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We calculate analytically the effective mass and the quasiparticle renormalization factor in an electron liquid
with long-range Coulomb interactions between electrons in two and three dimensions in the leading order
density expansion. We concentrate on the temperature dependence of the effective mass in the limitT/TF

! rs!1 and show that the leading temperature correction is linear in two dimensions and proportional to
T2 lns1/Td in three dimensions(positive in both cases). We explicitly calculate the coefficients, which are
shown to be universal density independent parameters of the order of unity(in the high-density limit). The
singular temperature corrections are due to the singularity in the dynamic dielectric function atv,vFq and
q!2pF. In two dimensions, we predict a nonmonotonic effective mass temperature dependence and find that
the maximum occurs at a temperatureT* ,TFrs ln−1s1/rsd. We also study the quasiparticle renormalization
factor in both three and two dimensions.
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I. INTRODUCTION

The basic postulate of Fermi liquid theory is the existence
of a one-to-one correspondence between the states in a free
Fermi gas and an interacting quantum system. This allows
one to use the noninteracting language in describing quan-
tum liquids. In particular, one can regard the interacting
Fermi system as a gas of elementary quasiparticles. In this
approach, the number of parameters describing the state of
the system is less than within the exact description. Thus, an
elementary excitation is not a stationary state but a wave
packet of stationary states which spreads with time. This
leads to a finite lifetime of elementary excitationstp away
from the Fermi surface. However, if the inverse lifetime is
smaller than the excitation energytpjp@1, one can regard
the excitations as stable particles. The effective massm* of
these particles is renormalized by the electron-electron inter-
actions and can be quite different from the noninteracting
bare electron mass(the band mass,m). The concept of the
electron effective mass has been a subject of investigation
for over 50 years. Surprisingly, the question of the effective
mass temperature dependence had never been addressed until
very recently.1–3 This can be partially explained by the fact
that most of the work was performed back in the 1950’s and
1960’s, when only the three-dimensional case was of inter-
est. In typical three-dimensional systems, the Fermi energy is
very high compared to the temperatures relevant to experi-
ments(i.e., in simple metals:TF,104 K) and thus any tem-
perature corrections are negligible. The Fermi energy in re-
alistic semiconductor-based two-dimensional systems(e.g.,
Si MOS structures, GaAs heterostructures, and quantum
wells) may be as low as 1K, which makes the issue of the
temperature dependence of Fermi liquid parameters ex-
tremely important. In this paper, we obtain analytical results
for the quasiparticle effective mass and the quasiparticle
renormalization factor for two-dimensional and three-
dimensional electron systems interacting via the realistic
long-range Coulomb potential. Our results employ the stan-
dard perturbation theory expansion in the dynamically
screened interaction and are exact in the high-density limit.

We restrict ourselves entirely to the case of an ideal clean
(i.e., no impurity disorder) and homogeneous electron sys-
tem with a parabolic noninteracting energy dispersion.

Before describing the main results and the structure of our
paper, let us briefly discuss previous studies in the subject.
The first work explicitly calculating the effective mass is due
to Gell-Mann,4 who derived a zero temperature correction to
the effective mass due to the Coulomb interaction in the
high-density limit in three dimensions. Galitskii5 has devel-
oped a general scheme of calculating perturbative corrections
to the one-particle spectrum of an interacting Fermi-system.
Within this scheme, he derived corrections to the quasiparti-
cle effective mass and lifetime for the cases of both a short-
ranged interaction and the long-ranged Coulomb interaction.
These studies were again constrained to zero temperature.
Chaplik6 and later Giulianni and Quinn7 have addressed the
issue of the quasiparticle lifetime temperature dependence
having found in two dimensions a nonanalytic contribution
to this quantityEFtp

−1~maxhjp
2 ,T2jlnfmaxhjp ,Tjg. This re-

sult assures that the quasiparticles are well-defined excita-
tions as long asT!TF. Very recently, Chubukov and
Maslov1,2 revisited the problem of nonanalytic corrections to
the Fermi-liquid theory for the case of a short-ranged inter-
action. In particular, they showed that the leading tempera-
ture correction to the effective mass is linear, similar to the
results for the Coulomb interaction case, which had been
reported in a short numerical paper earlier.3

In this paper, we present detailed purely analytic calcula-
tions of the effective mass renormalization by the Coulomb
interaction. We work within first order perturbation theory in
the screened interaction, i.e., within the random-phase ap-
proximation(RPA). We analytically derive the leading tem-
perature corrections to the effective mass in the low tempera-
ture T/TF! rs and high density rs!1 limits. In two
dimensions, the leading correction is positive and linear in
temperature with the subleading term being of the order of
T2 ln T and negative. The linear term coefficient is found to
be a density independent universal number. In two dimen-
sions, we predict a nonmonotonic effective mass temperature
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dependence. The point of maximum of the curvem*sTd is
calculated explicitly and is shown to drift toward higher tem-
peratures asrs increases.

For the sake of completeness, we also calculatem*sTd for
the case of a three-dimensional electron liquid. At high den-
sities rs!1, the leading contribution is of the order of
T 2 lns1/Td and positive. Asrs increases, the correction
changes its sign andm*sTd monotonically decreases from its
zero temperature value.

In addition to the quasiparticle effective massm* , another
important many body Fermi-liquid parameter is the quasipar-
ticle renormalization factor(the Z-factor), which is a mea-
sure of the quasiparticle spectral weight. In particular, the
Z-factor defines the size of the effective Fermi surface dis-
continuity in an interacting system, and is precisely the size
of the discontinuity in the momentum distribution function
nspd. For the noninteracting Fermi gas,nspd=uspF−pd, and
the discontinuity is precisely unity whereas for an interacting
system this discontinuity isZ,1. Note thatZÞ0 implies the
validity of Fermi liquid theory. To the best of our knowledge,
there has been no consistent microscopicanalytic derivation
of the interaction corrections to the quasiparticleZ-factor
even in three dimensions and zero temperature. To fill this
gap we calculate analytically theZ-factor. The technical part
of this calculation is found to be more complicated than the
effective mass calculation. To get the correct result, one is
required to use the exact forms of the polarizability to ensure
the convergence of the final result.

Our paper is structured as follows: In Sec. II, we give a
general introduction and derive the basic formulae for the
analytically continued self energy in first order perturbation
theory in the screened interaction in three and two dimen-
sions. In Sec. II C, we briefly discuss the structures of the
interaction propagator and the polarization operator in two
and three dimensions. In Sec. III, we study the temperature
dependence of the effective mass and also derive the
asymptotic formula for the quasiparticleZ-factor in a three-
dimensional electron liquid. In Sec. IV we study the two-
dimensional case and find that the leading temperature cor-
rection to the effective mass is linear and positive with the
subleading term being of the order ofT2 ln T and negative.
Hence, the effective mass temperature dependence is non-
monotonic. We explicitly derive the temperatureT* at which
the maximum ofm*sTd occurs. We show that the nonanalytic
contribution to the effective mass is due to the singularity of
the polarization operator atv,vFq andq!1. We also dis-
cuss the asymptotic behavior of the quasiparticle renormal-
ization factor in two dimensions and show that within the
RPA approximation the correction is indeed finite and nega-
tive. We emphasize that this result is due to a subtle cancel-
lation of the logarithmic singularities in the
s]S /]«d-derivative. These kinds of singularities persist in
higher orders of perturbation theory

II. GENERAL FORMULAS

In this section, we give basic formulas which will be used
for actual calculations. We consider a spin degeneracy factor
of 2 throughout the paper. We denote the quasiparticle effec-

tive mass(bare mass) asm* smd. We use the following small
parameters:as3Dd=e2/ sp"vFd and as2Dd=e2/ s"vFd in three
and two dimensions, respectively. These true parameters of
the asymptotic expansion are connected with the usual
rs-parameter as follows:rs

s3Dd=ps9p /4d1/3as3Dd and rs
s2Dd

=Î2as2Dd. In what follows we will use units"=kB=1.

A. Renormalized spectrum

The exact Green function for a system of interacting fer-
mions can be expressed in terms of the self-energySs« ,pd as
follows:

G−1s«,pd = « − E0spd + m − Ss«,pd, s1d

whereE0spd=p2/2m is the spectrum of noninteracting fermi-
ons andm;EF is the bare chemical potential. The Green
function can be rewritten as

Gs«,pd =
Z

« − Espd + igs«,pd
, s2d

where Espd is the renormalized spectrum of excitations,
gs« ,pd is the quasiparticle decay rate, andZ is the residue of
the Green function, which determines the jump in the Fermi
distribution at p=pF. In what follows, we mostly will be
interested in the renormalized single-particle spectrum,
which is connected with the real part of the self-energy as
follows:

Espd = E0spd + ReSs«,jpdu«=jp
, s3d

where we write the self-energy as a function of a small ex-
citation energyjp,

jp
s0d =

p2

2m
− m <

pF

m
sp − pFd,

jp = Espd − m* <
pF

m* sp − pFd.

The shift of the chemical potential of quasiparticles is deter-
mined by the following equation:

m* − m = Ss0,0;m*d. s4d

From the above equations, it follows:

jp = jp
s0d + RefSs« = jp,jpd − Ss0,0dg. s5d

Solving the linear equation, we obtain the following formula
for the renormalized effective mass:

m*sTd
m

=
1

Z
UF1 +

]

] jp
Re Ss«,jpdG−1U

«,jp=0
, s6d

with

Z = UF1 −
]

] «
Re Ss«,jpdG−1U

«,jp=0
. s7d

In the perturbative regime, the effective mass reads

m*sTd
m

= 1 −UF ]

] «
+

]

] jp
GRe Ss«,jpdU

«,jp=0
. s8d
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B. Self-energy in the RPA approximation

In first order perturbation theory in interaction, the Mat-
subara self-energy can be written as[see Fig. 1(a)]8

Ss«n,pd = − To
vm

Gs«n − vm,p − qdDsvm,qd, s9d

where «n=ps2n+1dT is the fermion Matsubara frequency,
vm=2pmT is the boson Matsubara frequency, andT is the
temperature. The functionDsq ,vmd denotes the coupling to
a collective mode(phonon, plasmon, electron-hole excita-
tion, etc.), i.e., an effective interaction.

For analytical calculations, it is more convenient to use
the self-energy as a function of the real frequency« rather
than the Matsubara frequency«n. It is known9 that in some
cases(e.g., when calculating the ground state energy in the
RPA) it is more convenient to do the Matsubara summations
first to avoid divergences arising from the plasmon pole.
However, when calculating the effective mass or the quasi-
particle renormalization factor one can do the analytical con-
tinuation first and obtain finite results. In the calculation of
the effective mass in the high-density limit, the plasmon sin-
gularity does not show up in the calculations at all.8 The
calculation of theZ-factor is more complicated but the cor-
rect result can be obtained by keeping the exact
q-dependence in the polarizability(see Sec. III B). Using the
standard procedure of the analytical continuation, one can
obtain the following expression for the analytically contin-
ued self-energy function:8

SRs«,jpd = −E ddq

s2pddE
−`

+` dv

2p

3HIm GRsv + «,p − qdDRs− v,qdtanhFv + «

2T
G

+ GRsv + «,p − qdIm DRsv,qdcothF v

2T
GJ ,

s10d

where functions labeled with indexR are retarded functions,
i.e., functions analytical in the upper half-planes of the com-
plex frequency andd stands for the dimensionality of space.

Within leading order perturbation theory, one can use the
bare electron Green function in Eq.(10), which can be writ-
ten as

GR
s0ds«,pd = f« − jp

s0d + i0g−1.

If the effective interaction is isotropic(which indeed is the
case in the jellium model we wish to study), the integral(s)
over the directions ofq can be evaluated and we obtain the
following expressions for the real part of the retarded self-
energy function:

ReSRs«,jpd = S1s«,jpd + S2s«,jpd, s11d

where in three dimensions

S1
s3Dds«,jpd =

1

8p2vF
W

−`

+`

dvE
q1sVd

q2sVd

dqq Re DRsv,qd

3tanhFv + «

2T
G s12d

and

S2
s3Dds«,jpd = −

1

8p3vF
W

−`

+`

dvE
0

`

dqq lnUV − q2/2m+ vFq

V − q2/2m− vFq
U

3 Im DRsv,qdcothF v

2T
G , s13d

and in two dimensions

S1
s2Dds«,jpd =

1

4p2vF
W

−`

+`

dvE
q1sVd

q2sVd dq

Î1 −SV − q2/2m

vFq
D2

3 Re DRsv,qdtanhFv + «

2T
G s14d

and

FIG. 1. (a) The self-energy diagram relevant in the high-density
limit with the thick wiggly line being the dynamically screened
Coulomb interaction and the thin wiggly line the bare Coulomb
interaction. The solid lines correspond to the electron Green func-
tions; (b) The dynamically screened Coulomb interaction infinite
series in the bare interaction through the bubble diagrams. A bubble
corresponds to the noninteracting(“Lindhard”) polarizability. (c)
Examples of higher order diagrams which are negligible in the high
density limit but are important at lower densities.
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S2
s2Dds«,jpd = −

1

4p2vF
W

−`

+`

dvFE
0

q1sVd

+E
q2sVd

` G
3

dq

ÎSV − q2/2m

vFq
D2

− 1

Im DRsv,qdcothF v

2T
G .

s15d

In Eqs.(12)–(15), we introduced the following notations for
the sake of brevity:

V = v + « − jp

and q2sVdùq1sVdù0 which are the solutions of the equa-
tion uV−q2/2mu=vFq.

C. Effective interaction and the polarization operator

The appropriate propagator in the case of an electron liq-
uid with long-range Coulombic forces between electrons is
given by the sum of the ladder of bubble diagrams and has
the typical RPA form[see Fig. 1(b)]

Dsv,qd =
Vsqd

1 + VsqdPsv,qd
, s16d

whereVsqd is the bare Coulomb interaction[Vsqd=4pe2/q2

in three dimensions andVsqd=2pe2/q in two dimensions]
andPsv ,qd is the polarizability bubble

Psv,qd = 2E d« ddp

s2pds1+ddG
s0ds«,pdGs0ds« + v,p + qd.

s17d

At zero temperature, the polarizability was calculated by
Lindhard10 and Stern11 in three and two dimensions, respec-
tively. We will need the exact expressions, which can be
conveniently written in terms of the dimensionless param-
eters u=v / svFqd and x=q/ s2pFd. In three dimensions it
reads

Re Ps3Ddsu,xd =
ns3Dd

2
H1 +

1

4x
f1 − sx + ud2glnU1 + x + u

1 − x − u
U

+
1

4x
f1 − sx − ud2glnU1 + x − u

1 − x + u
UJ s18d

and the imaginary part foru.0fIm Psu,xd=−Im Ps−u,xdg,

Im Ps3Ddsu,xd = −
pns3Dd

2
Huusu1 − xu − ud +

1

x
f1 − sx

− ud2gusu1 + xu − udusu − u1 − xudJ , s19d

where Vs3Dd=mp/p2 is the density of states at the Fermi
surface.

In two dimensions the polarizability has the following ex-
plicit form:

Re Ps2Ddsu,xd = ns2Dd ReH1 −
sgnsx + ud

2x
Îsx + ud2 − 1

−
sgnsx − ud

2x
Îsx − ud2 − 1J s20d

and the imaginary part for anyu,

Im Ps2Ddsu,xd =
ns2Dd

2x
RehÎ1 − sx + ud2 − Î1 − sx − ud2j,

s21d

with ns2Dd=m/p being the two-dimensional density of states
at the Fermi line.

Let us emphasize that both three-dimensional and two-
dimensional polarizabilities are nonanalytic functions at
uu±xu=1. Usually this singularity is associated with Friedel
oscillations and Kohn-Luttinger effect,12 i.e., with the fa-
mous Kohn anomaly atq=2pF and v→0. In the case of a
dense Coulomb liquid, the typical momenta are smallx
=q/ s2pFd!1, butu=v / svFqd can be of the order of unity or
even larger. As we shall see, exactly this domain of param-
eters (i.e., small momentum transfers) is responsible for
nonanalytic contributions to the effective mass temperature
dependence and the quasiparticleZ-factor. The usual Kohn
singularitysx=1d in the static polarizability also gives rise to
a nonanalytic temperature dependence but this effect is para-
metrically smaller than the dynamic screening effects in the
limit rs!1.

The issue of the temperature dependence of the polariza-
tion operator was recently reconsidered in great details by
Chubukov and Maslov2 (see also Refs. 13 and 14) who found
that in the vicinity of the Kohn singularity the polarizability
has a linearT correction, which is important in the case of a
short range interaction case. In the case of the long-range
Coulombic forces, theq-dependence of the propagator(16)
becomes crucial and in the high-density limit the results are
determined by the regionx=q/ s2pFd, rs!1 in two dimen-
sions (x,Îrs in three dimensions). Hence, in the leading
order inrs, only the regionx!1 is important. In this region,
the leading temperature correction to the polarizability is of
the order ofT2 in any dimensionality. As we shall see below,
the leading order temperature corrections to the effective
mass and theZ-factor are parametrically larger thanT2.
Therefore, in the high-density limit, the temperature correc-
tions to the polarization bubble give negligible contributions
to the quasiparticle spectrum and in the caseT/EF! rs!1,
one can use the zero temperature results for the polarizability
[see Eqs.(18)–(21)] in the calculations of the effective mass
and theZ-factor.

D. Collective modes

The usual practice is to expand the polarizability func-
tions in x!1; in which case the polarizability becomes the
function of just one variableu=v / svFqd. The limit u!1
corresponds to the electron-hole branch of excitations. The
corresponding retarded electron-hole propagator is(in three
dimensions)
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Deh
s3Ddsv,qd = 4pe2Fq2 + û3

2 − i
p

2
û3

2S v

vFq
DG−1

, s22d

whereû=2pF
Îas2Dd is the inverse screening length.

In two dimensions the electron-hole propagator reads

Deh
s2Ddsv,qd = 2pe2Fq + û2 − iû2S v

vFq
DG−1

, s23d

where û2=2pFas2Dd is the inverse screening length in two
dimensions.

The opposite limit u@1 corresponds to the plasmon
branch. The spectrum of plasma waves is determined by the
equation

1 + VsqdPsv,qd = 0.

In three dimensions the spectrum has the following well-
known form vpl

s3Ddsqd=Îv0
2+ 3

5vF
2q2, with v0=4pe2n/m. In

two dimensions, the plasmons are gaplessvpl
s2Ddsqd

=Îaq+bq2 with a=2e2EF andb=3EF/ s2md.
Within the first approximation in the interaction, the

imaginary part of the polarization operator atv@vFq is zero.
This is exactly the source of the well-known plasmon singu-
larity in self-energy calculations. However, higher order dia-
grams deliver nonzero contributions to the imaginary part.
Taking into account this fact, we can write down the follow-
ing expression for the retarded plasmon propagator:

Dplsv,qd =
1

2
VsqdvF 1

v − vplsqd + i0
+

1

v + vplsqd + i0
G

3usqm − qd, s24d

where qm is the wave-vector at which the strong Landau
damping commences.

We shall see that the leading temperature correction to the
effective mass both in two and three dimensions comes
mostly from the region ofu,1, which is neither plasmon
nor electron-hole region. In actual calculations, we do not
separate the screened Coulomb propagator into the electron-
hole and plasmon branches. Moreover, for the calculation of
the renormalization factor one is required to keep the exact
polarizability function(without expanding onx→0).

III. THREE-DIMENSIONAL CASE

In this section we present analytic calculations of the ef-
fective mass and the quasiparticleZ-factor in a three-
dimensional dense electron liquid. Throughout this section,
n=mp/p2 is the three-dimensional density of states anda
=e2/ sp"vFd is the appropriate expansion parameter. The
main results are Eqs.(29) and (35) given below.

A. Effective mass

In the high density limit, the correction to the effective
mass is determined by the on-shell equation(8), which
means that we can put«=jp and study the self-energy as a
function of just one variable[see Eqs.(18)]. On the shell, we
have the following expression:

U ]

] j
Re Sse = j,jdU

j=0
=

1

8p2vF
W

−`

+` dv

2T

1

cosh2F v

2T
G

3 E
q1fv−E0sqdg

q2fv−E0sqdg

dqq Re Dsv,qd. s25d

It is convenient to separate the static and dynamic propa-
gators:

Dsv,qd = Dstsqd + Ddynsv,qd ; Ds0,qd + fDsv,qd − Ds0,qdg.

s26d

The static propagator has the form

Dstsxd =
a

n

1

x2 + a
. s27d

At low temperatures, frequenciesv in the integral(25) are
of the order of temperature or even lower. We consider the
following asymptotic regime of ultralow temperatures:

d = v/s4EFd , T/EF ! a ! 1.

In this limit, the real part of the dynamic propagator has the
following form [see Eqs.(18) and (19)]:

Re Ddynsd,xd = −
a

n
Spad

2
D2

sx2 + ad−1

3Fx2sx2 + ad2 + Spad

2
D2G−1

. s28d

Using Eq.(25) and propagators(27) and (28), one can cal-
culate corrections to the effective mass(expanding on the
small parameterd,T/EF) and see that the static contribu-
tion, indeed, solely determines the renormalization of the
effective mass at zero temperature. However, it gives tem-
perature corrections of the order ofT2 only. The dynamic
part gives zero contribution to the zero temperature effective
mass, but gives parametrically larger temperature dependent
correction. The final result reads

m*sTd − m

m
= −

a

2
ln

1

a
+

p2

96
S T

EF
D2

ln
EF

T
. s29d

The first term indeed coincides with the old result of Gell-
Mann. The nonanalytic temperature correction given in the
second term of Eq.(29) is a new result. Let us emphasize
that the leading correction is positive only in the high-density
limit. In Ref. 3, it was shown that the leadingT2 ln T cor-
rection changes sign at lower densitiessas3Dd,1d. The den-
sity dependence comes from large momentum transfersq, in
particular from the vicinity of the 2pF-anomaly, which be-
comes increasingly important at lower densities.

B. Z-factor

Unlike in the effective mass calculation of the preceding
section, the quasiparticleZ-factor can not be calculated
within the on-shell method, and therefore the problem is
more complicated. In particular, one has to consider both
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contributions to the self-energy given in Eqs.(12) and (13).
The first contribution at zero temperature reads

U ]

] «
S1s«,j = 0dU

«=0
=

n

2
E

0

`

dxx
W

−`

`

du Re Dsu,xd

3
]

] u
fus1 − uu − xudsgnug. s30d

In the three-dimensional case, the integral overu reduces to
a d-function integration and we have

U ]

] «
S1s«,j = 0dU

«=0
= nE

0

1

dxxFDs0,xd −
1

2
Re Ds1 + x

− 0,xd −
1

2
Re Ds1 − x − 0,xdG .

s31d

Using exact Eqs.(18) and (19), we obtain the result

U ]

] «
S1s«,j = 0dU

«=0
= 0 . s32d

From Eq.(13), we derive the second contribution

U ]

] «
S2s«,j = 0dU

«=0
=

n

p
E

0

`

dxxE
0

`

Im Dsu,xd

3 F 1

1 − su − xd2 +
1

1 − su + xd2G . s33d

Using exact Eqs.(18), (19), and(24), one can evaluate the
integral in Eq.(33) and obtain

U ]

]«

S s«,j = 0dU
«=0

= −
a

p
E

0

` du

1 + u2lnF 1

1 − u atan1
u
G .

s34d

Evaluating the remaining integral numerically, we derive
the final result for the quasiparticle renormalization factor:

Z = 1 − 1.067a. s35d

This asymptotic result is in a very good agreement with nu-
merical simulations.

IV. TWO-DIMENSIONAL CASE

In this section we present analytic calculations of the ef-
fective mass and quasiparticleZ-factor in a two-dimensional
dense electron liquid. Throughout this section,n=m/p is the
two-dimensional density of states anda=e2/ s"vFd!1 is the
appropriate expansion parameter. The main results are Eqs.
(41), (42), and(47) given below.

A. Effective mass

The calculation of the effective mass in two dimensions is
analogous to the calculation in three dimensions(see Sec.
III B ). The only difference is the square root function, which
appears in all two-dimensional expressions[see, e.g., Eqs.

(14) and(15)]. This square root singularity is identical to the
singularity in the Stern’s polarizability function given in Eqs.
(20) and (21). The combination of these two singularities
leads to a stronger temperature dependence(linear as we
shall see) as compared to the three-dimensional case. From
Eqs. (8) and (14), we get the following on-shell expression
for the two-dimensional electron effective mass:

m* − m

m
= −

n

2pW−`

` dv

2T

1

cosh2
v

2T

Isvd, s36d

where we have introduced the following integral:

Isvd =E
x1svd

x2svd

dx
x Re Dsv,xd

Îfx2 − x1
2svdgfx2

2svd − x2g
, s37d

wherex=q/ s2pFd and x1,2 are the solutions of the equation
usv /4EFxd−xu=1. In the limit of low temperatures:x1<udu
= uvu / s4EFd andx2<1.

Again we rewrite the propagator as a sum of static and
dynamic terms(26). The two-dimensional static propagator
has the form

Dstsxd =
a

n

1

x + a
. s38d

The real part of the dynamic propagator in the limituvu,T
!EF reads:

Re Ddynsd,xd = −
a

n
sa Im Pd2sx + ad−1 s39d

3fsx + ad2 + sa Im Pd2g−1, s40d

where ImP is defined by Eq.(21).
Expanding in the small parameterd, we obtain the contri-

bution to the integral(37) due to the static propagator

Istsdd =
a

n
Fln

1

a
−

d 2

2a2ln
1

uduG
and the “dynamic part”

Idynsdd =
a

n
F−

p

2

udu
a

+
3d 2

a2 ln
1

uduG .

Evaluating the elementary integral, we obtain the final result
for the temperature dependent effective mass in the second
leading order in temperature

m*sTd − m

m
= −

a

p
ln

1

a
+

ln 2

4
S T

EF
D −

5p

48a
S T

EF
D2

ln
EF

T
.

s41d

Let us emphasize that Eq.(41) is valid in the low tempera-
ture and high-density limit:T/EF!a!1 and only for sub-
thermal particles:«!T. We see that the leading term is lin-
ear in temperature and the coefficient is a universal density
independent number. This universal behavior is true only in
the high density limit. There are other linear-T contributions,
such as the one due to the temperature dependence of the
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polarizability in the vicinity of the Kohn singularity(consid-
ered in the paper of Chubukov and Maslov2 for short-range
interactions). In the case of the long-range Coulomb interac-
tion, the Kohn anomaly leads to a linear-T term proportional
to the Coulomb expansion parametera. Similar
a-dependence of the linear slope was discovered in RPA
numerical calculations in Ref. 3. In the high-density limit,
this density dependent linear-T term is asymptotically
smaller than the main universal contribution[the second
term in Eq.(41)] and therefore not shown in Eq.(41).

From Eq.(41), we see that the effective mass temperature
dependence is nonmonotonic. A maximum occurs at a tem-
peratureT* , which within the logarithmic accuracy has the
form

T*

EF
=

6 ln 2

5p

a

ln
1

a

< 0.26
a

ln
1

a

! a. s42d

This result is formally within the limits of applicability of
our theory. We see that the point of maximum of the curve
m*sTd drifts toward higher temperatures as the density de-
creases(see Fig. 2). This tendency is preserved at lower den-
sities as well(within the RPA approach). Such a maximum in
m*sTd and a density dependentT* were also discovered in
our recent numerical calculation.3

B. Z-factor

The analytical calculation of theZ-factor in two dimen-
sions is technically a very demanding problem. The mixture
of two singularities, the Kohn singularity in the polarizability
and the identical square root singularity in Eqs.(14) and(15)
arising from the two-dimensional phase space, leads to a
complicated structure of the integrals in Eqs.(14) and (15),
each being a truly divergent quantity. The logarithmic diver-
gence gets cancelled(at least within the RPA), but to see this
cancellation one is required to keep the exactx andu depen-
dences in the Stern’s polarizability function. Moreover, the
technical method used in the three-dimensional calculation
of the Z-factor [see Sec. III B, Eq.(30)] is not applicable
here because of the square-root singularity.

Let us now study the two-dimensionalZ-factor in more
detail. The quasiparticle renormalization factor is determined
by the energy derivative of the self-energy. The latter can be
written as a sum of two terms[see Eqs.(14) and (15)]:

U ]

] «
S1s«,j = 0dU

«→0
= −

n

2p
E

0

`

dxxE
0

`

duF ]

] u
Re Dsu,xdG

3 Fus1 − uu − xud
Î1 − su − xd2

+
us1 − uu + xud
Î1 − su + xd2G

s43d

and

U ]

] «
S2s«,j = 0dU

«→0
=

n

2p
E

0

`

dxxE
0

`

duF ]

] u
Im Dsu,xdG

3 Fusuu − xu − 1d
Îsu − xd2 − 1

−
usuu + xu − 1d
Îsu + xd2 − 1

G .

s44d

The frequency dependence(hence, theu-dependence) of the
propagatorDsu,xd is due to the polarizabilityPsu,xd, which
contains exactly the same square root functions as the ones
in Eqs.(43) and(44). This leads to a logarithmic divergence
of each of the above integrals atu=1±x. The “singular”
contributions have the following forms:

U ]

] «
S1

ssingds«,j = 0dU
«→0

=
1

p
E

0

`

dxxE
0

1+x

du
fRe Dsu,xdg2

Î1 − su − xd2

3
] Im P

] u
Im PFx +

a

n
Re PG

s45d

and

U ]

] «
S2

ssingds«,j = 0dU
«→0

=
1

p
E

0

`

dxxE
1−x

0

du
fRe Dsu,xdg2

Îsu + xd2 − 1

3
] Re P

] u
Im PFx +

a

n
Re PG .

s46d

Each of these quantities is logarithmically divergent
s]S1,2/]«d, ±a ln «→`. We emphasize that in two dimen-
sions the real and imaginary parts of the polarizability have
almost identical analytic structures, in contrast to the three-
dimensional case in which the imaginary and real parts are
basically independent functions with quite different proper-
ties. Using Eqs.(45) and(46), one can check that this “sym-
metry” of the two-dimensional polarizability leads to an ex-
act cancellation of the logarithmic divergence and to a finite
result.

Let us emphasize that this kind of dangerous singularities
appear in any order of the perturbation theory in interaction
[see, e.g., Fig. 1(c)]. It is not a priori obvious how(and if)
the singularity, which is cut-off only by temperature or en-
ergy«, is cancelled in higher order diagrams. We do not have
a general argument for why the divergence must cancel in
each order, but we do know that they cancel to this order. It
is essential to clarify this point to assure that the quasiparti-
cle Z-factor does not vanish logarithmicallyZ−1s«d, ln «
and to make certain that the usual Landau Fermi liquid

FIG. 2. Asymptotic effective mass temperature dependence[see
Eq. (41)] for three different densitiesn1.n2.n3. The slope of
the curves is universal at high densitiesfÎn/ sme2d@1g.

UNIVERSAL TEMPERATURE CORRECTIONS TO FERMI… PHYSICAL REVIEW B 70, 035111(2004)

035111-7



theory is preserved in two dimensions. This issue is currently
being studied by us. We believe that the Fermi liquid theory
is preserved but it needs to be demonstrated explicitly.

Within the RPA, the zero temperatureZ-factor can be
proven to be finite.15 One can formally define the quasipar-
ticle Z-factor at finite temperatures via relation(7). Studying
the leading temperature correction to the energy derivative of
the self-energy is quite similar to the case of the on-shell
derivative case. The leading term can be shown to be linear
and negative:16

Zsa,Td < 1 −S1

2
+

1

p
Da − c S T

EF
D , s47d

wherec is a constant of the order of unity.

V. CONCLUSION

In this work we have developed the analytic leading order
theory for the temperature dependent quasiparticle effective
mass,m*sTd, and the quasiparticle renormalization factor for
two- and three-dimensional interacting electron systems. Our
results are asymptotically exact in the low temperature high-
density limits for the case of the realistic long-range Cou-
lomb interaction, and thus we are complementary to the re-
cent analytical work of Ref. 2, which considers a short-range
repulsive interaction. It is interesting to note thatm*sTd has
an unexpected linear-T correction (rather thanT2) both in
our theory and in the theory of Chubukov and Maslov; but in
our case the correction is positive opposite to the short range
case. This immediately leads to the conclusion that the lead-
ing correction toCv /T (whereCv is the specific heat) is not
universal—our long range interaction produces a positive
linear-T term in the leading order in contrast to the negative
sign obtained in Ref. 2. This unexpected linear-T term ap-
pears due to the nonanalyticity of the polarizability function.
This nonanalyticity has potentially important consequences
for quantum critical phenomena as discussed recently in Ref.
17.

Our analytic results are also in agreement with recent nu-
merical studies of the temperature dependent effective mass,3

which employed the random-phase approximation at lower
densities. It was shown that the linear-T correction persists at
lower densities as well(at least within the RPA) and the
qualitative behavior of the effective mass remains the same
with the only difference being the density dependent slope of
them*sTd curve atT→0 andrs.1 (for high densities, it was
shown to be density independent in agreement with the ana-
lytical results reported in the present paper). As the RPA is
believed to be qualitatively reliable at lower densities as
well, we expect our results to be quite general and qualita-
tively applicable to realistic two-dimensional electron sys-
tems. We also should point out that although the temperature
dependent effective mass renormalization has only been cal-
culated numerically very recently,3 there is a vast literature
of numerical studies of zero temperature many-body effects
in the three-dimensional and two-dimensional interacting
electron systems. We cite in this context only two rather
comprehensive references: Ref. 18 for three-dimensional
systems and Ref. 15 for two-dimensional systems.

We have proved that the quasiparticleZ-factor in two di-
mensions is finite at least within the random-phase approxi-
mation. However, we would like to emphasize that each or-
der in perturbation theory does contain a dangerous
logarithmic singularity in this quantity. It is known that in
two dimensions higher order diagrams may contain impor-
tant effects(see, e.g., Ref. 19, in which it was shown that the
static Kohn-Luttinger effect12 in two dimensions is “hidden”
in third order perturbation theory only). It is therefore essen-
tial to prove that the cancellation of the logarithmic singular-
ity (which would otherwise lead to a logarithmically vanish-
ing Z-factor and to a marginal Fermi liquid20) takes place in
higher orders. This important question will be considered
elsewhere.
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