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The multiorbital Hubbard model is expressed in terms of quantum phase variables(“slave rotors”) conjugate
to the local charge, and of auxiliary fermions, providing an economical representation of the Hilbert space of
strongly correlated systems. When the phase variables are treated in a local mean-field manner, similar results
to the dynamical mean-field theory are obtained, namely a Brinkman-Rice transition at commensurate fillings
together with a “preformed” Mott gap in the single-particle density of states. The slave-rotor formalism allows
to go beyond the local description and take into account spatial correlations, following an analogy to the
superfluid-insulator transition of bosonic systems. We find that the divergence of the effective mass at the
metal-insulator transition is suppressed by short range magnetic correlations in finite-dimensional systems.
Furthermore, the strict separation of energy scales between the Fermi-liquid coherence scale and the Mott gap,
found in the local picture, holds only approximately in finite dimensions, due to the existence of low-energy
collective modes related to zero-sound.
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I. INTRODUCTION

Strongly correlated fermion systems constitute a chal-
lenge, both from a fundamental point of view(with phenom-
ena such as the Mott transition1 and high-temperature super-
conductivity), and on a more quantitative level with the need
of reliable tools to handle intermediate and strong coupling
regimes(even for simplified models such as the Hubbard
model). In recent years, the dynamical mean-field theory
(DMFT) has allowed for significant progress in this respect.2

In particular, this approach has led to a detailed theory of the
Mott transition, and to a quantitative description of the phys-
ics of strongly correlated metals. Despite these successes, the
limitations of this approach have been emphasized on many
occasions. The main one has to do with the effect of spatial
correlations (e.g., magnetic short-range correlations), and
more precisely with the effect of these correlations on the
properties of quasiparticles. For example, the tendency to
form singlet bonds due to superexchange is widely believed
to be a key physical effect in weakly doped Mott insulators.
Also, at the technical level, the application of DMFT to ma-
terials with a large orbital degeneracy(e.g., in combination
with ab initio methods3–5), as well as cluster extensions of
DMFT (Refs. 2 and 6) are computationally challenging be-
cause they involve the solution of a multiorbital quantum
impurity model.

For these reasons, there is still a strong need for approxi-
mate, simpler treatments of strongly correlated fermion mod-
els. Those treatments should incorporate some of the DMFT
successes(e.g., regarding the description of the metal-
insulator transition), but they should also pave the road for
describing physical effects beyond DMFT at least at a quali-
tative level.

The purpose of this paper is to present a simple mean field
description of correlated systems which fulfills some of these

goals. Our main idea is to focus on the degrees of freedom
associated with the relevant physical variable associated to
the Mott transition, namely a slave quantum rotor field, dual
to the local electronic charge. This slave rotor representation
was introduced previously by us for the description of quan-
tum impurity models and mesoscopic devices,7,8 and is ap-
plied here in the context of lattice models. This allows for a
simple reformulation of the orbitally degenerate Hubbard
model, which, when the interaction has full orbital symme-
try, is quite superior to previously developed slave-boson
representations.9–11

When the simplest possible(single-site) mean-field ap-
proximation is used in conjunction with this slave-rotor rep-
resentation, a description of the Mott transition very similar
to that of DMFT is found. The metallic phase disappears
through a Brinkman-Rice transition, at which the quasiparti-
cle wieight vanishes and the effective mass diverges. The
slave rotor approach does preserve Hubbard bands in the
insulator, and a “preformed” Mott spectral gap opening up
discontinuously at the transition is found, as in DMFT.

The most interesting aspect of our approach lies however
in the possibility of going beyond this purely local mean-
field description. By decoupling the spinons and slave rotor
degrees of freedom, the Hubbard model is mapped onto a
free spinon hamiltonian self-consistently coupled to a quan-
tum XY lattice model. The(dis)ordering transition of the
latter corresponds to the Mott transition, in analogy with the
superfluid-insulator transition of the bosonic Hubbard model.
Because spatial correlations are now included, we find im-
portant modifications to the DMFT picture. In particular, the
effective mass remains finite at the transition, due to the
quenching of the macroscopic entropy by magnetic correla-
tions in the Mott phase. Importantly, low-energy charge col-
lective modes are shown to affect the opening of the Mott
gap, which now develops in a continuous manner, so that the
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separation of energy scales found in DMFT only holds in an
approximate manner. These simple results can be considered
as deviations from the DMFT predictions that could possibly
be observed in photoemission experiments.12 However, res-
tauration of the local gauge symmetry should occur due to
fluctuations beyond the mean-field approximation, possibly
modifying the latter result on a qualitative way.

The paper is organized as follows: In Sec. II we introduce
the exact slave rotor description of a simple atomic level
with orbital degeneracy, and show that an approximate treat-
ment of the local constraint is sufficient to describe correctly
the full Coulomb staircase, as well as one-particle spectra.
Then, in Sec. III, we develop the simplest(local) mean field
treatment of both the Anderson and Hubbard models, and in
the latter case, study the multiorbital Mott transition. Finally,
spatial fluctuations beyond DMFT are included in Sec. IV,
with an emphasis on the behavior of the effective mass and
the excitation spectrum. The conclusion presents several pos-
sible applications and extensions of our formalism, and also
discusses some of the open issues raised by our results.

II. ROTOR REPRESENTATION OF INTERACTING
FERMIONS

A. Slave-rotor representation

In Ref. 7 (see also Ref. 13), we introduced a representa-
tion of the Hilbert space ofN fermions ds

† in terms of a
collective phase degree of freedomu, conjugate to the total
charge, and ofN auxiliary fermionsfs

†. The spin/orbital in-
dex runs overN valuess=1,¯ ,N (e.g.,s= ↑ ,↓ for N=2).
In the following, we consider only interactions which have
the full SUsNd spin/orbital symmetry. Let us consider the
Hamiltonian corresponding to a single “atomic level,” in the
presence of a local Hubbard repulsion,

Hat = o
s

e0 ds
†ds +

U

2Fo
s

ds
†ds −

N

2G2

. s1d

The crucial point is that the spectrum of the atomic Hamil-
tonian (1) depends only on the total fermionic chargeQ
=0,¯ ,N and has a simple quadratic dependence onQ,

EQ = e0Q +
U

2
FQ −

N

2
G2

. s2d

There are 2N states, but onlyN+1 different energy levels,
with degeneracies sQ

Nd. In conventional slave boson
methods,9,11 a bosonic field is introduced foreach atomic
stateus1¯sQl (along with spin-carrying auxiliary fermions
fs
†). Hence, these methods are not describing the atomic

spectrum in a very economical manner, and lead to very
tedious calculations when orbital degeneracy becomes large,
even at the mean-field level.10,11,14,15However, we stress that
the extensive number of degrees of freedom necessary in
those other approaches can become useful when the SUsNd
symmetry is broken, either by magnetic order or crystal
fields.

The spectrum of(1) can actually be reproduced by intro-
ducing, besides the set of auxiliary fermionsfs

†, a single

additional variable, namely the angular momentumL̂
=−i ] /]u associated with a quantum Os2d rotor u, an angular
variable inf0,2pg. Indeed, the energy levels(2) can be ob-
tained using the following Hamiltonian:

Hat = o
s

e0fs
† fs +

U

2
L̂2. s3d

A constraint must be imposed, which insures that the total
number of fermions is equal to the Os2d angular momentum
(up to a shift, in our conventions):

L̂ = o
s

f fs
† fs − 1

2g . s4d

This restricts the allowed values of the angular momentum to
be ,=Q−N/2=−N/2 ,−N/2+1,¯ ,N/2−1,N/2, while in
the absence of any constraint, can be an arbitrary(positive
or negative) integer. The spectrum of(3) is e0Q+U,2/2,
with ,=Q−N/2 thanks to(4), so that it coincides with(2).

It is easily checked that the full Hilbert space is correctly
described as

us1 ¯ sQld = us1 ¯ sQl fu, = Q − N/2lu s5d

in which us1¯sQld,f denotes the antisymmetric fermion
state built out ofd- and f-fermions, respectively, andu,lu

denotes the quantum rotor eigenstate with angular momen-
tum ,, i.e., ku u,lu=ei,u. For N=2, this corresponds to:u↑ ld

= u↑ l fu0lu, u↓ ld= u↓ l fu0lu, u↑↓ld= u↑↓l fu+1lu and u0ld= u0l fu
−1lu. The creation of a physical electron with spins is as-
sociated to the action offs

† on such a state as well as raising
the total charge(angular momentum) by one unit. Since the
raising operator iseiu, this leads to the representation:

ds
† ; fs

†eiu, ds ; fse−iu. s6d

The key advantage of the quantum rotor representation is
that the original quartic interaction between fermions has
been replaced in(3) by a simple kinetic term for the phase

field, sU /2dL̂2.
We point out here that a similar phase representation was

developed before in the context of Coulomb blockade in me-
soscopic systems, see, e.g., Refs. 16–18. However, the
present work and our previous paper7 present the first appli-
cations of the rotor technique to the context of strongly cor-
related lattice models. In particular, the question of quasipar-
ticle coherence which is crucial to the description of a Fermi
liquid cannot be investigated seriously with a phase-only
description,19 as shown in Ref. 8. In this perspective, the
slave rotor should be seen as a natural extension(and sim-
plification) of the usual slave boson techniques20,21 in the
context of a finite but orbitally symmetric Coulomb repul-
sion. In principle, it can also be applied to systems with
long-range interactions.13,22

B. Treating the constraint on average: Atomic limit

In the following, we will study different kinds of mean-
field approximations based on this slave-rotor representation.
A common trait of these mean-field approximations is that
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the number constraint(4) will be treatedon average. This is
equivalent to treating the constraint in a “grand-canonical”
ensemble, which would of course be exact in the limit of a
large spin/orbital degeneracyN→`. In this section, we in-
vestigate the accuracy of this approximation for the atomic
Hamiltonian(1), for finite values ofN.

1. Coulomb staircase: Occupancy vse0

Let us first consider the dependence of the average occu-

pancykQ̂l=kos ds
†dsl on the position of the atomic levele0,

which reads

kQ̂lat =
1

Zat
o
Q=0

N SN

Q
DQ e−b EQ s7d

with

Zat = o
Q

SN

Q
De−bEQ.

In the limit of zero temperature, the dependence ofkQ̂l on e0

is the “Coulomb staircase” in Fig. 1. When treating the con-
straint on average, a Lagrange multiplierh is introduced
which is conjugate to(4), and one optimizes overh instead
of fully integrating over it. This amounts to consider the
following effective Hamiltonians:

Hf
at = se0 − hdo

s

fs
† fs, s8d

Hu
at =

U

2
L̂2 + h SL̂ −

N

2
D . s9d

The Lagrange multiplierh is determined by the average con-
straint equation:

kL̂lh = NfnFse0 − hd − 1
2g s10d

in which kL̂lh is the average ofL̂ in the Hamiltonian(9):

kL̂lh =
1

Zu
o

,=−`

+`

,e−b E, s11d

with E,=U,2/2+h, andZu=o, e−bE,. Solving (10) for h as
a function ofe0 and temperatureT=1/b yields the depen-
dence of the total charge within this approximation:

kQ̂l = N nFfe0 − hse0,Tdg. s12d

We need to compare this approximation to the exact result
(7) in the atomic limit. A graphical representation(Fig. 2) is
useful in order to understand the solution of(10). At T=0,
one findsh=e0, as long as 0,Q,N. The exact dependence
of the average chargeQ upon e0 at T=0 is correctly repro-
duced by our approximation, corresponding to the “Coulomb
staircase”

Q =
N

2
+ , for − U

2, + 1

2
, e0 , − U

2, − 1

2
. s13d

Note thath−e0 vanishes linearly with temperature according
to h=e0−T lnsN/Q−1d+¯: this is why the full Coulomb
staircase can be reproduced with a single Fermi factor in
(12). At finite temperature, our approximation does not coin-
cide with the exact result forQatse0,Td, but deviations are
only sizable for temperatures comparable toU, which is not
a severe limitation in practice.

2. Spectral functions

We now study the consequences of the approximate treat-
ment of the constraint for the Green’s function and spectral
function. Following(8) and (9), the quantum rotor and aux-
iliary fermion degrees of freedom are described by two in-
dependent Hamiltonians, so that the Green’s function of the
physical electronGdstd;−kTdsstdds

†s0dl factorizes into

Gdstd = GfstdGustd s14d

with Gustd;kexp ifus0d−ustdgl. Equivalently, the physical
electron spectral function is given by

rdsvd = −E dv8 r fsv8drusv − v8dfnFs− v8d + nBsv − v8dg.

s15d

Let us considerT=0, ande0 in the range corresponding to
the plateau of chargeQ in the Coulomb staircase. The
ground-state energy isEQ=UsQ−N/2d2+e0Q and its degen-
eracy issQ

Nd. The two excited states obtained by adding or
removing a particle correspond to transition energies:D±
=EQ±1−EQ= ±e0±UsQ−N/2±1/2d. When acting withds

† on

FIG. 1. (Color online) Coulomb staircase in the atomic limit for
the case of two orbitals,N=4.

FIG. 2. (Color online) Graphical solution of the average con-
straint equation(10). The intersect(cross) moves exactly along the
Coulomb staircase shown in Fig. 1.
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the ground-state, only those ground-state components which
do not already contains contribute, and there are

SN − 1

Q
D = S1 −

Q

N
DSN

Q
D

such components. Similarly, when acting withds, only the
components in whichs is occupied contribute, and there are

SN − 1

Q − 1
D =

Q

N
SN

Q
D

of them. From these considerations, we see that the exact
spectral function reads, atT=0:

rd
atsvd = S1 −

Q

N
D dsv − D+d +

Q

N
dsv + D−d. s16d

These two atomic transitions are the precursors of the Hub-
bard bands in the solid. Note that they have unequal weights,
except at half-fillingQ=N/2. At finite temperature, addi-
tional peaks appear(except forN=2), corresponding to tran-
sition between two excited states(with exponentially small
weight for T!U).

Remarkably, expressions(14) and(15) in which the quan-
tum rotor and auxiliary fermions are treated as decoupled, do
reproduce this exact result atT=0. The easiest way to see
this is to notice that, atT=0, Gfstd=−s1−Q/Ndustd
+sQ/Ndus−td, since nFse0−hd=Q/N. The rotor Green’s
functionGu is e−D+t for t.0 andeD−t for t,0. Substituting
into (14), this corresponds to the exact expression(16). Al-
ternatively, one can use the expressions of theT=0 spectral
functions into (15): r fsvd=dsv−e0+hd and rusvd=−dsv
−D+d+dsv−D−d, keeping in mind thatnFse0−hd=Q/N while
nBsv−e0+hd=−us−vd as T→0. Again, deviations between
the approximate treatment and the exact results are found at
finite temperature, but remain small forT!U. Let us empha-
size that, because the rotor Green’s functionGu is a continu-
ous function att=0, with Gust=0d=1, the factorized ap-
proximation (14) insures that the physical(d-electron)
spectral function is correctly normalized with total spectral
weight equal to unity.

To summarize, we have found that treating the constraint
on average reproduces accurately the atomic limit atT=0,
both regarding the Coulomb staircase dependence ofQ vs e0,
and regarding the spectral function. This is a key point for
the methods introduced in this article, which allows them to
describe reasonably the high energy features of strongly cor-
related systems.

3. Functional integral formulation

We briefly introduce here a functional integral formalism
for the fs

† and u degrees of freedom, and derive the action
associated with(1). This is simply done by switching from

phase and angular-momentumoperators sû ,L̂d to fields
su ,]tud depending on imaginary timetP f0,bg, with usbd
=us0d+2p n. The action is constructed fromS

;e0
bdtf−iL̂]tu+H+ f†]tfg, and an integration overL̂ is per-

formed. It is also necessary to introduce a Lagrange multi-

plier h̃ in order to implement the constraintL̂=os fs
† fs

−N/2. We note that, because of the charge conservation on

the local impurity, h̃ can be chosen to be independent of

time, with h̃P f0,2p /bg. This leads to the following expres-
sion of the action:

Sat =E
0

b

dto
s

fs
†s]t + e0 + ih̃dfs +

s]tu + h̃d2

2U
− i

N

2
h̃.

The constraint is implemented exactly providedh̃ is inte-
grated over. The above approximation amounts to evaluate

the integral by a saddle-point approximation overh̃, and the

saddle-point is found to be on the real axis, withh̃= ih.
Finally, let us mention that, in a previous publication,7 we

have explained in detail the connection between the rotor
construction and the Hubbard-Stratonovich decoupling of the
interaction in the charge channel.

III. THE SIMPLEST MEAN-FIELD APPROXIMATION

In this section, we introduce a very simple mean-field
approximation based on the slave rotors variables. This ap-
proximation is similar in spirit to the condensation of slave
bosons in conventional slave boson mean-field theories. We
illustrate this approximation on two examples: the Anderson
impurity model and the Hubbard model.

A. Anderson impurity model

The Anderson impurity model describes a local orbital
hybridized to a conduction electron bath

H = Hat + o
ks

ekcks
† cks + Vo

ks

scks
† ds + h.c.d. s17d

This Hamiltonian can be rewritten in terms of the slave rotor
and auxiliary fermion variables

H =
U

2
L̂2 + e0o

s

fs
† fs + o

ks

ekcks
† cks + Vo

ks

scks
† fs e−iu + h.c.d

s18d

submitted to the constraint(4). The simplest possible ap-
proximation is to decouple the rotor and fermion variables,
leading to two effective Hamiltonians:

Hf
eff = se0 − hdo

s

fs
† fs + o

ks

ekcks
† cks + Veffo

ks

scks
† fs + h.c.d

s19d

Hu
eff =

U

2
L̂2 + hL̂ + K cosu. s20d

The parametersVeff, K, andh in these expressions are deter-
mined by the coupled self-consistent equations:

Veff = Vkcosulu, s21d

K = Vo
ks

kcks
† fs + fs

†cksl f , s22d
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kL̂lu = NfnFse0 − hd − 1
2g s23d

in which the averages are calculated with the effective
Hamiltonians above.

Let us first examine the particle-hole symmetric casee0
=0sQ=N/2d in which the solution of(23) is h=0. The rotor
sector is described by the effective Hamiltonian(20) corre-
sponding to the Schrödinger equation

F−
U

2

]2

] u2 + K cosuGCsud = E Csud. s24d

For K=0, the ground-state wave function is the stateul =0l,
uniform onf0,2pg, corresponding to maximal phase fluctua-
tions and thus to the absence of charge fluctuations. This is
associated with the atomic limit, as explained above. As soon
as the hybridizationV is nonzero, we shall see thatKÞ0.
The wave function is then maximumsK,0d for u=0,2p,
and kcosul acquires a nonzero expectation value. This cor-
responds to a nonzero effective hybridizationVeff=Vkcosul,
so that the auxiliary fermion effective Hamiltonian is that of
a resonant level model. This captures the physics of the
Kondo effect, and the corresponding Kondo resonance at the
Fermi level.

Even thoughV is a singular perturbation on the atomic
limit, its effect can be easily understood analytically in the
present framework by treating the potential energyK cosu
perturbatively. To first order inK, the ground-state wave
function reads:

uC0
s1dl = u0l + o

,Þ0

k,uK cosuu0l
E0 − E,

u,l s25d

with ku u,l=ei,u andE,=U,2/2. This yields:

kcosulu = kC0
s1ducosuuC0

s1dl=− 2Ko
,Þ0

uk0u cosuu,lu2

E,

= −
2K

U
.

s26d

Hence, using(21), one obtainsK=−UVeff /2V, which yields
the following self-consistent equation for the effective hy-
bridizationVeff when substituted into(22):

Veff = −
2V2

U
o
ks

kcks
† fs + fs

†cksl f . s27d

The right-hand side of this equation is easily evaluated for
the resonant level model(19). For simplicity, we consider a
flat conduction bandek P f−L ,Lg, and focus on the universal
regime:L@U@G, with G;p V2/2L. To dominant order in
1/L, (27) reads:

1 = −N
2V2

UL
E

−L

0

dv
v

v2 + sVeff
2 p/s2Ldd2=N

2V2

UL
lnS 2L2

pVeff
2 D .

s28d

This yields the following expression forVeff and for the
width of the Kondo resonance whenL@U@G:

Geff ;
pVeff

2

2L
= L expS−

pU

4NG
D . s29d

This coincides with the exact expression.23 The local orbital
spectral function obtained from(14) reads:

rdsvd = Z
Geff/p

v2 + Geff
2 + rd

incsvd. s30d

The first term in this expression is the Kondo resonance, and
carries a spectral weightZ=Geff /G=kcosulu

2. It satisfies the
Friedel sum-rulerdsv=0d=1/pG. Away from the particle-
hole symmetric casese0Þ0d, the location of the resonance is
set bye0−h, which is the renormalized impurity level famil-
iar from conventional slave-boson theories. The rotor ap-
proximation does conserve total spectral weight, and there-
fore yields an incoherent contribution to the spectral function
with a weight 1−Z. This incoherent contribution is correctly
centered around the atomic transitions, as explained above.
However, the width of these Hubbard bands is incorrectly
described by the simple approximation presented here, in
which phase fluctuations are underestimated at short times.
As a result, the Hubbard bands have a bandwidth of order
Geff in this approximation(instead of the expected, and much
broader width, of orderG). We note however that conven-
tional slave-boson approximations with a condensed boson
neglect altogether the Hubbard bands at the saddle-point
level, and therefore the present approximation, simplified as
it may be, is preferable in this respect. An improved method
for the treatment of phase degrees of freedom, leading to a
much more accurate description of the Hubbard bands, has
been discussed in previous publications.7,8 This method con-
sists of a set of coupled integral equations for the Green’s
functions of the auxiliary fermion and of the slave rotor, in
the spirit of the noncrossing approximation.

B. Hubbard model

1. Slave rotor formulation

In this section, we consider the Hubbard model:

H = o
i

Hatsid − o
i j ,s

tij dis
† djs s31d

which can be rewritten in terms of the rotor and auxiliary
fermion variables as

H = o
is

e0f is
† f is +

U

2 o
i

L̂i
2 − o

i j s

tij f is
† f js eisui−u jd. s32d

Note that, in this context, −e0=m is the chemical potential
controlling the average density per site. Let us make a first
approximation, which consists in decoupling the rotor and
fermion variables on links(besides treating the constraint on
average, as above), see Ref. 24 for a similar approach in the
case of thet-J model. We then obtain two effective Hamil-
tonians:

Hf = − o
i j s

tij
efff is

† f js + se0 − hdo
is

f is
† f is, s33d
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Hu = − o
i j

Ji j
eff cossui − u jd + o

i
SU

2
L̂i

2 + hL̂iD s34d

corresponding, respectively, to free fermionic spinons with
an effective hoppingtij

eff and to a quantum XY-model for the
phase variables with effective exchange constantsJi j

eff. These
effective parameters are determined by coupled self-
consistent equations:

tij
eff = tij kcossui − u jdlu, Ji j

eff = o
s

tijkf is
† f jsl f s35d

in which the average values are calculated with the effective
Hamiltonians above. In addition, the Lagrange multiplierh is
determined from the constraint equation:

kL̂lu = o
s

skf is
† f isl f − 1

2d . s36d

Let us emphasize that, in the decoupling leading to(33) and
(34), we have assumed that the average valueskf is

† f jsl f and
kexp isui −u jdlu on a given bond are both real. In fact, one
could look for more general classes of solutions in which
both kf is

† f js− f js
† f isl f Þ0 and ksinsui −u jdluÞ0. This would

correspond to solutions with orbital currents around a
plaquette, as proposed by several authors.25 Spontaneous or-
bital currents are very naturally described using the slave
rotor method, but will not be considered further in this paper,
which aims at the general formalism.

2. Simplest mean-field

In the next section, we shall investigate some physical
consequences of Eqs.(33), (34), (35) which approximate the
Hubbard model by free spinons coupled self-consistently to
an XY-model for the phase degrees of freedom. We point out
that the decoupling between fermion and rotor degrees of
freedom can be viewed as a controlled approximation corre-
sponding to a large-N limit of a multichannel model, as de-
tailed in the Appendix.

Here, in the same spirit as above, we consider a further
simplification, which consists in treating the quantum XY
model at the mean-field level. In this framework, the phase
degrees of freedom is described by a mean-field Hamiltonian
of independent sites:

Hu
MF = o

i
FU

2
L̂i

2 + hL̂i + K cosuiG s37d

with K=−2o j Ji j
effkcosu jlu. Combining this with(35) and

calculating the average values with the free-fermion Hamil-
tonian (33), we finally obtain the following self-consistency
equations for the variational parametersK andh:

K = 2Nkcosul E de Dsede nFsZe + e0 − hd,

kL̂l = NE de DsedfnFsZe + e0 − hd − 1
2g , s38d

Z ; kcosulu
2. s39d

Finally, the relation between the chemical potential −e0 and
average number of particle per site and colorn is given by:

n ;
1

N
o
s

kfs
† fsl =E de DsednFsZe + e0 − hd. s40d

In these expressions,Dsed;esddk/ s2pddd dse−ekd is the
density of states(d.o.s.) of the band in the absence of inter-
actions. The auxiliary fermion(quasiparticle) Green’s func-
tion reads:

Gfsk,ivnd−1 = ivn − e0 + h − Z ek . s41d

We recognizeZ as the quasiparticle weight, which also de-
termines the quasiparticle mass enhancementm* /m=1/Z.
These two quantities are related because of the simple single-
site approximation made here.

At zero temperature, the number equation(40) implies
that:

h − e0 = Z m0snd s42d

in which m0 is the chemical potential of the noninteracting
system such thate−`

m0 deDsed=n. From(41), it is seen that the
Fermi surface is located atek =sh−e0d /Z, and thus(42) im-
plies that the Luttinger theorem is satisfied. In fact, within
this simple approximation in which the self-energy is inde-
pendent of momentum, the Fermi surface is unchanged by
interactions altogether. The equations forK and h, at T=0
and for a given density, simplify into:

kL̂l = Nsn − 1
2d , s43d

K = 2Nēsndkcosulu, s44d

with ēsnd;e−`
m0snd deDsede the average kinetic energy per

electronic degree of freedom in the noninteracting model.

3. Mott transition and orbital degeneracy

We expect a Mott transition to occur at each commensu-
rate filling n=Q/N (Q being an integer). This is associated
with the vanishing ofZ, and therefore the above equations
can be analyzed analytically close to the transition(whereZ
is small) from a perturbative analysis inK, similar to the one
performed in Sec. III A for the Anderson model in the Kondo
regime. The ground-state wave function ofHu

MF in the insu-
lating phasesZ=K=0d is ei,nu with ,n=Nsn−1/2d. First-
order perturbation theory inK yields:

kcosulu = 2K o
,Þ,n

ukC,ucosuuC,n
lu2

E,n
− E,

= −
2UK

U2 − 4sU,n + hd2 + OsK2d. s45d

SinceZ vanishes at the transition, butm0snd is finite, it fol-
lows from (42) that h=e0. For vanishingZ, the relation be-
tweene0 and n is identical to that of the atomic limit, Eq.
(13) established in the previous section:,n=Intf1/2−e0/Ug
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with n=1/2+,n/N. Finally, combining (44) and (45), we
obtain:

Ucse0d2 − 4fUcse0d,n + e0g2 + 4NēsndUcse0d = 0. s46d

In this expression,,n andn should be viewed as depending
on the chemical potentiale0 according to the relations just
given. This expression determines the boundaryUcse0d be-
tween the metallic and Mott insulating phase in these0,Ud
plane. It is depicted for the caseN=4 (two orbitals with spin)
in Fig. 3. The condition]Uc/]e0=0 determines the tip of
each insulating lobe, i.e., the critical couplingUcsnd at which
the insulating phase is entered as one increasesU for a fixed
commensurate densityn. Differentiating(46), it is seen that
this happens fore0=−Uln, i.e., precisely at the center of each
step of the Coulomb staircase. The critical coupling thus
reads:

Ucsnd = 4Nuēsndu. s47d

The phase diagram in thesn,Ud plane is depicted in Fig. 4

for a flat d.o.s. of half-widthD, in which caseUc=4NDns1
−nd. We see that the critical coupling is biggest at half-filling
n=1/2sQ=N/2d, which is expected since orbital fluctuations
are largest in this case. This conclusion may depend on the
precise shape of the d.o.s. however[and in particular may
not hold for densities of states such thatDs−edÞDsed]. The
critical coupling increases linearly with orbital degeneracy
N. In fact, an analysis of the DMFT equations for large or-
bital degeneracy was made in Ref. 11, and the exact behavior
of the critical coupling at leading order inN found there is
correctly reproduced by the simple mean-field detailed here.
It is also instructive to compare the present results with that
of the multi-orbital Gutzwiller approximation,26 which reads:
Uc

GA=4sN+2d u ēsndu. Our expression has the same behavior
at largeN, but yields in general a smaller critical coupling:
Uc=Uc

GA N/ sN+2d. For small orbital degeneracies, we be-
lieve (on the basis of, e.g., DMFT results) the Gutzwiller
expression ofUc to be quantitatively more accurate.

The slave-rotor mean field equations are easily solved nu-
merically by determining iteratively the parametersh andK.
At each iteration, the spectrum of the single-rotor
Schrödinger equations is computed(using, e.g., a decompo-
sition on the atomic basis statesei,u). In Fig. 5, the ground-
state wave functionC0sud is displayed for several values of
U at half-filling. The curves nicely illustrate how one goes
from the insulator(in which case there are little charge fluc-
tuations, and maximal phase fluctuations so that the wave
function is delocalized over allu values) to the metal(in
which case charge fluctuations become large at smallU, and
the wave function is peaked such as to limit phase fluctua-
tions). The corresponding quasiparticle weight is displayed
in Fig. 6 as a function ofU /Uc. The simple slave-rotor
mean-field is compared to the DMFT result and to the
Gutzwiller approximation(GA). It is seen that, close to the
transition, the slave-rotor mean field reproduces more accu-
rately the DMFT answer than the GA. It is not very accurate
at weak-coupling however(even thoughZ correctly goes to
Z=1 atU=0, it has an incorrect small-U expansion). In fact,
it is a quite general feature of this slave-rotor mean field that
the method is more accurate in strongly correlated regimes.

In Fig. 7, we plot the number of particles as a function of
the chemical potential forN=4. The value ofU has been

FIG. 3. (Color online) Phase diagram forN=4 (two orbitals) at
T=0, as a function of the chemical potentiale0=−m and the inter-
action strengthU /D. The three lobes correspond to the Mott insu-
lator phases associated with half-fillingsQ=2d and quarter-filling
sQ=1,3d, respectively.

FIG. 4. (Color online) Phase diagram in thesn,Ud plane. The
Mott insulator lobes collapse to lines at commensurate fillings,
whenU is larger thanUcsnd (shown as dots).

FIG. 5. (Color online) Rotor ground state wave functionC0sud
with values of the local interaction ranging fromU /Uc=0.01
(peaked curve) to U /Uc=1 at the Mott transition(flat curve).
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chosen to be bigger than the critical couplings yielding an
insulating state, for any commensurate filling. The curve il-
lustrates the plateaus found at each commensurate filling, the
central one(half-filling) being narrower(compare to Fig. 3).
The effective mass enhancements=1/Zd is also plotted in
Fig. 8 as a function of chemical potential for a smaller value
of U, such that a metallic phase is found at any filling. The
curves illustrates how a largest effective mass enhancement
is found at low and high fillingsn=1/4,3/4, and acompara-
tively smaller close to half-fillingn=1/2 (again, this conclu-
sion depends on the shape of the d.o.s.).

The description of the Mott transition obtained within this
simplest mean-field has many common features with the
Brinkman-Rice (BR) (Ref. 27) one. Indeed, the effective
mass diverges at the transition and the quasiparticle residue
vanishessZ,1−U /Ucd as in BR. There is one significant
difference however, which is that in the present description,
the optical gapD of the insulatordoes not coincidewith the
chemical potential jumpDm=−De0=msn+0+d−msn−0+d for
infinitesimal doping away from a commensurate filling. In-

deed, within this simple mean-field, the spectral function of
the insulator is identical to that of the atomic limit(not sur-
prisingly, the simple mean-field with only two variational
parameters describes the charge fluctuations in the insulator
in an oversimplified manner). As a result, the optical gap
simply reads

D = U s48d

in our approach, and is thereforenot critical at the Mott
transition. In contrast, the chemical potential jump vanishes
continuously atUc. Indeed, solving(46) for e0 yields:

Dm = UÎ1 −
Uc

U
. s49d

These features are very similar to those obtained within dy-
namical mean-field theory.2 This is not surprising, since the
single-site mean field approximation to the XY-model indeed
becomes exact in the limit of infinite coordination of the
lattice. Note however that this is not the case of the approxi-
mation(33)–(35) which consists of decoupling the rotor and
fermion variables(see Sec. IV). Within DMFT, the quasipar-
ticle weight vanishes at a Brinkman-Rice-type critical point
Uc2 while the optical gap of the insulator vanishes at a
Hubbard-type critical pointUc1. As a result, the strongly cor-
related metal close to the transition displays a clear separa-
tion of energy scales: the quasiparticle coherence scaleeF

*

,ZD being much smaller than the(“preformed”) gap of the
insulator D. The simple mean-field of this section is in a
sense a somewhat extreme simplification of this picture, in
which Uc2=Uc and Uc1 is sent toUc1=0 (this is consistent
with the known fact11 that Uc2~N while Uc1~ÎN, and that
the simple mean-field becomes more accurate for large-N).

IV. INCLUDING SPATIAL CORRELATIONS AND PHASE
FLUCTUATIONS

In this section, we go beyond the single-site mean-field
approximation, and investigate the physical consequences of
the approximate description of the Hubbard model intro-
duced in Sec. III B 1. This description, summarized by Eqs.
(33)–(35), consists of a free fermion modelHf coupled self-

FIG. 6. (Color online) Quasiparticle weightZ as a function of
U /Uc at T=0; DMFT calculation(thin line), rotor mean-field theory
(thick line), and Gutzwiller approximation(broken line).

FIG. 7. (Color online) Total occupancyQ=4n as a function of
e0 for a valueU=4.5 larger than all critical interactionsUcsnd, in
the two orbital casesN=4d. The Mott insulators are seen here as
charge plateaus.

FIG. 8. (Color online) Effective massm* /m for U=2.5 below
all Mott transitions, in the two orbital casesN=4d.
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consistently to a quantum XY-modelHu for the phase de-
grees of freedom.

A. General considerations

Let us first emphasize some general aspects of this de-
scription, before turning to explicit calculations. The Hamil-
tonian for the phase degrees of freedom has two possible
phases: a disordered phase without long-range phase order,
and a long-range ordered phase. At zero-temperature, one
expects a quantum phase transition from the ordered phase to
the disordered phase as the ratioU /Ji j

eff is increased. Since
the Green’s function of the physical electrons read, within
this approximation:

Gij
dst − t8d = Gij

f st − t8dkeifuistd−u jst8dglu s50d

it is seen that the quasiparticle weightZ, associated with the
limit of large-distance and large time separation(low fre-
quency), is given by

Z = kcosuilu
2. s51d

Thus, the phase with long-range order for the rotors corre-
sponds to the metalsZÞ0d, while the disordered phase cor-
respond to the Mott insulatorsZ=0d. Obviously, the descrip-
tion of the Mott metal-insulator transition that follows is
closely analogous to that of the superfluid-Mott insulator
transition in the bosonic Hubbard model.28,29 Two remarks
about this description of the metal and of the insulator are in
order. First, it is of course unphysical to think of a metal as
having long-range phase coherence. Naturally, this is only
true of the saddle-point approximation in which the rotors
and spinon degrees of freedom are entirely decoupled. Fluc-
tuations will induce interactions between these degrees of
freedom, restore inelastic scattering and thus destroy phase
coherence. The absence of inelastic scattering at the saddle-
point level is a well-known feature of slave-boson theories.
Note futhermore that despite the ordering of the rotors, the
metallic phase becomes a superconductor only whenkf i↑

† f j↓
† l

is also nonzero(i.e., when there is spinon pairing). Second,
the insulator envisioned here is anonmagnetic insulator
without any spin or translational symmetry breaking, i.e., a
spin-liquid. Even in the disordered phase,kcossui −u jdl on a
given bond (e.g., nearest-neighbor) is nonzero (it corre-
sponds to the energy density of the XY model). Therefore
tij
effÞ0 in the insulating phase, so that the spinons have a

Fermi surface(with Luttinger volume). This also implies that
tij
eff remains finite through the Mott transition and therefore

that the effective mass does not diverge, despite the fact that
Z→0. These last remarks apply to any finite dimension, but
of course not tod=`. In this limit, the single-site mean field
of the previous section applies andkexpsui −u jdl=kcosul2

=Z. Finally, we emphasize that the nonmagnetic nature of the
insulator is of course associated with the fact that the rotor
degrees of freedom are associated with the charge and are
not appropriate to properly describe spin ordering. Therefore,
they are better suited to lattices with strong frustration(or
models with large orbital degeneracy) in which a spin-liquid
insulator is a realistic possibility. Finally, because long-range

order for the rotors corresponds to breaking a continuous
Os2d symmetry, a Goldstone mode will be present in the
ordered(metallic) phase. This mode is present in any finite
dimension, but disappears in thed=` limit. It corresponds to
the zero-sound mode of the metal. As we shall see, these
long-wavelength modes play an important role: they change
the low-energy description of the transition as compared to
thed=` (DMFT) limit. As a result, the separation of energy
scales does not apply in a strict sense(the “preformed” gap
found within DMFT is filled up with spectral weight coming
from these low-energy modes). As we shall see however, this
spectral weight remains small in high dimensions(including
d=3), so that an approximate separation of scales still ap-
plies.

B. Sigma-model representation: Saddle-point equations in the
spherical limit

In order to perform explicit calculations with the quantum
rotor Hamiltonian(34), we shall use an approximation that
has proven successful in the context of quantum impurity
models with slave rotors.7,8 It consists in replacing the quan-
tum rotor expsiuid by a complex bosonic fieldXistd and to
treat the constraintuXiu2=1 on average. Alternatively, this can
be viewed as extending the Os2d symmetry to OsMd and
taking the large-M(spherical) limit. This is a well known
approximation to nonlinear sigma models,29 which preserves
many qualitative features of the quantum phase transition.
For details of the formalism in the slave rotor context, see
Ref. 7 In the following, we focus on the half-filled case
(since we are mainly interested in the Mott transition), with a
particle-hole symmetric d.o.s.Dsed, so that we can sete0

=h=0
The spinon and rotor(now X-field) Green’s function

read:39

Gfsk,ivnd−1 = ivn − Qfek , s52d

GXsk,innd−1 =
nn

2

U
+ l + QXek . s53d

In these expressions,vn and nn are respectively, fermionic
and bosonic Matsubara frequencies,l is a Lagrange multi-
plier associated with the constraintkuXu2l=1, while Qf and
QX are the self-consistent parameters entering the effective
spinon hopping and XY coupling constants:Qf =kcossui

−u jdl=kXiXj
*l, QX=kos f is

† f jsl. The self-consistent equations
which determinel, Qf, andQX read:

1 =E
−D

D

de Dsed
1

b
o
n

1

nn
2/U + l + QXe

, s54d

DQf = −E
−D

D

de Dsede
1

b
o
n

1

nn
2/U + l + QXe

, s55d
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DQX = − 2E
−D

D

de Dsede nFsQfed. s56d

These expressions have been written here for a simple tight-
binding band with nearest-neighbor hoppingtij = t on a
d-dimensional cubic latticesek =−2t oa=1

d coskad. As above,
Dsed denotes the band d.o.s., andD=2d t is the half-
bandwidth. For simplicity, we have set the orbital degeneracy
to N=2 in these equations.

C. The Mott transition: Mott-Hubbard meets Brinkman-Rice

In this section, we investigate the solution of these equa-
tions at zero-temperature. This leads to a description of the
finite-dimensional Mott transition that we analyze in detail.

1. The insulating phase

Let us note first that Eq.(56) readily determinesQX at
T=0:

DQXuT=0
= − 2E

−D

0

Dsede de ; 2uēu. s57d

From the form(53) of the X-field Green’s function, one sees
that the bosonic spectrum has a gap as long asl−QX D=l
−2u ē u .0. In this case, there is no long-range order for the
phase degree of freedom, and this corresponds to the insulat-
ing phase. The insulating gap reads:

Dg = 2 ÎUsl − QXDd s58d

and we can rewrite Eqs.(54) and (55) as self-consistent
equations for the gapDg and the renormalization of the
spinon hoppingQf. This reads, atT=0:

1 =E
−D

D

de Dsed
U

ÎDg
2 + 8Uuēus1 + e/Dd

, s59d

Qf = −E
−D

D

de Dsed
e

D

U

ÎDg
2 + 8Uuēus1 + e/Dd

. s60d

These equations are valid in the insulating phase, when
Dg.0. The gap vanishes at a critical couplingUc obtained
by settingDg=0 in (59):

Uc

Uc
` = FE

−D

D

de
Dsed

Î1 + e/D
G−2

. s61d

In this expression,Uc
`=8u ēu is the critical coupling corre-

sponding to thed=` limit, in agreement with expression
(47) of the previous section(with N=2). Note that, in the
d→` limit, one must scale the hopping ast= t* /Îd, so that
D=2dt~Îd→` and the r.h.s. of(61) goes to unity. The
integral in (61) is smaller than unity in general, so thatUc
decreases as dimensionality is reduced. We also note that in
one dimension, this integral has a logarithmic singularity at
band edge, sincep Dsed=D /ÎD2−e2, so that Eq.(61) yields
Uc

d=1=0, which is indeed the exact result for a half-filled
Hubbard model withN=2 (Ref. 30) (see however Ref. 40).

Substracting Eq.(59) from the same equation withDg
=0 (which definesUc), one obtains:

ÎUc
`

Uc
−ÎUc

`

U
=E

−D

D

de DsedF 1
Î1 + e/D

−
1

ÎDg
2/sUUc

`d + 1 +e/D
G . s62d

The expansion of this expression for smallDg depends on
dimensionality. Ford.3, the integraledeDseds1+e /Dd−3/2

is convergent at band edgee=−D, recalling thatDsed,sD
+edd/2−1 near the bottom of the band. In contrast, the small-
Dg expansion is singular ford,3. This analysis finally leads
to the following behavior of the gap close to the critical
point:

Dg/Uc ~
U

Uc
− 1 for d . 3

~ S U

Uc
− 1D1/sd−1d

for d , 3. s63d

Hence we find that the exponent changes from its mean-field
value 1/2 ford.3 (as found, e.g., in the single-site mean-
field of the previous section and the Gutzwiller approxima-
tion) to a non-mean field exponent for 1,d,3. Therefore,
d=3 corresponds to the upper critical dimension in this de-
scription of the Mott transition(logarithmic corrections are
found in that case). Below d=3, the exponent 1/sd−1d cor-
responds to that of the large-M limit of the quantum OsMd
model ind-dimensions, i.e., to that of thed+1-dimensional
classical model. Had we kept Os2d quantum rotors, we
would have foundDg,sU /Uc−1dzn with z=1 and n the
correlation-length exponent of thed+1-dimensional classical
XY model, as in the case of the superfluid-insulator transi-
tion of the Bose Hubbard model.28

2. The metallic phase

For U,Uc, the gap closes and one enters the metallic
phase. In this regime, the constraint equationkuXu2l=1 can
only be satisfied by aBose condensationof the X-field. As in
studies of quantum magnetism based on Schwinger bosons,31

Bose condensation in the spherical limit corresponds to the
phase with long-range order for the rotors. In this phase, the
constraint equation(54) has to be rewritten by isolating the
k =0 mode in the Brillouin zone. The Lagrange multiplierl
sticks to the valuel=QXD=2u ēu in this phase. The full
X-field Green’s function thus reads atT=0:

GXsk,ind = Zdsnddskd +
1

n2/U + 2uēus1 + ek/Dd
. s64d

The condensation amplitudeZ=kX2l is determined from the
constraintkuXu2l=ok GXsk ,t=0d=1:

1 = Z +E
−D

D

de DsedÎ U

8ēs1 + e/Dd
s65d

which simply reads, using(61):
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Z = 1 −Î U

Uc
. s66d

This expression vanishes linearly,Z,sUc−Ud /2Uc, at the
critical point for all dimensions d.1. The fact that there is
no change of critical behavior forZ at d=3, in contrast to the
gap, is due to the use of the spherical approximation. Had we
kept Os2d rotors, we would findZ,s1−U /Ucdnsd−1+hd, with
n andh the critical exponents of thed+1-dimensional clas-
sical XY model. In the spherical approximationh=0 andn
=1/sd−1d so thatZ,s1−U /Ucd also belowd=3.

Hence, we have found that the quasiparticle weight and
insulating gapvanish at a unique critical coupling. As shown
below, the gapDg given by (59) is the gap in the single
particle spectral density of the insulator. It also coincides
with the chemical potential jumpDm when the present ap-
proach is extended away from half-filling. Hence, in this fi-
nite dimensional description of the Mott transition, we find a
unique critical point corresponding both to Brinkman-Rice
physics27 (vanishing ofZ) and to Mott-Hubbard physics32

(gap opening). This is in strong contrast to thed=` single-
site mean field investigated in the previous section, and to
the DMFT picture.2 Below, we show that this is due to long
wavelength collective modes filling in the preformed gap,
and investigate in detail how the previous picture is recov-
ered in the(singular) d=` limit.

Equation(55) for the renormalizationQf of the effective
hopping must be rewritten in the metallic phase to take into
account the Bose condensed fraction. AtT=0, it reads:

Qf =
m

m* = Z −Î U

Uc
`E

−D

D

de Dsed
e/D

Î1 + e/D
. s67d

This expression makes very clear that the effective mass re-
mains finite at the critical point, whileZ→0 [note that the
integral in the r.h.s. of(67) is negative so thatQf ùZ]. In the
d→` limit, one recoversm/m* =Z, sinceD~Îd→`. This
calculation can be extended to the weakly doped Mott insu-
lator at largeU and hole densityd, with the result:

m*

m
,

1

t/U + d
,

1

J/t + d
. s68d

Hence, the present theory correctly captures the magnetic
exchange energyJ~ t2/U, which quenches out the spin en-
tropy (due to spinon degrees of freedom) in the insulator and
hence prevents the effective mass from diverging at the Mott
transition. This is expected from the fact that the spinons
form a dispersive band in the insulating state and thus have
an entropy depending linearly onT at low temperature.
These findings are entirely similar to the slave bosons mean-
field theories of thet−J model.33 Figures 9 and 10 illustrate
graphically the physical quantities characterizing the Mott
transition which we discussed previously.

3. Spectral functions and collective modes: What are Hubbard
bands made of

The Green’s function of the physical electron in the ap-
proximation of decoupled spinons and rotors is given by(50)

as Gij
dstd=Gij

f stdGij
Xstd. Using (64) for the X-field Green’s

function, this leads to

Gdsk,ivd =
Z

iv − Qf ek
+ Gd

inc.sk,ivd. s69d

This expression is valid in the metallic phase. In Fig. 11, we
display thek-integrated(local) spectral functionok rdsk ,vd,
as the Mott transition is approached, in the three-dimensional
case. The first term in(69) corresponds to the coherent qua-
siparticle. When summed overk, the quasiparticle contribu-
tion to the local spectral function yields a peak
Z/QfDsv /Qfd. The spectral weight of this peak isZ, its
width is of orderQfD and its height isZDs0d /Qf. Hence, its
height goes to zero at the transition, while its width is re-
duced but remains finite(Fig. 11). In the d=` limit (where
Z=Qf) the zero-frequency density of states is pinned at its
noninteracting value, as known from the Brinkman-Rice pic-

FIG. 9. (Color online) Plot of the quasiparticle weightZ, the
effective mass renormalizationQf =m/m* , and the Mott gapDg as a
function of U /Uc across the Mott transition in the three-
dimensional case.

FIG. 10. (Color online) Effective massm* /m=1/Q provided by
the mean-field Eqs.(54)–(56) for d=3 (bold line) and d=` (thin
line). For comparison, a DMFT-IPT calculation(dashed line) is also
presented.
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ture and the dynamical mean-field theory:only in infinite
dimension does the quasiparticle peak disappear by narrow-
ing down instead of collapsing.

The incoherent contributionGd
inc comes from the convo-

lution of the free spinon Green’s function with the noncon-
densed contribution to the rotor Green’s function,GX

inc

=1/fn2/U+2u ē u s1+ek /Ddg, which is the second term in
(64). The latter corresponds to bosonic collective modes dis-
persing according to:

vXskd = ±
ÎUUc

`

2
Î1 +

ek

D
. s70d

The incoherent contribution corresponds to the Hubbard
band, which are well developed in the correlated metal, as
also predicted by DMFT. Note that the dispersing branch of
bosonic excitations is centered around ±ÎUUc

` /2. Hence a
measure of the typical energy scale associated with the dis-
tance between the two Hubbard bands is:

D = ÎUUc
`. s71d

However, a key point is that this branch of collective modes
extends to arbitrary low frequency where it becomes the
Goldstone mode of the broken symmetry. In the small mo-
mentum limit, the dispersion relation(70) reads:

vXskd ,ÎUUc
`

8d
uk usk → 0d. s72d

The corresponding density of states behaves asrXsvd
,vd−1. These long wavelength excitations are responsible
for tails of the Hubbard bands, extending down to low-
frequency. This low-energy spectral weight due to collective
modes is the origin of the continuous closure of the Mott gap
at the Brinkman-Rice transition. In other words, the Hubbard
bands are made of two kinds of contributions. The main part
of their spectral weight is associated with bosonic modes
whose momentum is not small, so thatvX is finite (of the
order ofD). In addition, the small weight in the(,vd−1) tails
at low-energy is associated with thek .0 collective modes.
In the Mott insulator, all the bosonic modes are gapped, but
the bottom of the bosonic density of states hassv−Dgdd−1

tails which contribute to the tails of the Hubbard bands, fill-
ing in the energy range betweenDg andD.

It is natural to interpret the bosonic collective modes as
the zero-sound mode of the metal. Indeed, these modes have
been discussed previously by Castellaniet al.,33 in their
study of fluctuations around the saddle-point of conventional
slave boson approaches. These authors pointed out that the
Mott transition is associated with the softening of this col-
lective mode, as also found here. In the present approach, the
collective modes appear on the same footing than the quasi-
particles.

4. The d=` limit, separation of energy scales and “preformed”
Mott gap

It is instructive to understand more precisely what hap-
pens as the dimensionality is increased. As clear from the
previous discussion, thed=` limit is singular in at least this
respect that the long-wavelength collective modes are absent.
Indeed the sound velocity in(72) vanishes in this limit. In
fact the bosonic modes no longer have a dispersion:
k-dependence disappears from the dispersion relation(70)
sinceD must be scaled asD~Îd. The bosonic spectral func-
tions thus has two poles on top of the condensed fraction,
which leads, after performing the convolutions, to the fol-
lowing simple form of the physicalk-summed local spectral
density(using also thatQf =Z in this limit):

rd
d=`svd = DSv

Z
D +

1 − Z

2
FDSv − D

Z
D + DSv + D

Z
DG .

s73d

In this expression,D is given by(71) and corresponds to the
typical separation between the Hubbard bands. It is some-
times referred in the framework of DMFT as the “preformed
gap” in the metallic state(i.e., the Hubbard bands are well
separated from the central quasiparticle peak). D does not
vanish at the Brinkman-Rice point and beyond this coupling
the insulator sets in with a finite gapD. Note that, in the
present approximation where spinons and rotors have been
decoupled, one simply hasD=U in the insulator[as found
also in(48)] and that, accordingly, the Hubbard bands in(73)
have vanishing width close to the transition. This pathologi-
cal result can be improved by including dynamical fluctua-
tions of the auxiliary particles, as shown in(Ref. 7). Despite
these oversimplifications, the present approach does retain
the main qualitative feature of DMFT, namely the separation
of energy scales at the Mott transition.

In Fig. 12, we show how the large-d limit is approached
by plotting the local spectral density right at the critical cou-
pling U=Uc, for increasing dimensionality. This plot clearly
reveals the two-components building up the Hubbard bands,
with the main part of the spectral weight centered around the
“preformed” gap D and tails extending down to low-
frequency(down to the true gapDg in the insulator), associ-
ated with the long-wavelength collective mode. The inset
demonstrates that as dimensionality increases, the spectral
weight in the tails becomes smaller, so that an approximate
separation of energy scales holds(and in fact already holds

FIG. 11. (Color online) Zero temperature local density of states
across the Mott transition for a three-dimensional cubic lattice, with
U=0, Uc/2, Uc, 3Uc/2 (for D=1).
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to a good approximation ind=3, while it is no longer mean-
ingful in two dimensions).

V. CONCLUSION AND PERSPECTIVES

In this paper, we have used the slave-rotor representation
in order to construct approximation schemes for strongly cor-
related fermion models. A theory of the Hubbard model in-
volving free fermionic spinons self-consistently coupled to a
quantum XY model has been developed. The quantum phase
transition of the latter corresponds to the Mott transition be-
tween a strongly correlated metal and a Mott insulating spin-
liquid with a spinon Fermi surface. Both the gap in the spec-
tral function and the quasiparticle weight vanish at the
critical point, while the effective mass remains finite. In this
picture, long-wavelength collective modes of the phase vari-
able play an important role. They are responsible for low-
energy tails of the Hubbard bands(in addition to the main
component of these bands, which are atomiclike short-
distance excitations). This has potential implications for
spectroscopic and tunneling experiments. In infinite dimen-
sions, these collective modes are suppressed and this limit
appears singular in this respect. Only in this limit is a strict
separation of energy scales recovered, as in the DMFT pic-
ture.

This raises some open questions associated with the phys-
ics of these collective modes, which are physically associ-
ated with zero-sound. At the saddle-point level, where
spinons and rotors do not interact, these modes are un-
damped. The metallic state is described as a perfect metal
with no inelastic scattering. Interactions between rotors and
fermionic spinons will induce a Landau damping of these
modes, and the metallic state will lose phase coherence. One

possibility is that this damping is large, which would pre-
sumably weaken its effect and might restore some separation
of energy scales as in the DMFT picture. This calls for fur-
ther work on the nature of collective modes in a metal close
to the Mott transition. In particular, the restauration of gauge
symmetry, broken at the saddle-point level, will have a
strong impact on the nongauge invariant propagators, as al-
ready known for single impurity models.34 However, it is yet
not entirely clear whether this effect will affect strongly the
physical sector at low energy. One additional issue is that in
a real material the screening deteriorates as one gets closer to
the Mott insulating state.35 The “acoustic plasmon” mode of
the Hubbard model with short-range interactions will be
pushed to higher energy and this may also weaken its rel-
evance for low-energy physics. Another issue which will
arise when taking into account the interactions between
spinons and rotors is the description of the insulator as a
nonmagnetic spin-liquid. Stabilizing such a spin-liquid state
beyond saddle-point level is presumably possible only on a
very frustrated lattice. Even in this case however, it has been
suggested recently36 that a superconducting phase can inter-
calate between the metal and the insulator, due to the prolif-
eration of short range spin singlets, therefore superseding the
zero temperature Mott transition. Nevertheless, some of our
results, such as the finiteness of the effective mass, should
remain valid above the low temperature ordered regions.

Finally, we point out that the slave rotor representation
explored here is a useful technical tool that can be applied to
strongly correlated systems in a variety of contexts. Because
a single collective variable is introduced(which has a direct
physical interpretation in connection with the local charge),
using this representation is generally simpler than other
finite-U slave-boson schemes provided one deals with a sym-
metric interaction. Applications to mesoscopic devices and
quantum impurity models have been presented elsewhere.7,8

Other potential applications are the effect of long-range or
time-dependent interactions,22 or the interplay of disorder
and interactions. Interacting boson models can also be ex-
pressed with slave rotors(for a recent application of varia-
tional approximations to the XY model, in the context of
bosonic models, see Ref. 37). Although mean-field approxi-
mations for interacting bosons can be formulated in a simple
manner due to the commuting nature of the physical degrees
of freedom,29 the slave-rotor representation might prove use-
ful in the context of interacting cold atoms in order to deal,
for example, with boson-fermion mixtures.

APPENDIX: LARGE- N LIMITS AND MEAN-FIELD
APPROXIMATIONS

We discuss here how the different mean field approxima-
tions presented in this paper can be formulated in terms of
largeN limits of generalized Hubbard models. Let us intro-
duce a “multichannel” version of the Hubbard model, based
on spin-carrying fermionsfs

† ss=1,¯ ,Nd and channel-
carrying phasesua sa=1,¯ ,Kd:

FIG. 12. (Color online) Local spectral density at the critical
point U=Uc, for increasing dimensionality(top to bottom curves at
smallv: d=2,3,4,5). The spectral weight associated with the low-
frequency tails of the Hubbard bands is seen to decrease as dimen-
sionality increases. Correspondingly, the separation of energy scales
and the preformed gap become more and more apparent. The inset
shows the integrated density of statese0

v de rdsed demonstrating
this approximate separation of scales fordù3. (Note that the pro-
gressive narrowing of the main lobe of the Hubbard band asd
increases is an artefact of the approximation in which spinons and
rotors are decoupled.)
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H = o
is

e0f is
† f is +

U

2 o
ia

L̂ia
2 −

1

K
o
i j sa

tij f is
† f js eisuia−u jad.

sA1d

Two Hubbard-Stratonovich fields conjugate toos f is
† f js and

oa eisuia−u jad can be introduced in order to decouple the last
term. When bothN andK are large, with a fixed ratioK /N,
a saddle-point applies which leads to the decoupled effective
Hamiltonians(33) and(34). This corresponds to a factoriza-
tion the hopping termon bonds, as shown by the effective
parameters(35). A similar remark applies in the usual con-
text of slave-bosons for thet-J model: the mean-field ap-
proximation investigated, e.g., in Ref. 24 corresponds to a
multichannel limit of

−
1

K
o
i j sa

tij f is
† f js biabja. sA2d

Because the quantum XY model on the lattice is not easily
investigated analytically, we have performed in Sec. IV B a
Os2Md generalization of the phase part that leads to further
simplications, while allowing to deal with the model in finite
dimensions. This can also be seen as a direct largeN,M limit

of a SUsNd3Os2Md Hubbard model(see Ref. 7 for a related
approximation concerning the Anderson model):

H = o
is

e0f is
† f is +

U

2M
o
iab

sL̂i
abd2 − o

i j sa

tij
M

fis
† f js Xia

* Xja

sA3d

introducing a complex field withM colors Xia subjected to
the spherical constraint:oa uXiau2=M. In the previous expres-

sion, L̂i
ab denotes the Os2Md angular momentum tensor as-

sociated with theXia vector.29

Finally, we note that the simplest single-site mean field of
Sec. III B 2 can also be seen as a large-N limit of a general-
ized Hubbard model which reads(note the different indices
position and the scaling of the hopping term):

H = o
is

e0f is
† f is +

U

2 o
ia

L̂ia
2 −

1

K2 o
i j saa8

tij f is
† f js eisuia−u ja8d.

sA4d

This gives aon sitefactorization of the phase variables. Al-
ternatively, this can be seen as a large connectivity of the
bond mean field approximation(33) and (34).
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