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We calculate analytically the effective mass and the quasiparticle renormalization factor in an electron liquid
with long-range Coulomb interactions between electrons in two and three dimensions in the leading order
density expansion. We concentrate on the temperature dependence of the effective mass in & dimit
<rg<1 and show that the leading temperature correction is linear in two dimensions and proportional to
T2In(1/T) in three dimensiongpositive in both casg@sWe explicitly calculate the coefficients, which are
shown to be universal density independent parameters of the order of(imitye high-density limit The
singular temperature corrections are due to the singularity in the dynamic dielectric functionwgy and
g<<2pe. In two dimensions, we predict a nonmonotonic effective mass temperature dependence and find that
the maximum occurs at a temperatife~ Tgerg IN"1(1/r). We also study the quasiparticle renormalization
factor in both three and two dimensions.
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I. INTRODUCTION We restrict ourselves entirely to the case of an ideal clean

The basic postulate of Fermi liquid theory is the existence(l-€-» N0 impurity disordgrand homogeneous electron sys-
of a one-to-one correspondence between the states in a fré&M With a parabolic noninteracting energy dispersion.
Fermi gas and an interacting quantum system. This allows Before describing the main results and the structure of our
one to use the noninteracting language in describing quaraper, let us briefly discuss previous studies in the subject.
tum liquids. In particular, one can regard the interactingThe first work explicitly calculating the effective mass is due
Fermi system as a gas of elementary quasiparticles. In thi® Gell-Mann? who derived a zero temperature correction to
approach, the number of parameters describing the state tife effective mass due to the Coulomb interaction in the
the system is less than within the exact description. Thus, ahigh-density limit in three dimensions. Galitskhas devel-
elementary excitation is not a stationary state but a waveped a general scheme of calculating perturbative corrections
packet of stationary states which spreads with time. Thigo the one-particle spectrum of an interacting Fermi-system.
leads to a finite lifetime of elementary excitationsaway  Within this scheme, he derived corrections to the quasiparti-
from the Fermi surface. However, if the inverse lifetime is cle effective mass and lifetime for the cases of both a short-
smaller than the excitation energyé,> 1, one can regard ranged interaction and the long-ranged Coulomb interaction.
the excitations as stable particles. The effective nmissf  These studies were again constrained to zero temperature.
these particles is renormalized by the electron-electron intetChaplil and later Giulianni and Quirfrhave addressed the
actions and can be quite different from the noninteractingssue of the quasiparticle lifetime temperature dependence
bare electron mas&he band massn). The concept of the having found in two dimensions a nonanalytic contribution
electron effective mass has been a subject of investigatioto this quantity Ex7,"«max&, T2Hn[max¢,, T}]. This re-
for over 50 years. Surprisingly, the question of the effectivesult assures that the quasiparticles are well-defined excita-
mass temperature dependence had never been addressed uitils as long asT<Tg. Very recently, Chubukov and
very recently:=3 This can be partially explained by the fact Maslov*? revisited the problem of nonanalytic corrections to
that most of the work was performed back in the 1950’s andhe Fermi-liquid theory for the case of a short-ranged inter-
1960’s, when only the three-dimensional case was of interaction. In particular, they showed that the leading tempera-
est. In typical three-dimensional systems, the Fermi energy iture correction to the effective mass is linear, similar to the
very high compared to the temperatures relevant to experiesults for the Coulomb interaction case, which had been
ments(i.e., in simple metalsTr~ 10* K) and thus any tem- reported in a short numerical paper earfier.
perature corrections are negligible. The Fermi energy in re- In this paper, we present detailed purely analytic calcula-
alistic semiconductor-based two-dimensional syst¢eng., tions of the effective mass renormalization by the Coulomb
Si MOS structures, GaAs heterostructures, and quantunmteraction. We work within first order perturbation theory in
wells) may be as low asK, which makes the issue of the the screened interaction, i.e., within the random-phase ap-
temperature dependence of Fermi liquid parameters exproximation(RPA). We analytically derive the leading tem-
tremely important. In this paper, we obtain analytical resultsperature corrections to the effective mass in the low tempera-
for the quasiparticle effective mass and the quasiparticléure T/Tg<rg and high densityrs<1 limits. In two
renormalization factor for two-dimensional and three-dimensions, the leading correction is positive and linear in
dimensional electron systems interacting via the realisti¢emperature with the subleading term being of the order of
long-range Coulomb potential. Our results employ the stanT? In T and negative. The linear term coefficient is found to
dard perturbation theory expansion in the dynamicallybe a density independent universal number. In two dimen-
screened interaction and are exact in the high-density limitsions, we predict a nonmonotonic effective mass temperature
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dependence. The point of maximum of the cunagT) is  tive masg(bare masgasm’ (m). We use the following small

calculated explicitly and is shown to drift toward higher tem- parametersa®®? =€?/(whvg) and a?®=€?/(fivg) in three

peratures asg increases. and two dimensions, respectively. These true parameters of
For the sake of completeness, we also calculd{d) for ~ the asymptotic expansion are connected with the usual

the case of a three-dimensional electron liquid. At high deny-parameter as fo||owsr(s3D):77(977/4)1/3a(3D) and r(SZD)

sities rg<1, the leading contribution is of the order of =,24(D) |n what follows we will use unitf=kg=1.

T2In(1/T) and positive. Asrg increases, the correction

changes its sign anu’(T) monotonically decreases from its A. Renormalized spectrum

zero temperature value. The exact Green function for a system of interacting fer-
In addition to the quasiparticle effective mass another mions can be expressed in terms of the self-en8i@yp) as

important many body Fermi-liquid parameter is the quasiparfollows:

ticle renormalization factotthe Z-facton, which is a mea- -

sure of the quasiparticle spectral weight. In particular, the G(e,p) =& —Eg(p) + u = 2(e,p), (1)

Z-factor defines the size of the effective Fermi surface diSwhereEO(p)=p2/2m is the spectrum of noninteracting fermi-

continuity in an interacting system, and is precisely the sizgyng andu=Eg is the bare chemical potential. The Green

of the discontinuity in the momentum distribution function fynction can be rewritten as

n(p). For the noninteracting Fermi gas(p)=6(ps—p), and

the discontinuity is precisely unity whereas for an interacting Gle,p) = A ’

system this discontinuity i< 1. Note thaZ # 0 implies the e —E(p) +iy(e,p)

validity of Fermi liquid theory. To the best of our knowledge,

there has been no consistent microscapialytic derivation

of the interaction corrections to the quasiparti@ddactor

even in three dimensions and zero temperature. To fill thi

gap we calculate analytically th&factor. The technical part

of this calculation is found to be more complicated than th

effective mass calculation. To get the correct result, one i

required to use the exact forms of the polarizability to ensur

the convergence of the final result. E(p) = Eg(p) + ReX(e, &) o= 3
Our paper is structured as follows: In Sec. Il, we give a .

general introduction and derive the basic formulae for thevhere we write the self-energy as a function of a small ex-

analytically continued self energy in first order perturbationcitation energyg,

theory in the screened interaction in three and two dimen- p P

sions. In Sec. Il C, we briefly discuss the structures of the &0="— -~ "F(p-pp,

interaction propagator and the polarization operator in two 2m m

and three dimensions. In Sec. lll, we study the temperature

dependence of the effective mass and also derive the & =E(p) -p ~ pf(p_ Pe).

asymptotic formula for the quasiparticlefactor in a three- P m

B s i oy 2T S o the chemical pental of uasiparies s detr

rection to the effective mass is linear and positive with themlned by the following equation:

subleading term being of the order ®f In T and negative. w = u=2(0,0;u"). (4)

Hence, the effective mass temperature dependence is no

monotonic. We e>§plicitly derive the temperatufeat which

the maximum ofn’(T) occurs. We show that the nonanalytic &= + RS (e = &,&) - 3(0,0)]. (5)

contribution to the effective mass is due to the singularity of ) ) , ) )

the polarization operator ai~veq andq<1. We also dis- Solving the linear equation, we obtain the following formula

cuss the asymptotic behavior of the quasiparticle renormafl" the renormalized effective mass:

(2)

where E(p) is the renormalized spectrum of excitations,
v(e,p) is the quasiparticle decay rate, afids the residue of
éhe Green function, which determines the jump in the Fermi
distribution atp=pg. In what follows, we mostly will be
einterested in the renormalized single-particle spectrum,
hich is connected with the real part of the self-energy as
ollows:

EFom the above equations, it follows:

ization factor in two dimensions and show that within the m(T) 1 J -1

RPA approximation the correction is indeed finite and nega- -7 |1 +ER92(8,§,}) : (6)

tive. We emphasize that this result is due to a subtle cancel- P &&p=0

lation of the logarithmic singularites in the \ith

(621 0e)-derivative. These kinds of singularities persist in ”

higher orders of perturbation theory 7= {1 _ aiReE(s,fp)} 7)
€ &,6,=0

Il. GENERAL FORMULAS In the perturbative regime, the effective mass reads

In this section, we give basic formulas which will be used m'(T) P 9
for actual calculations. We consider a spin degeneracy factor =1- | —+—|Rex(e,¢)

)
of 2 throughout the paper. We denote the quasiparticle effec- de &

a,§p=0
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@ dig (" do
m = ;"’fﬂw\ﬂ\ + :‘JCDLH-‘ ER(S’gp):_ (277_)1:1‘1_OC ZT
+ & + x{lm Ggr(w +¢&,p—q)Dr(- w,q)tam{wz—-;_s]
p— b e +Gg(w+2,p—)Im DR<w,q>coth[§H,
= + O (10
+ o~ +

where functions labeled with inddX are retarded functions,
(c)

,.-’",;’M"“\\ N plex frequency and stands for the dimensionality of space.

i.e., functions analytical in the upper half-planes of the com-

N Within leading order perturbation theory, one can use the

bare electron Green function in Ed.0), which can be writ-
FIG. 1. (a) The self-energy diagram relevant in the high-density tan as

limit with the thick wiggly line being the dynamically screened
Coulomb interaction and the thin wiggly line the bare Coulomb
interaction. The solid lines correspond to the electron Green func- Gg’)(s,p) =[e- gg” + iO]"l.

tions; (b) The dynamically screened Coulomb interaction infinite If the effective | .. «avhich indeed is th
series in the bare interaction through the bubble diagrams. A bubble the effective interaction is isotropievhich indeed is the

corresponds to the noninteractiritl-indhard”) polarizability. () ~ caS€ in the jellium model we wish to studyhe integrals)
Examples of higher order diagrams which are negligible in the hig

over the directions off can be evaluated and we obtain the

density limit but are important at lower densities. following expressions for the real part of the retarded self-

energy function:

B. Self-energy in the RPA approximation ReXg(e, &) =24(e, &) +20(8,&p), (11
In first order perturbation theory in interaction, the Mat- _ _ _
subara self-energy can be written[ase Fig. 18)]3 where in three dimensions
3D) 1 +00 gp(Q)
Henp)= T Gy omp- Do), @ &g f dof iy R
wte
Xt e 12
anr{ o } (12)

where e,=m(2n+1)T is the fermion Matsubara frequency,
wn=2mmT is the boson Matsubara frequency, ahds the
temperature. The functioP(q, w,,) denotes the coupling to
a collective modegphonon, plasmon, electron-hole excita-
tion, etc), i.e., an effective interaction. 3D _ - -

For analytical calculations, it is more convenient to usez(2 )(s'fp) T 87730Ff_0c dwfo dgqlin
the self-energy as a function of the real frequercsather
than the Matsubara frequ.encc:y. It is knowr? that in some < Im DR(w,q)coth[ﬂ] (13)
casege.g., when calculating the ground state energy in the 2T
RPA) it is more convenient to do the Matsubara summations
first to avoid divergences arising from the plasmon pole. . . .

. : and in two dimensions

However, when calculating the effective mass or the quasi-
particle renormalization factor one can do the analytical con-
tinuation first and obtain finite results. In the calculation of (2D) 1
the effective mass in the high-density limit, the plasmon sin- D CRNE mf
gularity does not show up in the calculations at®allhe F
calculation of thez-factor is more complicated but the cor-
rect result can be obtained by keeping the exact w+e
g-dependence in the polarizabilitgee Sec. lll B. Using the X Re DR(w,Q)taW{?} (14)
standard procedure of the analytical continuation, one can
obtain the following expression for the analytically contin-
ued self-energy functiof: and

Q- g?2m+veq
Q- qg%2m-veq

+00 fqz(ﬂ) dq
dw 5
—oo ay(Q) \/ _ < Q- q2/2m>
VEQ

1
+
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1 wQ) e sgn(x+u)
SP(e,£) = - f d“’“ +J ReTI?0(u,x) = #?0 R 1 - = ——(x+u)?- 1
2 P 47ve) 0 B(Q) 2
dq w _ Sgr(X_ u) x-u?-1 2
X \/<Q —q2/2m>2 1Im DR(w,q)coth[z—T] T o V(X=u) (20)
UFq and the imaginary part for any,
(15

p(2D) ‘
Im [1?P)(u,x) = o RelV1 = (x+ u?=V1-(x-w?%,

In Egs.(12)—<(15), we introduced the following notations for
the sake of brevity: (21)

R=w+e-§ with 122 =m/ 7 being the two-dimensional density of states

and g(Q) = q,(Q1) =0 which are the solutions of the equa- &t the Fermiline. _ _
tion [Q—g?/2m|=veq. ~Let us emphasize that both three-dimensional and two-
dimensional polarizabilities are nonanalytic functions at
_ ) o luxx|=1. Usually this singularity is associated with Friedel
C. Effective interaction and the polarization operator oscillations and Kohn-Luttinger effeét, i.e., with the fa-
The appropriate propagator in the case of an electron liginous Kohn anomaly af=2pg and w— 0. In the case of a
uid with long-range Coulombic forces between electrons iglense Coulomb liquid, the typical momenta are small
given by the sum of the ladder of bubble diagrams and hasd/(2pg) <1, butu=w/(veqg) can be of the order of unity or

the typical RPA form[see Fig. 1b)] even larger. As we shall see, exactly this domain of param-
eters (i.e., small momentum transferss responsible for
V(q) nonanalytic contributions to the effective mass temperature
D(w,q) = (16)

dependence and the quasipartizldactor. The usual Kohn
singularity(x=1) in the static polarizability also gives rise to
whereV(q) is the bare Coulomb interactidiv(q)=4m€?*/g?>  a nonanalytic temperature dependence but this effect is para-
in three dimensions anWl(q)=2m€?/q in two dimensions  metrically smaller than the dynamic screening effects in the
andIl(w,q) is the polarizability bubble limit rg<1.
| The issue of the temperature dependence of the polariza-
de d tion operator was recently reconsidered in great details by
(w,q) =2 WGJEL)G(O)(S’F))G(O)(S +w,p+a). Chubukov and Masld\(see also Refs. 13 and Jiwho found
that in the vicinity of the Kohn singularity the polarizability
(17) has a lineaiT correction, which is important in the case of a

At zero temperature, the polarizability was calculated byéhorlt ratr:.gef mterac};on dcase. dln the ﬁf}e of the Iogj%—range
Lindhard® and Sterft in three and two dimensions, respec- - °O4/0MbIc T0rces, the-dependence ot the propagatdo)
tively. We will need the exact expressions, which can bebecomes crucial and in the high-density limit the results are

conveniently written in terms of the dimensionless param—d?term'neq—by the reglopzq/(gpp)~rs<1 N two dlmep-
eters u=w/(veq) and x=q/(2pp). In three dimensions it SIONS (X~\Ts in three dimensions Hence, in the leading
order inrg, only the regiorx<<1 is important. In this region,

S 1+V(Q(,q)’

reads . . R
the leading temperature correction to the polarizability is of
(3D) 1 1+x+U the order ofT? in any dimensionality. As we shall see below,
ReH(3D)(u,x)=T 1+4—[1—(x+u)2]ln Toxe the leading order temperature corrections to the effective
X x-u mass and theZ-factor are parametrically larger thaf?.
+X-U

Therefore, in the high-density limit, the temperature correc-
} (18) tions to the polarization bubble give negligible contributions
to the quasiparticle spectrum and in the cage<r <1,
and the imaginary part far>0[Im I1(u,x)=—Im II(-u,x)],  one can use the zero temperature results for the polarizability
[see EQqs(18)—21)] in the calculations of the effective mass
and theZ-factor.

L uzyp| XY
+4X[1 (x=u)?]In 1=

(3D)
my
Im II®P)(u,x) = -

{u9(|1 -X -u)+ %[1 —(x

D. Collective modes

— )2 - -1 =
W61 +x - weu-[1 XD}’ (19 The usual practice is to expand the polarizability func-

tions in x<<1; in which case the polarizability becomes the
where VEP=mp/ 72 is the density of states at the Fermi function of just one variablei=w/(veq). The limit u<1

surface. corresponds to the electron-hole branch of excitations. The
In two dimensions the polarizability has the following ex- corresponding retarded electron-hole propagatgmighree
plicit form: dimension$
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! J 1 [*d 1
DS (w,0) = 4we2[q2+ - il’xé(iﬂ (22 “Rel(e=¢g)| = —f =2
2 \veq xS =0 87%ve) . 2T cosi? o
where x=2p\a?? is the inverse screening length. 2T
In two dimensions the electron-hole propagator reads Aol —Eg(a)]
X J dgqqReD(w,q). (25)

-1
Dfsth)(w'CI) = 2776‘2{(] + 2o — |%2<iq>:| , (23) dy[w-Eq(a)]
UF

It is convenient to separate the static and dynamic propa-
where x,=2pra?® is the inverse screening length in two 9ators:

dimensions. _ _ _

The opposite limitu>1 corresponds to the plasmon D(@,q) =Ds(®) + Dayr(@,) = D(0,9) +[D(w,) = DO.].
branch. The spectrum of plasma waves is determined by the (26)
equation

The static propagator has the form

1+V(g)l(w,q) =0. o
Dst(X) =

In three dimensions the spectrum has the following well- vXe+a’

known form w:)?D)(q):\wS+§v§q2, with wy=4me?n/m. In

two _dimensions, the plasmons are gapless;”(q)

(27)

At low temperatures, frequenciesin the integral25) are
of the order of temperature or even lower. We consider the

=v“aq+bq2 with a= 2¢°E; andb=3Eg/(2m). _ following asymptotic regime of ultralow temperatures:
Within the first approximation in the interaction, the
imaginary part of the polarization operatora® veq is zero. 0= wl(4Ep) ~ TIEp < a < 1.

Thjs i.s exactly the source o_f the well-known _plasmon singu-ln this limit, the real part of the dynamic propagator has the
larity in self-energy calculations. However, higher order d'a'following form [see Eqs(18) and (19)]:

grams deliver nonzero contributions to the imaginary part.

Taking into account this fact, we can write down the follow- _ afmad 2 5 )
ing expression for the retarded plasmon propagator: Re Dgyn(6,X) = - v X*+a)
1 1 1 mad\? |t
D, (w,q) ==V — + _ 2(y2 2
pl(®,0) > (Do 0— (@10 w+wn(@ +i0 X[X(X + a) +< > ) ] . (28
X 6(0m =), (24)  Using Eq.(25) and propagator&27) and (28), one can cal-
where g, is the wave-vector at which the strong Landau culate corrections to the effective ma@xpanding on the
damping commences. small parameteb~ T/Eg) and see that the static contribu-

We shall see that the leading temperature correction to theoN: indeed, solely determines the renormalization of the
effective mass both in two and three dimensions come§ffective mass at zero temperature. However, it gives tem-
mostly from the region ofi~ 1, which is neither plasmon peratu_re correctlons.of Fhe order ®f only. The dynamic .
nor electron-hole region. In actual calculations, we do nofart gives zero contrlbutlo_n to the zero temperature effective
separate the screened Coulomb propagator into the electrofi@Ss, but gives parametrically larger temperature dependent
hole and plasmon branches. Moreover, for the calculation ofPrrection. The final result reads
the r<_anor_ma|izatio_n fac'gor one is reql_Jired to keep the exact m(T) = m a 1 ﬂz( T )2 | E 2
polarizability function(without expanding orx— 0). m 5 na + 96\ E, n T (29
The first term indeed coincides with the old result of Gell-
Mann. The nonanalytic temperature correction given in the

In this section we present analytic calculations of the ef-second term of Eq(29) is a new result. Let us emphasize
fective mass and the quasiparticefactor in a three- that the leading correction is positive only in the high-density
dimensional dense electron liquid. Throughout this sectionlimit. In Ref. 3, it was shown that the leadink? In T cor-
y=mpl/ =2 is the three-dimensional density of states and rection changes sign at lower densities* ~ 1). The den-
=€?/(whvg) is the appropriate expansion parameter. Thesity dependence comes from large momentum transfers
main results are Eq$29) and(35) given below. particular from the vicinity of the g=—anomaly, which be-

comes increasingly important at lower densities.

IIl. THREE-DIMENSIONAL CASE

A. Effective mass

In the high density limit, the correction to the effective B. Z-factor

mass is determined by the on-shell equati@), which Unlike in the effective mass calculation of the preceding
means that we can put=¢, and study the self-energy as a section, the quasiparticl@-factor can not be calculated

function of just one variablgsee Eqs(18)]. On the shell, we within the on-shell method, and therefore the problem is
have the following expression: more complicated. In particular, one has to consider both

035111-5
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contributions to the self-energy given in Eq&2) and (13).
The first contribution at zero temperature reads

:ff dxxf du Re D(u,X)
=0 2 0 —o0

d
X611 -|u- .
ﬁu[ﬁ( |u=x)sgnul]

J
%21(8! 5: 0)

(30

In the three-dimensional case, the integral oveeduces to
a o-function integration and we have

1
i21(s,§=0) = vf dxx{D(O,x)—lRe D(1+x
de e=0 Jo 2

-0,X) - %Re D(1-x- O,X)] .
(3D

Using exact Eqs(18) and(19), we obtain the result

=0.
e=0

(32)

J
%21(81 g = O)

From Eq.(13), we derive the second contribution

=Kf dxxf Im D(u,X)
e=0 TJo 0

| e

J
522(8! g = 0)

X{ 1.1
1-(u-x? 1-(u+x?

Using exact Eq9.18), (19), and(24), one can evaluate the
integral in Eq.(33) and obtain

]
T f
=0 0

d du 1
— ,€=0 In .
832(85 ) 1+u? L—uatanl—lj]

(34)

Evaluating the remaining integral numerically, we derive

the final result for the quasiparticle renormalization factor:

Z=1-1.06%. (35)

This asymptotic result is in a very good agreement with nu-

merical simulations.

IV. TWO-DIMENSIONAL CASE

PHYSICAL REVIEW B 70, 035111(2004

(14) and(15)]. This square root singularity is identical to the
singularity in the Stern’s polarizability function given in Egs.
(20) and (21). The combination of these two singularities
leads to a stronger temperature dependgiicear as we
shall se¢ as compared to the three-dimensional case. From
Egs.(8) and(14), we get the following on-shell expression
for the two-dimensional electron effective mass:

mom__vffde 10 @
m  2x).. 2T w
cosit—
2T
where we have introduced the following integral:
X(w) x Re D(w,X)
x(w) VX" = xg(w)][X5(w) = X7]

wherex=q/(2pg) andx, , are the solutions of the equation
|(w/4Epx)—x|=1. In the limit of low temperaturest; =|d|
=|w|/(4EF) andx,~1.

Again we rewrite the propagator as a sum of static and
dynamic termg26). The two-dimensional static propagator
has the form

Do(¥) = =

. 38
vX+a ( )

The real part of the dynamic propagator in the lifait~T
<Ef reads:

Re Dgyr(8,X) = = (e Im TH2(x + @) (39)
14

X[(x+ @)?+ ( Im T,

where ImII is defined by Eq(21).
Expanding in the small parametérwe obtain the contri-
bution to the integra{(37) due to the static propagator

oL
2a° |5|

(40)

Istw):g[lnl—

and the “dynamic part”
362 1
- E@ +—In—1.
2a o |8

Evaluating the elementary integral, we obtain the final result
for the temperature dependent effective mass in the second

Idyn(‘s) = i:|:

In this section we present analytic calculations of the efleading order in temperature

fective mass and quasiparticZefactor in a two-dimensional
dense electron liquid. Throughout this sectiorm/ 7 is the
two-dimensional density of states ang e’/ (fivg) <1 is the

appropriate expansion parameter. The main results are Egs.

(41), (42), and(47) given below.

A. Effective mass

m(T-m a 1 IN2(T 57 T\? Eg

—————=-—In=+—|—|-—| =] In=.

m m a 4 \Eg) 48a\Eg T
(41)

Let us emphasize that E@1) is valid in the low tempera-
ture and high-density limitT/Er<a<<1 and only for sub-
thermal particlese <T. We see that the leading term is lin-

The calculation of the effective mass in two dimensions isear in temperature and the coefficient is a universal density

analogous to the calculation in three dimensigsse Sec.

independent number. This universal behavior is true only in

[l B). The only difference is the square root function, whichthe high density limit. There are other lineaicontributions,

appears in all two-dimensional expressidsse, e.g., Egs.

such as the one due to the temperature dependence of the

035111-6
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v (7 * d
—34(e, =——f dxxf du| —Re D(u,x)
] Jde NG} 27T 0 Ju

TN R N le(l lu—x]) 0(1—|u+x|)]
X
N Vi-(u- X)2 V1 -(u+x)?

(43

FIG. 2. Asymptotic effective mass temperature dependésee and
Eq. (41)] for three different densities; >n,>nz. The slope of J
the curves is universal at high densitle®/(me?) > 1]. —3,(e,£=0)

== dxxf du[—lmD(ux)}
e—0 2m

polarizability in the vicinity of the Kohn singularitygconsid- { o(u-x-1) o(u+x - 1)}

ered in the paper of Chubukov and Magider short-range , > , >
interaction$. In the case of the long-range Coulomb interac- VUu=x7-1 Nu+x°-
tion, the Kohn anomaly leads to a lineatterm proportional (44)
to the Coulomb expansion parameterx. Similar
a-dependence of the linear slope was discovered in RP.
numerical calculations in Ref. 3. In the high-density limit,
this density dependent linedr-term is asymptotically

pA he frequency dependengeence, thari-dependenceof the
propagatoiD(u, x) is due to the polarizabilityI(u,x), which
contains exactly the same square root functions as the ones
smaller than the main universal contributijthe second " EGS.(43) and(44). This leads to a logarithmic divergence
term in Eq.(41)] and therefore not shown in E¢41). of each of the above integrals at=1+x. The “singular’
From Eq.(41), we see that the effective mass temperatur&ont”b“t'Ons have the following forms:
dependen*ce is nonmonotonic. A maximum occurs at a tem- 14x [Re D(u,)]2
peratureT , which within the logarithmic accuracy has the J f T x)2
\

form
X gim HIm H{x+ aReH]
T 6In2 v
oer ilzo.zail<a. (42) Ju v
I T In= (45)
“ “ and
This result is formally within the limits of applicability of J

[Re D(u,x) ]2
our theory. We see that the point of maximum of the curve f dx J — 21
m'(T) drifts toward higher temperatures as the density de- 1 \(U+X)
creasegsee Fig. 2 This tendency is preserved at lower den- dRell
sities as well(within the RPA approach Such a maximum in X Ju
m'(T) and a density dependefit were also discovered in

our recent numerical calculation.

Im H[x+ ilReH] .
(46)

Each of these quantities is logarithmically divergent
(021 ol de) ~ £ a In € — . We emphasize that in two dimen-
sions the real and imaginary parts of the polarizability have

The analytical calculation of th&-factor in two dimen- almost identical analytic structures, in contrast to the three-
sions is technically a very demanding problem. The mixturedimensional case in which the imaginary and real parts are
of two singularities, the Kohn singularity in the polarizability basically independent functions with quite different proper-
and the identical square root singularity in E¢fs?) and(15) ties. Using Eqs(45) and(46), one can check that this “sym-
arising from the two-dimensional phase space, leads to metry” of the two-dimensional polarizability leads to an ex-
complicated structure of the integrals in E¢$4) and (15), act cancellation of the logarithmic divergence and to a finite
each being a truly divergent quantity. The logarithmic diver-result.
gence gets cancellgdt least within the RPA but to see this Let us emphasize that this kind of dangerous singularities
cancellation one is required to keep the exaahdu depen-  appear in any order of the perturbation theory in interaction
dences in the Stern’s polarizability function. Moreover, the[see, e.g., Fig. (t)]. It is nota priori obvious how(and if)
technical method used in the three-dimensional calculatiothe singularity, which is cut-off only by temperature or en-
of the Z-factor [see Sec. Ill B, Eq(30)] is not applicable ergye, is cancelled in higher order diagrams. We do not have
here because of the square-root singularity. a general argument for why the divergence must cancel in

Let us now study the two-dimensiondtfactor in more  each order, but we do know that they cancel to this order. It
detail. The quasiparticle renormalization factor is determineds essential to clarify this point to assure that the quasiparti-
by the energy derivative of the self-energy. The latter can bele Z-factor does not vanish logarithmicallg (s) ~In
written as a sum of two termsee Eqs(14) and(15)]: and to make certain that the usual Landau Fermi liquid

B. Z-factor
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theory is preserved in two dimensions. This issue is currentlyvhich employed the random-phase approximation at lower
being studied by us. We believe that the Fermi liquid theorydensities. It was shown that the linéacorrection persists at
is preserved but it needs to be demonstrated explicitly. lower densities as wel{at least within the RPAand the
Within the RPA, the zero temperatu®factor can be qualitative behavior of the effective mass remains the same
proven to be finitd® One can formally define the quasipar- with the only difference being the density dependent slope of
ticle Z-factor at finite temperatures via relatior). Studying  them'(T) curve atT — 0 andr,> 1 (for high densities, it was
the leading temperature correction to the energy derivative adhown to be density independent in agreement with the ana-
the self-energy is quite similar to the case of the on-shellytical results reported in the present papéss the RPA is
derivative case. The leading term can be shown to be linedselieved to be qualitatively reliable at lower densities as
and negative® well, we expect our results to be quite general and qualita-
1 1 T tively applicable to realistic two-dimensional electron sys-
Z(a,T)=1- (— + —)a -c (—) tems. We also should point out that although the temperature
2 m Er dependent effective mass renormalization has only been cal-
culated numerically very recenththere is a vast literature
of numerical studies of zero temperature many-body effects
in the three-dimensional and two-dimensional interacting

In this work we have developed the analytic leading ordeleIeCtron systems. We C|te.|n this context only two ra’gher
theory for the temperature dependent quasiparticle eﬁectivgomprehenswe references: R_ef. 18 for three-dimensional
mass,m (T), and the quasiparticle renormalization factor for systems and Ref. 15 for two-d|m(_an5|(_)nal SySte.mS' .
two- and three-dimensional interacting electron systems. Our We. havg pro_ved that the gu_asmartuZIéactor in two di- .
results are asymptotically exact in the low temperature high[ner.‘S'onf| is finite at least I\(’jv"l[hkm the ranﬁom-phﬁse app;‘roxr
density limits for the case of the realistic long-range Cou-&nat'o.n' owevber,_we Wr?u : Sto emp aslzet a(; each or-
lomb interaction, and thus we are complementary to the recc’ 1N perturbation theory does contain a dangerous

cent analytical work of Ref. 2, which considers a short-rang %%agtimgfsazgur:?rﬁér'r;:gésr g;ar:g%.sltn:z kr(l(c))\rlwvtr:]ai;h?r;{”n”z)r-
repulsive interaction. It is interesting to note tmat(T) has 9 9 y P

an unexpected linedi-correction (rather thanT?) both in tant effectysee, e.g., Ref. 19, in which it was shown that the

our theory and in the theory of Chubukov and Maslov; but infStatlc Kohn-Luttinger effeét in two dimensions is *hidden

- » : in third order perturbation theory onlyit is therefore essen-
our case the correction is positive opposite to the short range . T
%Pal to prove that the cancellation of the logarithmic singular-

case. This immediately leads to the conclusion that the lea Tty (which would otherwise lead to a logarithmically vanish-
... ing Z-factor and to a marginal Fermi liqui®) takes place in

linear-T term in the leading order in contrast to the negativ%:gg\?vrhgrrgers' This important question will be considered

sign obtained in Ref. 2. This unexpected lindaterm ap-
pears due to the nonanalyticity of the polarizability function.
This nonanalyticity has potentially important consequences
for quantum critical phenomena as discussed recently in Ref.
17. This work was supported by the US-ONR, LPS, and

Our analytic results are also in agreement with recent nubARPA. The authors are grateful to Andrei Chubukov for
merical studies of the temperature dependent effective fnass/aluable discussions.

(47)

wherec is a constant of the order of unity.

V. CONCLUSION
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