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We report a numerical study of Anderson localization in a two-dimensional(2D) system of noninteracting
electrons with spin-orbit coupling. We analyze the scaling of the renormalized localization length for the 2D
SU(2) model and estimate itsb function over the full range from the localized to the metallic limits.
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I. INTRODUCTION

As a general rule, all states in a disordered two dimen-
sional(2D) system of noninteracting electrons are localized.1

There are two exceptions. One is the quantum Hall effect
which occurs in 2D systems subject to strong perpendicular
magnetic fields, where delocalized states exist at the center
of a Landau level.2 Another is the metallic phase that occurs
in 2D systems with symplectic symmetry, i.e., in systems
with time reversal symmetry but in which spin rotation sym-
metry is broken.3,4 The latter of these, which is the subject of
this paper, is realized when the spin-orbit interaction is sig-
nificant: this interaction breaks spin rotation symmetry but
not time reversal symmetry.

While progress has been made,5,6 a satisfactory analytic
theory of the metal-insulator transition in 2D systems with
symplectic symmetry has yet to be developed. In the absence
of such a theory, numerical simulation remains the most use-
ful tool with which to investigate the transition.4,7,8

In a recent Physical Review Letter9 we estimated the criti-
cal exponent for this transition. Prior to our work varying
estimates of the critical exponent had been reported. The
main obstacle to a higher precision estimate of the exponent
had been corrections to scaling due to irrelevant scaling vari-
ables in many of the models analyzed numerically. We over-
came this difficulty by proposing an SU(2) model for which
such corrections are much less significant.

In this paper we present a detailed analysis of the scaling
of the quasi-one-dimensional(1D) localization length in the
SU(2) model in the metallic, critical, and localized regimes.
Scaling in the critical and localized regimes was not dealt
with in our letter. From this we have estimated the renormal-
ization groupb function for the quasi-1D localization length.
We also present supplementary results for the phase diagram
and rule out the occurrence of re-entrant behavior.

II. MODEL AND METHOD

A. SU(2) model

We simulated the SU(2) model9

H = o
i,s

«icis
† cis− o

si,jd,s,s8

Rsi ; jdss8cis
† cjs8, s1d

wherecis
† scisd denotes the creation(annihilation) operator of

an electron at the sitei =sx,yd with spin s. The random po-

tential «i is identically and independently distributed with
uniform probability onf−W/2 ,W/2g. Hopping is restricted
to nearest neighbors and the hopping matrixRsi ; jd is distrib-
uted randomly and independently with uniform probability
on the group SU(2) according to the group invariant mea-
sure. More explicitly

Rsi ; jd = S eiai j cosbi j eigi j sin bi j

− e−igi j sin bi j e−iai j cosbi j
D s2d

with ai j and gi j uniform on f0,2pg, and bi j distributed ac-
cording to

Psbddb = 5sins2bddb 0 ø b ø
p

2

0 otherwise.

s3d

We perform an SU(2) gauge transformation on the model for
reasons of numerical efficiency(see the Appendix).

B. Transfer matrix method

We have used two different variants of the transfer matrix
method to estimate the localization lengthl of an electron on
quasi-1D strips with transverse dimensionLt and lengthLz.
We impose periodic boundary conditions in the transverse
direction. We used quaternion arithmetic to perform the
transfer matrix calculations.

The first traditional transfer matrix method10 estimates the
localization length by simulating a single very long sample
Lz@Lt. The length of the sample is increased until a desired
precision forl is obtained.

The second method11 called here the ensemble transfer
matrix method simulates an ensemble of samples with a
fixed lengthLz. Here the number of samples is increased
until a desired precision for the localization length is
achieved. To ensure that the estimate of the localization
length is independent ofLz, a special choice of the distribu-
tion of the starting vectors in the transfer matrix iteration is
required. We take a set of orthonormal vectors and perform
Nr transfer matrix iterations on these vectors with Gram-
Schmidt orthogonalizations. IfNr is sufficiently large, a sta-
tionary distribution of orthonormal vectors is reached. When
vectors sampled from this stationary distribution are used as
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starting vectors, the estimate of the localization length be-
comes independent ofLz.

C. Finite size scaling method

Our analysis is based on the assumption that the renor-
malized localization lengthL, defined by

L =
l

Lt
, s4d

obeys single parameter scaling(SPS) law that is described by
the b function10

bsln Ld =
d ln L

d ln Lt
. s5d

In the critical regime, whereLt!j, the SPS hypothesis im-
plies that

ln L = FsLt
1/ncd. s6d

Heren is the critical exponent that describes the divergence
of the localization length at the critical point,F is a scaling
function, and

c ; c sE,Wd s7d

is a smooth function of disorder and energy that goes to zero
linearly at the critical point. Equations(6) and(7) are used to
fit the results of numerical simulations for systems in the
critical regime. Once the form ofF and the critical exponent
n are determined, theb function is calculated by differenti-
ating Eq.(6).

When data outside the critical regime are also included in
the analysis, it is more practical to use a different form of the
SPS law that expressesL as a function of the ratio of the
system size to a single relevant length scalej:

ln L = F±SLt

j
D . s8d

The subscript distinguishes the scaling function in the metal-
lic and localized phases. We follow the convention that +
indicates the metallic phase and − the localized phase. Data
for the metallic and localized phases are analyzed separately.
The b function can again be obtained by differentiating Eq.
(8) onceF± have been determined.

We accumulated numerical data for the localized, critical,
and metallic regimes, fitted them with the appropriate form.
The best fit to the data was determined by minimizing thex 2

statistic and the quality of the fit assessed by the goodness of
fit probability Q. The precision of the results of the fitting
procedure were determined using a Monte Carlo method12

and expressed as 95% confidence intervals. We did not in-
clude any corrections to SPS due to irrelevant variables13

since these are negligible for the SU(2) model.9

III. SCALING ANALYSIS OF THE RENORMALIZED
LOCALIZATION LENGTH

A. The critical region

For the critical region we simulated data with a fixed en-
ergy. When fitting we approximated the functionc by a Tay-
lor series truncated at ordernc:

c = c1w + c2w
2 + ¯ + cnc

wnc, s9d

where

w =
Wc − W

Wc
. s10d

HereWc;WcsEd is the critical disorder for the given energy.
The functionF, which for finite Lt is a smooth function of
energy and disorder, was approximated by a Taylor series
truncated at ordern0:

Fsxd = ln Lc + x + a2x
2 + ¯ + an0

xn0 . s11d

The coefficients in both Taylor series, the critical disorder
and the critical exponent are fitting parameters. The results of
the scaling analysis are given in Table I and the best fit is
displayed in Fig. 1.

TABLE I. The results of the scaling analysis in the critical re-
gion. The best fit parameters for energyE=1, Lt=8,16,32,64,96
and WP f5.2,6.7g are listed. The precision of the dataL is 0.1%,
except forLt=96 where it is 0.4%. Here, and in later tables,Nd is
the number of data points,Np is the number of fitting parameters,
andQ is the goodness of fit probability.

n 2.746±0.009 n0 3

Wc 5.953±0.001 nc 2

ln Lc 0.6116±0.0007 Np 7

a2 −0.30±0.02 Nd 231

a3 −0.01±0.03 x2 221

c1 0.986±0.004 Q 0.5

c2 0.54±0.05

FIG. 1. A plot of the best fit to the data for the critical regime.
All the curves cross at a common point(the critical point). This
illustrates that the magnitude of any corrections to SPS are smaller
than the precision of the data.
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B. The insulating phase

For very strong disorder the localization lengthj is short
and our data satisfyLt@j. In this limit we expect that

L <
j

Lt
. s12d

This corresponds to the following limiting value of theb
function:

lim
L→0

bsln Ld = − 1. s13d

Supposing that deviations from this limiting value for
small but finiteL are of the form

bsln Ld = − 1 +aL, s14d

we arrive at the following form forL:

L−1 = a +
Lt

j
sL ! 1d. s15d

We found that this fits data for the strongly localized limit
well. The fitting parameters arej;jsWd at each disorderW,
anda. The details of the best fit obtained with Eq.(15) are
tabulated in Table II.

To fit all the data in the localized regime we used a cubic
spline parameterization of the scaling function. We setx
=lnsLt /jd andy=ln L and fit the data withy= f−sxd wheref−

is a cubic spline. The values of the functionf− at a given set
of x values, the derivatives off− at the end points of the
interval considered, and the localization length for each dis-
order, are fitting parameters. The subroutines “spline” and
“splint” in Ref. 12 are used to perform the spline interpola-
tion. To fix the absolute scale of the localization length in
this spline fit, we set the localization length atW=12 to the
value obtained with Eq.(15) in the strongly localized region.
The results are tabulated in Table III and displayed in Fig. 2.

C. The metallic phase

For weak disorder we follow Ref. 10 and argue as fol-
lows. WhenL@1 there is negligible localization of the elec-
tron in the transverse direction on the quasi-1D system. As a
result the electron sees an effective random potential that is

the average of the random potential in the transverse direc-
tion. In the longitudinal direction the electron is localized
with a quasi-1D localization length that can be estimated
from perturbation theory for a strictly 1D system. The result
is

L ,
1

W2 . s16d

The limiting value of theb function that this corresponds to
is

lim
L→`

bsln Ld = 0. s17d

For large but finiteL we speculate that deviations from this
can be described by an expansion in powers of 1/L. Stop-
ping at the first term we have

TABLE II. The scaling analysis for the strongly localized limit.
The ensemble transfer matrix method withNr =1000 andLz=1000
was used. The best fit to data satisfying the criterionL,1/6 ob-
tained in simulations of systems withE=1 and LtP f24,128g is
shown. The precision ofL is 0.3%.

W j

10.0 10.77±0.06 a 1.39±.03

11.0 7.12±0.03

12.0 5.21±0.02 Nd 24

12.5 4.57±0.02 Np 6

13.0 4.07±0.01 x2 10

Q 0.9

TABLE III. The fit to data for the localized regime: the local-
ization lengthj at each disorderW and the parameters for the cubic
spline interpolation. Note thatf−sxd;F−sexd. The data used are for
E=1, LtP f16,128g. The precision ofL ranges from 0.3% to 1.0%.

W j

6.3 4006±200 f−s−6.5d 0.52±0.04

6.4 2061±80 f−s−4d 0.325±0.004

6.5 1187±30 f−s−2d −0.015±0.004

6.7 528±10 f−s0d −0.775±0.003

7.0 228±3 f−s1d −1.393±0.003

7.5 87.9±0.8 f−s2d −2.172±0.003

8.0 45.7±0.3 f−s4d −4.02±0.02

9.0 19.06±0.09 f−8s−6.5d −0.07±0.06

10.0 10.76±0.04 f−8s4d −0.96±0.04

11.0 7.12±0.03

12.0 5.21(fixed) Nd 91

12.5 4.57±0.02 Np 21

13.0 4.07±0.02 x2 68

Q 0.6

FIG. 2. A plot of the best fit to data in the localized phase.
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bsln Ld =
c

L
. s18d

This corresponds to a logarithmic increase ofL with Lt:

L = b + c ln
Lt

j
sL @ 1d. s19d

Data for largeL are well fitted by this form. Hereb, c, and
the correlation lengthj at each disorderW, are fitting param-
eters. Since the absolute scale ofj in the metallic phase is
arbitrary, we set the correlation length atW=3 to jsW=3d
=10 to fix the scale. This does not affect the form of the
scaling function or theb function. The best fit is tabulated in
Table IV and displayed in Fig. 3.

To fit data for the whole metallic phase we used a cubic
spline interpolation of the scaling function. We setx
=lnsLt /jd andy=ln L and fitted the data withy= f+sxd where
f+ is the cubic spline. The correlation lengthj at each disor-
der W and the parameters for the cubic spline interpolation
are the fitting parameters. The best fit is tabulated in Table V
and displayed in Fig. 4.

IV. ESTIMATION OF THE b FUNCTION

For the critical region, we find after differentiating Eq.(6)
the following expression for theb function:

bfFssdg =
1

n
sF8ssd. s20d

For the metallic or localized phases, differentiating Eq.(8)
we find

bfF±ssdg = sF±8ssd. s21d

In all cases theb function is easily displayed using a para-
metric plot.

For the strongly localized and strongly metallic limits the
appropriate forms of theb function in terms of the fitting
paramatersa, b, andc have already been given.

The resultingb function is displayed in Fig. 5. The pre-
cise form of theb function depends not only on the univer-
sality class but also on the quantity whose scaling is ana-
lyzed. The b function for the renormalized quasi-1D
localization length discussed here will differ in detail from

TABLE IV. The best fit to data for the strongly metallic limit.
The ensemble transfer matrix method withNr =10 000 andLx

=10 000 was used. The best fit to data satisfying the criterionL.4
obtained in simulations of systems withE=1 andLtP f16,128g is
shown. The precision ofL ranges from 0.3% to 1.0%.

W j

0.0 1.69±0.07 b 4.48±0.02

1.0 1.99±0.08 c 0.64±0.01

2.0 3.7±0.1

2.5 5.7±0.2 Nd 48

3.0 10(fixed) Np 8

3.5 19.7±0.6 x 2 44

4.0 45±2 Q 0.3

FIG. 3. A plot of the best fit to data in the strongly metallic
limit.

TABLE V. The best fit for the metallic phase: the correlation
lengthj at each disorderW and the parameters for the cubic spline
interpolation. Note thatf+sxd;F+sexd. The data used are forE=1,
LtP f16,128g. The precision of the dataL ranges from 0.3% to
1.0%.

W j

0.0 1.72±0.08 f+s−7d 0.72±0.02

1.0 2.02±0.09 f+s−3d 1.057±0.008

2.0 3.7±0.1 f+s0d 1.500±0.005

2.5 5.7±0.2 f+s2d 1.752±0.003

3.0 10(fixed) f+s5d 2.03±0.03

3.5 19.6±0.6 f+8s−7d 0.05±0.02

4.0 46±2 f+8s5d 0.07±0.04

4.5 119±5

5.0 438±30 Nd 84

5.3 1393±100 Np 18

5.5 4005±400 x 2 81

5.6 8223±900 Q 0.1

FIG. 4. A plot of the best fit to data in the metallic phase.
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the b function for the mean conductance, or the mean resis-
tance, or the typical conductance, etc.14,15 It will also differ
in detail from theb function found in renormalization group
analyses of field theories of Anderson localization.3,16–18The
only common features expected to be shared by allb func-
tions for particular universality class are the existence of a
zero, which signals the existence of a transition, and the
slope at the zero, which is related to the critical exponent.

V. THE PHASE DIAGRAM OF THE 2D SU(2)
MODEL

The preliminary results for the phase diagram presented in
our previous paper left open the possibility of re-entrant be-
havior similar to that seen for the Anderson model.19 To de-
termine whether or not such behavior occurs, the data in our
previous paper were supplemented by simulations with a
fixed disordersW=1 andW=2 and varying Fermi energy.
The data were fitted as already described in Sec. II C and
III A, the only difference being that in Eq.(9) we set

w =
Ec − E

Ec
s22d

and determined the critical energy as a function of disorder
Ec;EcsWd. The results are tabulated in Table VI and dis-

played in Fig. 6. Re-entrant behavior is clearly ruled out.

VI. SUMMARY AND DISCUSSION

In this paper, we analyzed the scaling of the renormalized
localization length in the 2D SU(2) model. We estimated the
critical exponentn=2.746±0.009 and theb function. We
also clarified the phase diagram.

The properties of the metallic phase in the 2D symplectic
universality class are of particular interest. According to the
single parameter scaling theory, this phase has a perfect
conductivity.3,20 This is in spite of the system being disor-
dered. This conclusion might be avoided if there was some
breakdown of single parameter scaling in the metallic re-
gime. However, we have verified clearly in this work that the
renormalized localization lengthL does obey the single pa-
rameter scaling law in the metallic regime.

APPENDIX: SU(2) GAUGE TRANSFORMATION

Here we describe the SU(2) gauge transformation men-
tioned in the text. The Lyapunov exponents are independent
of the choice of gauge.

Taking thex direction as the longitudinal direction andy
direction as the transverse direction, the local SU(2) gauge
transformation is given by

FIG. 5. Theb function for the renormalized localization length.
The different regions(strongly localized, localized, critical, metal-
lic, and strongly metallic) are indicated by the alternating use of
solid and dashed lines.

TABLE VI. The details of the simulations and fits used to map out the phase diagram of the SU(2)
model.

E (fixed) Lt Nd Q Wc ln Lc n

0.0 [8,64] 59 0.4 6.199±0.003 0.612±0.002 2.75±0.04

0.5 [8,32] 51 0.5 6.139±0.004 0.612±0.002 2.72±0.04

1.5 [8,32] 51 0.3 5.631±0.004 0.611±0.002 2.74±0.04

2.0 [8,64] 62 0.4 5.165±0.004 0.609±0.002 2.73±0.03

2.5 [16,64] 47 0.1 4.483±0.005 0.608±0.003 2.78±0.05

3.0 [16,64] 47 0.4 3.394±0.006 0.611±0.003 2.77±0.06

W (fixed) Lt Nd Q Ec ln Lc n

2.0 [16,64] 48 0.5 3.1922±0.0006 0.607±0.002 2.70±0.04

1.0 [16,64] 36 0.7 3.2367±0.0004 0.609±0.003 2.70±0.04

0.0 [16,64] 31 0.7 3.2531±0.0003 0.613±0.004 2.77±0.05

FIG. 6. Phase diagram of the SU(2) model. The line is a cubic
spline interpolation.
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Scxy↑
cxy↓

D = Usx,ydSc̃xy↑
c̃xy↓

D , sA1d

whereUsx,ydPSUs2d has elements

Usx,yd = Rsx,y;x − 1,ydRsx − 1,y;x − 2,yd

¯ ¯ Rs2,y;1,ydRs1,y;0,yd. sA2d

After this transformation, the SU(2) model Hamiltonian has

the same form as Eq.(1) but with the hopping matrixR

replaced withR̃, where in thex direction R̃sx,y;x+1,yd is
the unit matrix and in they direction

R̃sx,y;x,y + 1d = Usx,yd†Rsx,y;x,y + 1dUsx,y + 1d.

sA3d

The matrix R̃sx,y;x,y+1d is again uniformly and indepen-
dently distributed on SU(2).
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