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Density-of-states picture and stability of ferromagnetism in the highly correlated Hubbard model
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The problem of stability of saturated and nonsaturated ferromagnetism in the Hubbard model is considered
in terms of the one-particle Green’s functions. Approximations by Edwards and Hertz and some versions of the
self-consistent approximations based on the é&{pansion are considered. The account of longitudinal fluc-
tuations turns out to be essential for description of the nonsaturated state. The corresponding pictures of density
of states are obtained. “Kondo” density-of-states singularities owing to spin-flip processes are analyzed. The
critical electron concentrations for instabilities of saturated ferromagnetism and paramagnetic state are calcu-
lated for various lattices. Drawbacks of various approximations are discussed. A comparison with the results of
previous works is performed.
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[. INTRODUCTION Hubbard-I approximationhin the case of a symmetric con-
duction band and instability of the paramagnetic state can
The problem of ferromagnetic ordering in narrow energyoccur at this point in some simple approximatidnghe
bands has been extensively discussed. Despite the large nufme critical values are obtained in the modern DMFT cal-
ber of publications on the topic, the magnetism of highlyculations for the hypercubic |attlé@l’-;5 _
correlated electronic systems described by the Hubbard Experimental data on kF&CoS,, ™ a system with strong
model remains at the center of attentidri! Physically, in  Corelations, give large values @t (saturation ferromag-
this case, the picture of magnetism is characterized by thetism is preserved up to conduction electron concentrations
existence of local magnetic moments and differs substarfl= 1~ Of order 0.3, but degeneracy effects in the conduc-
tially from the Stoner picture of a weak itinerant tion band appear to be important in this system. :
magnetisni2 The approaches mentioned do_ not analy_ze as a rule_ln
According to Nagaoka? in the limit of infinite Hubbard detail the structure of the one-particle excitation spectrum in
. ' . ) i the ferromagnetic phase of the Hubbard model. The simplest
repulsion the ground state for simple lattices is a saturate

) . h ; ubbard-1” result for the electron spectrum corresponds to
ferromagnetic state for a low density of charge carriers o ;eroth order in the inverse nearest-neighbor numkter 1/
(doubles or holes in an almost half-filled banbh particular,  Thjs is a kind of “mean-field” approximation in the electron

Nagaoka rigorously proved the existence of a saturated fegransfer(however, it does not coincide with the limit of infi-
romagnetic state for a single hole ldt— < and found the njte space dimensionality treated in DMFThe Hubbard-I
instability of the spin-wave spectrum in the case with in-approximation is quite nonsatisfactory at describing ferro-

creasingd and_ decreas'ing.l. o _ magnetism(in particular, ferromagnetic solutions are absent,
Roth'4 applied a variational principle to this problem and except for peculiar models of bare density of states
obtained two critical concentrations. The first ofiecorre- A consistent calculation of the one-particle Green’s func-

sponds to the instability of the saturated ferromagnetic statejons in the case of smafl (almost half-filled bangand low
and the second on&, to the transition from the nonsaturated temperatures was performed in Refs. 35 and 36. The results
ferromagnetic into the paramagnetic state. For the simpleemonstrated an important role of nonquasipariiiciecher-
cubic (s lattice, the values,=0.37 ands,=0.64 were ob- ent states in the density-of-states picture. Expressions for
tained. Next, the region of stability of the saturated ferro-the one-particle Green’s functions in a more wide regio# of
magnetic was investigated within various approximations inand T were obtained in Ref. 37.
numerous workgsee, e.g., Refs. 16—80 A physically transparent mechanism of instability of satu-
An interpolational approach to description of magneticrated ferromagnetic state was treated in detail in the works
ordering in narrow bands, which yields saturated ferromagby Edwards and Hert® This mechanism is connected with
netism for smalls and nonsaturated ferromagnetism for largeoccurrence of spin-polaron states above the Fermi level of
6, was developed in Refs. 31 and 32 on the basis of dynamithe charge carriers.
magnetic susceptibility treatment. However, the critical con- In this paper, the stability of the saturated ferromagnetic
centrations themselves were not determined. state as the charge carrier concentration is raised is studied
Using  high-temperature  expansions in  earlyusing the one-particle Green’s functions of first order iz 1/
paper&®233334jelded nonstable results concerning the sta-and corresponding self-consistent approximations. This ap-
bility of ferromagnetism because of poor accuracy connectegroach makes it possible to construct a rather simple and
with slow convergenc& However, according to recent physically transparent picture of the density of states in a
results>® ferromagnetism also occurs ned+0.3. saturated Hubbard ferromagnet. At the same time, the prob-
It should be noted that the hole concentratinl/3 cor-  lem of description of nonsaturated state is much more diffi-
responds to the sign change of the chemical potential in theult, but our approach turns out to be successful too.
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Il. CALCULATION OF THE ONE-PARTICLE GREEN'S properties of the retarded Green'’s functions were violated for
FUNCTIONS the paramagnetic state.

We use the method of the Zubarev double-time retarded

We shall use the Hamiltonian for the Hubbard model inGreen's functions. The Green’s function for operatarand
the limit of infinitely strong Coulomb repulsion in the many- g

electronX-operator representatigi®

0
H= S (X0, B (AB))g= fw dte®([e"'Ae ™ B],), IME>0 (2

ko

satisfies the equation of motion

wheret, is the band energy arﬁ@fﬁ is the Fourier transform
of the Hubbard operators™=|i«)(ig| [0 denotes holes and E(AIB))E = ([A,BL.) + ({A H]|B)E. (3)
o==(1,|) denotes singly occupied stajes B

It should be noted that in this problem of infinitely strong We write down the equation for the anticommutator Green’s
Coulomb interaction, a number of difficulties arise in con-functions
nection with the non-Fermi excitation statistics. These diffi-
culties occur both in the diagram techniguand in the Gio(B) = (X X)e, IME>0 (4)
equations-of-motion methdd. In particular, it has been
found® that in the expansion with respect tozlthe analytic  to obtain
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FIG. 2. Density of states for the bare semiel-
0 liptic DOS at §=0.20.(a) Lines 1(o=1) and 2
(o=]) correspond to the non-self-consistent ap-
proximation with spin dynamicgl?2); (b) lines 3
0.7 : . : (6=1) and 4 (o=]) correspond to the self-
-——=3 consistent approximatioril7), and lines 3(o
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E-t,)Gys(E)=(ng+n,) + '\ (E), 5 Ir'(E
(E = tks)Gko(E) = (N + ny,) + [y ,(E) (5 Gy (E) = GEU(E)(l 4 Diol ))_
Ny + N,
where
to =t (o +1n,), n,=(X* @=0, Following Ref. 37, we perform decoupling at the next stage
7 7o to derive
Tko(E) = 2 tig{(Xq X% + 304"+ XX XD)e -y o0 O
A A e (E = ty—gmo =~ Tag) (XTIXZX0e

- (r—(r+n__ +[t o-0 _ t =t )Ny
with SA=A—-(A). Decoupling the sequence of equations of Xq aokg o+ oG 7~ (eg = 10Meq-o]
motion at the first stage corresponds to the zeroth order in XXX Es (7)
1/z and is known as the Hubbard-l approximation. The cor-
responding Green’s function may be represented in the form

(E = ti-go)((0X"+ X3X X0

E () = XL+ X)) ®

No+n,

Gro(E)=[FUE) -4, ], FYE)=

When taking into account fluctuations we obtain where
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FIG. 3. Density of states for the bare semiel-
liptic DOS at §=0.35.(a) Lines 1(o=17) and 2
(o=]) correspond to the non-self-consistent ap-
proximation with spin dynamicgl?2); (b) lines 3

N(E)

(6=1) and 4 (o=]) correspond to the self-
consistent approximatio¢l7).

Xq T = (S = (Xg XN,

Xa" 7= (SXP+ X7 (X2 + XTN) = (X, T X5,

are the correlation function for spin and charge densities
Nk = <X9(|ZXEO> .

Main spin fluctuations in the large- limit under consider-
ation (where local moments are well definedre standard
spin waves. The magnon frequencigeg in Eq. (7) are re-
quired to cut the logarithmic “Kondo” divergences which are
connected with the Fermi functions.

We write down the Green’s function in the locator form

bk a'( E)

G = -t ]t .
k(r(E) [Fk(r(E) tk] ako-(E)

Fk(r(E) = (9)

For the Green’s functio®) we have

ako’(E) =Ng+tn,+ E tk—q(Xg_U + nk—q—rr)G(k)—q—(r(E - O-wq)
q

+ 2 tegXg” “Gr-qo(E), (10)
q

bio(E) = E+ 2 th_Mk-q-oCr—q-o(E— 0wg).  (11)
q

To simplify our equations, we use the long-wavelength dis-
persion IaWa)q:Dq2 (D is the spin-wave stiffness constant
introduce the magnon spectral functiéy(w) and average
this in g,

Kq(@) = 80— 0g) — K(0) = 2 Kq(w).
q

This approximation is sufficient to obtain qualitatively valid
results. Indeed, this approximatigwhich is in the spirit of
the larged or largez expansioh correctly reproduces the
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TABLE . Values of critical concentrationd; and &, for rectangulacra) and semielliptia’se) bare density
of state, square, simple cul(sc), bcc, fcc lattices. I, VII are the non-self-consistent approximat@nsll is
Edwards-Hertz approximatiof24), Ill, VIII are the self-consistent approximationiwith fluctuations (17),
IV corresponds to results of Ref. 3, V, IX to results of work Ref. 45, VI to the result of Refv@@8ant of
calculation RESO, for fcc lattices instability not discovered

DOS 8 %

| I Il \Y v Vi VI Vil IX
ra 0276  0.284  0.301 0.468  0.488
se 0.258  0.266  0.290 0.458  0.477
square 0.244 0252 0275  0.49 0.4045 0449  0.461
sc 0233 0237 0261 032 <032 0237 0427 0447  0.66
bce 0217 0221 0247 032 <032 0239 0414 0432 048
fcc 0210 0217 0241 062 0.409 0427  0.38

+oo

G, (E,HNg(D)dt.

low-frequency behavior of spin fluctuations which is impor- 1 1

tant for the electronic structure near the Fermi level. Follow- Ny(E) == =Im>} G,(E) =~ —Imf
ing Ref. 13 we have taken the val@e=0.75|t|. It should be T T -
noted that the choice @ weakly influences the critical con- (15)
centration. We also neglect tlge dependence of transverse
and longitudinal spin correlation functions by taking the val-
ues averaged over the Brillouin zone to obtain

Now we write down the self-consistent approximation re-
placing the bare Iocatd??,(E) by the exact locatoF ,(E) in
Egs.(13) and(14), i.e.,

Gp,(E) — Go(E). (16)

In such an approach, large electron damping is present which
smears the “Kondo” peak, so that including magnon frequen-

XT=n, xgT =N, -n,).

Then a(E) and b(E) do not depend ork and can be ex-
pressed in terms of the bare electron density of stss),

9 b, (E) cies does not qualitatively change the picture, but may be
Go(BE)=[F,(E) -t ] F(E)= a(E)’ (120 important for quantitative results. We obtain
Bo(E)

GkO’(E) = [FU'(E) - tk]_l! FU'(E) =

_ , 17
a,(E)=ng+n, + f K(0)S tg(Ny+ Ng_e) GO (E ~ sw)des A,(E)
q

1 J—
+ 2 tgn_,(1=n_,)GJ,(E), (13) AyE)=ng+n,+ - f K(@) 2 t4(Ny + Ng-y)Gg-o(E
q 0 - q
1
_ - ow)dw tgn_o(1 —n_,)Gy,(E), (18
b,(E) = E+f K(0) X £2ng-sGL_(E - sw)dw, (14) oMo n(E ool =1-0)GorlB): (19
q
Gg_U(E -ow) — Ggg(E -ow,t) =[F,(E-ow) - t] ™, B,(E)=E+ o+ n_gf E(‘1’)§ ténq—an—a(E - ow)do,
(19
FolB)=——,
0 -0

AO'(E) =Np+n,+

- fﬁmwamW+Lwn
a,(E)=ny+n,+ f E(w)f No(t)t(n, + f_, (1)) G2 (E - gw,1) o

XG_,(E - ow,t)dtdw +

1
n JNO(t)tn—(r(l_n—o’)
0 o
X dwdt+ | No(ttn_,(1 —n_,)G2(E,t)dt,
! f 0() n o'( n 0') (7'( ) XGU.(E,t)dt,

b,(E)=E+ J E(w) f No(t)tzf_(,(t)G(_’U(E - ow,t)dwdt, B,(E)=E+ f No(Dt?f_, (1) G_,(E - ow,t)dtdw.

No+n

-0

where f,(t;) =ng, No(t)=Zyd(t-t,) is the bare density of It should be noted that another self-consistent approximation
states. The exact quasiparticle density of states is given byused in Ref. 40 leads to not quite satisfactory results because
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of the violation of the normalization condition for the density 1
of states. As our calculations demonstrate, such a difficulty (8)= 52 ong, (21
also exists for the approximatiofi2), but the violation is 7
numerically small foré< &, (about 2%; note that introduc- )
ing longitudinal fluctuations considerably improves the re-With
sults in comparison with Ref. 41. At the same time, the ap- -
proximation (17) with the locator structure of the Green’s _ OO0y
function does not violate the analytical properties. Ny = % XA = f_w No(B)[1 - f(B)JdE.
The chemical potentigk is determined by the number of
holes. By using the spectral representation for the Green

function (4) this is calculated as th the leading approximation in Zffor the one-particle oc-

cupation numbers, it is necessary to use the Hubbard-I ap-
proximation, i.e.,
8=y = (X% = (XP7X7% = > (X2"XD)
k
nko’ = (no + no’)f(tka')i
1 +oo

T ;Im% f_w Cro(B)T(E)dE, (20 but the chemical potential should be already chosen from the
Green’s function(9). As opposed to Eq(6), the Green’s
where f(E) is the Fermi function. It is important that the functions(9) contain terms with resolvents and have branch
cuts which describe nonquasipartigiacoherent contribu-

Hubbard-lI approximation is hardly satisfactory in the > ) : :
op y y tions to the density of states. It is the latter which ensure

narrow-band ferromagnetism problem since it is difficult to litai h th RO) f - Atth
formulate a reasonable criterion of magnetic ordering by didualitative a%reement wit } € S;Jmh “53 ) for ‘;_l' . ttfe h
rect use of the expressions for one-electron Green’s functior@@Me time, there are no poles of the Green's function for this
such as Eq¢6). Unlike the decoupling scheme by Hubbard, projection of the spin for smald above the Fermi level, i.e.,

the many-electroiX-operator approach clarifies the causes ofthe_l_iau;rﬁtgd fe.rrorr;agnetlc stats IS lpreserved. di
this failure. In particular, one can see that the approximation e full density of states can be also represented in terms

(6) violates the kinematical requirements since it is impos-Of the exact resolverR,(E)=2Gy,(E) as

sible to satisfy the relatiorf20) at (S #0 for both spin
projectionso. Indeed, the quasiparticle pole for=|, corre-
sponding to a narrowed band and lying above the Fermi level
of the holes, does not provide an adequate description of the
energy spectrum and leads to the appearance of finitee.,  This quantity satisfies the equation
the saturation ferromagnetism cannot be properly treated.

N,(E) = - %Im R,(E).

However, the situation changes provided we use expressions 1 1

containing first-order 17 corrections. Unlike the Hubbard-l R (E) = R,{F,(E)}, Ro(E)=>, :f No(t) ——dt.

approximation, the value gf turns out to be weakly depen- k Bk E-t

dent ono for the approximatior{12) and independent of

for the the approximationl?). In the case of a saturated ferromagnetic state, the Green’s
The magnetization is determined from the equation function (9) takes the form
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E—t,n occurs, so that quasiparticle states with | occur above the
q

t.(1-n -1 able for$=0.15. In the nonsaturated state a spin-polaron pole
4 Fermi level with

N (E-ton,-
G, (E)=E> — K4 (E|1- = Kk-q _
ki (E) %E_tk_qmq( l no+§ E et o n, def(E)NL(E).

-> tk-an—q) 1, (23) The corrg;ponding DOS picture is shown in Fig. 3.._
q The critical concentrationg, for the loss of stability of
saturated ferromagnetism, as calculated in the different ap-
where n, =f(t,). Note that, as opposed to the one-electron, oyimations considered, are listed in Table | for a number of
approactt’® the Green’s functiorGy;(E) does not reduce t0 pare densities of states. In the case of fcc lattigesere the
the free electron Green's function even in the saturated femgre density of states is asymmetric and has a logarithmic
romagnetiC state, since fluctuations in the hole OCCUpatioaivergence on one edggve have chosen the Sign of the
number contribute to it. Neglecting the resolvent in E22)  transfer integral for which the saturated ferromagnetism is
and the last term in the denominator of £23), we obtain a  stable at lows.1® Note that it is necessary to use an equation
somewhat different form of the Green’s function in terms offor the chemical potentia0) that is derived from the com-
the electron self-energy plete Green’s functiongl7). (Using the Hubbard-I approxi-
1 mation here leads to a drop % of the order of 0.)).
, Itis clear from Table | that the results are fairly stable and
E -t~ % (E) do not depend too strongly on the form of the approximation.
In particular, self-consistency changes them little, leading to
s _ D Nk—q - a slight reduction iné.. The dependence on spin dynamics
(B ==1-no E-tiqt g ' (24) (magnon spectrujneven in the non-self-consistent approxi-
4 mation, is weake(the critical concentration only varies in
This result corresponds to the Edwards-Hertz approximatioshe third decimal plage At the same time, spin dynamics is
in the limit U — . Of course, these expressions work only inimportant for the description of the states near the Fermi
the saturated ferromagnetic state. The reg@4gcan also be level. Results of the Edwards-Hertz approximati@4) lie
obtained by using the expansion in the electron and magnopetween those of the self-consistent approximatibn of
occupation number¥. the non-self-consistent approximati¢®). Unfortunately, in
Ref. 18 only a crude estimate &f was made by using the
quadratic dispersion relation for the hole spectrum which
[Il. RESULTS OF CALCULATIONS AND DISCUSSION yielded 8.,=0.16. This approximation is not sufficient for
quantitative calculations, as one can see from Table I.
Unlike most other analytical approaches, our results for
e one-particle Green’s describe the formation of nonsat-
urated ferromagnetism too. It is important that the account of
longitudinal spin fluctuationgwhich were neglected in Ref.
f(tysq) 41) turns out to be important for obtaining the nonsaturated
> ;TL =~ In[E~ EeIN(Ep). solution and calculating the second critical concentratign
g k+g The dependence of the saturation magnetization on the
For very low & a significant logarithmic singularity exists concentration of charge carriers for various bare DOS’s is
only in the imaginary part of the Green’s function, which shown in Fig. 4. One can see that this dependence deviates
corresponds to a finite jump in the density of stéfe¥. from the linear ondS)=(1-n)/2 for 5> §,.
However, whené increases, it is necessary to take into ac- Let us perform a comparison of our results with other
count the resolvents in both the numerator and denominataralculations. Generally, most calculations for a number of
of the Green’s function, so that the real and imaginary partsattices yield a value o8, which is close to 0.3although the
are “mixed” and a logarithmic singularity appears in the den-small valued.=0.045 was obtained in Ref. 22 for sc lattice
sity of states. When the magnon frequencies are included iby a diagram approach, the close approach of Ref. 25 yields
the denominators of Eqg13) and (14), the singularity is much larger values, e.gd,=0.25 for the quadratic lattige
spread out over the interval,,,, and the peak is smoothed At the same time, for the critical concentratiof{sthe inter-
out. In the self-consistent approximatio(k8) and (19) the  val of values is broader and varies from 0.38 to 0.64. Our
form of N|(E) approaches the bare density of states and thealculations yields, values which are considerably smaller
peak is completely smeared, even neglecting spin dynamidban the results of the spin-wave approximation.
(Fig. 1), so that the latter plays no crucial role, although it An improved Gutzwiller methdd yields §,=0.33 for the
shifts the peak below the Fermi level somewhat. sc lattice, and using thigU expansioR® yields §,=0.27. For
Near the critical concentration the peak in approximationthe quadratic lattice the result of the variational appr8ach
(9) (but not in the Edwards-Hertz approximatjois again is &=0.251, and the result of Ref. 43 &=0.38. The den-
smearedFig. 2), but this spreading out is no longer notice- sity matrix renormalization group approdcteads to the

1
G (E)=——, Gy (E)=
a® =g Gul®

The 1/z corrections lead to a nontrivial structure of the
total quasiparticle density of states. In the non—self—consiste%
approach the integral with the Fermi functions yields, similar
to the Kondo problem, the logarithmic singularity
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value §,=0.22 and the rough estimat{=0.40. The quan- by the authorgsee discussion after Fig),4the results are
tum Monte Carlo(QMC) method for the density matrix in similar to those in the paramagnetic phase. In such a case,
Ref. 9 givess,=0.22 and the rough evaluati@~0.40. The our approach also yields sharp Kondo peaks at the Fermi
QMC in the two dimensional2D) casé* gives 5,~0.40. A level for both spin projectiongRef. 46.

self-consistent spin density approximati®DA)*® leads to With our approach it is possible to reproduce the depen-
the results for simple cubic and bcc lattic6s<0.32; the  dence ofd, on the space dimensionality and the form of the
values ofg, for the cubic lattices are given in Table I. bare density of states. Recently, has been obtained for a

The values we have obtained can be compared with thodarge number of lattice$?® These results are also given in
in the limit of an infinite-dimension spadé should be ex- Table | for comparison. It can be seen that in some cases our
pected that our method of expanding in powers of i  results agree better with a number of other calculations, es-
somewhat similar to this approximatiprfor which the val-  pecially for a square lattice. We note in this connection that a
ues 8,=0.42 (Ref. 27 and §,=0.33(Refs. 10 and 1phave variational method has been uéed obtain a rigorous esti-
been obtained. Our self-consistent calculations giye mated.<0.29 for a square lattice. Therefore, our results can
=0.20, 5,=0.42. A more detailed comparison can be madebe regarded to be fairly reliable, even quantitatively.
for the DOS shape including the formation of the Kondo To conclude, we have obtained the density-of-states pic-
peaks at the Fermi level. The picture of nonsaturated ferrotures in a Hubbard ferromagnet with account of the “Kondo”
magnetism at finitgalthough largg U considered in the pa- scattering and spin-polaron contributions. Our approach
per by Zitzleret all® (see Fig. 9 corresponds to the second Yyielded a rather simple interpolational description of satu-
critical concentrations,=0.15(which is small in comparison rated and nonsaturated ferromagnetism. One can expect that
to the infinitet value §,=0.33 and a very small first critical the results obtained will be useful for a qualitative under-
concentrations,. Therefore the DOS peaks at the Fermi levelstanding of the ferromagnetism formation in narrow bands.
are well pronounced even nedl. At small & (below &;) our

picture is similar to that by Zitzleet al, demonstrating un- ACKNOWLEDGMENTS
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