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The problem of stability of saturated and nonsaturated ferromagnetism in the Hubbard model is considered
in terms of the one-particle Green’s functions. Approximations by Edwards and Hertz and some versions of the
self-consistent approximations based on the 1/z expansion are considered. The account of longitudinal fluc-
tuations turns out to be essential for description of the nonsaturated state. The corresponding pictures of density
of states are obtained. “Kondo” density-of-states singularities owing to spin-flip processes are analyzed. The
critical electron concentrations for instabilities of saturated ferromagnetism and paramagnetic state are calcu-
lated for various lattices. Drawbacks of various approximations are discussed. A comparison with the results of
previous works is performed.
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I. INTRODUCTION

The problem of ferromagnetic ordering in narrow energy
bands has been extensively discussed. Despite the large num-
ber of publications on the topic, the magnetism of highly
correlated electronic systems described by the Hubbard
model1 remains at the center of attention.2–11 Physically, in
this case, the picture of magnetism is characterized by the
existence of local magnetic moments and differs substan-
tially from the Stoner picture of a weak itinerant
magnetism.12

According to Nagaoka,13 in the limit of infinite Hubbard
repulsion the ground state for simple lattices is a saturated
ferromagnetic state for a low densityd of charge carriers
(doubles or holes in an almost half-filled band). In particular,
Nagaoka rigorously proved the existence of a saturated fer-
romagnetic state for a single hole atU→` and found the
instability of the spin-wave spectrum in the case with in-
creasingd and decreasingU.

Roth14 applied a variational principle to this problem and
obtained two critical concentrations. The first onedc corre-
sponds to the instability of the saturated ferromagnetic state,
and the second onedc8, to the transition from the nonsaturated
ferromagnetic into the paramagnetic state. For the simple
cubic (sc) lattice, the valuesdc=0.37 anddc8=0.64 were ob-
tained. Next, the region of stability of the saturated ferro-
magnetic was investigated within various approximations in
numerous works(see, e.g., Refs. 16–30).

An interpolational approach to description of magnetic
ordering in narrow bands, which yields saturated ferromag-
netism for smalld and nonsaturated ferromagnetism for large
d, was developed in Refs. 31 and 32 on the basis of dynamic
magnetic susceptibility treatment. However, the critical con-
centrations themselves were not determined.

Using high-temperature expansions in early
papers5,6,23,33,34yielded nonstable results concerning the sta-
bility of ferromagnetism because of poor accuracy connected
with slow convergence.19 However, according to recent
results,5,6 ferromagnetism also occurs neard=0.3.

It should be noted that the hole concentrationd=1/3 cor-
responds to the sign change of the chemical potential in the

Hubbard-I approximation1 in the case of a symmetric con-
duction band and instability of the paramagnetic state can
occur at this point in some simple approximations.2 The
same critical values are obtained in the modern DMFT cal-
culations for the hypercubic lattice.10,15

Experimental data on Fe1−xCoxS2,
16 a system with strong

correlations, give large values ofdc (saturation ferromag-
netism is preserved up to conduction electron concentrations
n=1−d of order 0.2), but degeneracy effects in the conduc-
tion band appear to be important in this system.

The approaches mentioned do not analyze as a rule in
detail the structure of the one-particle excitation spectrum in
the ferromagnetic phase of the Hubbard model. The simplest
“Hubbard-I” result1 for the electron spectrum corresponds to
the zeroth order in the inverse nearest-neighbor number 1/z.
This is a kind of “mean-field” approximation in the electron
transfer(however, it does not coincide with the limit of infi-
nite space dimensionality treated in DMFT). The Hubbard-I
approximation is quite nonsatisfactory at describing ferro-
magnetism(in particular, ferromagnetic solutions are absent,
except for peculiar models of bare density of states).

A consistent calculation of the one-particle Green’s func-
tions in the case of smalld (almost half-filled band) and low
temperatures was performed in Refs. 35 and 36. The results
demonstrated an important role of nonquasiparticle(incoher-
ent) states in the density-of-states picture. Expressions for
the one-particle Green’s functions in a more wide region ofd
andT were obtained in Ref. 37.

A physically transparent mechanism of instability of satu-
rated ferromagnetic state was treated in detail in the works
by Edwards and Hertz.18 This mechanism is connected with
occurrence of spin-polaron states above the Fermi level of
the charge carriers.

In this paper, the stability of the saturated ferromagnetic
state as the charge carrier concentration is raised is studied
using the one-particle Green’s functions of first order in 1/z
and corresponding self-consistent approximations. This ap-
proach makes it possible to construct a rather simple and
physically transparent picture of the density of states in a
saturated Hubbard ferromagnet. At the same time, the prob-
lem of description of nonsaturated state is much more diffi-
cult, but our approach turns out to be successful too.
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II. CALCULATION OF THE ONE-PARTICLE GREEN’S
FUNCTIONS

We shall use the Hamiltonian for the Hubbard model in
the limit of infinitely strong Coulomb repulsion in the many-
electronX-operator representation38,39

H = o
ks

tkX−k
0sXk

s0, s1d

wheretk is the band energy andXk
ab is the Fourier transform

of the Hubbard operatorsXi
ab= uialkibu [0 denotes holes and

s= ± s↑ , ↓ d denotes singly occupied states].
It should be noted that in this problem of infinitely strong

Coulomb interaction, a number of difficulties arise in con-
nection with the non-Fermi excitation statistics. These diffi-
culties occur both in the diagram technique2 and in the
equations-of-motion method.40 In particular, it has been
found40 that in the expansion with respect to 1/z the analytic

properties of the retarded Green’s functions were violated for
the paramagnetic state.

We use the method of the Zubarev double-time retarded
Green’s functions. The Green’s function for operatorsA and
B

kkAuBllE
± =E

−`

0

dteiEtkfeiHtAe−iHt,Bg±l, Im E . 0 s2d

satisfies the equation of motion

EkkAuBllE
± = kfA,Bg±l + kkfA,HguBllE

± . s3d

We write down the equation for the anticommutator Green’s
functions

GkssEd = kkXk
s0uX−k

0sllE, Im E . 0 s4d

to obtain

FIG. 1. Density of states for the bare semiel-
liptic DOS at concentration of carriers currentd
=0.02. (a) Lines 1 ss=↑d and 2 ss=↓d corre-
spond to the non-self-consistent approximation
(9); lines 1 ss=↑d and 3ss=↓d to the non-self-
consistent approximation with account of spin
dynamics(20); (b) lines 4 ss=↑d and 5 ss=↓d
correspond to the self-consistent approximation
(17), and lines 4ss=↑d and 6 ss=↓d to the
Edwards-Hertz approximation(24).
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sE − tksdGkssEd = sn0 + nsd + GkssEd, s5d

where

tks = tksn0 + nsd, na = kXi
aal, a = 0,s,

GkssEd = o
q

tk−qkkXq
s−sXk−q

−s0 + dsXq
00 + Xq

ssdXk−q
s0 uX−k

0sllE,

with dA=A−kAl. Decoupling the sequence of equations of
motion at the first stage corresponds to the zeroth order in
1/z and is known as the Hubbard-I approximation. The cor-
responding Green’s function may be represented in the form

Gks
0 sEd = fFs

0sEd − tkg−1, Fs
0sEd =

E

n0 + ns

. s6d

When taking into account fluctuations we obtain

GkssEd = Gks
0 sEdS1 +

GkssEd
n0 + ns

D .

Following Ref. 37, we perform decoupling at the next stage
to derive

sE − tk−q−s − svqdkkXq
s−sXk−q

−s0uX−k
0sllE

= xq
s−s + nk−q−s + ftkxq

s−s − stk−q − tkdnk−q−sg

3kkXk
s0uX−k

0sllE, s7d

sE − tk−qsdkkdsXq
00 + Xq

ssdXk−q
s0 uX−k

0sllE

= xq
−s−ss1 + tkkkXk

s0uX−k
0sllEd, s8d

where

FIG. 2. Density of states for the bare semiel-
liptic DOS at d=0.20. (a) Lines 1 ss=↑d and 2
ss=↓d correspond to the non-self-consistent ap-
proximation with spin dynamics(12); (b) lines 3
ss=↑d and 4 ss=↓d correspond to the self-
consistent approximation(17), and lines 3ss
=↑d and 5ss=↓d to the Edwards-Hertz approxi-
mation (24).

DENSITY-OF-STATES PICTURE AND STABILITY OF… PHYSICAL REVIEW B 70, 035116(2004)

035116-3



xq
s−s = kSq

sS−q
−sl = kXq

s−sX−q
−ssl,

xq
−s−s = kdsXq

00 + Xq
ssddsX−q

00 + X−q
ssdl = kdXq

−s−sdX−q
−s−sl,

are the correlation function for spin and charge densities

nks = kX−k
0sXk

s0l.

Main spin fluctuations in the large-U limit under consider-
ation (where local moments are well defined) are standard
spin waves. The magnon frequenciesvq in Eq. (7) are re-
quired to cut the logarithmic “Kondo” divergences which are
connected with the Fermi functions.

We write down the Green’s function in the locator form

GkssEd = fFkssEd − tkg−1, FkssEd =
bkssEd
akssEd

. s9d

For the Green’s function(9) we have

akssEd = n0 + ns + o
q

tk−qsxq
s−s + nk−q−sdGk−q−s

0 sE − svqd

+ o
q

tk−qxq
−s−sGk−qs

0 sEd, s10d

bkssEd = E + o
q

tk−q
2 nk−q−sGk−q−s

0 sE − svqd. s11d

To simplify our equations, we use the long-wavelength dis-
persion lawvq=Dq2 (D is the spin-wave stiffness constant),
introduce the magnon spectral functionKqsvd and average
this in q,

Kqsvd = dsv − vqd → K̄svd = o
q

Kqsvd.

This approximation is sufficient to obtain qualitatively valid
results. Indeed, this approximation(which is in the spirit of
the large-d or large-z expansion) correctly reproduces the

FIG. 3. Density of states for the bare semiel-
liptic DOS at d=0.35. (a) Lines 1 ss=↑d and 2
ss=↓d correspond to the non-self-consistent ap-
proximation with spin dynamics(12); (b) lines 3
ss=↑d and 4 ss=↓d correspond to the self-
consistent approximation(17).
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low-frequency behavior of spin fluctuations which is impor-
tant for the electronic structure near the Fermi level. Follow-
ing Ref. 13 we have taken the valueD=0.7d u tu. It should be
noted that the choice ofD weakly influences the critical con-
centration. We also neglect theq dependence of transverse
and longitudinal spin correlation functions by taking the val-
ues averaged over the Brillouin zone to obtain

xq
s−s = ns, xq

−s−s = n−ss1 − n−sd.

Then asEd and bsEd do not depend onk and can be ex-
pressed in terms of the bare electron density of statesN0sEd,

GkssEd = fFssEd − tkg−1, FssEd =
bssEd
assEd

, s12d

assEd = n0 + ns +E K̄svdo
q

tqsns + nq−sdGq−s
0 sE − svddv

+ o
q

tqn−ss1 − n−sdGqs
0 sEd, s13d

bssEd = E +E K̄svdo
q

tq
2nq−sGq−s

0 sE − svddv, s14d

Gq−s
0 sE − svd → G−s

0 sE − sv,td = fFssE − svd − tg−1,

FssEd =
E

n0 + n−s

,

assEd = n0 + ns +E K̄svdE N0stdtsns + f−sstddG−s
0 sE − sv,td

3dvdt +E N0stdtn−ss1 − n−sdGs
0sE,tddt,

bssEd = E +E K̄svdE N0stdt2f−sstdG−s
0 sE − sv,tddvdt,

where fsstqd=nqs, N0std=okdst− tkd is the bare density of
states. The exact quasiparticle density of states is given by

NssEd = −
1

p
Imo

k
GkssEd = −

1

p
ImE

−`

+`

GssE,tdN0stddt.

s15d

Now we write down the self-consistent approximation re-
placing the bare locatorFs

0sEd by the exact locatorFssEd in
Eqs.(13) and (14), i.e.,

Gks
0 sEd → GkssEd. s16d

In such an approach, large electron damping is present which
smears the “Kondo” peak, so that including magnon frequen-
cies does not qualitatively change the picture, but may be
important for quantitative results. We obtain

GkssEd = fFssEd − tkg−1, FssEd =
BssEd
AssEd

, s17d

AssEd = n0 + ns +
1

n0 + n−s
E K̄svdo

q
tqsns + nq−sdGq−ssE

− svddv +
1

n0 + ns
o
q

tqn−ss1 − n−sdGqssEd, s18d

BssEd = E +
1

n0 + n−s
E K̄svdo

q
tq
2nq−sGq−ssE − svddv,

s19d

AssEd = n0 + ns +
1

n0 + n−s
E K̄svdE N0stdtfns + f−sstdg

3G−ssE − sv,tddtdv +
1

n0 + ns
E N0stdtn−ss1 − n−sd

3GssE,tddt,

BssEd = E +
1

n0 + n−s
E N0stdt2f−sstdG−ssE − sv,tddtdv.

It should be noted that another self-consistent approximation
used in Ref. 40 leads to not quite satisfactory results because

TABLE I. Values of critical concentrationsdc anddc8 for rectangular(ra) and semielliptic(se) bare density
of state, square, simple cubic(sc), bcc, fcc lattices. I, VII are the non-self-consistent approximations(9), II is
Edwards-Hertz approximation(24), III, VIII are the self-consistent approximations(with fluctuations) (17),
IV corresponds to results of Ref. 3, V, IX to results of work Ref. 45, VI to the result of Ref. 29(variant of
calculation RES0, for fcc lattices instability not discovered).

DOS dc dc8

I II III IV V VI VII VIII IX

ra 0.276 0.284 0.301 0.468 0.488

se 0.258 0.266 0.290 0.458 0.477

square 0.244 0.252 0.275 0.49 0.4045 0.449 0.461

sc 0.233 0.237 0.261 0.32 ,0.32 0.237 0.427 0.447 0.66

bcc 0.217 0.221 0.247 0.32 ,0.32 0.239 0.414 0.432 0.48

fcc 0.210 0.217 0.241 0.62 0.409 0.427 0.38
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of the violation of the normalization condition for the density
of states. As our calculations demonstrate, such a difficulty
also exists for the approximation(12), but the violation is
numerically small ford,dc (about 2%); note that introduc-
ing longitudinal fluctuations considerably improves the re-
sults in comparison with Ref. 41. At the same time, the ap-
proximation (17) with the locator structure of the Green’s
function does not violate the analytical properties.

The chemical potentialm is determined by the number of
holes. By using the spectral representation for the Green’s
function (4) this is calculated as

d ; n0 = kX00l = kXi
0sXi

s0l = o
k

kXk
0sX−k

s0l

= −
1

p
Imo

k
E

−`

+`

GkssEdfsEddE, s20d

where fsEd is the Fermi function. It is important that the
Hubbard-I approximation is hardly satisfactory in the
narrow-band ferromagnetism problem since it is difficult to
formulate a reasonable criterion of magnetic ordering by di-
rect use of the expressions for one-electron Green’s functions
such as Eq.(6). Unlike the decoupling scheme by Hubbard,1

the many-electronX-operator approach clarifies the causes of
this failure. In particular, one can see that the approximation
(6) violates the kinematical requirements since it is impos-
sible to satisfy the relation(20) at kSzlÞ0 for both spin
projectionss. Indeed, the quasiparticle pole fors=↓, corre-
sponding to a narrowed band and lying above the Fermi level
of the holes, does not provide an adequate description of the
energy spectrum and leads to the appearance of finiten↓, i.e.,
the saturation ferromagnetism cannot be properly treated.
However, the situation changes provided we use expressions
containing first-order 1/z corrections. Unlike the Hubbard-I
approximation, the value ofm turns out to be weakly depen-
dent ons for the approximation(12) and independent ofs
for the the approximation(17).

The magnetization is determined from the equation

kSzl =
1

2o
s

sns, s21d

with

ns = o
k

kX−k
s0Xk

0sl =E
−`

+`

NssEdf1 − fsEdgdE.

In the leading approximation in 1/z for the one-particle oc-
cupation numbers, it is necessary to use the Hubbard-I ap-
proximation, i.e.,

nks = sn0 + nsdfstksd,

but the chemical potential should be already chosen from the
Green’s function(9). As opposed to Eq.(6), the Green’s
functions(9) contain terms with resolvents and have branch
cuts which describe nonquasiparticle(incoherent) contribu-
tions to the density of states. It is the latter which ensure
qualitative agreement with the sum rule(20) for s=↓. At the
same time, there are no poles of the Green’s function for this
projection of the spin for smalld above the Fermi level, i.e.,
the saturated ferromagnetic state is preserved.

The full density of states can be also represented in terms
of the exact resolventRssEd=okGkssEd as

NssEd = −
1

p
Im RssEd.

This quantity satisfies the equation

RssEd = R0hFssEdj, R0sEd = o
k

1

E − tk
=E N0std

1

E − t
dt.

In the case of a saturated ferromagnetic state, the Green’s
function (9) takes the form

FIG. 4. The dependence of the magnetization
kSzl on d for a number of bare DOS’s. Line 1
corresponds to rectangular DOS, line 2 to semiel-
liptic DOS, lines 3, 4, 5, 6 to square, simple cubic
(sc), bcc, and fcc latices, respectively.
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Gk↑sEd = SEYF1 +o
q

tqs1 − n0d
E − tqn0

G − tkD−1

, s22d

Gk↓sEd = Eo
q

nk−q

E − tk−q + vq
SEF1 − n0 + o

q

sE − tkdnk−q

E − tk−q + vq
G

− o
q

tk−qnk−qD−1

, s23d

where nk = fstkd. Note that, as opposed to the one-electron
approach,18 the Green’s functionGk↑sEd does not reduce to
the free electron Green’s function even in the saturated fer-
romagnetic state, since fluctuations in the hole occupation
number contribute to it. Neglecting the resolvent in Eq.(22)
and the last term in the denominator of Eq.(23), we obtain a
somewhat different form of the Green’s function in terms of
the electron self-energy

Gk↑sEd =
1

E − tk
, Gk↓sEd =

1

E − tk − Sk↓sEd
,

Sk↓sEd = − s1 − n0dSo
q

nk−q

E − tk−q + vq
D−1

. s24d

This result corresponds to the Edwards-Hertz approximation
in the limit U→`. Of course, these expressions work only in
the saturated ferromagnetic state. The results(24) can also be
obtained by using the expansion in the electron and magnon
occupation numbers.42

III. RESULTS OF CALCULATIONS AND DISCUSSION

The 1/z corrections lead to a nontrivial structure of the
total quasiparticle density of states. In the non-self-consistent
approach the integral with the Fermi functions yields, similar
to the Kondo problem, the logarithmic singularity

o
q

fstk+qd
E − tk+q

. − lnuE − EFuNsEFd.

For very low d a significant logarithmic singularity exists
only in the imaginary part of the Green’s function, which
corresponds to a finite jump in the density of states.35,36

However, whend increases, it is necessary to take into ac-
count the resolvents in both the numerator and denominator
of the Green’s function, so that the real and imaginary parts
are “mixed” and a logarithmic singularity appears in the den-
sity of states. When the magnon frequencies are included in
the denominators of Eqs.(13) and (14), the singularity is
spread out over the intervalvmax and the peak is smoothed
out. In the self-consistent approximations(18) and (19) the
form of N↓sEd approaches the bare density of states and the
peak is completely smeared, even neglecting spin dynamics
(Fig. 1), so that the latter plays no crucial role, although it
shifts the peak below the Fermi level somewhat.

Near the critical concentration the peak in approximation
(9) (but not in the Edwards-Hertz approximation) is again
smeared(Fig. 2), but this spreading out is no longer notice-

able ford=0.15. In the nonsaturated state a spin-polaron pole
occurs, so that quasiparticle states withs=↓ occur above the
Fermi level with

n↓ =E dEfsEdN↓sEd.

The corresponding DOS picture is shown in Fig. 3.
The critical concentrationsdc for the loss of stability of

saturated ferromagnetism, as calculated in the different ap-
proximations considered, are listed in Table I for a number of
bare densities of states. In the case of fcc lattices(where the
bare density of states is asymmetric and has a logarithmic
divergence on one edge) we have chosen the sign of the
transfer integral for which the saturated ferromagnetism is
stable at lowd.13 Note that it is necessary to use an equation
for the chemical potential(20) that is derived from the com-
plete Green’s functions(17). (Using the Hubbard-I approxi-
mation here leads to a drop indc of the order of 0.1.)

It is clear from Table I that the results are fairly stable and
do not depend too strongly on the form of the approximation.
In particular, self-consistency changes them little, leading to
a slight reduction indc. The dependence on spin dynamics
(magnon spectrum), even in the non-self-consistent approxi-
mation, is weaker(the critical concentration only varies in
the third decimal place). At the same time, spin dynamics is
important for the description of the states near the Fermi
level. Results of the Edwards-Hertz approximation(24) lie
between those of the self-consistent approximation(17) of
the non-self-consistent approximation(9). Unfortunately, in
Ref. 18 only a crude estimate ofdc was made by using the
quadratic dispersion relation for the hole spectrum which
yielded dc=0.16. This approximation is not sufficient for
quantitative calculations, as one can see from Table I.

Unlike most other analytical approaches, our results for
the one-particle Green’s describe the formation of nonsat-
urated ferromagnetism too. It is important that the account of
longitudinal spin fluctuations(which were neglected in Ref.
41) turns out to be important for obtaining the nonsaturated
solution and calculating the second critical concentrationdc8.

The dependence of the saturation magnetization on the
concentration of charge carriers for various bare DOS’s is
shown in Fig. 4. One can see that this dependence deviates
from the linear onekSzl=s1−nd /2 for d.dc.

Let us perform a comparison of our results with other
calculations. Generally, most calculations for a number of
lattices yield a value ofdc which is close to 0.3(although the
small valuedc=0.045 was obtained in Ref. 22 for sc lattice
by a diagram approach, the close approach of Ref. 25 yields
much larger values, e.g.,dc=0.25 for the quadratic lattice).
At the same time, for the critical concentrationsdc8 the inter-
val of values is broader and varies from 0.38 to 0.64. Our
calculations yielddc8 values which are considerably smaller
than the results of the spin-wave approximation.14

An improved Gutzwiller method27 yields dc=0.33 for the
sc lattice, and using thet /U expansion23 yieldsdc=0.27. For
the quadratic lattice the result of the variational approach8

is dc=0.251, and the result of Ref. 43 isdc8=0.38. The den-
sity matrix renormalization group approach9 leads to the
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value dc=0.22 and the rough estimatedc8.0.40. The quan-
tum Monte Carlo(QMC) method for the density matrix in
Ref. 9 givesdc=0.22 and the rough evaluationdc8<0.40. The
QMC in the two dimensional(2D) case44 givesdc8<0.40. A
self-consistent spin density approximation(SDA)45 leads to
the results for simple cubic and bcc latticesdc,0.32; the
values ofdc8 for the cubic lattices are given in Table I.

The values we have obtained can be compared with those
in the limit of an infinite-dimension space(it should be ex-
pected that our method of expanding in powers of 1/z is
somewhat similar to this approximation), for which the val-
uesdc8=0.42 (Ref. 27) anddc8=0.33 (Refs. 10 and 15) have
been obtained. Our self-consistent calculations givedc
=0.20, dc8=0.42. A more detailed comparison can be made
for the DOS shape including the formation of the Kondo
peaks at the Fermi level. The picture of nonsaturated ferro-
magnetism at finite(although large) U considered in the pa-
per by Zitzleret al.15 (see Fig. 9) corresponds to the second
critical concentrationdc8=0.15(which is small in comparison
to the infinite-U valuedc8=0.33) and a very small first critical
concentrationdc. Therefore the DOS peaks at the Fermi level
are well pronounced even neardc8. At small d (belowdc) our
picture is similar to that by Zitzleret al., demonstrating un-
renormalized spin-up DOS and a sharp Kondo peak in the
spin-down DOS. At the same time, in our infinite-U case the
peaks near largedc8 are already almost fully smeared(espe-
cially in the self-consistent approximation, which probably
overestimates the damping). As for Ref. 10, the calculations
were made at small doping and finite temperatures. As noted

by the authors(see discussion after Fig. 4), the results are
similar to those in the paramagnetic phase. In such a case,
our approach also yields sharp Kondo peaks at the Fermi
level for both spin projections(Ref. 46).

With our approach it is possible to reproduce the depen-
dence ofdc on the space dimensionality and the form of the
bare density of states. Recently,dc has been obtained for a
large number of lattices.3,29 These results are also given in
Table I for comparison. It can be seen that in some cases our
results agree better with a number of other calculations, es-
pecially for a square lattice. We note in this connection that a
variational method has been used4 to obtain a rigorous esti-
matedc,0.29 for a square lattice. Therefore, our results can
be regarded to be fairly reliable, even quantitatively.

To conclude, we have obtained the density-of-states pic-
tures in a Hubbard ferromagnet with account of the “Kondo”
scattering and spin-polaron contributions. Our approach
yielded a rather simple interpolational description of satu-
rated and nonsaturated ferromagnetism. One can expect that
the results obtained will be useful for a qualitative under-
standing of the ferromagnetism formation in narrow bands.
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