d

The modesk=0,3 stand for the diffusion and the modesk
=1,2stand for the Cooperon. They satisfy the same equation
(35) in the absence of magnetic fields. In this way, we call
both of them diffusion modes in this paper unless special
explanation. The modesk=1,2 aresuppressed in systems
with broken time-reversal symmetry due to the destruction of
the interference between a trajectory and its time-reversed
partner. In this paper, we will study only this case. Due to

Eq. (14), the matricesBk and B̄k satisfy

B̄k = kBk
†, k = 0,1,2,3. s92d

Bk may be parametrized as

Bk = Sak isk

hk
* ibk

D , s93d

whereaks1d andbks1d are ordinary variables, whilesks1d and
hks1d are Grassmann variables. Then we substitute Eqs.
(91)–(93) into Eq. (89) and keep the quadratic terms in
ak,bk,sk, andhk

* to rewrite Eq.(90) as

S̃eff
0 = − 2ipv + S̃0. s94d

S̃0 = 2pE dxi o
k=0,3

fak
*sxidsiv+ + L̂Rdaksxid + bk

*sxids− iv+

+ L̂Rdbksxid + sk
*sxidL̂Rsksxid + hksxidL̂Rhk

*sxidg . s95d

It is important to see that the new Gaussian actionS̃0 does
not include zero mode contribution of Grassmann fields.

Thus, for a generic Gaussian integral with the actionS̃0 not
to vanish, the prefactor must consist of all the independent
zero mode Grassmann variables. In this way, by expanding
Q8 in the prefactor up to the second order, and taking into
account the zero mode bosonic and Grassmann fields only,
the universal Wigner-Dyson oscillation is reproduced in
Refs. 30 and 33.

B. Quantum corrections

The leading order corrections to the universal Wigner-
Dyson oscillation has the amplitude,sD /vd3 at v@D. To
see this, one need to expandT8−1 and keepQ up to P4 and
take into account the first order effective interaction similarly
to Eq. (25). As a result, we obtain

DRnp
u svd =

1

64
Re E DPe2ipv/De−S̃0

3F− 8E d1STrfP2s1dg E d2STrfP4s2dg

− 4E d1STrfP2s1dg E d2STrfP2s2dgS̃eff
intG ,

S̃eff
int = −

pn

2
ivE dxiSTrfkP4sxidg. s96d
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To calculate Eq.(96), we need to separate the zero mode
Grassmann fields from all the other fields and integrate them
out first. Consequently we are left with a Gaussian integral
involving the bosonic and nonzero mode Grassmann fields.
Then we can factorize the integral into the product of the
following pairs:

4pnZ−1E Dfa * ab* bs * shh * gak
*s1daks2de−S̃0

= D0s1,2;−vd, s97d

4pnZ−1E Dfa * ab* bs * shh * gbk
*s1dbks2de−S̃0

= D0s1,2;vd, s98d

4pnZ−1E Dfa * ab* bs * shh * gsk
*s1dsks2de−S̃0

= D0s1,2;0d, s99d

4pnZ−1E Dfa * ab* bs * shh * ghks1dhk
*s2de−S̃0

= D0s1,2;0d, s100d

wherek=0,3, andD0s1,2;0d satisfies the following equa-
tion:

L̂RD0s1,2;0d = 2pfds1 − 2d − 1g. s101d

In the square integrable space, the overall factor,Z can be
approximated as

Z =E Dfa * ab* bs * shh * ge−S̃0
.

D2

s4pd2

1

v2 .

s102d

We note thatZÞ1 becauseS̃0 is not supersymmetric and do
not integrate out zero mode Grassmann fields. Actually with
nonzero modes integrated out, we come up with a factor
s1−ad, wherea=okv

2/lk
2 and the sum is over all the non-

zero eigenvalueslk of the Perron-Frobenius operator.10,30,48

In the universal regionv!l, this factor crossovers to the
universal value 1. Furthermore, after integrating out zero
mode bosonic fields, we obtain Eq.(102). The measure
Dfa* ab* bs* shh* g is on all the independent bosonic and
nonzero mode Grassmann fields. In addition, one needs to
take into account Eq.(14) to reduce the number of integra-
tion variables by half.

Equation(96) involves the Gaussian integral of bosonic
and nonzero mode Grassmann fields, which can be reduced
into the sum with each term the products of pairs[Eqs.
(97)–(100)]. Equation(96) corresponds to four nonvanishing
diagrams shown in Fig. 4. One should not confuse these
diagrams with Fig. 1. Here the Hikami box in the eight-
shaped diagram stands for the coupling between two diffu-
sions, not a diffusion and a Cooperon, as in the orthogonal
case. It is important that such a diagram is exactly zero in the
unitary case without the global transformation. In this way,

the existence of these diagrams results from the supersym-
metry breaking.

The first term in the RHS of Eq.(96) gives

DRnp,1
u svd = − 2

D3

p3v2 ReSe2piv/DE d3fkD0s3,3;−vdl

− kD0s3,3;vdlgD . − 4
D3

p3v3 Im e2piv/D

s103d

which is the contraction shown in Fig. 4(1). Above we use
the fact that atv!l, we need to take into account only the
zero mode in the diffusons.

The second term in Eq.(96) has two nonvanishing con-
traction. One is shown in Fig. 4(2) while the other is shown
in Figs. 4(3) and 4(4). In Fig. 4(2), only the bosonic fields
are involved. By using Eqs.(97) and (98), we find it to be

DRnp,2
u svd = −

D3

p3v2 ReSs− ivde2piv/DE d2E d3fkD0s3,2;

− vdD0s2,3;−vdl + kD0s3,2;vdD0s2,3;vdlgD .

s104d

It should be emphasized that the order of the arguments ap-
pearing in the product of two diffusons above is essentially
different from what we calculated in Sec. IV B 1[see Eq.
(74)]. we can use Eq.(36) to reduce the two diffusons in Eq.
(104) into one diffuson. Thus, we can approximate the prod-
uct of two diffusons as 1/s±ivd2 in the regionv!l.

FIG. 4. Nonvanishing diagrams contribute toRnpsvd in the order
of sD /vd3 for systems with broken time-reversal symmetry. The
cross and the square,StrfP2g and ,StrfP4g, respectively, come
from the expansion in the prefactor, see Eq.(22). The dot
,ivStrfkP4g comes from the effective interaction. The solid line
stands for the bosonic propagator, the dashed line stands for the
zero mode Grassmann propagator, and the dashed-dotted line stands
for the nonzero mode Grassmann propagator. In the figure, we put
D=1.

C. TIAN AND A. I. LARKIN PHYSICAL REVIEW B 70, 035305(2004)

035305-14



Figure 4(3) differs from Fig. 4(4) in that there the cou-
pling occurs between bosonic fields. While in Fig. 4(4), the
coupling occurs between the bosonic and nonzero mode
Grassmann fields. By using Eqs.(97) and (98), we find that
Fig. 4(3) corresponds to

DRnp,3
u svd = −

D3

p3v2 ReSs− ivde2piv/DE d3fkD0s3,3;

− vdD0s3,3;−vdl + kD0s3,3;vdD0s3,3;vdlgD .

s105d

By using Eqs.(97)–(100), we find that Fig. 4(4) corresponds
to

DRnp,4
u svd =

D3

p3v2 ReSs− ivde2piv/DE d3fkD0s3,3;

− vdD0s3,3;0dl + kD0s3,3;vdD0s3,3;0dlgD .

s106d

In the disordered case, one is easy to check thatDRnp
u svd

vanishes using the zero mode diffusonkD0s1,2;vdl=1/
s−iv+d and kD0s1,2;0dl=0. However, it is not so in the
crossover regionD!v, tE

−1! terg
−1. Instead, as we see below,

Eqs. (103)–(106) lead to the Ehrenfest oscillation with the
period sD−1+atEd−1 with a a universal numerical factor.

C. The Ehrenfest oscillation inRnp
u
„v…

Now we show that in the crossover region, Eqs.
(103)–(106) lead to the Ehrenfest oscillation, but with differ-
ent dependence of the period ontE compared to the pertur-
bative part. First, according to Eq.(75), we can rewrite Eq.
(105) as

DRnp,3
u svd =

D3

p3v2 ReFe2piv/DG2
2svd + G2

2s− vd
− iv

G .

s107d

In the case ofl2v2/l3!1, Eq. (107) is simplified as

DRnp,3
u svd = − 2

D3

p3v3 sin
2pv

D
cos 2vtE. s108d

To calculate Eq.(106), first we understandD0s3,3;0d in the
way of D0s3,3;0d=limv1→0fD0s3,3;v1d+D0s3,3;−v1dg /2,
whereD0s1,2;v1d should be considered as the solution of
the equation

s− iv1
+ + L̂RdD0s1,2;v1d = 2pfds1 − 2d − 1g. s109d

Then following the procedure of deriving Eq.(74), we find
that kD0s3,3;vdD0s3,3;v1dl=−G2

2fsv+v1d /2g /v+v1
+. Thus

we obtain

kD0s3,3;vdD0s3,3;0dl = −
1

v

]

]v
G2

2Sv

2
D . s110d

Substituting Eq.(110) into Eq. (106), we find thatDRnp,4
u svd

is

DRnp,4
u svd = − 2

D3

p3v3 sin
2pv

D
Fv Re

]

]v
G2

2Sv

2
DG .

s111d

In the case ofl2v2/l3!1, Eq. (111) is simplified as

DRnp,4
u svd = 2

D3

p3v3 sin
2pv

D
fvtE sinvtEg. s112d

Collecting Eqs.(103), (104), (107), and(111) together, we
find that the leading quantum corrections in the nonperturba-
tive part of Rsvd is Eq. (9). TherebyRnp

u svd acquires an
oscillation correction with the periodsD−1+atEd−1 with a a
universal numerical factor. Actually we can find the similar
results for systems with time-reversal symmetry, but the am-
plitudes are much smaller, which are proportional to
sD /vd5 coss2pv /Dd or sD /vd5 sins2pv /Dd.

In the low v limit vtE!1, DRnp
u svd,D3tE

2 /v. It is a
small quantum correction to the universal Wigner-Dyson sta-
tistics. However, we are not able to find this term by using
the method developed in Ref. 10. In the largev limit vtE
@1, we see that the universal Wigner-Dyson statistics ac-
quires a small universal correction,sD /vd3e2piv/D. But it is
smaller than the nonuniversal correction, which is
,sD /ld2e2piv/D.

Taking into account Eqs.(86) and (9), we can formally
expressRsvd as

Rsvd = 1 +a8 + o
n
SD

v
Dn

CnsvtEd

+ Fcos
2pv

D
o
n
SD

v
Dn

DnsvtEd

+ sin
2pv

D
o
n
SD

v
Dn

EnsvtEdG . s113d

The factora8,D2/l2 arises from making the Gaussian ap-
proximation to the nonzero modes of the Perron-Frobenius
operator.30,48We do not study this term in this paper because
it does not lead to the Ehrenfest oscillations. For disordered
systems, a similar term,D2/ETh

2 was found in Ref. 10. In
general,Cn, Dn, andEn are oscillating functions ofvtE and
proportional toGnsvd. In the disordered limit,Cn, Dn, andEn

become universal constants.

VI. CONCLUSIONS

In this paper, we studied the electron energy statistics in
chaotic quantum dots with one macroscopic sizeL. For such
systems, the inverse ergodic time and the Lyapunov expo-
nent are of the same order:terg

−1 ,l,vF /L. Consequently, in
the semiclassical limit, the Ehrenfest timetE opens an inter-
mediate regionD! tE

−1,v! terg
−1. We studied the behavior of
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the two level correlation functionRsvd in the universal re-
gion D!v! terg

−1 in systems with broken time-reversal sym-
metry. Surprisingly, it was found thatRsvd deviates from the
universal Wigner-Dyson statistics. Basically, we found that
Rsvd acquires two types of oscillation corrections in the
crossover regiontE

−1,v! terg
−1. The oscillation periods have

different dependence ontE. The Ehrenfest oscillations in the
perturbative part have the period proportional totE

−1, while
the Ehrenfest oscillations in the nonperturbative part have
the periodsD−1+atEd−1 with a being some universal numeri-
cal factor. These additional Ehrenfest oscillations are small
corrections to the universal RMT results. In particular, for
Rp

usvd described by Eq.(28), the exact truncation at the term
,v−2 does not imply the disappearance of quantum correc-
tions. Instead, it is due to the cancellations of contributions
arising from Hikami boxes associating with different kinds
of vertices at the limitvtE→0. The Ehrenfest oscillations are
just the reminiscence of such cancellations.

In this paper, only the leading Ehrenfest oscillation cor-
rections were calculated. Actually there is a general expres-

sion (113) in the regionD!v! terg
−1. The functionsC̃nsxd

[henceCnsxd], Dnsxd andEnsxd are oscillating atvtE*1. In

the limit nvtE!1, C̃n (henceCn), Dn and En crossover to
their universal values. In particular, in the GUE case,C2=
−D2=−1/2, and all other coefficients vanish. The universal

values ofC̃nsxd [henceCnsxd], Dnsxd and Ensxd do not de-
pend on the magnitude of the regularizer[the last term in Eq.
(12)]. But it depends on the order of how we take the limits:
v→0 andtq→`. Actually we take the limitv→0 before
tq→`. In contrast, the boundary of the region where the
universality existssv! tE

−1d does logarithmically depend on
the magnitude oftq. The regularizer describe the coupling
between classical trajectories. In this sense, it plays a role
similar to that played by the interaction between particles in
nonideal Bose gases. There the scaling theory describes the
universal behavior at the transition point and the critical ex-
ponents do not depend on interactions. However, the region
for the scaling to be applicable does depend on the interac-
tion. While in ideal gases, the scaling is absent. It is impor-
tant that the results presented here hold only atD!v!l,
where the saddle point approximation to Eqs.(10) and(12) is
possible.

We note thatGnsvd is not analytical at 1/tq in the largev
limit tE

−1!v,l. Actually following from Eqs.(4) and(82),
we find that

Gnsvd , S 1

tq
Dv2/sl3/l2d+iv/l

, tE
−1 ! v , l. s114d

From this, we see that corrections toRsvd, predicted by the
Gutzwiller formula, are proportional totq

−a ,0,a!1. In this
way, any attempts of establishing a 1/tq expansion are pro-
hibited.

At higher v s*l, terg
−1d, the nonzero mode contributions

turn out to be important. In this case, the saddle point ap-
proximation is no longer applicable. A refined technique is
desired to study the oscillation, claimed in Ref. 48 for ge-
neric chaotic quantum dots.

In this paper, we considered chaotic quantum dots where
l, terg

−1 ,vF /L. Actually, it is possible thatl@ terg
−1. In the

latter case, the dot has large enough size to contain a lot of
classical impurities inside. In this case, the Lyapunov expo-
nentl,navF, wheren is the concentration of impurities and
a is the size of classical impurities.49 The ergodic time
(Thouless time) terg=L2/D@l−1. HereD is the classical dif-
fusion constant. In this case, it is possible to describe contri-
butions from nonzero modes using the saddle point approxi-
mation. The similar Ehrenfest oscillations are expected to
exist atterg

−1 &v, tE
−1,l. We leave this work in the future.

Based on the present work, it is unclear whether the BGS
conjecture13 may hold in the universal regionv! terg

−1 for
generic quantum chaotic systems. In other words, are the
fluctuations of energy levels described by the universal
Wigner-Dyson statistics in such systems? According to Eq.
(113), we point out that in chaotic quantum billiards, the
Ehrenfest time appears, which results in the Ehrenfest oscil-
lations atv, tE

−1. These oscillations are beyond the frame-
work of RMT, zero mode nonlinear supermatrixs model,
and the Gutzwiller trace formula. Secondly, despite the ap-
pearance of the Ehrenfest oscillations in the regionv, tE

−1

@D, their amplitudes are small. In this way,Rsvd is still
dominated by the universal Wigner-Dyson statistics. Finally,
the behavior ofRsvd at v,D remains an open problem.
Indeed, in the present work we use the saddle point approxi-
mation to take into account the zero mode contributions. Fur-
thermore, the perturbation theory near the saddle points pre-
dicts the regions for the terms in the expansion(113) to
approach their universal limits. However, we are not aware
of the limit of the sum of such asymptotic series.

Note added in proof.After the submission of the manu-
script, the results similar to Secs. III and IV were published
[S. Heusler, S. Müller, P. Braun, and F. Hoake, J. Phys. A37,
L31 (2004)].
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APPENDIX: THE DERIVATION OF EQUATION
(79)

In this Appendix we prove Eq.(79). We will follow the
general method developed in Ref. 22. In the discussions be-
low, we ignore the small regularizer in Eq.(78) for the mo-
ment. Moreover, we turn to the time representation. Then
employing the change of variables

z= sz1,z2d, a = sa1,a2d,

z1 = lnFu1
2 + Sr1

L
D2G1/2

, a1 = arctan
u1L

r1
,

C. TIAN AND A. I. LARKIN PHYSICAL REVIEW B 70, 035305(2004)

035305-16



z2 = lnFu2
2 + Sr2

L
D2G1/2

, a2 = arctan
u2L

r2
, sA1d

we rewrite Eq.(78) as (after averaging over the coordinates
of the center of mass)

S ]

]t
+ D̂1 + D̂2DNsz,a;2,2d = 0,

D̂1 = − B1stdsin 2a1
]

]z1
+ fB1stdcos 2a1 + B2stdg

]

]a1
,

D̂2 = − B1stdsin 2a2
]

]z2
+ fB1stdcos 2a2 + B2stdg

]

]a2
,

B1,2std =
vF

2L
7

L

2pF
U ]2U

]R'
2 U

R=Rst,R0d
. sA2d

Introducing the change of variables

x =
z1 + z2

2
, y = z1 − z2, sA3d

we obtain

D̂1 + D̂2 = −
1

2
B1stdssin 2a1 + sin 2a2d

]

]x
+ B1stdssin 2a1

− sin 2a2d
]

]y
+ fB1stdcos 2a1 + B2stdg

]

]a1

+ fB1stdcos 2a2 + B2stdg
]

]a2
. sA4d

The formal solution of Eq.(A2) is

Nst;x,y;2,2d = expFC1st,a1,2d
]

]x
GNf0;x,y,â0sa,td;2,2g,

sA5d

whereC1 is

C1st,a1,2d =
1

2
E

0

t

dt1B1st1dssin 2â1 + sin 2â2d. sA6d

The functions ofystd and â1,2sa1,2
0 ,td satisfy the following

equations:

]y

]t
= B1stdssin 2a1 − sin 2a2d, sA7d

]

]t
â1,2= B1stdcos 2â1,2+ B2std,

â1,2sa1,2
0 ,0d = a1,2

0 , sA8d

with â1,2 implicitly defined by

â1,2fâ1,2
0 sa1,2,td,tg = â1,2. sA9d

The formal solution ofystd is

ystd = ys0d +E
0

t

dt1B1st1dssin 2a1 − sin 2a2d sA10d

with ys0d being the initial condition.
We are interested in the regiont*l−1. In this case,

â1,2sâ1,2
0 ,td become self-averaging over the coordinates of

the center of mass and no longer depend on the initial con-
ditions. Consequently, at such large times,ystd reaches a con-
stant depending on the initial value[see Eq.(A10)]. In this
way, Nst ;x,y;2 ,2d depends ony parametrically and has no
a1,2 dependence. The evolution ofNst ;x,y;2 ,2d is governed
by the Fokker-Planck type equation

F ]

]t
− FS ]

]x
DGNst;x,y;2,2d = 0, sA11d

whereFs] /]xd is defined as

FS ]

]x
D = lim

t→`

1

t
ln E dndR

2pA
expFBstdS ]

]x
DG . sA12d

Here we keep in mind the important fact that
e0

t dtB1stdsinf2â1,2sa1,2
0 ,tdg does not depend ona1,2 due to

the self-averaging at large times, so that
e0

t dtB1stdsinf2â1sa1
0,tdg=e0

t dtB1stdsinf2â2sa2
0,tdg. In this

way, F has no] /]y dependence:

Bstd =E
0

t

dtB1stdsinf2âsa0,tdg, sA13d

wherea can take the subscript either 1 or 2.
BecauseNst ;x,y;2 ,2d slowly varies overx, we expandF

up to the second order in] /]x to get

FS ]

]x
D = l

]

]x
+

l2

2

]2

]x2 , sA14d

where

l = lim
t→`

1

t
E dndR

2pA
Bstd sA15d

and

l2 = lim
t→`

1

t
HFE dndR

2pA
B2stdG − l2t2J . sA16d

It is important that herel and l2 are exactly the same as
those appearing inG2svd becauseBstd is the same as that in
Ref. 22. This is not surprising because mathematically,l is
determined by the eigenvalue of the stability matrix of a
trajectory.50 Returning to the frequency representation, we
find Eq. (79).
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