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Numerical estimation of the B function in two-dimensional systems with spin-orbit coupling
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We report a numerical study of Anderson localization in a two-dimensi@ia) system of noninteracting
electrons with spin-orbit coupling. We analyze the scaling of the renormalized localization length for the 2D
SU(2) model and estimate it8 function over the full range from the localized to the metallic limits.
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I. INTRODUCTION tential ¢; is identically and independently distributed with

As a general rule, all states in a disordered two dimen¥niform probability on[-W/2,W/2]. Hopping is restricted
sional(2D) system of noninteracting electrons are localized. to nearest neighbors and the hopping ma(i j) is distrib-
There are two exceptions. One is the quantum Hall effecuted randomly and independently with uniform probability
which occurs in 2D systems subject to strong perpendiculagn the group S(2) according to the group invariant mea-
magnetic fields, where delocalized states exist at the centsure. More explicitly
of a Landau levef. Another is the metallic phase that occurs - i o
in 2D systems with symplectic symmetry, i.e., in systems R(i'j)z( e COS B ensin Bij ) )
with time reversal symmetry but in which spin rotation sym- ' —eMisin B; e"'“icospB;
metry is broker?:* The latter of these, which is the subject of . o
this paper, is realized when the spin-orbit interaction is sigWith aij and y; uniform on[0,2n], and g; distributed ac-
nificant: this interaction breaks spin rotation symmetry butcording to
not time reversal symmetry.

While progress has been matfea satisfactory analytic sin(2R)dB 0<pB< T
theory of the metal-insulator transition in 2D systems with P(B)dB = 2 )
symplectic symmetry has yet to be developed. In the absence 0 otherwise.
of such a theory, numerical simulation remains the most use- )
ful tool with which to investigate the transitidn’. We perform an S(2) gauge transformation on the model for

In a recent Physical Review Letfare estimated the criti- reasons of numerical efficienggee the Appendix
cal exponent for this transition. Prior to our work varying
estimates of the critical exponent had been reported. The B. Transfer matrix method
main obstacle to a higher precision estimate of the exponent ) . i
had been corrections to scaling due to irrelevant scaling vari- Ve have used two different variants of the transfer matrix
ables in many of the models analyzed numerically. We overmethod to estimate the localization lengtlof an electron on
came this difficulty by proposing an $2) model for which ~ quasi-1D strips with transverse dimensibnand lengthl.,.
such corrections are much less significant. We impose periodic boundary conditions in the transverse
In this paper we present a detailed analysis of the scaling'recuon- We used quaternion arithmetic to perform the
of the quasi-one-dimensionélD) localization length in the ~ ransfer matrix calculations. _ ,
SU(2) model in the metallic, critical, and localized regimes. The fl_rst traditional trgnsfer_matrlx_methjé?cbsnmates the
Scaling in the critical and localized regimes was not dealfoc@lization length by simulating a single very long sample
with in our letter. From this we have estimated the renormaltz>L:: The length of the sample is increased until a desired
ization groupg function for the quasi-1D localization length. Precision fork is obtained.
We also present supplementary results for the phase diagram 1he second methdt called here the ensemble transfer

and rule out the occurrence of re-entrant behavior. matrix method simulates an ensemble of samples with a
fixed lengthL,. Here the number of samples is increased
Il. MODEL AND METHOD until a desired precision for the localization length is

achieved. To ensure that the estimate of the localization
A. SU(2) model S ; - o
) length is independent df,, a special choice of the distribu-
We simulated the S(2) modeP tion of the starting vectors in the transfer matrix iteration is
= cle - T required. We take a set of orthonormal vectors and perform
H=2 8iC, G0 2 R D ao/Cig Cior, @ N, transfer matrix iterations on these vectors with Gram-
Schmidt orthogonalizations. N, is sufficiently large, a sta-
WhereciTg(ci,,) denotes the creatiof@nnihilatior) operator of  tionary distribution of orthonormal vectors is reached. When
an electron at the site=(x,y) with spin o. The random po- vectors sampled from this stationary distribution are used as

Lo (i,j),o,0"
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starting vectors, the estimate of the localization length be- TABLE I. The results of the scaling analysis in the critical re-
comes independent af,. gion. The best fit parameters for energy 1, L;=8,16,32,64,96
andWe [5.2,6.7 are listed. The precision of the datais 0.1%,
except forL;=96 where it is 0.4%. Here, and in later tabldk, is
C. Finite size scaling method the number of data point#y, is the number of fitting parameters,

Our analysis is based on the assumption that the reno?l-nOIQ Is the goodness of fit probability.

malized localization lengtiA, defined by

v 2.746+0.009 No 3
N W, 5.953+0.001 n, 2
A= R (4 InA 0.6116+0.0007 Np 7
t ay -0.30+0.02 Ny 231
- 2
obeys single parameter scali(®P3 law that is described by a3 0.01£0.03 X 221
the 8 function'® i 0.986+0.004 Q 0.5
A 0.54+0.05
din A
Bln A)=—r-7 (5)
n L lll. SCALING ANALYSIS OF THE RENORMALIZED

. . L. LOCALIZATION LENGTH
In the critical regime, wheré,;<¢, the SPS hypothesis im-
plies that A. The critical region

For the critical region we simulated data with a fixed en-
In A=F(L"y). (6)  ergy. When fitting we approximated the functigrby a Tay-
lor series truncated at ordey;:
Here v is the critical exponent that describes the divergence

of the localization length at the critical poirf, is a scaling U YWt YWt l’b”‘/'wn¢’ ©
function, and where
= E, 7 W.-W
¥=p(EW) ) w= e W (10)
W,

is a smooth function of disorder and energy that goes to zero

linearly at the critical point. Equatior) and(7) are used to HereW,=W(E) is the critical disorder for the given energy.
fit the results of numerical simulations for systems in theThe functionF, which for finite L is a smooth function of
critical regime. Once the form d¥ and the critical exponent energy and disorder, was approximated by a Taylor series
v are determined, th@ function is calculated by differenti- truncated at ordeny:

ating Eq.(6).

When data outside the critical regime are also included in
the analysis, it is more practical to use a different form of th
SPS law that expressés as a function of the ratio of the
system size to a single relevant length scale

F(X)=In Ag+x+ax?+ - +a, X", (11)

rhe coefficients in both Taylor series, the critical disorder
and the critical exponent are fitting parameters. The results of
the scaling analysis are given in Table | and the best fit is

displayed in Fig. 1.
In A:Fi(—t>. (8)

The subscript distinguishes the scaling function in the metal-
lic and localized phases. We follow the convention that +
indicates the metallic phase and - the localized phase. Data
for the metallic and localized phases are analyzed separately.
The B function can again be obtained by differentiating Eq.
(8) onceF, have been determined.

We accumulated numerical data for the localized, critical,
and metallic regimes, fitted them with the appropriate form.
The best fit to the data was determined by minimizingRe 0.2 r r r
statistic and the quality of the fit assessed by the goodness of 5.5 6.0 6.5
fit probability Q. The precision of the results of the fitting v
procedure were determined using a Monte Carlo méthod  FiG. 1. A plot of the best fit to the data for the critical regime.
and expressed as 95% confidence intervals. We did not inyi| the curves cross at a common poithe critical poinj. This
clude any corrections to SPS due to irrelevant varidbles illustrates that the magnitude of any corrections to SPS are smaller
since these are negligible for the &)Y model? than the precision of the data.
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TABLE Il. The scaling analysis for the strongly localized limit. TABLE IIl. The fit to data for the localized regime: the local-
The ensemble transfer matrix method with=1000 andL,=1000 ization length¢ at each disordew and the parameters for the cubic
was used. The best fit to data satisfying the critefdori1/6 ob-  spline interpolation. Note thdt (x) =F_(eX). The data used are for
tained in simulations of systems with=1 andL.e[24,12§ is E=1,L;e[16,128. The precision ofA ranges from 0.3% to 1.0%.
shown. The precision oA is 0.3%.

W &
w &
6.3 4006+200 f_(-6.5 0.52+0.04
10.0 10.77+0.06 a 1.39£.03 6.4 2061+80 f_(-4) 0.325+0.004
11.0 7.12+0.03 6.5 1187+30 f.(-2) -0.015+0.004
12.0 5.21£0.02 Ng 24 6.7 528+10 f_(0) -0.775+0.003
12.5 4.57£0.02 Np 6 7.0 22843 f_(1) -1.393+0.003
13.0 4.07£0.01 X 10 75 87.9+0.8 f_(2) -2.172+0.003
Q 0.9 8.0 45.7+0.3 f_(4) -4,02+0.02
9.0 19.06+0.09 f/(-6.5 -0.07+0.06
B. The insulating phase 10.0 10.76+0.04 f.(4) -0.96+0.04
_ o _ 11.0 7.12+0.03
For very strong disorder the localization lengths short 5.21(fixed) Ny 91
and our data satisfi;> £. In this limit we expect that 125 4574002 N 21
£ 13.0 4.07+0.02 xX° 68
A== 12
L (12 Q 0.6
This corresponds to the following limiting value of tite
function: the average of the random potential in the transverse direc-
lim B(In A)=—1. (13) ti(_)n. In the !ongitudinz_il d_irection the electron is Iocglized
A—0 with a quasi-1D localization length that can be estimated
. _ L from perturbation theory for a strictly 1D system. The result
Supposing that deviations from this limiting value for is P y y y
small but finiteA are of the form
B(n A)=-1+aA, (14 1
) . A~ —. (16)
we arrive at the following form fon\: W
Al=a+ E(A <1). (15) The limiting value of theB function that this corresponds to
& is
We found that this fits data for the strongly localized limit
well. The fitting parameters ae= &W) at each disordew, lim B(In A)=0. a7

anda. The details of the best fit obtained with Ed5) are A=
tabulated in Table .

To fit all the data in the localized regime we used a cubicFor large but finiteA we speculate that deviations from this
spline parameterization of the scaling function. We et can be described by an expansion in powers of.1%top-
=In(L,/¢) andy=In A and fit the data witly=f_(x) wheref_  ping at the first term we have
is a cubic spline. The values of the functibnat a given set

of x values, the derivatives of_ at the end points of the 1
interval considered, and the localization length for each dis-

order, are fitting parameters. The subroutines “spline” and 0 1
“splint” in Ref. 12 are used to perform the spline interpola-

tion. To fix the absolute scale of the localization length in 11
this spline fit, we set the localization length\&t=12 to the 3 )

value obtained with Eq15) in the strongly localized region.
The results are tabulated in Table Ill and displayed in Fig. 2.

C. The metallic phase 4

For weak disorder we follow Ref. 10 and argue as fol- " y T T T
lows. WhenA > 1 there is negligible localization of the elec- s 4 l-f(L,/.’j)o 2 4
tron in the transverse direction on the quasi-1D system. As a
result the electron sees an effective random potential that is FIG. 2. A plot of the best fit to data in the localized phase.
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TABLE IV. The best fit to data for the strongly metallic limit. TABLE V. The best fit for the metallic phase: the correlation
The ensemble transfer matrix method wity=10 000 andL, length ¢ at each disordeW and the parameters for the cubic spline
=10 000 was used. The best fit to data satisfying the critekiond interpolation. Note thaf,(x)=F,(e*). The data used are f@&=1,
obtained in simulations of systems wilh=1 andL;e[16,12§ is L, €[16,128. The precision of the datd ranges from 0.3% to

shown. The precision ok ranges from 0.3% to 1.0%. 1.0%.
W 4 W &
0.0 1.69+0.07 b 4.48+0.02 0.0 1.72+0.08 f.(-7) 0.72+0.02
1.0 1.99+0.08 c 0.64+0.01 1.0 2.02+0.09 f.(-3) 1.057+0.008
2.0 3.70.1 2.0 3.7£0.1 £.(0) 1.500+0.005
2.5 5.7+0.2 Ng 48 2.5 5.7+0.2 f.(2) 1.752+0.003
3.0 10(fixed) Np 8 3.0 10(fixed) f.(5) 2.03+0.03
35 19.740.6 X2 44 35 19.6%0.6 f1(-7) 0.05+0.02
4.0 45+2 Q 0.3 4.0 46+2 f1(5) 0.07+0.04
4.5 11945
5.0 438+30 Ng 84
Bn A)= <. (18) 5.3 1393+100 Np 18
A 5.5 4005+400 x2 81
5.6 8223+900 Q 0.1

This corresponds to a logarithmic increaseMofvith L;:
IV. ESTIMATION OF THE B FUNCTION

A=b+c InE(A > 1) (19) For the critical region, we find after differentiating E6)
£ ' the following expression for thg function:

1
: . BLF(s)]==sF(s). (20)
Data for largeA are well fitted by this form. Heré, ¢, and v

the correlation lengtl§ at each disordeW, are fitting param-
eters. Since the absolute scaleéoin the metallic phase is
arbitrary, we set the correlation length \Wt=3 to &W=3)
=10 to fix the scale. This does not affect the form of the BLF.(s)] =sF.(9). (21
scaling function or thes function. The best fit is tabulated in
Table IV and displayed in Fig. 3.

To fit data for the whole metallic phase we used a cubidnetric plot. . T
spline interpolation of the scaling function. We set For the strongly localized and strongly metallic limits the

=In(L/&) andy=In A and fitted the data witgi=f.(x) where appropriate forms of thes function in terms of the fitting

f, is the cubic spline. The correlation lengitat each disor- paramaters, b, andc have already been given.

der W and the parameters for the cubic spline interpolation . The resultingg function is displayed in Fig. 5. The pre-

are the fitting parameters. The best fit is tabulated in Table \FISe form of theg function depend; not only on th.e univer-
and displayed in Fig. 4. sality class but also on the quantity whose scaling is ana-

lyzed. The B function for the renormalized quasi-1D
localization length discussed here will differ in detail from

For the metallic or localized phases, differentiating ER).
we find

In all cases thes function is easily displayed using a para-

8
7 ] 20
6 E
< 1.5
E
5 E
1.0 1
4
-1 0 1 2 3 4 5 r x T T
In(Z, 18) 6 4 2 0 2 4
In(L, /€)
FIG. 3. A plot of the best fit to data in the strongly metallic
limit. FIG. 4. A plot of the best fit to data in the metallic phase.

035115-4



NUMERICAL ESTIMATION OF THE g FUNCTION IN... PHYSICAL REVIEW B 70, 035115(2004

8
/\\ 7 Insulator
0.0 oo 4
/ 61
= 5
g i)
-0.5
3 1 Metal
2 .
10 F——————————— !
4 3 24 0 1 2 3 4 0 . . —
InA 0 1 2 3 4
E

FIG. 5. Theg function for the renormalized localization length.
The different regiongstrongly localized, localized, critical, metal- FIG. 6. Phase diagram of the 8) model. The line is a cubic
lic, and strongly metallig are indicated by the alternating use of spline interpolation.
solid and dashed lines.

the 3 function for the mean conductance, or the mean resisPl@yed in Fig. 6. Re-entrant behavior is clearly ruled out.

tance, or the typical conductance, &It will also differ
in detail from theg function found in renormalization group
analyses of field theories of Anderson localizatidf-'8The In this paper, we analyzed the scaling of the renormalized
only common features expected to be shared by3dlinc-  localization length in the 2D S@2) model. We estimated the
tions for particular universality class are the existence of aritical exponentr=2.746+0.009 and the8 function. We
zero, which signals the existence of a transition, and thelso clarified the phase diagram.
slope at the zero, which is related to the critical exponent.  The properties of the metallic phase in the 2D symplectic
universality class are of particular interest. According to the
V. THE PHASE DIAGRAM OF THE 2D SU(2) single parameter scaling theory, this phase has a perfect
MODEL conductivity®?° This is in spite of the system being disor-
The preliminary results for the phase diagram presented idered. This conclusion might be avoided if there was some
our previous paper left open the possibility of re-entrant bebreakdown of single parameter scaling in the metallic re-
havior similar to that seen for the Anderson motfelo de-  gime. However, we have verified clearly in this work that the
termine whether or not such behavior occurs, the data in ouienormalized localization length does obey the single pa-
previous paper were supplemented by simulations with @ameter scaling law in the metallic regime.
fixed disordersW=1 andW=2 and varying Fermi energy.
The data were fitted as already described in Sec. II C and ~ APPENDIX: SU(2) GAUGE TRANSFORMATION

Il A, the only difference being that in Eq9) we set Here we describe the $P) gauge transformation men-
E.-E tioned in the text. The Lyapunov exponents are independent
=g (22)  of the choice of gauge.
¢ Taking thex direction as the longitudinal direction anyd
and determined the critical energy as a function of disordedirection as the transverse direction, the local&yauge
E.=E.(W). The results are tabulated in Table VI and dis-transformation is given by

VI. SUMMARY AND DISCUSSION

TABLE VI. The details of the simulations and fits used to map out the phase diagram of {2 SU

model.

E (fixed) L¢ Ny Q W, In A v
0.0 [8,64) 59 0.4 6.199+0.003 0.612+0.002 2.75+0.04
0.5 [8,32 51 0.5 6.139+0.004 0.612+0.002 2.72+0.04
15 [8,32 51 0.3 5.631+0.004 0.611+0.002 2.74+0.04
2.0 [8,64) 62 0.4 5.165+0.004 0.609+0.002 2.73+£0.03
25 [16,64 47 0.1 4.483+0.005 0.608+0.003 2.78+0.05
3.0 [16,64 47 0.4 3.394+0.006 0.611+0.003 2.77+0.06

W (fixed) L¢ Ny Q E. In A¢ v
2.0 [16,64 48 0.5 3.1922+0.0006 0.607+0.002 2.70+£0.04
1.0 [16,64 36 0.7 3.2367+0.0004 0.609+0.003 2.70+£0.04
0.0 [16,64 31 0.7 3.2531+0.0003 0.613+0.004 2.77x0.05
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ﬁm)=uuy(?”) (A1)
Cxy| Cxy|
whereU(x,y) e SU(2) has elements
Uxy) =RXy;x=Ly)R(x-1y;x=2,y)
------ R(2,y;1,y)R(1,y;0,y). (A2)

After this transformation, the S@) model Hamiltonian has

PHYSICAL REVIEW B 70, 035115(2004

the same form as Eql) but with the hopping matrixR

replaced withR, where in thex direction R(X,y;x+1,y) is
the unit matrix and in the direction

ROGY:XY+ 1) = U TROGY; Y + DUKY + 1).
(A3)

The matrixNR(x,y;x,y+1) is again uniformly and indepen-
dently distributed on S(2).
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