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The multiorbital Hubbard model is expressed in terms of quantum phase vai(aiée® rotors’) conjugate
to the local charge, and of auxiliary fermions, providing an economical representation of the Hilbert space of
strongly correlated systems. When the phase variables are treated in a local mean-field manner, similar results
to the dynamical mean-field theory are obtained, namely a Brinkman-Rice transition at commensurate fillings
together with a “preformed” Mott gap in the single-particle density of states. The slave-rotor formalism allows
to go beyond the local description and take into account spatial correlations, following an analogy to the
superfluid-insulator transition of bosonic systems. We find that the divergence of the effective mass at the
metal-insulator transition is suppressed by short range magnetic correlations in finite-dimensional systems.
Furthermore, the strict separation of energy scales between the Fermi-liquid coherence scale and the Mott gap,
found in the local picture, holds only approximately in finite dimensions, due to the existence of low-energy
collective modes related to zero-sound.
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[. INTRODUCTION goals. Our main idea is to focus on the degrees of freedom
associated with the relevant physical variable associated to
Strongly correlated fermion systems constitute a chalthe Mott transition, namely a slave quantum rotor field, dual
lenge, both from a fundamental point of vigwith phenom-  to the local electronic charge. This slave rotor representation
ena such as the Mott transitiband high-temperature super- was introduced previously by us for the description of quan-
conductivity), and on a more quantitative level with the needtum impurity models and mesoscopic deviéésand is ap-
of reliable tools to handle intermediate and strong couplinglied here in the context of lattice models. This allows for a
regimes(even for simplified models such as the Hubbardsimple reformulation of the orbitally degenerate Hubbard
mode). In recent years, the dynamical mean-field theorymodel, which, when the interaction has full orbital symme-
(DMFT) has allowed for significant progress in this resgect. try, is quite superior to previously developed slave-boson
In particular, this approach has led to a detailed theory of theepresentation:*
Mott transition, and to a quantitative description of the phys- When the simplest possiblgsingle-site mean-field ap-
ics of strongly correlated metals. Despite these successes, theoximation is used in conjunction with this slave-rotor rep-
limitations of this approach have been emphasized on mangesentation, a description of the Mott transition very similar
occasions. The main one has to do with the effect of spatiaio that of DMFT is found. The metallic phase disappears
correlations (e.g., magnetic short-range correlatipnand  through a Brinkman-Rice transition, at which the quasiparti-
more precisely with the effect of these correlations on thecle wieight vanishes and the effective mass diverges. The
properties of quasiparticles. For example, the tendency telave rotor approach does preserve Hubbard bands in the
form singlet bonds due to superexchange is widely believeéhsulator, and a “preformed” Mott spectral gap opening up
to be a key physical effect in weakly doped Mott insulators.discontinuously at the transition is found, as in DMFT.
Also, at the technical level, the application of DMFT to ma- The most interesting aspect of our approach lies however
terials with a large orbital degenera¢g.g., in combination in the possibility of going beyond this purely local mean-
with ab initio method$™), as well as cluster extensions of field description. By decoupling the spinons and slave rotor
DMFT (Refs. 2 and pare computationally challenging be- degrees of freedom, the Hubbard model is mapped onto a
cause they involve the solution of a multiorbital quantumfree spinon hamiltonian self-consistently coupled to a quan-
impurity model. tum XY lattice model. The(dis)ordering transition of the
For these reasons, there is still a strong need for approxlatter corresponds to the Mott transition, in analogy with the
mate, simpler treatments of strongly correlated fermion modsuperfluid-insulator transition of the bosonic Hubbard model.
els. Those treatments should incorporate some of the DMFBecause spatial correlations are now included, we find im-
successeqe.g., regarding the description of the metal- portant modifications to the DMFT picture. In particular, the
insulator transition but they should also pave the road for effective mass remains finite at the transition, due to the
describing physical effects beyond DMFT at least at a qualiquenching of the macroscopic entropy by magnetic correla-
tative level. tions in the Mott phase. Importantly, low-energy charge col-
The purpose of this paper is to present a simple mean fieltbctive modes are shown to affect the opening of the Mott
description of correlated systems which fulfills some of thesegap, which now develops in a continuous manner, so that the
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separation of energy scales found in DMFT only holds in amdgitional variable, namely the angular momentum
approximate manner. These simple results can be considered, 5/ 99 associated with a quantum(®) rotor ¢, an angular
as deviations from the DMFT predictions that could possiblyyariable in[0,27]. Indeed, the energy level®) can be ob-
be observed in photoemission experiméAtslowever, res- tained using the following Hamiltonian:

tauration of the local gauge symmetry should occur due to
fluctuations beyond the mean-field approximation, possibly
modifying the latter result on a qualitative way.

The paper is organized as follows: In Sec. Il we introduce
the exact slave rotor description of a simple atomic levelA constraint must be imposed, which insures that the total
with orbital degeneracy, and show that an approximate treanumber of fermions is equal to the(®) angular momentum
ment of the local constraint is sufficient to describe correctly(up to a shift, in our conventiois
the full Coulomb staircase, as well as one-particle spectra. .

Then, in Sec. Ill, we develop the simplgical) mean field L=>[flf,-1]. (4)
treatment of both the Anderson and Hubbard models, and in 4

the latter case, study the multiorbital Mott transition. Finally, This restricts the allowed values of the angular momentum to
spatial fluctuations beyond DMFT are included in Sec. IV,po ¢=Q-N/2=-N/2,-N/2+1,--- N/2-1 N/2, while in

with an_emphasis on the behavior of the effective mass anghe apsence of any constraifitan be an arbitrarypositive

the excitation spectrum. The conclusion presents several pog; negativg integer. The spectrum of3) is eQ+U¢2/2

sible applications and extensions of our formalism, and alsgjin £=Q-N/2 thanks to(4), so that it coincides witfi2).

discusses some of the open issues raised by our results. |t is easily checked that the full Hilbert space is correctly
described as

U~
Ha= 2 eof o+ S L2 (3)

o

[l. ROTOR REPRESENTATION OF INTERACTING loy - o) =lor - ol =Q=N/2), (5)

FERMIONS . . . . .
in which |oy---0g)qs denotes the antisymmetric fermion

A. Slave-rotor representation state built out ofd- and f-fermions, respectively, anf),
In Ref. 7 (see also Ref. 13we introduced a representa- denotes the quantum rotor eigenstate with angular momen-
. . . _ o _ .
tion of the Hilbert space oN fermionsd], in terms of a t_um t e, <0|€_)0—e' ‘ ForN—_2, this corresponds t_dﬂd
collective phase degree of freedainconjugate to the total =106 11)a=[1)10)s [T1)a=[T1l+1)s and [0)q=|0)

charge, and oN auxiliary fermionsf. The spin/orbital in- ~1)¢- The creation of a physical electron with spinis as-
dex runs oveN valueso=1,---,N (e.g.,0=1, | for N=2). sociated to the action df, on such a state as well as raising

In the following, we consider only interactions which have the total chargeﬁqngﬂular_ momentuinby one unit. Si.nC(.a the
the full SUN) spin/orbital symmetry. Let us consider the r&iSing operator i€, this leads to the representation:
Hamiltonian corresponding to a single “atomic level,” in the d:rr - f:r,e“’, d, = f el (6)
presence of a local Hubbard repulsion,

) The key advantage of the quantum rotor representation is
Ho=S e did +E S dd _N (1) that the original quartic interaction between fermions has
a - 0% " o ~ T2 been replaced i63) by a simple kinetic term for the phase

field, (U/2)L2.

We point out here that a similar phase representation was
developed before in the context of Coulomb blockade in me-
soscopic systems, see, e.g., Refs. 16-18. However, the

U N |2 present work and our previous paperesent the first appli-
Eq=e&Q+ E{Q B E] ) cations of the rotor technique to the context of strongly cor-

related lattice models. In particular, the question of quasipar-

There are P states, but onlyN+1 different energy levels, ticle coherence which is crucial to the description of a Fermi
with degeneracies(g). In conventional slave boson liquid cannot be investigated seriously with a phase-only
methods’'! a bosonic field is introduced foeach atomic  description'® as shown in Ref. 8. In this perspective, the
state|al~-~aQ> (along with spin-carrying auxiliary fermions slave rotor should be seen as a natural exten&@od sim-
fT,). Hence, these methods are not describing the atomiplification) of the usual slave boson techniqee€ in the
spectrum in a very economical manner, and lead to vergontext of a finite but orbitally symmetric Coulomb repul-
tedious calculations when orbital degeneracy becomes largsion. In principle, it can also be applied to systems with
even at the mean-field levEl111415However, we stress that long-range interaction's:??
the extensive number of degrees of freedom necessary in
those other approaches can become useful when thi)SU
symmetry is broken, either by magnetic order or crystal
fields. In the following, we will study different kinds of mean-

The spectrum of1) can actually be reproduced by intro- field approximations based on this slave-rotor representation.
ducing, besides the set of auxiliary fermioﬁ}, a single A common trait of these mean-field approximations is that

The crucial point is that the spectrum of the atomic Hamil-
tonian (1) depends only on the total fermionic char@e
=0,---,N and has a simple quadratic dependencé&)pn

B. Treating the constraint on average: Atomic limit
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FIG. 1. (Color onling Coulomb staircase in the atomic limit for 2
the case of two orbital§\\=4. -3
the number constrairfg) will be treatedon averageThis is FIG. 2. (Color onling Graphical solution of the average con-

equivalent to treating the constraint in a “grand-canonical”Straim equati.or(lo). The intgrsgc(cross moves exactly along the
ensemble, which would of course be exact in the limit of aCoulomb staircase shown in Fig. 1.
large spin/orbital degenerady— ce. In this section, we in-
vestigate_ the accuracy of this approximation for the atomic <Q> =N nel e, - (e, T)]. (12)
Hamiltonian(1), for finite values ofN.

We need to compare this approximation to the exact result

1. Coulomb staircase: Occupancy g (7) in the atomic limit. A graphical representatidRig. 2) is
Let us first ider the d q f th useful in order to understand the solution(@D). At T=0,
et us Tirst consider the dependence of the average o0cCy,q findsh=¢,, as long as &Q<N. The exact dependence

pancy(Q)=(Z, dld,) on the position of the atomic leveh,  of the average charg® upon e, at T=0 is correctly repro-

which reads duced by our approximation, corresponding to the “Coulomb
N staircase”
Q t:iE<N)Q e’ Fe (7 N 2¢+1 2¢-1
* Zaug \Q Q=3+ for-U= = <gq<-U=_—. (13

with Note thath- ¢, vanishes linearly with temperature according

to h=€,—=T In(N/Q-1)+---: this is why the full Coulomb
Za= > ( )e‘ﬁEQ' staircase can be reproduced with a single Fermi factor in
Q (12). At finite temperature, our approximation does not coin-

cide with the exact result foQ,{ €y, T), but deviations are

In the limit of zero temperature, the dependence@fone, gy sizable for temperatures comparableUtowhich is not

straint on average, a Lagrange multiplieris introduced
which is conjugate t@4), and one optimizes over instead

of fully integrating over it. This amounts to consider the 2. Spectral functions

following effective Hamiltonians: We now study the consequences of the approximate treat-
ment of the constraint for the Green’s function and spectral
H2'= (- h)> f:r,f(,, (8)  function. Following(8) and(9), the quantum rotor and aux-

iliary fermion degrees of freedom are described by two in-
dependent Hamiltonians, so that the Green’s function of the

uU- ~ N hysical electrorGy(7)=—(Td,(7, df, 0)) factorizes into
H3‘=5L2+h<L—5). @ P (1) =~(Td,(d}(0))
Gu(7) = GH(1)Gy(7) (14
The. Lagrange multiplieh is determined by the average con- with G,(7)=(expi[6(0)-6(7)]). Equivalently, the physical
straint equation: electron spectral function is given by
(Dyn=N[ne(g =) 3] (10)

pa(w) = —f do’ pi(w)pyw =~ o' )[N(- 0') + Ng(w - w")].

in which <I:>h is the average of in the Hamiltonian(9): (15)

+00
~ 1 _ Let us consideT=0, ande, in the range corresponding to
=— BE ’ -0 .
(Lon Z”gfm te™ ™ (12) the plateau of charg& in the Coulomb staircase. The

ground-state energy Bo=U(Q-N/2)?+,Q and its degen-
with E,=U¢?/2+h¢ andZ,==, € #&¢. Solving(10) for has  eracy is(g). The two excited states obtained by adding or
a function of ¢y and temperaturd@=1/8 yields the depen- removing a particle correspond to transition energi#s:
dence of the total charge within this approximation: =Eq:1~Eq=%€6xU(Q-N/2%1/2). When acting witrdl on
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the ground-state, only those ground-state components whic@ier h in order to implement the constraint=3_ f'f

o "o o

do not already contaiar contribute, and there are —-N/2. We note that, because of the charge conservation on
N-1 Q\/N the local impurity,h can be chosen to be independent of
Q =\t N Q time, withh € [0, 27/ 8]. This leads to the following expres-

- ) ) sion of the action:
such components. Similarly, when acting wil, only the

components in whicler is occupied contribute, and there are
Sat

[o-2)=3ls)
Q-1/ NQ The constraint is implemented exactly providEds inte-
of them. From these considerations, we see that the exagtrated over. The above approximation amounts to evaluate

B - 9.0+N)?2 N~
dr>, f1(d,+ e +ih)f, + @b+ _ i—h.
0 o 2U

spectral function reads, at=0: the integral by a saddle-point approximation obeand the
Q Q saddle-point is found to be on the real axis, wlithih.
pi(w) = (1 - N) Sw—A)+ N5(w +A). (16 Finally, let us mention that, in a previous publicatiowe

have explained in detail the connection between the rotor
These two atomic transitions are the precursors of the Hubsonstruction and the Hubbard-Stratonovich decoupling of the
bard bands in the solid. Note that they have unequal weighténteraction in the charge channel.

except at half-fillingQ=N/2. At finite temperature, addi-

tional peaks appedexcept forN=2), corresponding to tran-  !ll. THE SIMPLEST MEAN-FIELD APPROXIMATION

sition between two excited statéwith exponentially small
weight for T<U).

Remarkably, expressiorn&4) and(15) in which the quan-
tum rotor and auxiliary fermions are treated as decoupled, d
reproduce this exact result at=0. The easiest way to see
this is to notice that, atT=0, G;(7)=—(1-Q/N)6&(7)
+(Q/N)68(-7), since n(e,—h)=Q/N. The rotor Green's
function Gg is €+7 for 7>0 ande®-" for < 0. SUbStltUtlng A. Anderson impurity model
into (14), this corresponds to the exact expresgib6). Al-
ternatively, one can use the expressions of th® spectral
functions into (15): ps(w)=8(w—ey+h) and pyw)=—8w
-A,)+8(w—A_), keeping in mind thatbg(e;—h)=Q/N while — t +
ng(w—e€y+h)=—0(-w) as T—0. Again, deviations between : Hat+% Ekck"ck"+vk2(, (Cds +hC). (1)
the approximate treatment and the exact results are found at . o ) ,
finite temperature, but remain small for< U. Let us empha- This Har_nﬂtoman can be rewritten in terms of the slave rotor
size that, because the rotor Green’s func@yis a continu-  and auxiliary fermion variables
ous function atr=0, with G4(r=0)=1, the factorized ap- U~ _
proximation (14) insures that the physicald-electron — H= L2+ &> fif, + > &Ci o+ V2 (Clof, €70+ h.C)
spectral function is correctly normalized with total spectral o ko ko
weight equal to unity. (18

To summarize, we have found that treating the constraint _ . . .
on average reproduces accurately the atomic limit=a0, Sme'tteq to the constrairg). The simplest p_ossmle_ ap-
both regarding the Coulomb staircase dependen€@\af e, prox]mat|0n is to depouple the r(_)tor and fermion variables,
and regarding the spectral function. This is a key point for€ading to two effective Hamiltonians:

the methods introduced in this article, which allows them to H?ﬁ: (-3 fo0+ D EkCLera’fVeﬁE (Cla'f0'+ h.c)
o ko ko

In this section, we introduce a very simple mean-field
approximation based on the slave rotors variables. This ap-
roximation is similar in spirit to the condensation of slave
osons in conventional slave boson mean-field theories. We
illustrate this approximation on two examples: the Anderson

impurity model and the Hubbard model.

The Anderson impurity model describes a local orbital
hybridized to a conduction electron bath

describe reasonably the high energy features of strongly cor-

related systems.
y (19

3. Functional integral formulation

ff_ ~ 2 T
We briefly introduce here a functional integral formalism HG = 5L"+hL+K cosé. (20
for the f! and ¢ degrees of freedom, and derive the action _ _
associated with(1). This is simply done by switching from The parameter¥ey, K, andh in these expressions are deter-

phase and angular-momentunperators (@,Ii) to fields mined by the coupled self-consistent equations:

(0,9,0) depending on imaginary timee [0,], with 6(3) Vet = V(COS 6),, (21)
=0(0)+27n. The action is constructed fromS

Efgdq{—iLaT%H+er(9Tf], and an integration ovdr is per- K :VE <Cl f o+ ffck0>f, (22)
formed. It is also necessary to introduce a Lagrange multi- o 7
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(Lo=N[ne(eg—h) - 3] (23) P = Ve exp<_ w_U> 29

in which the averages are calculated with the effective
Hamiltonians above. This coincides with the exact expressfiiThe local orbital
Let us first examine the particle-hole symmetric cage spectral function obtained froiti4) reads:
=0(Q=N/2) in which the solution 0{23) is h=0. The rotor
sector is described by the effective Hamiltoni@®) corre- (w)=Z
. J i Pd 2,12
sponding to the Schrodinger equation o+ e

Fef-f/’JT

+pg(w). (30)

U & The first term in this expression is the Kondo resonance, and
{— PYY: +K cos 0} W(0) =E W(6). (24)  carries a spectral weiglt=T";/I'=(cos 6)2. It satisfies the
Friedel sum-rulepy(w=0)=1/7I". Away from the particle-
For K=0, the ground-state wave function is the sthte0), hole symmetric cases, # 0), the location of the resonance is
uniform on[0, 277], corresponding to maximal phase fluctua- set bye,—h, which is the renormalized impurity level famil-
tions and thus to the absence of charge fluctuations. This i&r from conventional slave-boson theories. The rotor ap-
associated with the atomic limit, as explained above. As soofroximation does conserve total spectral weight, and there-
as the hybridizatiorV is nonzero, we shall see thit=0. fore yields an incoherent contribution to the spectral function
The wave function is then maximuiiK <0) for #=0, 2, with a weight 1-Z. This incoherent contribution is correctly
and <COS 0> acquires a nonzero expectation value. This Cor.Centered arounq the atomic tranSitionS, as eXplai.ned above.
responds to a nonzero effective hybridizatig=\V(cos ¢, ~ However, the width of these Hubbard bands is incorrectly
so that the auxiliary fermion effective Hamiltonian is that of d€Scribed by the simple approximation presented here, in

a resonant level model. This captures the physics of thivhich phase fluctuations are underestimated at short times.

Kondo effect, and the corresponding Kondo resonance at t S a regult, the I_-|ubt_)arq| bands have a bandwidih of order
Fermi level. off IN this approximatior{instead of the expected, and much

Even thoughV is a singular perturbation on the atomic proa?erl Widtg’ of ordel). _We .note h.ozvever t?jat cogvgn-
limit, its effect can be easily understood analytically in thetional slave-boson approximations with a condensed boson
present framework by treating the potential enekggos 0 neglect altogether the Hubbard bands at the saddle-point

perturbatively. To first order irK, the ground-state wave !evel, and 'Fherefore the present approximgtion, simplified as
function reads: it may be, is preferable in this respect. An improved method

for the treatment of phase degrees of freedom, leading to a

@ (€|K cos 6]0) much more accurate description of the Hubbard bands, has
=10+ > E_E |€) (25  been discussed in previous publicatidisThis method con-
(#0 0 =t sists of a set of coupled integral equations for the Green'’s
with (8] €)=€*? andE,=U¢2/2. This yields: functions of the auxiliary fermion and of the slave rotor, in

the spirit of the noncrossing approximation.

0| cos 6€)]> 2K
(cos )= (W(|cos o W")=- ZKEO T o B. Hubbard model

(26) 1. Slave rotor formulation
In thi i i he H I:
Hence, using21), one obtain=-UV,4/2V, which yields n this section, we consider the Hubbard mode
the following self-consistent equation for the effective hy- H=S H (i) - St dl d (31)
bridization V.4 when substituted int¢22): - U e

ij,o

2V? which can be rewritten in terms of the rotor and auxiliary

Vei =~ TKE (Clof o+ flCr (27)  fermion variables as

The right-hand side of this equation is easily evaluated for H=> ef! fi, + !E |:i2— > t; f;’afjo =9 (32
the resonant level modél9). For simplicity, we consider a io 25

flat conduction bandy € [-A,A], and focus on the universal
regime:A>U>T, with I'= 7 V?/2A. To dominant order in

ijo

Note that, in this context, eg=u is the chemical potential

1/A, (27) reads: controlling the average density per site. Let us make a first
' ' approximation, which consists in decoupling the rotor and
22 (O ® 2\/2 ( 272 ) fermion variables on linkgbesides treating the constraint on
1=-N——r do =N——+In . average, as aboyesee Ref. 24 for a similar approach in the
2 2 2 2 ’ y
UAJ_y o+ (Vggml (24))7  UA A Vg case of thet-J model. We then obtain two effective Hamil-

(28)  tonians:

This yields the following expression fov.s and for the Hf:—ztﬁﬁfi’fofkﬁ(eo—h)g fl fion (33)
width of the Kondo resonance whers>U>T": ijo i
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Z=(cos 6)>. (39

Finally, the relation between the chemical potentiaj and

. . - . . average number of particle per site and caids given by:
corresponding, respectively, to free fermionic spinons with

Hp=-2 " cod6 - 6) + > (%I:i2+ hti) (34)
i i

an effective hoppingﬁff and to a quantum XY-model for the 1 T

phase variables with effective exchange constafjfs These = NZ (fofo) = f de D(e)ne(Ze+ 6o-h).  (40)
effective parameters are determined by coupled self- 7

consistent equations: In these expressiond)(e)=[(d%/(2m)%) Se-¢) is the

density of stategd.o.s) of the band in the absence of inter-
tﬁﬁ: tij (cog 6 — 6)))p jﬁﬁ: Dl fir (35  actions. The auxiliary fermionquasiparticle Green's func-
o tion reads:

in which the average values are calculated with the effective GiK,iwp) t=iwy—g+h—-2Z ¢. (41)
Hamiltonians above. In addition, the Lagrange multiphies

determined from the constraint equation: We recognizeZ as the quasiparticle weight, which also de-

termines the quasiparticle mass enhancenmitim=1/Z.
o + 1 These two quantities are related because of the simple single-
(Lp=2 ((Fofio)i = 2)- B8 e approximation made here.

At zero temperature, the number equati@®) implies
Let us emphasize that, in the decoupling leading3® and that:
(34), we have assumed that the average va(tflé$j(,>f and
(expi(6-6;)), on a given bond are both real. In fact, one
could look for more general classes of solutions in whichin which ug is the chemical potential of the noninteracting
both (f1,f,,—f],fi,)¢#0 and (sin(6,— 6;)),+0. This would  system such that“2 deD(e)=n. From(41), it is seen that the
correspond to solutions with orbital currents around aFermi surface is located &k =(h-¢€p)/Z, and thug42) im-
plaquette, as proposed by several autBdSpontaneous or- plies that the Luttinger theorem is satisfied. In fact, within
bital currents are very naturally described using the slavéhis simple approximation in which the self-energy is inde-
rotor method, but will not be considered further in this paperpendent of momentum, the Fermi surface is unchanged by
which aims at the general formalism. interactions altogether. The equations forand h, at T=0
and for a given density, simplify into:

o

h—e=Z po(n) (42

2. Simplest mean-field A 1
. o . (L)=N(n-3), (43)
In the next section, we shall investigate some physical

consequences of EgR83), (34), (35) which approximate the B
Hubbard model by free spinons coupled self-consistently to K'=2Ne(n){cos 6),, (44)

an XY-model for the phase degrees of freedom. We point oufy;itp, ;(n)Efgo(n) deD(e)e the average kinetic energy per

that the decoupling between fermion and rotor degrees ofjecironic degree of freedom in the noninteracting model.
freedom can be viewed as a controlled approximation corre-

sponding to a larg& limit of a multichannel model, as de-
tailed in the Appendix.

Here, in the same spirit as above, we consider a further We expect a Mott transition to occur at each commensu-
simplification, which consists in treating the quantum XY rate filling n=Q/N (Q being an integgr This is associated
model at the mean-field level. In this framework, the phasewith the vanishing ofZ, and therefore the above equations
degrees of freedom is described by a mean-field Hamiltonianan be analyzed analytically close to the transitimhereZ
of independent sites: is smal) from a perturbative analysis g, similar to the one
performed in Sec. Ill A for the Anderson model in the Kondo

3. Mott transition and orbital degeneracy

Uny = regime. The ground-state wave functiontgf" in the insu-
MF —12 . ) :
Ho _2 [ 2L' *hii+K cos, (37) lating phase(Z=K=0) is €’ with €,=N(n-1/2). First-
order perturbation theory iK yields:
with K=-23; jﬁ”(cosepg. Combining this with(35) and 2
: : ; - ; (W |cos 6w )|
calculating the average values with the free-fermion Hamil- (cos)y=2K >, —— "
tonian (33), we finally obtain the following self-consistency 00, E, —E
equations for the variational paramet&sand h: SUK
= ————— +O(K?. (45)

U2 - 4(U¢,, + h)?
K = 2N(cos 6) f de D(e)e ne(Ze+ €= h),
SinceZ vanishes at the transition, bug(n) is finite, it fol-
lows from (42) that h=¢,. For vanishingZ, the relation be-
" tween e, andn is identical to that of the atomic limit, Eq.
(Ly= Nf de D(&)[Ne(Ze+ & —h) - 3], (38)  (13) established in the previous sectighy=Int[1/2-¢,/ U]
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U/D

€0

FIG. 3. (Color onling Phase diagram fdl=4 (two orbitaly at
T=0, as a function of the chemical potentigk-u and the inter-

action strengtiJ/D. The three lobes correspond to the Mott insu-

lator phases associated with half-fillif@=2) and quarter-filling
(Q=1,3), respectively.

with n=1/2+¢,/N. Finally, combining(44) and (45), we
obtain:

Uc(€0)? = 4[U (€€, + €o]? + 4Ne(N)U (&) = 0. (46)

In this expression{,, andn should be viewed as depending
on the chemical potentiady according to the relations just
given. This expression determines the boundagye,) be-
tween the metallic and Mott insulating phase in tlag,U)
plane. It is depicted for the cade=4 (two orbitals with spif

in Fig. 3. The conditiondU./dey=0 determines the tip of
each insulating lobe, i.e., the critical couplibg(n) at which
the insulating phase is entered as one increbsks a fixed
commensurate density. Differentiating(46), it is seen that
this happens fog,=-Ul,, i.e., precisely at the center of each
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W

Wo(0) 21 ]

FIG. 5. (Color online Rotor ground state wave functioby(6)
with values of the local interaction ranging frotd/U.=0.01
(peaked curveto U/U.=1 at the Mott transitior{flat curve.

—

for a flat d.o.s. of half-widtiD, in which caselJ.=4NDn(1

—-n). We see that the critical coupling is biggest at half-filling
n=1/2(Q=N/2), which is expected since orbital fluctuations
are largest in this case. This conclusion may depend on the
precise shape of the d.o.s. howeyand in particular may
not hold for densities of states such tlat-¢€) # D(¢)]. The
critical coupling increases linearly with orbital degeneracy
N. In fact, an analysis of the DMFT equations for large or-
bital degeneracy was made in Ref. 11, and the exact behavior
of the critical coupling at leading order N found there is
correctly reproduced by the simple mean-field detailed here.
It is also instructive to compare the present results with that
of the multi-orbital Gutzwiller approximatioff, which reads:
USA=4(N+2)|e(n)|. Our expression has the same behavior
at largeN, but yields in general a smaller critical coupling:
UC:UCGA N/(N+2). For small orbital degeneracies, we be-
lieve (on the basis of, e.g., DMFT resultthe Gutzwiller

step of the Coulomb staircase. The critical coupling thuXPression otJ. to be quantitatively more accurate.

reads:
Uc(n) = 4N[e(n)|. (47)
The phase diagram in th@,U) plane is depicted in Fig. 4

U/D A
51
n
3T () o
o1
L
} 1 } -
1 2 3 4 4dn

FIG. 4. (Color online Phase diagram in the,U) plane. The

The slave-rotor mean field equations are easily solved nu-
merically by determining iteratively the parametérandK.
At each iteration, the spectrum of the single-rotor
Schrddinger equations is comput@ging, e.g., a decompo-
sition on the atomic basis state€é?). In Fig. 5, the ground-
state wave functionWy(6) is displayed for several values of
U at half-filling. The curves nicely illustrate how one goes
from the insulatorin which case there are little charge fluc-
tuations, and maximal phase fluctuations so that the wave
function is delocalized over alb valueg to the metal(in
which case charge fluctuations become large at sthadind
the wave function is peaked such as to limit phase fluctua-
tions). The corresponding quasiparticle weight is displayed
in Fig. 6 as a function ofuU/U.. The simple slave-rotor
mean-field is compared to the DMFT result and to the
Gutzwiller approximation(GA). It is seen that, close to the
transition, the slave-rotor mean field reproduces more accu-
rately the DMFT answer than the GA. It is not very accurate
at weak-coupling howevegeven thougtZ correctly goes to
Z=1 atU=0, it has an incorrect small-expansioi In fact,
it is a quite general feature of this slave-rotor mean field that
the method is more accurate in strongly correlated regimes.

Mott insulator lobes collapse to lines at commensurate fillings, In Fig. 7, we plot the number of particles as a function of

whenU is larger thanU.(n) (shown as dots

the chemical potential foN=4. The value ofU has been

035114-7



SERGE FLORENS AND ANTOINE GEORGES PHYSICAL REVIEW B), 035114(2004)

0.8

T
7/
|

0.6 \ 4

0.4+ \ -

U/U.
FIG. 8. (Color onling Effective massm'/m for U=2.5 below
FIG. 6. (Color onling Quasiparticle weighZ as a function of || Mott transitions, in the two orbital cagél=4).
U/U. atT=0; DMFT calculation(thin line), rotor mean-field theory

(thick line), and Gutzwiller approximatiogbroken ling. deed, within this simple mean-field, the spectral function of

the insulator is identical to that of the atomic lingitot sur-

phoser) to be bigger than the critical coyplings yielding E.”brisingly the simple mean-field with only two variational
insulating state, for any commensurate filling. The curve il- ’

- arameters describes the charge fluctuations in the insulator
lustrates the plateaus found at each commensurate filling, trf)ﬁ an oversimplified manngrAs a result, the optical gap
central onghalf-filling) being narrowefcompare to Fig. B simply reads '

The effective mass enhancemdntl/Z) is also plotted in

Fig. 8 as a function of chemical potential for a smaller value A=U (48)

of U, such that a metallic phase is found at any filling. The,
curves illustrates how a largest effective mass enhancemetﬂ
is found at low and high fillings=1/4,3/4, and @&ompara- ra
tively smaller close to half-fillingi=1/2 (again, this conclu-

sion depends on the shape of the d)o.s. U
The description of the Mott transition obtained within this Ap=UA~[1- UC (49
simplest mean-field has many common features with the
Brinkman-Rice (BR) (Ref. 27 one. Indeed, the effective These features are very similar to those obtained within dy-
mass diverges at the transition and the quasiparticle residugamical mean-field theoR/This is not surprising, since the
vanishes(Z~1-U/U,) as in BR. There is one significant single-site mean field approximation to the XY-model indeed
difference however, which is that in the present descriptionbecomes exact in the limit of infinite coordination of the
the optical gapA of the insulatordoes not coincidavith the  lattice. Note however that this is not the case of the approxi-
chemical potential jump uw=-Aey=pu(n+0%) - w(n—0%) for mation (33)—(35) which consists of decoupling the rotor and
infinitesimal doping away from a commensurate filling. In- fermion variablegsee Sec. IY. Within DMFT, the quasipar-
ticle weight vanishes at a Brinkman-Rice-type critical point
4 T T Us while the optical gap of the insulator vanishes at a
Hubbard-type critical point).;. As a result, the strongly cor-
related metal close to the transition displays a clear separa-
tion of energy scales: the quasiparticle coherence sgale
~ZD being much smaller than th&preformed”) gap of the
insulator A. The simple mean-field of this section is in a
sense a somewhat extreme simplification of this picture, in
which U,=U,. and U, is sent toU;;=0 (this is consistent
with the known fact that U, =N while U, o \N, and that
the simple mean-field becomes more accurate for large-

our approach, and is thereforet critical at the Mott
nsition. In contrast, the chemical potential jump vanishes
continuously alU.. Indeed, solving46) for ¢, yields:

| IV. INCLUDING SPATIAL CORRELATIONS AND PHASE
6 -4 2 0 2 4 6 FLUCTUATIONS

In this section, we go beyond the single-site mean-field
FIG. 7. (Color onling Total occupancyQ=4n as a function of ~@pproximation, and investigate the physical consequences of
€ for a valueU=4.5 larger than all critical interactioris.(n), in ~ the approximate description of the Hubbard model intro-

the two orbital caséN=4). The Mott insulators are seen here as duced in Sec. Il B 1. This description, summarized by Egs.
charge plateaus. (33)—«(35), consists of a free fermion model; coupled self-
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consistently to a quantum XY-modél, for the phase de- order for the rotors corresponds to breaking a continuous
grees of freedom. 0O(2) symmetry, a Goldstone mode will be present in the
ordered(metallic) phase. This mode is present in any finite
. ] dimension, but disappears in theoe limit. It corresponds to
A. General considerations the zero-sound mode of the metal. As we shall see, these
Let us first emphasize some general aspects of this déong-wavelength modes play an important role: they change
scription, before turning to explicit calculations. The Hamil- the low-energy description of the transition as compared to
tonian for the phase degrees of freedom has two possibléie d= (DMFT) limit. As a result, the separation of energy
phases: a disordered phase without long-range phase ordégales does not apply in a strict seriee “preformed” gap
and a long-range ordered phase. At zero-temperature, ofeund within DMFT is filled up with spectral weight coming
expects a quantum phase transition from the ordered phase ft&®m these low-energy mode#\s we shall see however, this
the disordered phase as the ratlé 2" is increased. Since spectral weight remains small in high dimensigimeluding
the Green’s function of the physical electrons read, withind=3), so that an approximate separation of scales still ap-

this approximation: plies.
Gi(r=7)=Gfi(r= 7)), (50) _ , _ o

B. Sigma-model representation: Saddle-point equations in the

it is seen that the quasiparticle weightassociated with the spherical limit

limit of large-distance and large time separatidow fre-

quency, is given by In order to perform explicit calculations with the quantum
rotor Hamiltonian(34), we shall use an approximation that

Z=(cos 6,)5. (51)  has proven successful in the context of quantum impurity

models with slave rotor&? It consists in replacing the quan-
tum rotor exyi6;) by a complex bosonic fiel&X;(7) and to
treat the constrairjX;|?>=1 on average. Alternatively, this can
be viewed as extending the(2) symmetry to QM) and
taking the large-M(spherical limit. This is a well known
approximation to nonlinear sigma modé¥ayhich preserves

about this description of the metal and of the insulator are i any qu.al|tat|ve featureg of.the quantum phase transition.
or details of the formalism in the slave rotor context, see

order. First, it is of course unphysical to think of a metal as ! :
having long-range phase coherence. Naturally, this is only(Ref' 7 In the following, we focus on the half-filled case

true of the saddle-point approximation in which the rotors since we are mainly |r_1terested in the Mott transijjosith a
and spinon degrees of freedom are entirely decoupled. Flué_)—arf'de'hme symmetric d.0.9(e), so that we can set
tuations will induce interactions between these degrees of " . . , .
freedom, restore inelastic scattering and thus destroy phase The spinon and roto(now X-field) Green's function
coherence. The absence of inelastic scattering at the saddf&29"

point level is a well-known feature of slave-boson theories.

Note futhermore that despite the ordering of the rotors, the Gi(k,iwy) = iw,— Qse, (52
metallic phase becomes a superconductor only wigfy,)

is also nonzerdi.e., when there is spinon pairingSecond,
the insulator envisioned here is ronmagnetic insulator
without any spin or translational symmetry breaking, i.e., a
spin-liquid. Even in the disordered phageod6,—6;)) on a
given bond (e.g., nearest-neighbolis nonzero (it corre-
sponds to the energy density of the XY modértherefore
tﬁ“aﬁo in the insulating phase, so that the spinons have
Fermi surfacéwith Luttinger volume. This also implies that

t;" remains finite through the Mott transition and thereforeSpinon hopping and XY coupling constant§=(co &

thatthe effective mass does not diverdespite the fact that _ - _ + : :
Z—0. These last remarks apply to any finite dimension, but 0))=(XX)), Qc=(Z, fi,fj,). The self-consistent equations

of course not tal==. In this limit, the single-site mean field Which determine\, Q;, andQy read:
of the previous section applies arfexp(6 - 6;))=(cos 6)*

Thus, the phase with long-range order for the rotors corre
sponds to the metdZ # 0), while the disordered phase cor-
respond to the Mott insulatgZ=0). Obviously, the descrip-
tion of the Mott metal-insulator transition that follows is
closely analogous to that of the superfluid-Mott insulator
transition in the bosonic Hubbard mod&k°® Two remarks

2
Gy(k,iv,) L= % + N+ Qe (53)

In these expressionsy, and v, are respectively, fermionic
and bosonic Matsubara frequenciasis a Lagrange multi-
Plier associated with the constraitiX/2=1, while Q; and

Qy are the self-consistent parameters entering the effective

=Z. Finally, we emphasize that the nonmagnetic nature of the b 1 1

insulator is of course associated with the fact that the rotor 1 =f de D(G)EE VU +\ + Qye’ (54)
degrees of freedom are associated with the charge and are - no X

not appropriate to properly describe spin ordering. Therefore,

they are better suited to lattices with strong frustration D 1 1

models with large orbital degenerady which a spin-liquid DQ; = _f de D(e)e=>, 5 , (55
insulator is a realistic possibility. Finally, because long-range -D Bn vy/U+N+Qye
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D Substracting Eq(59) from the same equation witA
DQx=- 2f de D(e)e ne(Qre). (56) =0 (which definesU,), one obtains:
-D
] [ D
These expressions have been written here for a simple tight- 1 [Ye _ 1 |Ye =f de D(e) o
binding band with nearest-neighbor hoppig=t on a Uc u -0 V1+€D

d-dimensional cubic latticée, =—2t Egzl cosk,). As above, 1
D(e) denotes the band d.o.s., afd=2d t is the half- -

bandwidth. For simplicity, we have set the orbital degeneracy VAZ(UUZ) + 1 +¢€/D
to N=2 in these equations.

] . (62

The expansion of this expression for smal| depends on
dimensionality. Ford> 3, the integralfdeD(e)(1+e/D)™%?2

C. The Mott transition: Mott-Hubbard meets Brinkman-Rice is convergent at band edge-D, recalling thatD(e) ~ (D
+¢€)%¥271 near the bottom of the band. In contrast, the small-

In this section, we investigate the solution of these equa-, ion is sinaular fad< 3. Thi vsis finally lead
tions at zero-temperature. This leads to a description of the'd expansion Is singuiar ai < 5. This analysis finally leads
to the following behavior of the gap close to the critical

finite-dimensional Mott transition that we analyze in detail. ™~ .

point:
1. The insulating phase )
_ neuiafing pha _ AgU,x— -1 ford>3
Let us note first that Eq56) readily determiney at Uc
T=0: U 1/(d-1)
0 oc(u——1> for d < 3. (63)
DQx(,_, =~ ZJ D(e)e de= 2[€]. (57) ¢
B -D Hence we find that the exponent changes from its mean-field

, , . value 1/2 ford>3 (as found, e.g., in the single-site mean-
From the form(53) of the X-field Green’s function, one sees field of the previous section and the Gutzwiller approxima-

that the bosom(_: spectrum ha; a gap as long 8@y D=\ tion) to a non-mean field exponent fordd<<3. Therefore,
-2|€] >0. In this case, there is no long-range order for the

hase degree of freedom, and this corresponds to the insul q—:?’ corresponds to the upper critical dimension in this de-
p 9 . S ) P a5cripti0n of the Mott transitior{logarithmic corrections are
ing phase. The insulating gap reads:

found in that case Below d=3, the exponent Xd-1) cor-
Ag=2 U\ - QyD) (58)  responds to that of the largd-limit of the quantum @M)
) . model ind-dimensions, i.e., to that of thé+1-dimensional
and we can rewrite Eqg54) and (55) as self-consistent cjassical model. Had we kept (2 quantum rotors, we
equations for the gag\; and the renormalization of the \youid have foundAy~ (U/U,~1)* with z=1 and » the

spinon hoppingQy. This reads, at =0: correlation-length exponent of thie+ 1-dimensional classical

D U XY model, as in the case of the superfluid-insulator transi-
1 =f de D(e) e , (590  tion of the Bose Hubbard modé.
-D VAG +8U[€[(1 +€/D)
2. The metallic phase
- ? £ U For U<U,, the gap closes and one enters the metallic
Qr de D(6)~ . (60) o the . Ih
D D \rAg+8U|?[(1+e/D) phase. In this regime, the constraint equat{fq?)=1 can

only be satisfied by 8ose condensatioof the X-field. As in
. o ; ) Btudies of quantum magnetism based on Schwinger bd$ons,
Ag>0. The gap vanishes at a critical couplily obtained  gse condensation in the spherical limit corresponds to the
by settingAy=0 in (59): phase with long-range order for the rotors. In this phase, the
U, { D D(e) ]—2 constraint equatioii54) has to be rewritten by isolating the
— = f EF—— (61) k=0 mode in the Brillouin zone. The Lagrange multipler
Ue o V1+eD sticks to the valuen=QxD=2|¢ in this phase. The full

In this expressionU”=8|d is the critical coupling corre- X-field Green's function thus reads &t0:

These equations are valid in the insulating phase, whe

sponding to thed=o limit, in agreement with expression 1
(47) of the previous sectioifwith N=2). Not(*a that, in the Gy(k,iv)=Z8(v)dk) + 210 + 21+ /D)’ (64)
d— < limit, one must scale the hopping &st"/\d, so that v €T &

D=2dtxyd—c and the r.h.s. 0{61) goes to unity. The The condensation amplitudg=(X?) is determined from the
integral in(61) is smaller than unity in general, so thdt constrain(|X|2 =3 Gy(k,7=0)=1:
decreases as dimensionality is reduced. We also note that in

one dimension, this integral has a logarithmic singularity at D u
band edge, since D(e)=D/\D?- ¢, so that Eq(61) yields 1=2+ . de D(e) 8e(1 + /D) (65
U%1=0, which is indeed the exact result for a half-filled

Hubbard model witiN=2 (Ref. 30 (see however Ref. 40  which simply reads, usings1):
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U 0.5
Z=1- \/U: (66) |

c
041

This expression vanishes linearly,~(U.-U)/2U,, at the
critical pointfor all dimensions & 1. The fact that there is
no change of critical behavior fa& atd=3, in contrast to the 0.3
gap, is due to the use of the spherical approximation. Had we
kept O2) rotors, we would findZ~ (1-U/U)"% 17 with

v and 7 the critical exponents of thé+ 1-dimensional clas-
sical XY model. In the spherical approximatioyp=0 andv

=1/(d-1) so thatZz~(1-U/U,) also belowd=3. 0.1 .
Hence, we have found that the quasiparticle weight and

insulating gapranish at a unique critical couplinghs shown 0 , ,

below, the gapA, given by (59) is the gap in the single 0 0.5 IIJ/U L5 2

particle spectral density of the insulator. It also coincides
with the chemical potential jumpAux when the present ap-
p_roac_h is e)_(tended away from hali-filling. He_n_ce, in th_is fi- effective mass renormalizatid®=m/m’, and the Mott gap\4 as a
nlt_e d'mer.‘s"’”a' d_escrlptlon of the Mott tran3|t|(_)n,we fm(_j Qfunction of U/U, across the Mott transition in the three-
unique critical point corresponding both to Brinkman-Rice jiensional case.
physicg” (vanishing ofZ) and to Mott-Hubbard physié%
(gap openiny This is in strong contrast to the=o0 single-
site mean field investigated in the previous section, and
the DMFT picture? Below, we show that this is due to long
wavelength collective modes filling in the preformed gap,
and investigate in detail how the previous picture is recov- Gy(k,iw) = # +Gid“°'(k,iw). (69)
ered in the(singulay d=o limit. fw—Qf &
Equation(55) for the renormalizatiorQ; of the effective , . . ) ,

hopping must be rewritten in the metallic phase to take intoT_hIS expression IS valid in the metallic ph"’!se- In Fig. 11, we
account the Bose condensed fraction.TAt0, it reads: display thek-integratedlocal) spectral functior®y py(k, w),

as the Mott transition is approached, in the three-dimensional

m u (® e/D case. The first term i69) corresponds to the coherent qua-
Q= m Z- ﬁf de D(e) D (67)  siparticle. When summed ovér the quasiparticle contribu-
¢ D tion to the local spectral function vyields a peak

This expression makes very clear that the effective mass reZ/QiD(w/Qy). The spectral weight of this peak BB, its
mains finite at the critical point, whil& — 0 [note that the width is of orderQ;D and its height iZD(0)/Q;. Hence, its
integral in the r.h.s. of67) is negative so tha®;=Z]. Inthe  height goes to zero at the transition, while its width is re-
d— < limit, one recoveran/m'=Z, sinceDxyd—o. This  duced but remains finitéFig. 11). In thed=c limit (where
calculation can be extended to the weakly doped Mott insuZ=Q;) the zero-frequency density of states is pinned at its
lator at largeU and hole density, with the result: noninteracting value, as known from the Brinkman-Rice pic-

FIG. 9. (Color onling Plot of the quasiparticle weigt, the

W G{(1=G}(nG]{(7). Using (64) for the X-field Green’s
function, this leads to

v1+

m 1 1

m tuU+s Jt+d

(68) 20— —

Hence, the present theory correctly captures the magnetic
exchange energy«t?/U, which quenches out the spin en-
tropy (due to spinon degrees of freedpin the insulator and

hence prevents the effective mass from diverging at the Mott -
transition. This is expected from the fact that the spinons 10F
form a dispersive band in the insulating state and thus have
an entropy depending linearly om at low temperature.
These findings are entirely similar to the slave bosons mean-
field theories of thé—J model®® Figures 9 and 10 illustrate
graphically the physical quantities characterizing the Mott
transition which we discussed previously.

T
I
I
1
1
[}
I
1

3. Spectral functions and collective modes: What are Hubbard

bands made of FIG. 10. (Color onling Effective massn /m=1/Q provided by

the mean-field Eqs(54)—<56) for d=3 (bold line) and d=< (thin
The Green’s function of the physical electron in the ap-line). For comparison, a DMFT-IPT calculatigdashed lingis also
proximation of decoupled spinons and rotors is giver{3g) presented.
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2 . ' . ' L tails which contribute to the tails of the Hubbard bands, fill-
ing in the energy range between andA.

It is natural to interpret the bosonic collective modes as
the zero-sound mode of the metal. Indeed, these modes have
been discussed previously by Castellatial,®® in their
pa(w) 1 - study of fluctuations around the saddle-point of conventional
slave boson approaches. These authors pointed out that the
Mott transition is associated with the softening of this col-
0.5 7 lective mode, as also found here. In the present approach, the
collective modes appear on the same footing than the quasi-
particles.

1 ' 0 ' T
w 4. The d=« limit, separation of energy scales and “preformed”

FIG. 11. (Color onling Zero temperature local density of states Mott gap
across the Mott transition for a three-dimensional cubic lattice, with o ) )
U=0, U./2, U, 3Uc/2 (for D=1). It is instructive to understand more precisely what hap-

pens as the dimensionality is increased. As clear from the
previous discussion, thet=oc limit is singular in at least this
respect that the long-wavelength collective modes are absent.
Indeed the sound velocity if72) vanishes in this limit. In

The incoherent contributiofsy~ comes from the convo- Lagt thﬁ d br?sonci:: moders fr:omlct)ﬂge(;i ha\r/ei r?rdllsgersmn:
lution of the free spinon Green’s function with the noncon-". ependence disappears 1ro e dispersion relation

densed contribution to the rotor Green’s functi(ﬁi)r(m sinceD must be scaled d3« vd. The bosonic spectral func-

=1/[12/U+2|€|(1+€/D)], which is the second term in tions thus has two poles on top of the condensed fraction,

(64). The latter corresponds to bosonic collective modes dis\-Nh'.Ch Ie.ads, after performing _the convolutions, to the fol-
persing according to: lowing simple form of the physicat-summed local spectral

density(using also thaQ;=Z in this limit):

luu?
oK)= £ [1+% (70) - 0\ 1-z[ [w-A w+A
2 D py (w)=D|=|+——|D(—=—]+D .
Z 2 z z
The incoherent contribution corresponds to the Hubbard (73)

band, which are well developed in the correlated metal, as

also p_redlcte_d t_)y DMFT' Note that the dﬁp?cersmg branch ofp, this expressionA is given by(71) and corresponds to the
bosonic excitations is centered aroundUt); /2. Hence a ynical separation between the Hubbard bands. It is some-
measure of the typical energy scale associated with the digimes referred in the framework of DMFT as the “preformed
tance between the two Hubbard bands is: gap” in the metallic statgi.e., the Hubbard bands are well
A= \JW (71) separated from the central quasiparticle peak does not
e vanish at the Brinkman-Rice point and beyond this coupling
However, a key point is that this branch of collective modesthe insulator sets in with a finite gap. Note that, in the
extends to arbitrary low frequency where it becomes théresent approximation where spinons and rotors have been
Goldstone mode of the broken symmetry. In the small modecoupled, one simply has=U in the insulatorfas found

mentum limit, the dispersion relatiqf70) reads: also in(48)] and that, accordingly, the Hubbard bandg78)
have vanishing width close to the transition. This pathologi-

cal result can be improved by including dynamical fluctua-
tions of the auxiliary particles, as shown(iRef. 7). Despite
these oversimplifications, the present approach does retain
The corresponding density of states behaves pg&v) the main qualitative feature of DMFT, namely the separation
~ %L These long wavelength excitations are responsibl®f energy scales at the Mott transition.

for tails of the Hubbard bandsextending down to low- In Fig. 12, we show how the largg{imit is approached
frequency. This low-energy spectral weight due to collectiveby plotting the local spectral density right at the critical cou-
modes is the origin of the continuous closure of the Mott gagpling U=U,, for increasing dimensionality. This plot clearly

at the Brinkman-Rice transition. In other words, the Hubbardreveals the two-components building up the Hubbard bands,
bands are made of two kinds of contributions. The main parwith the main part of the spectral weight centered around the
of their spectral weight is associated with bosonic modespreformed” gap A and tails extending down to low-
whose momentum is not small, so thay is finite (of the  frequency(down to the true gap, in the insulatoy, associ-
order ofA). In addition, the small weight in the~ % 1) tails ~ ated with the long-wavelength collective mode. The inset
at low-energy is associated with the=0 collective modes. demonstrates that as dimensionality increases, the spectral
In the Mott insulator, all the bosonic modes are gapped, buiveight in the tails becomes smaller, so that an approximate
the bottom of the bosonic density of states I(nas—Ag)d‘l separation of energy scales hol@d in fact already holds

ture and the dynamical mean-field theognly in infinite
dimension does the quasiparticle peak disappear by narrow

ing down instead of collapsing -

uu;
wx(k) ~ 8—d°|k|(k —0). (72)
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possibility is that this damping is large, which would pre-
sumably weaken its effect and might restore some separation
of energy scales as in the DMFT picture. This calls for fur-
ther work on the nature of collective modes in a metal close
to the Mott transition. In particular, the restauration of gauge
symmetry, broken at the saddle-point level, will have a
strong impact on the nongauge invariant propagators, as al-
. ready known for single impurity mode¥ However, it is yet

not entirely clear whether this effect will affect strongly the
physical sector at low energy. One additional issue is that in
a real material the screening deteriorates as one gets closer to
2 the Mott insulating staté The “acoustic plasmon” mode of
the Hubbard model with short-range interactions will be

FIG. 12. (Color onling Local spectral density at the critical pushed to higher energy 3”0_' this may als_o Weaken its 'tel'
point U=Uy, for increasing dimensionalitgtop to bottom curves at  €vance for low-energy physics. Another issue which will
smallw: d=2,3,4,5. The spectral weight associated with the low- arise when taking into account the interactions between
frequency tails of the Hubbard bands is seen to decrease as dimespinons and rotors is the description of the insulator as a
sionality increases. Correspondingly, the separation of energy scalemnmagnetic spin-liquid. Stabilizing such a spin-liquid state
and the preformed gap become more and more apparent. The indsg¢yond saddle-point level is presumably possible only on a
shows the integrated density of statfde py(e) demonstrating  very frustrated lattice. Even in this case however, it has been
this approximate_ separation of_scales @ior 3. (Note that the pro- suggested recenfi§that a superconducting phase can inter-
gressive narrowing of the main lobe of the Hubbard bandias c5|5te hetween the metal and the insulator, due to the prolif-
increases is an artefact of the approximation in which spinons anération of short range spin singlets, therefore superseding the
rotors are decoupled. . ’

zero temperature Mott transition. Nevertheless, some of our
results, such as the finiteness of the effective mass, should
remain valid above the low temperature ordered regions.

Finally, we point out that the slave rotor representation
explored here is a useful technical tool that can be applied to
strongly correlated systems in a variety of contexts. Because
a single collective variable is introducgéathich has a direct

In this paper, we have used the slave-rotor representatigshysical interpretation in connection with the local charge
in order to construct approximation schemes for strongly corusing this representation is generally simpler than other
related fermion models. A theory of the Hubbard model in-finite-U slave-boson schemes provided one deals with a sym-
volving free fermionic spinons self-consistently coupled to ametric interaction. Applications to mesoscopic devices and
quantum XY model has been developed. The quantum phaggjantum impurity models have been presented elsewifere.
transition of the latter corresponds to the Mott transition beyther potential applications are the effect of long-range or

tween a strongly correlated metal and a Mott insulating Spi”time-dependent interactiod,or the interplay of disorder

liquid with a spinon Fermi surface. Both the gap in the SpeC4 4 interactions. Interacting boson models can also be ex-
tral function and the quasiparticle weight vanish at the

" . ) ) R . “pressed with slave rotor$or a recent application of varia-
critical point, while the effective mass remains finite. In th|sp R bp

. . .tional approximations to the XY model, in the context of
picture, long-wavelength collective modes of the phase variy - onic models. see Ref BAlthough mean-field approxi-
able play an important role. They are responsible for low- ' ' g bp

energy tails of the Hubbard bands addition to the main mations for interacting bosons can be formulated in a simple
component of these bands, which are atomiclike shortmanner due to the commuting nature of the physical degrees

distance excitations This has potential implications for of freedon® the slave-rotor representation might prove use-

spectroscopic and tunneling experiments. In infinite dimenful in the context of interacting cold atoms in order to deal,
gr example, with boson-fermion mixtures.

sions, these collective modes are suppressed and this lind
appears singular in this respect. Only in this limit is a strict
separation of energy scales recovered, as in the DMFT pic-
ture. APPENDIX: LARGE- N LIMITS AND MEAN-FIELD

This raises some open questions associated with the phys- APPROXIMATIONS
ics of these collective modes, which are physically associ-
ated with zero-sound. At the saddle-point level, where We discuss here how the different mean field approxima-
spinons and rotors do not interact, these modes are utions presented in this paper can be formulated in terms of
damped. The metallic state is described as a perfect metkdrge N limits of generalized Hubbard models. Let us intro-
with no inelastic scattering. Interactions between rotors anduce a “multichannel” version of the Hubbard model, based
fermionic spinons will induce a Landau damping of theseon spin-carrying fermionsf:r, (6=1,---,N) and channel-
modes, and the metallic state will lose phase coherence. Omarrying phase9, (a¢=1,---,K):

pa(w)

=

to a good approximation id=3, while it is no longer mean-
ingful in two dimensions

V. CONCLUSION AND PERSPECTIVES
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U ~ 1 ) of a SUN) X O(2M) Hubbard mode(see Ref. 7 for a related
— T 2 t N
H= E €ofigfic + EE Lo~ EE ty fl,fjo €%afia, approximation concerning the Anderson model
io ia ijoa
U ~ tii «
(A1) H=2> GOfiTafio'FmE (L= 2 KI/ILfiTafJaXiaXia
Two Hubbard-Stratonovich fields conjugatedg f{ f;, and ' laf How
>, €% can be introduced in order to decouple the last (A3)

term. When bothN andK are large, with a fixed rati&/N,

a saddle-point applies which leads to the decoupled effectiv
Hamiltonians(33) and(34). This corresponds to a factoriza- ~ o8
tion the hopping termon bonds as shown by the effective Sion, Li* denotes the M) angular momentum tensor as-
parameterg35). A similar remark applies in the usual con- Sociated with thex;, vector?

introducing a complex field wittM colors X;, subjected to
fhe spherical constraing | X;,|>=M. In the previous expres-

text of slave-bosons for thed model: the mean-field ap- Finally, we note that the simplest single-site mean field of
proximation investigated, e.g., in Ref. 24 corresponds to #€¢- Ill B 2 can also be seen as a laigémit of a general-
multichannel limit of ized Hubbard model which readsote the different indices
position and the scaling of the hopping tgrm
1
- =2 4l £ bibig. (A2) Uwor, 1 _—
Kijga |77 H=2 eofl,fi,+ EE '—iza‘@ 2t ffj, &),
lo la

I a'aa'
Because the quantum XY model on the lattice is not easily J (Ad)
investigated analytically, we have performed in Sec. IVB a
O(2M) generalization of the phase part that leads to furthefhis gives aon sitefactorization of the phase variables. Al-
simplications, while allowing to deal with the model in finite ternatively, this can be seen as a large connectivity of the
dimensions. This can also be seen as a direct ldrdé limit bond mean field approximatiai33) and(34).
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