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We present new interatomic potentials with which to model the structures and stabilities of the zinc-blende
sZBd and wurtzitesWd polytypes of ZnS and CdS. The potentials are able to reproduce many of the properties
of all four minerals to within a few percent of the experimental values. In contrast to the majority of previous
forcefields, the calculated relative stabilities of the cubic and hexagonal phases are found to be in the correct
order for both ZnS and CdS, with the key being the inclusion of a four-body contribution to the energy. For
ZnS, the cubic polytype is predicted to be the most favorable while for CdS, the hexagonal phase is the more
stable. In solid solutions of ZnxCd1−xS we find that the transition from hexagonal to cubic occurs for a
composition ofx=0.6.
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I. INTRODUCTION

The binary metal sulfide compounds CdS and ZnS are of
long-standing interest because of their semiconducting prop-
erties, particularly since their band gaps are in a region that
lends itself to technological applications. Recently there has
been considerable work in the area of both materials in the
context of nanostructures, with ZnS forming nanowires1 and
CdS being used to either form quantum dots, or to passivate
the surfaces of other materials to create a confined particle.2

Both sulfides can form in the hexagonal wurtzite or cubic
zincblende structures, where both structure types have a tet-
rahedral arrangement of atoms that differ only in their stack-
ing sequences, i.e., they are polytypes. The cubic polytype
has a cubic close packing of atoms with a three-layer repeat
(ABC) along thef111g axis, while the hexagonal form has
hexagonal close packing with a two layer repeat(AB) along
the c axis. The two structures can be thought of as differing
in the relative handedness of the third stacking layer.

Sphalerite, the cubic form of ZnS, is considered to be
more stable than wurtzite3 although there is no firm consen-
sus on the energy difference between the two. Standard
tables of thermodynamic data4,5 quote a difference in en-
thalpy of 13 kJ mol−1 at ambient conditions, although more
recent experiments6 give much smaller values, around
2 kJ mol−1. It has even been proposed7 that sphalerite and
wurtzite are essentially the same phase, but with sphalerite
being deficient in Zn relative to wurtzite. Sphalerite readily
transforms to wurtzite at 1013°C or 1031°C depending on
the activity of sulphur,8 suggesting some link between stabil-
ity and stoichiometry at higher temperatures. Many poly-
types with mixed cubic/hexagonal stacking sequences are
also known to occur, although the factors that control forma-
tion of these polytypes, some of which have repeat units of
several hundred angstroms,9 are still not fully understood.

Pure sphalerite is rarely found in nature, but usually contains
significant amounts of Fe(up to 26 wt.%) substituting for
Zn, as well as Mn and Cd(up to 5%). In addition, sphalerite
can contain Ga, Ge, In, Co, and Hg, which make it an im-
portant ore mineral. In contrast, cadmium sulfide is more
stable as the hexagonal polytype greenockite, with the cubic
phase, hawleyite, only being stable above 525°C.3 Unlike
ZnS, complex polytypes of this phase have not been reported
in the literature.

A large body of experimental information is available on
the electronic structure and properties of these materials,
supplemented by a growing number of theoretical results.
Quantum mechanical calculations, based on density func-
tional theory, have been used to predict a range of properties
of the cubic form of ZnS(Refs. 10–13) and to examine ZnS
polytypic behavior.14,15 Recent theoretical studies of CdS in
the literature, and of ZnS as well, are mainly concerned with
calculations of nanoclusters.16–18 Only a small number of
studies using classical atomistic methods have been reported.
These include studies of defect properties of sphalerite and
wurtzite,19 of the bulk properties of cubic CdS and ZnS,20 as
well as surface properties21,22 and small clusters.23 However,
atomistic calculations that use interatomic potentials are now
well established and can provide information on bulk and
surface properties of a whole range of materials using a mini-
mum of computational resource. Consequently, they will
provide a useful means of studying the structural and ener-
getic properties of nanostructures at the true experiment
dimensions-something that is at the limit, and in many cases
beyond, of what can be achieved with currentab initio quan-
tum mechanical techniques.

The aim of the present study is to derive a set of consis-
tent interatomic potential parameters that correctly predict
the properties and phase stability of the cubic and hexagonal
forms of CdS and ZnS. Although other potentials19,20,22are
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able to reproduce many of the properties of sphalerite, wurtz-
ite, greenockite, and hawleyite, they are unable to correctly
predict the relative stability of the cubic and hexagonal
phases. However, this is essential if we wish to make com-
parisons between the different structures. In particular, there
is considerable interest in how the relative stabilities of the
phases vary when considering nanoparticles of the materials.
It has been proposed that, in some cases, the stability order is
reversed from that of the bulk in the initial stages of crystal
growth. As a foundation for future investigations of this im-
portant phenomena, it is necessary to derive a model that is
capable of examining such behavior. In the following sec-
tions we give an overview of the methods employed and then
present results for both the perfect and defective properties
of ZnS and CdS.

II. METHODOLOGY

A. Theoretical background

The atomistic simulation method is based on the Born
model of solids where interatomic potential functions are
defined to model the long-range attractive and short-range
repulsive forces acting between atoms or ions in the solid.
Long-range forces are described by Coulomb’s law and ac-
count for the dominant part of the energy, while the func-
tional form of the potential used to describe short range in-
teractions depends on the nature of the forces in the material
of interest. For more ionic interactions, a two-body potential
that includes an exponential repulsive term and an attractive
dispersion term, such as the Buckingham potential, is com-
monly used:

Uij
Buck = AijexpS−

r ij

ri j
D −

Cij

r ij
6 . s1d

However, this term alone may not be adequate to describe
the system and three- and four-body terms may also be re-
quired. For more covalent materials, the directionality can be
described by inclusion of a three-body potential to represent
bond-bond interactions. Here we chose to include a harmonic
three-body term with exponential decay, in order that there is
no discontinuous behavior with respect to atoms moving be-
tween coordination shells, which takes the form,

Ujik
b =

1

2
kbsu jik − u0d2expS−

r ij

r1
DexpS−

r ik

r2
D , s2d

wherekb is the force constant,u0 the equilibrium three-body
angle between the bondsj-i and i-k, andr1 and r2 control
the coupling between the angle-bending and bond-stretching
terms. Potential 2 has a harmonic form, which favors angles
such as the 109.47° angle found in tetrahedrally coordinated
environments. Given that the potential is only applied to
angles where the two end atoms of the three-body potential
are of the same type, the values ofr1 andr2 are constrained
to be equal. To date, only three-body interactions have been
included in force field simulations of sulfides in order to
account for the partial covalency of the materials. Here we
explore the influence of higher order interactions through the
inclusion of a four-body potential to allow for torsional ef-

fects. The form of the torsion potential used in this study
includes a taper term so as to limit the spatial extent of the
interaction smoothly, again to prevent discontinuous behav-
ior as the coordination geometry varies:

Uijkl
t = ktf1 + m cossnf − f0dgfsr ijdfsr jkdfsrkld, s3d

where the taper functionfsrd takes the form,

r , rmin fsrd = 1,

rmin , r , rmax fsrd =
1

2
H1 + cosSp

sr − rmind
srmax− rmind

DJ ,

rmax, r f srd = 0, s4d

where rmin and rmax are the minimum and maximum dis-
tances at which tapering is applied. In addition to the above
terms, a shell-model24 is included in order to model the ef-
fects of polarizability, particularly for anionic species.

The variable parameters in the above potential forms have
been obtained by empirical fitting to crystalline properties
using a least squares approach. The sum of squares,F, that
determines the quality of the forcefield is defined as

F = o
observables

wsfcalc− fobsd2, s5d

where fcalc and fobs are the calculated and observed proper-
ties, respectively, andw is a weighting factor. During the fit,
the parameter values are varied until the calculated and ob-
served properties are as close as possible and the sum of
squaressFd is at a minimum. In conventional empirical fit-
ting, the structure is represented in the sum of squares via the
forces and stresses acting on the structure. However, here we
employ the alternative fitting procedure, known as relaxed
fitting,25 in which each structure is optimized prior to the
calculation of the sum of squares, and the criteria used are
the changes in the structural parameters. This has the advan-
tage that it ensures that not only are the forces reduced, but
also that the Hessian is well conditioned. Furthermore, the
curvature related properties are correctly determined about
the harmonic minimum.

In addition to perfect lattice properties, we also wish to
gain insights into the nature of defects in CdS and ZnS, and
to investigate solid solution behavior. In ionic and semi-ionic
materials, defects are charged species and cause long-range
disruption in the crystal lattice. These long-range perturba-
tions can be effectively modelled using the approach devel-
oped by Mott and Littleton26 where the crystal is divided into
three, concentric spherical regions, R1, R2a, and R2b. In R1,
which contains the defect at its center, an explicit calculation
is carried out to optimize the coordinates of all ions in the
region until they are at their equilibrium positions. In R2a,
the ions are assumed to respond harmonically due to the
forces from region 1, without explicitly considering the
coupled displacements of ions within region 2a. The radius
of R2b is selected so that the forces within this super sphere
are purely Coulombic and the relaxation can be treated es-
sentially as the polarization response to the net charge of the
defect only. The Mott-Littleton method has the advantage
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that single charged defects or small defect clusters can be
considered in isolation so as to mimic infinitely dilute con-
centrations. In the current study, a region one size of 12 Å,
containing 350 ions was found to be sufficient to converge
defect energies to within 0.01 eV.

A mean-field approach has been used to include the ef-
fects of solid solution between CdS and ZnS end members,
where all atoms are assigned an occupancy factoroi that lies
in the range 0øoi ø1. All interactions are then scaled by the
product of the relevant occupancies as

Uij
m−f = oiojUij . s6d

All calculations have been performed using the program
GULP.27,28

B. Potential derivation

The short-range potential parameters used to describe in-
teractions in ZnS were derived by a relaxed fitting procedure,
where data for the structure and elastic properties of the cu-
bic and hexagonal phases were the observable parameters.
We initially carried out the fitting procedure for the ZnS
phases only, since these phases are more extensively charac-
terized experimentally. While it is possible to perform a com-
bined fit on both ZnS and CdS simultaneously, this will yield
only a minimal change in the final results, unless undue
weight is placed on the latter material, given that the devia-
tions in the observables are similar for both phases. The Zn
ion was taken to be rigid(i.e., no shell) with a fixed formal
charge of 2+, while the S ion was assumed to be more po-
larizible and so described by a core and shell. While the total
charge of the sulfide ion was constrained to be 2−, the core/
shell charge split was allowed to vary. Interactions between
Zn and S were described by a combination of two-body
Buckingham terms and an exponentially decaying three-
body potential[Eq. (4)]. After initial fitting within a two- and
three-body potential model, it was found to be impossible to
obtain the correct order of stability for sphalerite versus
wurtzite. This can be understood since the first two coordi-
nation shells are identical for both phases. While both the
two- and three-body potentials act beyond the second coor-
dination shell, and therefore, in principle, the model could
discriminate between the structures, the exponentially decay-
ing nature prevents these outer shells from having a signifi-
cant influence. In contrast, a previous force field for sulfide
and selenide materials, including the present compounds, uti-
lized the Tersoff bond order approach. Because interactions
are limited to three-body contributions to the attractive bond
order, this method yields identical energies for all tetrahedral
polymorphs of a compound, regardless of the stacking se-
quence, by design.

One possible view of the reason for the energy difference
of the AB vs ABC stacking sequences is because of the tor-
sional interaction, with the cubic structure exhibiting a per-
fectly staggered configuration, while the hexagonal phase
contains several eclipsed interactions. The degree of impor-
tance of this interaction will depend on the extent of cova-
lency in the material. In order to allow for this, a torsional
potential was included within the fitting procedure, but with

a tapering function with respect to the bond distances to
avoid discontinuous behavior that may cause difficulties
when considering defects and surfaces where bonds are
cleaved. A similar approach has been taken for torsional con-
tributions to bond-order potentials in order to ameliorate the
defects of the initial Tersoff formulation.29

Once the best fit set of parameters for ZnS had been ob-
tained, given the particular choice of weights for the observ-
ables, a similar procedure was carried out for CdS, but with
the S-S parameters fixed and only the Buckingham Cd-S and
three-body terms allowed to vary, in order to maintain com-
patibility of the forcefield between materials. The torsional
potential was found to make no significant contribution in
the case of CdS and therefore was removed from the final
refinement of the CdS parameter set.

III. RESULTS

A. Structure and elastic properties

The derived potential parameter sets for CdS and ZnS are
given in Table I, with a comparison of experimental and
calculated structure and properties being shown in Tables II
and III. For the ZnS polytypes(Table II), we see that the
structure is reproduced very well, in comparison with other
theoretical studies, with the calculated cell volume being
only 2.2% and 0.7% larger than the measured volume for the
cubic and hexagonal phases, respectively. Yehet al.15 using
the LAPW method within the local density approximation,
obtained a cell volume 3.5% smaller than experiment for
sphalerite and 7.8% smaller for wurtzite. Other DFT calcu-
lations of sphalerite,10–13 using both plane wave pseudopo-
tential, LMTO and LAPW approaches, also tend to underes-
timate the cell volume, which is to be expected within the
local density approximation, since it is known to systemati-
cally overbind. The results of Martinset al.11 Casali and
Christensen,13 and Yehet al., 15 are all highly consistent in
obtaining a lattice parameter of 5.345±0.01 Å, having em-
ployed LMTO or LAPW methods, while the largest devia-
tion occurs in the planewave pseudopotential technique de-
spite the inclusion of nonlinear core corrections.

Within force field modeling, it turns out to be extremely
difficult to obtain high accuracy for the structural parameters
of both the cubic and hexagonal phases with a single set of
parameters. This is because the experimental structures ex-
hibit different Zn-S bond lengths despite the strong similarity
of the local coordination environment. This subtle effect is
difficult to capture, even at the quantum mechanical level.

The elastic constants of sphalerite have attracted much
greater attention in the literature than those of wurtzite and
have been determined experimentally several times. How-
ever, there is some degree of scatter for all of the three sym-
metry unique values, withC11, C12, and C44 spanning the
ranges 94.2–104.5, 56.8–65.3, and 34–46 GPa, respec-
tively. At the level of the uncertainty in the experimental data
C11 is well reproduced, thoughC12 and C44 are rather too
soft. In the quantum mechanical studies of Agrawalet al.,12

and Casali and Christensen,13 the elastic constants were also
determined within the local density approximation. As ex-
pected, the value ofC11 is considerably overestimated in
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both cases, due to the overbinding leading to shrinkage of the
lattice parameter. While the values obtained forC12 both
accord well with each other and with the upperbound to the
experimental range, the values forC44 span 38–60 GPa.
Consequently they fail to shed light as to which end of the
experimental spectrum is appropriate. Despite the uncertain-
ties in the elastic constants, the calculated bulk modulus is
within 2% of the experimental value, while the density func-
tional estimates, which range from 82(Ref. 11) to 105.7

(Ref. 12) are consistently too high. Considering the elastic
constants for wurtzite, we find thatC44 andC13 are overes-
timated, while the principal axis diagonal constants,C11 and
C33, are underestimated. Clearly during the fitting process a
compromise has to be achieved between making sphalerite
elastically too hard and causing wurtzite to be too soft.
Again, despite these deviations the bulk modulus is well re-
produced with an error of only 3%.

TABLE I. Interatomic potential parameters for ZnS and CdS as derived in the present study.

Species Chargesed

Zn core +2.00

Cd core +2.00

S core +1.03061

S shell −3.03061

Buckingham potential AseVd rsÅd CseV/Å6d Cut-off sÅd

Zn core - S shell 672.288 0.39089 0.0 12.00

Cd core - S shell 1240.9518 0.371852 0.0 12.00

S shell - S shell 1200.0 0.14900 0.0 12.00

Core-shell potential kseV/Å2d Cut-off sÅd

S core - S shell 13.302743 0.8

Three-body potential kseV/rad2d u0s°d r1/r2sÅd Cut-off sÅd

S shell - Zn core - S shell 9.428343106 109.47 0.3 6.0

S shell - Cd core - S shell 3.594683107 109.47 0.3 6.0

Torsional potential ktseVd m/n rminsÅd rmaxsÅd

Zn core - S shell - Zn core - S shell 0.005 +1/ +3 2.5 3.0

TABLE II. Calculated structures and properties of the cubic and
hexagonal polytypes of ZnS, including the comparison versus ex-
periment, where known.

Cubic Hexagonal

Observable Calc. Expt. Calc. Expt.

asÅd 5.45 5.41 3.89 3.85

csÅd 5.45 5.41 6.20 6.29

Volume sÅ3d 161.93 158.34 81.30 80.75

U /ZnSseVd −33.466 −33.442

C11sGPad 107.7 102.0 111.3 122.0

C12sGPad 59.4 64.6 55.6 58.0

C44sGPad 33.2 44.6 37.7 28.7

C13sGPad 57.9 42.0

C33sGPad 126.4 138.0

KsGPad 75.6 77.1 76.4 74.0

e11
0 6.49 8.37 6.71

e33
0 6.90

e11
` 4.76 5.2 4.79

e33
` 4.91

TABLE III. Calculated structures and properties of the cubic
and hexagonal polytypes of CdS, including the comparison versus
experiment, where known.

Cubic Hexagonal

Observable Calc. Expt. Calc. Expt.

asÅd 5.87 5.82 4.19 4.15

csÅd 5.87 5.82 6.66 6.73

Volume sÅ3d 202.19 196.93 101.42 100.38

U /CdSseVd −31.744 −31.812

C11sGPad 89.38 102.8 86.5

C12sGPad 53.52 45.4 54.0

C44sGPad 39.11 32.4 15.0

C13sGPad 47.5 47.0

C33sGPad 113.3 96.5

KsGPad 65.5 66.0 66.4 62.8

e11
0 4.65 4.56 8.70

e33
0 9.25

e11
` 3.55 3.51

e33
`
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In the case of CdS(Table III), the agreement between
calculated and experimental structural parameters is also ex-
tremely good, with differences in cell volume of 1% and
2.6% for the hexagonal and cubic structures, respectively.
Full elastic constants have been measured for greenockite,
but for the hawleyite structure only bulk modulus informa-
tion is available. In general, there is some discrepancy be-
tween calculated and measured elastic moduli in greenockite,
although the bulk modulus is reproduced quite well, with an
error of 6.5%. However, given that there are likely to be the
errors on the measured values and the approximate nature of
the model, this is an acceptable result.

B. Calculation of phonons

The phonon dispersion curves for sphalerite have been
experimentally determined by Vagelatoset al.30 using neu-
tron scattering measurements. Three directions from theG
point have been studied, namely thef00zg, fzzzg and fzz0g,
and the phonon frequencies for the band extrema involved
have also subsequently been studied using density functional
methods. Since the phonon data was not included in the pa-
rameterization of the force field, this provides the first test of
the new potential outside the original training set. Table IV
gives the calculated phonon frequencies at theG, X, and L
points of the Brillouin zone for ZnS in the stable sphalerite
phase, along with the experimental data. Also included for
comparison are the phonon data as determined by other
methods, including force fields and density functional theory.

Before discussing the quantitative nature of the phonons,
it is important to mention that the nonanalytic correction to
the dynamical matrix,D, is employed in this study at theG
point and other band extrema,

Dia jb =
4p

Vsmimjd1/2F skGqi
BorndaskGqj

Borndb

skGe`kGdab
G , s7d

which is not routinely included. This correction is essential
to ensure that the LO/TO splitting is obtained. In the case of

the density functional results compared to, the LO mode is
omitted at the zone center, since the finite difference ap-
proach used makes it difficult to correct for this, in contrast
to the linear response technique. Because the value of the
correction depends on the direction of measurement,kG, due
to this changing the direction in which the electric field is
applied, we perform a spherical integration to average the
correction atG. In order to evaluate the above correction, in
addition to the high frequency dielectric constant tensor, we
also need to know the Born effective charge tensors,qBorn,
for the material. Here we find on-diagonal values in sphaler-
ite of +1.29 and −1.29 for Zn and S, respectively. This dem-
onstrates that the shell model considerably reduces the for-
mal charges in the electrical response of the material. For
comparison, the Born effective charges of wurtzite are +/
−1.41 in theab plane and +/−1.34 parallel to thec axis.
Thus according to the present model the hexagonal phase
appears to be the more ionic of the two. Comparing the cal-
culated phonon frequencies for sphalerite with those mea-
sured experimentally we find that the agreement is worse
than for other properties. At all the points in the Brillouin
zone considered the optic modes are underestimated in the
calculation by between 8% and 26%, while the acoustic
modes are found to be systematically too high. Although not
included in Table IV, we have calculated the phonons ac-
cording to the Tersoff bond order potential model of Benk-
abouet al.20 Because there is no electrostatic component in
the model, there is no LO/TO splitting in this case. Hence all
the optic modes at theG point occur at 386 cm−1, and thus
the frequencies are considerably overestimated with respect
to experiment. The results of Engel and Needs,10 from the
planewave pseudopotential method, are consistently much
closer to experiment, despite the large overcontraction of the
unit cell. However, it should be noted that the phonons were
found to be very sensitive to the pseudopotential, and the
omission of nonlinear core corrections changed the fre-
quency of one mode by a factor of 4. Consequently it is not
surprising that a relatively simple forcefield model cannot
achieve quantitative agreement with the phonon data, with-
out specifically fitting it.

There have been a number of studies of the phonons of
the wurtzite phase of CdS, both theoretical31 and
experimental,32 though the most recent experimental study
just presents the dispersion curves,33 rather than numerical
values at extrema of the Brillouin zone. The calculated val-
ues resulting from the present potential model are given in
Table V and compared against one of the sets of experimen-
tal data. Despite the fact that there has been scatter amongst
the experimental frequencies, it is clear that the three modes
clustered about 233 cm−1 are too similar, though if the direc-
tion of approach to theG point is spherically averaged then
the lowest frequency of this grouping falls to 225 cm−1.
Overall, the phonon frequencies are too low on average, even
though the elastic properties are too hard with respect to
experiment in the present force field.

C. Stability and defects

The internal energy of the sphalerite and wurtzite forms of
ZnS and CdS calculated using our new model are presented

TABLE IV. Calculated and experimental phonon frequencies
scm−1d of sphaleritesZnSd at theG, X, and L points of the Brillouin
zone.

Mode Experiment This study Calc.a Calc.b Calc.c

TOsGd 277 248 238 263 289

LOsGd 289

TAsXd 90 111 104 106 105

TOsXd 316 231 251 279 311

LA sXd 212 236 265 208 209

LOsXd 330 268 270 307

TAsLd 70 94 74 83

TOsLd 289 237 241 265

LA sLd 195 217 239 193

LOsLd 337 253 281 313

aReference 22.
bReference 10.
cReference 12.
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in Tables II and III. For zinc sulfide, we find that the cubic
sphalerite phase is lower in energy by 2.32 kJ mol−1 relative
to wurtzite while for cadmium sulfide, the wurtzite phase is
more stable by 6.5 kJ mol−1. In the case of ZnS, the calcu-
lated energy difference between the two phases is a function
of the magnitude of the force constantkt in the torsional
potential, which favors the ABC over the AB stacking. Ex-
perimentally, the standard enthalpy difference between the
two phases is usually quoted as 13 kJ mol−1,4,5 although
more recent studies give much smaller values. For example,
Gardner and Pang6 measure DH0ss→wd at 298.15 K
= +2.3±0.9 kJ mol−1 using the modified entrainment
method. In nature, the most common form of ZnS is sphaler-
ite, and although wurtzite exists, it is generally considered to
be metastable at low temperature.3 The transition tempera-
ture has been observed7 to occur at around 1318 K although
there is some variation on this depending on the activity of S
and on impurity content.4 By contrast, we find that the hex-
agonal form of CdS, greenockite, is the more stable polytype
by 6.5 kJ mol−1. The value ofDH for greenockite is given in
the literature as −161.9 kJ mol−1, however we were unable to
find comparable thermodynamic data for hawleyite. Both
minerals are rare and the latter usually only forms as thin
coatings on sphalerite. The present results are all consistent
with the stability of tetrahedral binary semiconductor struc-
tures being related to the degree of covalency, with the more
covalent materials, adopting the cubic structure in order to
avoid torsional repulsions. Here we find that CdS is more
ionic than ZnS, and hence the observed structural preference.

The defect properties of these materials are of interest
because nonstoichiometry may control their relative stability,
but more importantly, will have an effect on the semicon-
ducting properties. The Schottky defect energysUsd is de-
fined as the sum of the formation energies of the individual
vacancies plus the lattice energy of the phase removed at
infinity as

Us = V M9 + Vs
.. + Ulatt. s8d

Defect formation energies are given in Table VI, where
Schottky energies have been calculated for the case where
defects are isolated and assumed to be noninteracting, and
when they are bound in a vacancy cluster. For all four min-

eral phases, there is a significant negative binding energy
associated with the pairing of defects, suggesting that va-
cancy clustering will occur. The formation energy of
Schottky defects in ZnS are lower in wurtzite than in sphaler-
ite, but in CdS Schottky defect formation is slightly more
favorable in the cubic phase when defects are bound. Nons-
toichiometry in ZnS leading to Zn deficient wurtzite is most
likely introduced via the presence of impurities such as Fe3+

or Mn3+ where Zn vacancies will form to maintain charge
neutrality.

Thin films34 and nanoparticles35 of sZn,CddS solid solu-
tions have been synthesized and studied because of their in-
teresting properties. However, the influence of stoichiometry
on phase stability in the compounds is not well known. In
order to investigate this, we have carried out a series of cal-
culations using a mean field approach to determine the com-
position at which the cubic-hexagonal transition occurs. The
proportion of Cd on Zn sites in the cubic and hexagonal
structures was increased incrementally from 0 to 100%,
where the energy as a function of compositionx in
ZnxCd1−xS is plotted for both structures in Fig. 1. We find
that atx=0.6, the energy curves cross and thus there will be
a transition from the hexagonal to the cubic structure. No
experimental data for the systemsZn,CddS are available for
comparison, however, studies of the effects of composition
on the structural phase transition insZn,CddSe have been
performed. The experimental work of Vlasovet al.,36 using
low temperature excitation emission spectra, found that poly-

TABLE V. Calculated versus experimental phonon frequencies
scm−1d for greenockitesCdSd at theG point with the LO/TO split-
ting calculated for approach from the direction of the A point. The
vibrational modes are labeled according to the notation of Nusimo-
vici et al. (Ref. 31).

Mode Experimenta Calculated

G1 305 265

G6 256 235

G5 242 233

G4 211 232

G4 170 168

G6 85 77

aReference 32.

TABLE VI. Defect formation energiesseVd.

Defect Sphalerite Wurtzite Hawleyite Greenockite

VS
.. 20.72 20.34 20.61 20.34

VZn/Cd9 18.93 18.78 19.58 19.99

Schottky unbound 6.17 5.70 8.45 8.53

Schottky bound 2.81 2.58 4.40 4.45

Binding energy −3.36 −3.11 −4.04 −4.08

M2+ impurity 1.87 1.68 −1.59 −1.59

FIG. 1. Energy of the cubic(squares) and hexagonal(diamonds)
polymorphs as a function of cation site compositionx for the solid
solution ZnxCd1−xS, calculated within the mean-field model.
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crystals of ZnxCd1−xSe have the wurtzite structure when
x,0.5, but whenx.0.7, they have the sphalerite structure.
The transition between the two is continuous and thought to
occur via the formation of stacking faults. A similar mecha-
nism most likely operates in the sulfide system. Small
amounts of Cd, or other impurities which segregate along
planes, could locally change the structure from cubic to hex-
agonal thus leading to the formation of mixed layer poly-
types. The ionic radii of Cd and Zn are 0.97 and 0.97 Å re-
spectively, so that the larger Cd ion will exert a strain in the
Zn lattice, possibly helping to drive the transition seen at
40% cadmium incorporation into ZnS in Fig. 1. This effect is
also evident when considering the individual substitution en-
ergies, as given in Table VI. The smaller Zn ion can be
accommodated in hexagonal CdS in larger amounts because
there is less strain associated with it.

IV. CONCLUSIONS

Our new force field is able to simulate the structure and
properties of the cubic and hexagonal phases of ZnS and
CdS to within a few percent of the experimental values. In
addition, the stability order is correctly reproduced for both
compositions. A new force field that incorporates four-body
interactions has been developed for the simulation of both
zinc and cadmium sulfide phases. The inclusion of the tor-
sional contribution is pivotal in being able to obtain the cor-
rect ordering of the phase stability for ZnS, where the cubic
sphalerite phase is more stable than the hexagonal wurzite
polymorph. In the absence of such an energetic contribution,
it is impossible to stabilize the cubic phase over the hexago-
nal one within the standard ionic force field approach con-
sisting of a single short-range repulsive potential, shell
model and a three-body term, as demonstrated by earlier
force fields. The need for a torsional potential in the case of

the zinc sulfide phase is consistent with the lower Born ef-
fective charges relative to cadmium sulfide in pointing to the
greater covalency of the former material as the reason for the
differing structural preferences. As well as reproducing the
experimental trends in phase stability, the present model also
reproduces the crystallographic data and bulk moduli to
within a few percent. However, as would be expected, the
reproduction of the full elastic constant tensor and the dy-
namical matrix, as evidenced by the phonon frequencies, is
less accurate. The present model predicts a phase transition
for the mixed ZnxCd1−xS phase to occur from the cubic to
hexagonal structure when approximately 60% of the cation
sites are occupied by zinc. Although this has yet to be vali-
dated experimentally, it is consistent with the equivalent
trend for the selenide materials. Having determined a new
force field that for the first time reliably determines the
structure-energy relationships for the end member phases of
these sulfide materials, it is now possible to explore the poly-
typism exhibited by exploring intermediate structures. Fur-
thermore, this force field will allow the future investigation
of the influence of size on the stability of sulfide nanopar-
ticles, particularly since it is observed that at these dimen-
sions the relative stabilities of the polymorphs can be altered
through the contribution of surface effects.37 Calculation of
the properties of pure and mixed ZnS and CdS surfaces are
currently underway and will form the basis of a subsequent
publication.

ACKNOWLEDGMENTS

We would like to gratefully acknowledge the support of
both the Royal Society, for the provision of a University
Research Fellowship(K.W.), and of the Government of
Western Australia for a Premier’s Research Fellowship
(J.D.G.).

*Electronic address: kate@ri.ac.uk
1X.-M. Meng, J. Liu, Y. Jiang, W. Chen, C. Lee, I. Bello, and S.

Lee, Chem. Phys. Lett.382, 434 (2003).
2M. Fernee, A. Watt, J. Warner, S. Cooper, N. Heckenberg, and H.

Rubinsztein-Dunlop, Nanotechnology14, 991 (2003).
3D. Vaughan and J. Craig,Mineral Chemistry of Metal Sulfides

(Cambridge University Press, Cambridge, 1986).
4D. Wagman, W. Evans, V. Parker, R. Schumm, I. Harlow, S.

Bailey, K. Churney, and R. Nuttall, J. Phys. Chem. Ref. Data
11, 1 (1982).

5K. Mills, Thermodynamic Data for Inorganic Sulphides, Se-
lenides and Tellurides(Butterworth, London, 1974).

6P. Gardner and P. Pang, J. Chem. Soc., Faraday Trans. 184, 1879
(1988).

7S. Scott and H. Barnes, Geochim. Cosmochim. Acta36, 1275
(1972).

8G. Moh, Chem. Erde.134, 1 (1975).
9S. Mardix, Phys. Rev. B33, 8677(1986).

10G. Engel and R. Needs, Phys. Rev. B41, 7876(1990).
11J. Martins, N. Troullier, and S.-H. Wei, Phys. Rev. B43, 2213

(1992).
12B. Agrawal, P. Yadav, and S. Agrawal, Phys. Rev. B50, 14881

(1994).
13R. Casali and N. Christensen, Solid State Commun.108, 793

(1998).
14G. Engel and R. Needs, J. Phys.: Condens. Matter2, 367(1990).
15C.-Y. Yeh, Z. Lu, S. Froyen, and A. Zunger, Phys. Rev. B46,

10086(1992).
16J. Joswig, S. Roy, P. Sarkar, and M. Springborg, Chem. Phys.

Lett. 365, 75 (2002).
17P. Deglmann, R. Ahlrichs, and K. Tsereteli, Chem. Phys.116,

1585 (2002).
18V. Gurin, Solid State Commun.112, 631 (1999).
19K. Wright and R. Jackson, J. Mater. Chem.5, 2037(1995).
20F. Benkabou, H. Aourag, and M. Certier, Mater. Chem. Phys.66,

10 (2000).
21K. Wright, G. Watson, S. Parker, and D. Vaughan, Am. Mineral.

83, 141 (1998).
22S. Hamad, S. Cristol, and C. Catlow, J. Phys. Chem. B106,

11002(2002).

INTERATOMIC POTENTIALS FOR THE SIMULATION… PHYSICAL REVIEW B 70, 035211(2004)

035211-7



23A. Jentys, R. Grimes, J. Gale, and C. Catlow, J. Phys. Chem.97,
13535(1993).

24B. Dick and A. Overhauser, Phys. Rev.112, 90 (1958).
25J. Gale, Philos. Mag. B73, 3 (1996).
26N. Mott and M. Littleton, Trans. Faraday Soc.34, 485 (1938).
27J. Gale, J. Chem. Soc., Faraday Trans.93, 629 (1997).
28J. Gale and A. Rohl, Mol. Simul.29, 291 (2003).
29D. Brenner, O. Shenderova, J. Harrison, S. Stuart, B. Ni, and S.

Sinnott, J. Phys.: Condens. Matter14, 783 (2002).
30N. Vagelatos, D. Wehe, and S. King, J. Chem. Phys.60, 3613

(1974).
31M. Nusimovici, M. Balkanski, and J. Birman, Phys. Rev. B1,

595 (1970).

32M. Balkanski, J. Besson, and R. Le Toullec, inProceedings of the
International Conference on the Physics of Semiconductors,
Paris, 1964(DunodParis, 1965).

33A. Debernardi, N. Pyka, A. Goebel, T. Ruf, R. Lauck, S. Kramp,
and M. Cardona, Solid State Commun.103, 297 (1997).

34M. Valkonen, S. Lindroos, and M. Leskela, Appl. Surf. Sci.134,
283 (1998).

35J. Cizeron and M. Pileni, Nanostruct. Mater.8, 419 (1997).
36Y. Vlasov, S. Pemogarov, A. Areshkin, and D. Fedorov, Semi-

conductors30, 241 (1996).
37Y. Jiang, X.-M. Meng, J. Liu, Z.-R. Hong, C. Lee, and S. Lee,

Adv. Mater. (Weinheim, Ger.) 15, 1195(2003).

K. WRIGHT AND J. D. GALE PHYSICAL REVIEW B70, 035211(2004)

035211-8


