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This paper presents the formula for the density of statessDOSd of photonic bands(PB’s) in the leaky region
of the phase space of a slab-type photonic crystal. It is expressed by the eigenphase shifts of the scattering
matrix defined in terms of the complex transmission and reflection amplitudes of plane wave external incident
light. The derivation is given for the general case in which a number of diffracted plane wave lights are
produced by the incident lights. The DOS profile calculated as a function of frequency and wave vector enables
us to obtain the dispersion relation and lifetime of leaky PB’s. The usefulness of the derived formula is
demonstrated by applying it to the PB structure of dielectric spheres, arrayed periodically to form a photonic
crystal of finite thickness.
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I. INTRODUCTION

Photonic crystals(PC’s) are usually practically applied by
preparing a system of finite thickness. When a photonic band
sPBd mode is leaky, i.e., when its momentum and frequency
lie within the light cone in phase spacesk ,vd, its finite life-
time decisively influences the capability of that mode in
technological applications. Due to the lack of translational
symmetry in a PC of finite thickness, the treatment of the
lifetime caused by the leakage of PB modes through the PC
surfaces is not at all straightforward. This is in clear contrast
to an ideal PC of infinite size, where we can formulate a
band-structure calculation as a standard eigenvalue problem
of real eigenvalues.1 In calculating the lifetime of a leaky PB
mode, we must take account of its coupling with the plane
wave states of the exterior region of a PC,2,3 which by defi-
nition have a continuous spectrum of the density of states
sDOSd. For electrons, the finite lifetime of an electronic state
resulting from its coupling with the other states of a continu-
ous spectrum has been given much attention in the physics of
metal, giving us some interesting topics, such as the Kondo
effect and heavy fermions in Kondo lattices.4 Although the
basic mixing mechanisms of electrons and those of photons
are conceptually very similar, one important point in the pho-
tonic problem in PC’s is the need to obtain the lifetime and
dispersion relation of PB’s with a precision high enough to
be integrated into a device design.

The purpose of the present paper is to present a method of
calculating the DOS of leaky PB’s of slab PC’s, from which
the dispersion and lifetime of PB’s are both obtained pre-
cisely. The method is based on the calculation of a scattering
matrix (S matrix) for a set of external lights incident simul-
taneously on the slab PC. We diagonalize theS matrix to
obtain the eigenphase shifts, which determine the phase
changes of the incident light passing through or reflecting
back from the system. Conceptually, the scattering phase
shift of an external probe relative to its free-space propaga-
tion is a standard quantity used to examine a target black box

(for example, the Friedel sum rule for the screening of an
impurity potential by electron cloud5). The formula of the
DOS of PB’s derived in this paper is expressed by the fre-
quency derivative of the sum of the eigenphase shifts. The
derivation of the DOS formula is given for a general case in
which an arbitrary number of diffracted lights emerge simul-
taneously from a PC slab. Such a general treatment is impor-
tant because the presence of diffraction characterizes the
light scattering from PC’s. Although the method proposed
here to derive the DOS of PB’s is applicable only to the
leaky modes, its usefulness is obvious in the practical appli-
cations of PC’s; any PB mode to be excited by an external
light or to be used as a source of emitted light should be
regarded as leaky in the sense that it is used through the
coupling to the exterior free space. Some examples are light
transmission and reflection in slab PC’s,6 extraction of laser
light through PC surfaces,7 and Smith-Purcell radiation from
a charge traveling parallel to PC surfaces.8–10 The efficiency
of these phenomena depends critically on the lifetime of the
leaky PB’s involved. In other words, precise estimation of
their lifetime is a crucial task in the physical and technologi-
cal applications of PB’s.

In Sec. II, we define theS matrix of a slab PC and derive
the eigenvalue equation for the PB modes set up in it, taking
into account their leakage. The formula is obtained in Sec. III
for the increment of DOS due to the presence of a slab PC
relative to that of free space by counting the number of so-
lutions of the eigenvalue equation. An application of the de-
rived formula is given in Sec. IV for a number of slab PC’s
of arrayed spheres. We illustrate there how to calculate the
dispersion relation and lifetime of leaky PB’s from the DOS
profile. A brief summary is given in Sec. V.

II. SCATTERING MATRIX AND ITS EIGENVALUES

A. Definition of scattering channels

We consider a slab PC extending in thex,y direction with
the origin of coordinatesr =0 taken at its center. The period-
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icity of the slab is assumed to be perfect in the lateral plane
−`,x,y,`. We use a symbolh to denote a two-
dimensionals2Dd reciprocal latticesRLd point in the xy
plane. The vectorh specifies a diffracted wave, reflected or
transmitted. Letv be the frequency andk the wave vector of
an incident plane wave light. We make explicit the direction
of propagation of a light by assigning a superscript ± to
various quantities, and + to the quantities associated with the
waves propagating to the +z side of the slab from the −z side.
For example, the incident light ofk+ sk−d stands for the light
that is incident on the slab towards the +z s−zd side; i.e., the
light coming to the slab PC from below(above). Let k i be
the component of the wave vector ofk parallel to thexy
plane, i.e.,

k i = skx,kyd. s1d

The translational invariance in the lateral plane shows that all
the normal modes(actually they may be lifetime-broadened)
of this system are specified by the lateral wave-vector com-
ponents.

From the dispersion relation of light in free space,

k± = sk i, ± G0d = skx,ky, ± G0d, s2d

with

G0 = Îv2/c2 − k i
2. s3d

In the same way, the wave vectorkh
± of diffracted light in the

region outside the PC is defined to be

kh
± = sk i + h, ± Ghd, s4d

with

Gh ; Ghsvd = Îv2/c2 − sk i + hd2. s5d

Only in the case in which

v . cuk i + hu, s6d

h diffracted light comes out of the PC as plane wave light,
which is observable at an observation point far from the PC.
If Eq. (6) does not hold, theh wave is evanescent with a pure
imaginary Gh. We call the channelh of real Gh an open
channel andh of imaginaryGh as a closed channel. For a
fixed v, eachh defines one diffraction channel. All the chan-
nels other than those with smalleruhu are closed. The number
of open channels at a givenv equals the number ofh’s that
satisfy Eq.(6).

Let us suppose that we are in the frequency region where
there areN diffraction channels open(one is the channelh
=0). The incident lightk+ coming from below the slab then
gives rise toN transmitted lights(T lights) on the +z side and
N reflected lights(R lights) on the −z side. Let

kh1

+ ,kh2

+ , . . . ,khN

+ s7d

be the wave vectors of theT lights and

kh1

− ,kh2

− , . . . ,khN

− s8d

be those of theR lights. Let h1 stand for the channelh=0,
which is open for anyv.

Suppose in an open channelh8 we have an incident light
of wave vectorkh8

+ , which propagates towards the slab from
below. This wave, too, is diffracted to produceT and R
lights, each composed ofN waves, as shown in Fig. 1. If the
incident light has the form

ah8
+ eikh8

+
·r s9d

with a specified complex vector amplitudeah8
+ , it produces

theT sRd lights of wave vectorkh
+ skh

−d, which are expressed
by

Thh8
++ ah8

+ expsikh
− · r d,

Rhh8
−+ ah8

+ expsikh
− · r d. s10d

The 333 tensorThh8
++ of transmission describes the complex

amplitude of theh wave in the process of the up-propagating
kh8

+ light being converted to the up-propagatingkh
+ wave. The

tensorRhh8
−+ stands for the process of akh8

+ wave being re-
flected back as akh

− wave. The elementxy of, e.g., the tensor
Thh8

++ ,

sThh8
++ dxy,

is equal to the complex amplitude of thex component of the
kh

+ light, produced by ay-polarizedkh8
+ light that is incident

on the PC with unit amplitude. For an incident amplitudeah8
+ ,

thex component of the reflected light with wave vectorkh
− is

given by

sRhh8
−+ ah8

+ dx = o
i=x,y,z

sRhh8
−+ dxisah8

+ di . s11d

We will now consider the situation of the simultaneous
incidence of theN plane waves. Let

FIG. 1. T and R lights, both N in number, produced by an
incidentkh8

+ light.
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kh1

+ ,kh2

+ , . . . ,khN

+

and

kh1

− ,kh2

− , . . . ,khN

−

be the respective wave vectors of the incident lights from
below and above the PC. This situation is shown in Fig. 2.
This incidence condition still givesT andR lights, each com-
posed ofN plane waves. After the scattering by the PC of all
these incident lights, the amplitude of thekh

+ wave that ap-
pears on the +z side of the PC has the form

o
h8

sThh8
+ ah8

+ + Rhh8
+− ah8

− d, s12d

where the summation overh8 runs over open channels.

B. Flux conservation andS matrix

Here, we examine the conservation of the energy flow in
the scattering event described above. We enclose the slab PC
in a large box as shown in Fig. 3. Thez component of the
Poynting vector of thekh

+ wave, i.e., the outflow of energy
towards the +z direction through the surface of the box in the
+z side, is

cS Gh
+

v/c
D«0

2

times the absolute square of the electric field; the quantity in
the parentheses being the directional cosine of the outgoing
wave vectorkh

+ with the z axis. If we consider the flux con-
servation for the Poynting vector averaged over one unit cell
of the 2D lattice of a lateral plane, the interference terms
between differenth’s disappear and the sum of the energy
flows of all the open channels provides the total outflow in
the +z direction. Similarly, we can express the outflow in the
−z direction below the PC. The sum of the two then gives

fPz
+ − Pz

−goutflow =
«0

2

c2

v
o
h

GhUo
h8

sThh8
++ ah8

+ + Rhh8
+− ah8

− dU2

+
«0

2

c2

v
o
h

GhUo
h8

sRhh8
−+ ah8

+ + Thh8
−− ah8

− dU2
.

s13d

Here,Pz
+ and Pz

− are thez components of the Poynting vec-
tors of the + waves and − waves, respectively. This quantity
equals the energy inflow of the incident lights, which has the
form

fPz
+ − Pz

−ginflow =
«0

2

c2

v
o
h8

sGh8uah8
+ u2 + Gh8uah8

− u2d s14d

in the simultaneous incidence.
In expressing the flux conservation

fPz
+ − Pz

−ginflow = fPz
+ − Pz

−goutflow, s15d

which should hold for arbitrary incident amplitudeshah8
+ j and

hah8
− j, various sums involved in both sides obviously imply

the convenience of matrix notation. The matrices are intro-
duced with their rows and columns labeled by 3N indices of
h and x,y, and z. For example, a 3N33N matrix T++ is
formed by arraying 333 blocksThh8

++ , etc. The freedoms of ±
channels for eachh are covered by adding two indices of ±.
As a result, we deal with the matrices of dimension 6N
36N. Then, the flux conservation Eq.(15), as combined
with the arbitrariness of the incident amplitudes, turns out to
be

fŜ8g†Ĝ8Ŝ8 = Ĝ8, s16d

where the dagger stands for the hermitian conjugate. Here

6N36N matricesŜ8 and Ĝ8 are defined by

FIG. 2. Simultaneous incidence ofN lights in the open channels
from above and below the photonic crystal.

FIG. 3. A box surrounding the slab PC to consider the flux
conservation between the incoming and outgoing lights.
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Ŝ8 = ST++ R+−

R−+ T−− D , s17d

with 3N33N matricesT±± andR±7 and

Ĝ8 = SG 0

0 G
D , s18d

the 3N33N matrix G being a diagonal matrix formed by
Ghd hh8. The concrete forms for them are given in Appendix
A.

Finally, we define matrixŜ by

Ŝ= fĜ8g1/2 Ŝ8 fĜ8g−1/2. s19d

An explicit form of the(h+ ,h8−) block of Ŝ is

fŜghh8
+− = Gh

1/2fR+−ghh8Gh8
−1/2. s20d

The sh− ,h8+d, sh+ ,h8+d, and sh− ,h8−d blocks of theS
matrix are given by replacingR+− of this equation byR−+,

T++, andT−−, respectively, according to the definition ofŜ8
[Eq. (17)].

The flux conservation expressed by Eq.(16) is now re-
written compactly as

Ŝ†Ŝ= I . s21d

The matrixŜ is thus a 6N36N unitary matrix. Therefore, it
has 6N eigenvalues of the forme2id s jd

s j =1,2, . . . ,6Nd with a
real phased s jd. The matrix element ofS,

Sh8+x,h−y,

for example, is a complex scattering amplitude in the process
of the incident light of unit amplitude ofsh ,− ,yd [a
y-polarized light in thesh−d channel] exiting out of the PC as
an sh8 , + ,xd light. We call d s jd an eigenphase shift. ForN
=1, i.e., when only a direct transmitted light and a specularly
reflected light ofh=0 are produced by an incident light, we
have six eigenphase shifts. We should have four eigenphase
shifts instead of six, because we are dealing with the scatter-
ing of the incidenttransversewaves that give rise totrans-
verseoutgoing waves after the scattering.11 This implies that
out of six eigenphase shifts, two are meaningless. In the gen-
eral case ofN open channels, having 6N eigenphase shifts
from a 6N36N matrix S, 2N out of 6N eigenphase shifts are
meaningless; they appear due to the longitudinal component
of polarization.

Such irrelevant eigenphase shifts had better be eliminated
from a practical point of view. For this purpose, the local
coordinate systems defined in reference to each of the open
channels are convenient. For a wave of channelsh+d or
sh−d, we define the right-handed systemh123j using the
three orthonormal vectors

feh
±s1d,eh

±s2d,eh
±s3dg, s22d

eh
+s1d and eh

+s2d being perpendicular tokh
+ and eh

+s3d being
parallel to it. Thus, component 3 stands for the longitudinal
polarization ofkh

+ light and axis 2 is always taken to be in the
lateral plane, irrespective ofh. For theh123j coordinates of

the sh−d channel, we choose three orthonormal vectorseh
−sid

si =1,2,3d to be the mirror images ofeh
+sid. Note that the

h123j system differs from one channel to another. In this
sense, we call theh123j system a local coordinate system.

We may then rewrite theS matrix using the 1 and 2 com-
ponents of each channel in place ofx,y,z components. The
actual procedure is given in Appendix B. This procedure
removes all the longitudinal components, and we are left

with a 232 matrix, which is denoted asT̂hh8
++ , etc. By arrang-

ing T̂hh8
++ , R̂hh8

+− , etc., according to the channel labels, we may
construct a 4N34N Smatrix. Let us denote the matrix thus
obtained asS

S= ST̂++ R̂+−

R̂−+ T̂−−
D , s23d

where T̂++ are block matrices formed by the array of 232

matrix T̂hh8
++ . Hereafter, we callS the S matrix.

When S operates on a 4N-dimensional column vector
composed of the incident amplitudes of open channels(ex-
pressed in the local coordinates), Eq. (12) shows that the
result is the transmitted and reflected amplitudes produced
by the simultaneous incidence in all the open channels. The
eigenvalues ofS are obtained by the equation

Svs jd = ls jdvs jd, s24d

with

ls jd = e2id s jd
, s25d

for j =1,2, . . . ,4N. Explicitly, the eigenvector vs jd, a
4N-dimensional column vector, has the form

svs jddt = fvh1+
s jd s1d,vh1+

s jd s2d, . . . ,vhn+
s jd s1d,vhn+

s jd s2d,vh1−
s jd s1d,g

fvh1−
s jd s2d, . . . ,vhn−

s jd s1d,vhn−
s jd s2dg. s26d

The form of the transposed vector ofvs jd has been given with
s1d and s2d specifying two transverse components of each
channel. Note thatS and hencels jd andvs jd all depend onk i.
For simplicity, we use the symbolsS, ls jd and vs jd without
adding the suffixk i to indicate thek i dependence.

The purpose of introducingd s jd for the eigenvaluels jd in
Eqs. (24) and (25) is to express the frequencies of normal-
modes and hence their DOS by using the eigenphase shifts.
To proceed further, we assume the mirror symmetry with
respect to thexy plane. Most artificially fabricated PC’s be-
long to this category.

When thexy plane is a mirror plane(for the case of no
mirror symmetry, see the comment at the end of this section),
we can classify the modes by their parities of this mirror
reflection. SinceS commutes with this mirror operation, we
have even- and odd-parity modes with the property of the
eigenvector given by

vhl+
s jd s1d = vhl−

s jd s1d,vhl+
s jd s2d = vhl−

s jd s2d, sl = 1 –Nd

for even-parity modes,
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vhl+
s jd s1d = − vhl−

s jd s1d,vhl+
s jd s2d = − vhl−

s jd s2d, sl = 1 –Nd

for odd-parity modes. s27d

Let us assign the indexj =1,2, . . . ,2N to the even-parity
modes andj =2N+1,2N+2, . . . ,4N to the odd-parity modes.
From now on, we shall focus on the even-parity modes.

Equations(24) and (25) imply the following. We let the
wave

vh−
s jdeikh

−·r = Svh−
s jds1d

vh−
s jds2d

Deikh
−·r s28d

propagate to the PC from above in the channelsh−d and
another wave

vh+
s jdeikh

+·r = Svh+
s jds1d

vh+
s jds2d

Deikh
+·r s29d

propagate from below in the channelsh+d [see Eq.(26) for
the definition ofvh+

s jd and vh−
s jd]. Suppose they are sent to the

PC simultaneously with the waves of the other channels,
specified, similarly by thej th eigenvector, as shown in Fig.
2. Since their amplitudes are set so that as a whole, they
constitute thej th eigenvectorvs jd of S, the wave of any chan-
nel exits the PC after having acquired only a common phase
change 2d s jd. Thus, for stationary wave propagation, the
electric field of a channelh abovethe slab turns out to be

vh−
s jdeikh

−·r + e2id s jd
vh+

s jdeikh
+·r = eid s jd

vh+
s jdeiski+hd·rcossGhz+ d s jdd,

s30d

wherer=sx,yd. The first term expresses the incident light of
Eq. (28) and the second is the light produced by the PC.
Similarly, we find below the slab

vh+
s jdeikh

+·r + e2id s jd
vh−

s jdeikh
−·r = eid s jd

vh
s jdeiski+hd·rcoss− Ghz+ d s jdd.

s31d

The property of even-parity modes,vh+
s jd =vh−

s jds;vh
s jdd was used

in Eqs.(30) and(31). Combining them, we find that the field
of the channelh outside the slab has the form

eid s jd
vh

s jdeiski+hd·rcossGhuzu + d s jdd. s32d

This expression, which has the form of a standing wave, is
valid both above and below the PC and suits our purpose of
determining the eigenvalues.

C. Boundary condition and frequencies of normal modes

To obtain the eigenvalues, we put the PC slab symmetri-
cally between two perfect mirrors, as shown in Fig. 4. We
place the mirrors atz= ±L. To determine the normal modes
of the whole space of −L,z, +L, which has the PC at the
center, we impose the boundary condition that the lateral
components of the electric field vanish at the mirrors.

To find a solution subject to this boundary condition, we
superpose Eq.(32) over j andh, as

Esr d = o
h=h1

hN

o
j=1

2N

eid s jd
vh

s jdeiski+hd·rcossGhuzu + d s jddCj , s33d

with unknown coefficientsCj, which we determine so that
Esr d satisfies the boundary condition. The lateral compo-
nents arex and y, and they are obtained by returning from
the local coordinates to the fixed coordinates, which are ob-
tained by using the inverse of the matrixRh

± given by Eq.
(B1). Retaining a 232 block of matrixsRh

±d−1 for conversion
from s1,2d to sx,yd, we denote it asr h

+. The procedure of
Appendix B then leads to

SExsr d
Eysr d

D = o
h=h1

hN

o
j=1

2N

eid s jd
r h

+vh
s jdeiski+hd·rcossGhuzu + d s jddCj ,

s34d

the productr h
+vh

s jd giving a column vector composed of thex
and y components ofvh

s jd. The right-hand side of this equa-
tion should vanish at the mirror surfaces atz= ±L. Since the
plane waveseiski+hd·r of different h’s are linearly indepen-
dent, it then follows that

o
j=1

2N

eid s jd
r h

+vh
s jd cossGhL + d s jddCj

= r h
+1o

j=1

2N

eid s jd
vh

s jds1dcossGhL + d s jddCj

o
j=1

2N

eid s jd
vh

s jds2dcossGhL + d s jddCj
2 = 0 s35d

for all h. As the determinant of the 232 matrix r h
+ is not

zero, the column vector of this equation should vanish.

FIG. 4. Two parallel mirrors placed atz= ±L to consider the
Fabry-Perot normal modes. We compare the number of the normal
modes set up between the mirrors with and without the slab PC
placed atz=0.
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Finally, the condition for any open channelh leads to
j = 1 2 ¯

h1

h1

h2

h2

A

A

hN

1
eid s1d

vh1

s1ds1dcossGh1
L + d s1dd eid s2d

vh1

s2ds1dcossGh1
L + d s2dd ¯

eid s1d
vh1

s1ds2dcossGh1
L + d s1dd eid s2d

vh1

s2ds2dcossGh1
L + d s2dd ¯

eid s1d
vh2

s1ds1dcossGh2
L + d s1dd eid s2d

vh2

s2ds1dcossGh2
L + d s2dd ¯

eid s1d
vh2

s1ds2dcossGh2
L + d s1dd eid s2d

vh2

s2ds2dcossGh2
L + d s2dd ¯

¯ ¯ ¯

¯ ¯ ¯

A A �

21
C1

C2

C3

A

Cj

A

C2N

2 = 0. s36d

This equation reveals that the indexj of the eigenvalue ofS
cannot, in general, be the index to specify the normal modes.
Rather, the combined effect of allj determines the normal
modes. If it were not for the sum overj in Eq. (33), we
would have obtained the eigenvalue equation from Eq.(35)
as

cossGhL + d s jdd = 0, s37d

for a single j . This equation should be satisfied simulta-
neously for allh’s by the eigenvalue ofv. This is indeed
impossible, for a solution forv of Eq. (37) of a particularh
depends on thath and it cannot in general satisfy Eq.(37) for
the other open channels.

We have so far concentrated on the even-parity solutions,
constructed by using the even-parity eigenphase shiftsj
=1,2, . . . ,2N. For the odd-parity eigenphase shiftsj =2N
+1,2N+2, . . . ,4N, an analysis similar to the above leads to
an odd-parity secular equation, which is given by Eq.(36)
with the cosines all replaced by sines.

When the mirror symmetry is absent in the slab, a super-
position of even and odd modes constitutes a solution. In this
case, the phase space ofj =1,2, . . . ,2N and that of j =2N
+1,2N+2, . . . ,4N no longer decouple. Extension to this less
symmetric case is similarly carried out. Our remaining task
is to count the number of solutions of Eq.(36) in a given
frequency range.

III. CHANGE OF DENSITY OF STATES

Let us denote the matrix appearing in Eq.(36) of the
even-parity modes asM . The eigenvalues for the normal
modes are obtained from

det M = 0. s38d

We can eliminate fromM the factors that are irrelevant in
determining the eigenvalues. First, we divide each of the
columns by

eid s1d
,eid s2d

, . . . . s39d

We further eliminate the factor cosGhL from thehth row and
cosd s jd from the j th column of the matrixM , making use of

cossGhL + d s jdd = cosGhL cosd s jdf1 − tanGhL tan d s jdg

in Eq. (36). These factors can be removed because they are
independent either of the phase shiftsd s1d ,d s2d , . . . or the
size L of the boundary condition: the eigenvaluesv must
depend on them both in view of the induced shifts of fre-
quency from the free-space values. By this procedure, we are
left with

det M = 0→ det M 8 = 0, s40d

where

M 8 =1
vh1

s1ds1ds1 − tanGh1
L tan d s1dd vh1

s2ds1ds1 − tanGh1
L tan d s2dd ¯

vh1

s1ds2ds1 − tanGh1
L tan d s1dd vh1

s2ds2ds1 − tanGh1
L tan d s2dd ¯

vh2

s1ds1ds1 − tanGh2
L tan d s1dd vh2

s2ds1ds1 − tanGh2
L tan d s2dd ¯

vh2

s1ds2ds1 − tanGh2
L tan d s1dd vh2

s2ds2ds1 − tanGh2
L tan d s2dd ¯

¯ ¯ ¯

¯ ¯ ¯

A A �

2 . s41d
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The poles of the factors

tan Gh1
L, tanGh2

L, . . .

of M 8 or the solutions of cosGhL=0 in the complexv plane,
give even-parity eigenvalues of photons in the free space
bounded by the mirrors. Therefore, we conclude that the ei-
genvalues perturbed by the presence of the PC are given by
the zeros of detM 8, while the unperturbed eigenvalues in the
absence of the PC are given by the poles of detM 8. Thus,
the increment of the number of the normal modes due to the
presence of the slab PC in a frequency interval is given by
the number of poles therein minus the number of zeros.

From the theory of complex function(see Ref. 12, for
example), the increment of the number of modes of wave
vector k i in the frequency intervalfv0,vg, denoted as
DNki

sv0;vd, is given by

DNki
sv0;vd = −

1

p
ImFlog

det M 8sv + i«d
det M 8sv0 + i«dG , s42d

where Imf¯g stands for the imaginary part off¯g and
+ie se= +0d shows that the logarithms are evaluated on the
upper edge of the branch cut on the realv axis. The change
of DOS at the frequencyv, denoted byDrki

svd, is obtained
by differentiatingDNki

sv0;vd with respect tov.
It seems difficult to reduce detM 8 further to obtain

Drki
svd because the dependences on the column indexh and

row index j are both present in the matrix elements of Eq.
(41). In the special limitL→`, however, we can proceed
further to arrive at the final analytical expression. In this
limit, we find (Appendix C)

tan Ghsv + iedL → i, sL → `d. s43d

Thus, from Eq.(41), we find

det M 8 = det3
vh1

s1ds1d vh1

s2ds1d vh1

s3ds1d ¯

vh1

s1ds2d vh1

s2ds2d vh1

s3ds2d ¯

vh2

s1ds1d vh2

s2ds1d ¯ ¯

vh2

s1ds2d vh2

s2ds2d ¯ ¯

A A A �

4
3p

j=1

2N

s1 − i tan d s jdd. s44d

The first factor of the right-hand side is unity and can be
removed. This property of the eigenvectors comes from the
unitarity of theS matrix and the reality of the eigenvectors,
the latter being guaranteed by the time reversal symmetry of
the S matrix. Since

ImFlogp
j=1

2N

s1 − i tan d s jddG = o
j=1

2N

Imflogs1 − i tan d s jddg

=− o
j=1

2N

d s jd, s45d

we find

Drki
svdsevend =

d

dv
DNki

sv0;vd

=−
d

dv

1

p
ImFlogp

j=1

2N

s1 − i tan d s jddG
=

1

p
o
j=1

2N
dd s jd

dv
s46d

for even-parity PB’s. This is our final expression for the in-
crement of DOS of even-parity PB’s. We have assigned the
superscript “even” to emphasize that. The expression for the
odd-parity PB’s is similar except that the odd-parity eigen-
phase shiftsd s jd s j =2N+1,2N+2, . . . ,4Nd are used:

Drki
svdsoddd =

1

p
o

j=2N+1

4N
dd s jd

dv
. s47d

Altogether, we find

Drki
svd = Drki

svdsevend + Drki
svdsoddd=

1

p
o
j=1

4N
dd s jd

dv
;

s48d

i.e., thev-derivative of the sum of the 4N eigenphase shifts
gives the total change of DOS. This expression of the total
increment is shown to be valid in the absence of the mirror
symmetry in thexy plane of the PC.

IV. APPLICATION TO PHOTONIC CRYSTALS
OF SPHERES ARRAYED IN A SQUARE LATTICE

AND A SIMPLE CUBIC LATTICE

In this section, we apply the above formula to slab PC’s of
arrayed spheres. We examine 2D systems of dielectric
spheres arrayed periodically. Based on Eqs.(46) and(47), we
calculate the DOS for monolayer and stacked layer model
PC’s. We choosen, the refractive index of spheres, to be
1.44, having in mind polytetrafluoroethylenesPTFEd13

spheres whose diameter is in the millimeter range, and let the
ratio of radiusa of spheres to lattice constantd be a/d
=0.5, for the system of spheres just in contact in the square
lattice. These parameters correspond to the PC’s, which were
actually prepared and used to examine their optical proper-
ties experimentally in the millimeter wavelength region of
light.14

Light scattering from a slab of arrayed dielectric spheres
is treated precisely by the vector Korringa-Kohn-Rostoker
sKKRd formalism15–17 and layer KKR formalism,6,17 which
give us high-quality numerical data for theT and R lights
and hence theS matrix defined by Eq.(23) for a prescribed
k i value. All the eigenphase shifts are then obtained by nu-
merically diagonalizing theSmatrix. We emphasize that Eqs.
(46) and (47) are general, not limited to systems of spheres,
if only the amplitudes ofT and R lights of all the open
channels are calculated. We assume the square lattice of
spheres in the lateral plane and the simple cubic lattice when
the layers are stacked.
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First we study the monolayer system. This system was
examined both theoretically and experimentally by Ohtakaet
al.,11 Kondo et al.18 and Yanoet al.19 Theoretical analysis
was also given for the DOS in the frequency region of no
diffraction. In what follows, we investigate the increment of
DOS for the lateral wave vectork id/2p=s0.3,0d, which was
chosen arbitrarily.

Figure 5 depicts 2D RL points in thekxky plane, each
specified by the points2p /ddsm,nd of the square lattice. A
circle of radiusv is also shown with its center placed at
k id/2p=s−0.3,0d. In the figure, circles of three different ra-
dii are drawn. From Eq.(5), the channelh opens when the
radius increases withv to cross the pointh. The number of
the RL points inside the circle is equal to the number of open
channels atv.

For an incident light of frequencyv and wave vectork i,
we can imagine an Ewald sphere of radiusv in the skxkykzd
space, whose center is placed at

f− k i,− Îsv/cd2 − k i
2g.

The vector drawn from this center to the origink =0 repre-
sents the incident wave vectork+. A circle of Fig. 5 may also
be viewed as a locus of this Ewald sphere cut by the plane
kz=−Îsv /cd2−k i

2, where the center is lying; in this picture,
the lattice points of Fig. 5 are the horizontal view of the 2D
reciprocal latticerods arrayed parallel toz.

As v increases in Fig. 5 withkxd/2p fixed at 0.3,
the circle becomes larger, touching first the point
hd/2p=s−1,0d at vd/2pc=0.70, when the diffractedT light
of kh

+ and R light of kh
− start to appear in channelhd/2p

=s−1,0d. The frequencyvd/2pc=1.044 is for the second
contact, when two additional channels,hd/2p=s0,1d and
s0,−1d, open. The third(fourth) contact takes place at
vd/2pc=1.221 (1.30). Figure 6 showsN, the number of

open channels, in theskx,vd plane for the incident light of
k i=skx,0d. The vertical dashed line corresponds to the case
skx,kydsd/2pd=s0.3,0d, presented in Fig. 5.

In the frequency region 0,vd/2pc,0.70, there is no
diffraction (N=1) for skx,kydsd/2pd=s0.3,0d. We have one
plane waveT light of a complex amplitudeT00 and oneR
light of a complex amplitudeR00, representing directly trans-
mitted light and specularly reflected light. TheS matrix is
434, yielding four eigenphase shifts by diagonalization.
They arep-polarized ands-polarized eigenmodes, both clas-
sified further into even and odd parities of the mirror reflec-
tion in thexy plane. Thep ands modes decouple because our
choice ofk i to be directed along theD axis of the 2D Bril-
louin zone guarantees the mirror symmetry in thexz plane
(thep mode is even and thes mode is odd). Analysis of Ref.
11 [Eqs.(A12) and(A15) thereof] proved that the sum of the
four eigenphase shifts is equal to the sum of the phase ofT00
of p-polarized incident light and that ofs-polarized incident
light for the frequency range ofN=1. Namely, the phase of
T00 of the p-polarized light is equal to the sum ofsp+d and
sp−d eigenphase shifts. The same holds true forT00 of
s-polarized light. Therefore, the DOS formula defined in Ref.
11 is reproduced by the special caseN=1 of the present
general theory.

In the frequency regionvd/2pcù0.70, we enter the new
regime of Nù2. We compare the calculated transmittance
uT00u2 of the direct light with the DOS formula. We restrict
ourselves to the response of thes-polarized incident light,
because the discussion of thep incidence is similar.

Let us first examine what the previous DOS formula,
valid only for N=1, yields in the case ofNù2. Namely, we
plot the phase ofT00 of s light as our DOS. Figure 7(a)
shows the calculateduT00u2 for the s-light, and Fig. 7(b)
shows the phase of thes-light T00. Note that we can treat
scalarT00 in obtaining the phase because the polarization of
the directly transmitted light is the same as the incident light
for k i along theD axis. There is perfect coincidence in the
positions of the fine structures in Figs. 7(a) and 7(b). Conse-

FIG. 5. Circles of radiusv and 2D reciprocal latticessRLd in
thekxky plane. The center of the circles shown by the open square is
taken at skx,kydsd/2pd=s−0.3,0d, corresponding to the incident
conditionk id/2p=s0.3,0d under study. The RL points of the square
lattice are shown by open and solid points. Three circles are given
to show the critical situations of channel opening, with the touching
RL point of each case indicated by the filled lattice point.

FIG. 6. Number of open 2D reciprocal lattice points as functions
of v and kx, in the G–X direction sky=0d. The numberN of the
open RL points is given in parenthesis in each region. Three thresh-
old values forvd/2pc of channel opening are given for the case of
kxd/2p=0.3, corresponding to the three circles of Fig. 5.
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quently, the DOS formula valid forN=1 still works in the
caseNù2 for simply determining the existence of PB’s.
However, we note that a correct DOS change due to the
presence of a PB mode should be one; i.e., the sum of the
phase shifts should change byp, wheneverv increases to
cross a PB mode.11 In Fig. 7(b), we see that the change of the
phase shift at any fine structure is very short ofp. (For
comparison, in Fig. 8, we plot the situation seen in the region
of N=1 to show that the procedure indeed works there.) The
DOS of PB’s and the leakage-induced lifetime estimated
from Fig. 7(b) are hardly reliable. For example, peaks and
humps of the curves of Fig. 7(b) produce singular line shapes
in the DOS profile when differentiated according to Eqs.(46)

and (47), quite different from Lorentzian shapes expected
from the general theory of lifetime broadening. To summa-
rize, the straightforward extension of the DOS formula of
N=1 to the new region ofNù2 does not give correct infor-
mation. This incorrect procedure using the previous DOS
formula does not take proper account of diffracted waves.
Therefore, we apply the present formula defined by Eqs.(46)
and (47) to this condition.

Figure 7(c) depicts the sum of the eigenphase shifts

o
j=1

4N

d s jd s49d

of Eq. (48), which we claim to be a correct formula for the
increment of DOS. We can easily classify by inspection the
whole set of eigenphase shifts into thep- and s-polarized
modes by the numerically calculated eigenvectors ofS. We
retain in 7(c) only the phase shifts ofs-polarized modes to
obtain the DOS ofs-active PB’s, which is to be compared
with the s transmittanceuT00u2 given in (a). We display the
sum of the phase shifts by dividing it into ± parities of the
mirror symmetry with respect to thexy plane. Panel(c) ob-
viously confirms that the sum of the eigenphase shifts cor-
rects the insufficient magnitudes of the jumps at the excited
PB modes shown in Fig. 7(b).

Figure 7(d) shows itsv derivative, the DOS of the PB’s
of skx,kydsd/2pd=s0.3,0d. The DOS profile consists of
Lorentzian peaks, as it should, whose full width at half-
maximumsFWHMd gives the inverse of the lifetime of the
PB’s. Any optical response of a PC is related more or less to
its DOS profile and generally has a resonant enhancement
accompanying a PB excitation. For example, the FWHM of
excited PB modes primarily determines the emission spec-
trum from an atom in a PC. Three DOS peaks around
vd/2pc.1.3 of Fig. 7(d) provide an estimate FWHM
=Dvd/2pc.0.01, leading to an estimate ofQ=v /Dv
.100. The kinks seen at the frequencies of channel opening
in Fig. 7(d) are interesting. The singular behavior of the
spectrum associated with the channel opening has been his-
torically named the Wood anomaly20 and was analyzed in
detail in quantum mechanics text book.21 Various kinds of
singularities, appearing often as sharp kinks but sometimes

FIG. 7. Frequency dependence in the region 1.2,vd/2pc,1.4
of transmittance and increment of DOS ofs-polarized light with
skx,kydsd/2pd=s0.3,0d. The calculation is made for a monolayer
PC consisting of a square array of dielectric spheres, whose param-
eters are given in the text. Panel(a) shows the transmittance of the
direct light sh=0d, defined by uT00u2. Two arrows indicate the
threshold frequencies for the change of the numberN of open chan-
nels, one from the case ofN=4 to N=6 at vd/2pc=1.22 and the
other fromN=6 to N=7 atvd/2pc=1.30. See Fig. 5 for the values
of the threshold frequency. Panel(b) shows the phase of the com-
plex amplitude derived fromT00/ uT00u, which would yield a correct
sum of the eigenphase shifts whenN=1. Panel(c) shows the sum of
the eigenphase shifts derived from the formula(48). Only the eigen-
phase shifts ofs-polarized modes are retained. Panel(d) gives the
correct DOS of thes-polarized PB’s, which is defined by Eq.(48).

FIG. 8. Typical example of an abrupt phase change of the com-
plex transmission amplitude. The phase obtained fromT00/ uT00u is
plotted in the frequency region ofN=1. The light iss-polarized
with skx,kydsd/2pd=s0.3,0d, incident on the monolayer PC used in
Fig. 7. The change of the phase is justp.
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as dips or inflection points, are known to arise in the trans-
mission spectrum. See Ref. 22 for the variety of singularities
in the case of a PC. In Fig. 7(d), we have plotted theincre-
mentof DOS due to the presence of a slab PC and denoted it
simply as DOS. Actually, therefore, a negative DOS of Fig.
7(d) just above the channel opening stands for adecreaseof
DOS. We believe the negative increment of DOS to be a
genuine feature associated with Wood anomalies.

Next, we turn to the systems composed of stacked layers
of arrayed PTFE spheres. LetNs be the number of stacked
layers. For this case, too, a theoretical analysis of DOS was
given previously in the region ofN=1.19 In the bilayer sys-
tem sNs=2d, the monolayer photonic bands of each of the
two layers, which will be doubly degenerate if they are suf-
ficiently far apart, are coupled to produce bonding and anti-
bonding PB states.23,24 Therefore, asNs increases, the band
population increases in a given frequency range. Figure 9
shows DOS obtained from our formulae[Eqs.(46) and(47)]
for severalNs in the same frequency range and array of
spheres as above. Except in the regions of channel opening,
we can clearly see the bonding and antibonding splitting,
when Ns becomes twice as large. The resonant optical re-
sponse of a PB becomes sharper and sharper in accordance
with the sharpening of DOS peaks asNs increases. We can
see that the DOS peaks forNs=4 have theirQ values several
times larger than those in the system ofNs=1, estimated

above to be about 100. In this way, we can quantitatively
discuss the bonding and antibonding splitting of lifetime-
broadened degenerate levels through the correct DOS for-
mula and can calculate theQ values of the split levels as
functions ofNs. These features are extensions of what was
found previously in the frequency region of no diffraction.25

The plot of the positions of the DOS peaks as functions of
k i gives the band structure of leaky PB’s. Figure 10(a) illus-
trates the band structure fork i=skx,0d, i.e., along theG–X
direction of the monolayer PC examined in Fig. 7. We show
only the band structure ofs-active PB’s, derived from the
s-active eigenphase shifts. The empty(filled) circles corre-
spond to the modes with evens+d [odd s−d] parity with re-
spect to thexy mirror symmetry. The general features of the
calculated band structure are understandable using the band
structure of an empty lattice. The similarity to an empty lat-
tice stems from the fact that we have used a small refractive
index n=1.44 in the analysis. For a PC of largern, no prob-
lem arises except for a slower convergence in the calculation
of the matrixS, which, too, is overcome by the KKR formu-
lation used here.

In the band structure of Fig. 10(a), there are some bands,
with disconnected parts, which are too broad to produce a
distinct peak there. Figure 10(b) illustrates this feature in the
frequency region enclosed by the square in Fig. 10(a). The

FIG. 9. Increment of DOS of a slab PC of stacked 2D layers as
a function of frequency.Ns is the number of stacked layers. The
result is given for PB’s ofs polarization with skx,kydsd/2pd
=s0.3,0d. Panel(a) is a reproduction of Fig. 7(d) and shows the
DOS of a monolayer PCsNs=1d. The solid(dashed) curve shows
the even-parity(odd-parity) PB’s. TheQ values of PB’s improve, or
their lifetimes become longer and the density of the peaks increases,
whenNs increases.

FIG. 10. Band structure and the wave-vector dependence of the
DOS profile(s-polarized PB’s). Panel(a) shows the band structure
of a 2D PC(a monolayer array of spheres) along theG–X axis in
the 2D Brillouin zone. The parameters for the PC are the same as
used above. The solid circles correspond to the even-parity modes
of s polarization, while the dotted circles represent the odd-parity
modes ofs polarization. A vertical line is drawn atkxd/2p=0.3,
corresponding to the case examined in Fig. 7. Panel(b) shows how
the width of a DOS peak depends on the band index and wave-
vector. The phase space enclosed by the rectangle in(a) is examined
in (b).
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DOS profiles for even-paritys+d modes with several values
of kx are given in Fig. 10(b), which shows that the lifetime of
a leaky PB depends both on the wave vectorkx and the band
index.2,3,11As kx becomes larger, the two peaks approach and
at kxd/2p=0.13 they coalesce into a single broad peak,
shown by the thick solid line. A further increase inkx, how-
ever, resolves two modes again(e.g., the case ofkxd/2p
=0.16). Nearkxd/2p=0.13, we cannot follow the two modes
precisely.

V. SUMMARY

This paper presents a formula for the DOS of leaky PB’s.
The DOS of PB’s in the leaky region of the phase space
sv ,k id is a key factor that determines the magnitude of the
resonant enhancement of optical signals from PC’s, such as
the emission cross-section of photons from an imbedded
atom, for example.26–30 In the DOS calculation, a complica-
tion arises from the need to take account of the presence of
energy-carrying diffraction channels. We have shown that the
DOS of leaky PB’s of slab PC’s is obtained from the com-
plex transmission and reflection amplitudes of all the lights
incident in the open channels and that it is expressed by the
eigenphase shifts obtained by diagonalizing theS matrix de-
fined using all the diffracted lights.

Based on the derived formula, we analyzed the transmit-
tance of incident light for PC’s of arrayed spheres and dem-
onstrated that the extended definition of the scattering matrix
given in this paper is very crucial in the frequency range
where the diffraction channels are open. To show the useful-
ness of the formula, we have calculated the dispersion rela-
tions and lifetime of PB’s from the DOS profile obtained for
a model PC of arrayed spheres of finite thickness.

Recently, the local density of statessLDOSd of electro-
magnetic fields near the solid state surfaces is examined31

and it is shown that the LDOS related to the surface states of
a solid is accessible by scanning near-field spectroscopy im-
ages obtained experimentally. The LDOS at a pointr is in
essence the DOS times the squared eigenvectors atr of the
electromagnetic normal modes. The genuine DOS of a sys-
tem is thus a quantity which remains after integrating out the
eigenvectors in the LDOS. It is thus determined solely by
how the poles are distributed in the complex frequency space
of electromagnetic Green’s functions. The essence of the
present paper is that the DOS in the leaky region is obtain-
able from the far-field amplitudes of incident light waves, in
contrast to that of LDOS, which is related to the near-field
information; the DOS is accessible by conventional measure-
ments of the light transmission and reflection. This statement
holds not only in slab PC’s concerned in this paper, but also
in ordinary solid state systems.

Since the formula requires only the complex amplitudes
of the reflected and transmitted waves, its applicability is
quite general and not limited to PC’s of spheres.
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APPENDIX A: FORMS OF 3 NÃ3N MATRICES T ++ AND G

The 3N33N matricesT++ andG used in introducing the
6N36N matrices in Eqs.(17) and (18) are given here. The
matrix T++ is defined by

T++ =1
Th1h1

++ Th1h2

++ Th1h3

++ . . . Th1hN

++

Th2h1

++ Th2h2

++ Th2h3

++ . . . Th2hN

++

Th3h1

++ Th3h2

++ Th3h3

++ . . . Th3hN

++

A A A � A
ThNh1

++ ThNh2

++ ThNh3

++ . . . ThNhN

++
2 . sA1d

The 333 blocksTh1h2

++ , etc., are introduced in Eq.(10). Other
matricesT−−, R+−, etc. are similarly defined using theTh1h2

−−

andRh1h2

+− , respectively.
The 3N33N diagonal matrixG used in Eq.(18) is de-

fined by

G =1
Gh1

0 0 . . . 0

0 Gh2
0 . . . 0

0 0 Gh3
. . . 0

A A A � A

0 0 0 . . . GhN

2 = Ghn
d hnhm

, sA2d

where the 333 diagonal matrixGhn
is

x y z

Ghn
=

x

y

z1
Ghn

0 0

0 Ghn
0

z 0 Ghn

2 . sA3d

APPENDIX B: CHANGE BETWEEN THE LOCAL
COORDINATES AND FIXED COORDINATES

Using the polar angles,uh, fh of the wave vectorkh,
defined with respect to the fixed coordinate systemhxyzj,
The hxyzj components are transformed to those of the local
coordinatesh123j of a light of wave vectorskh

± by a 333
transformation matrix

Rh
± = 1Rh

1x Rh
1y Rh

1z

Rh
2x Rh

2y Rh
2z

Rh
3x Rh

3y Rh
3z2

=1 cosuhcoswh cosuhsinwh 7sinuh

7sinuh coswh 0

±sinuh coswh ±sinuhsinwh cosuh
2 . sB1d

The rule for transforming the tensorThh8
++ from fixed to local

coordinates is then
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Thh8
++ → Rh

+Thh8
++ sRh8

+ dt = 1Rh
1x Rh

1y Rh
1z

Rh
2x Rh

2y Rh
2z

Rh
3x Rh

3y Rh
3z2

31Txx
++ Txy

++ Txz
++

Tyx
++ Tyy

++ Tyz
++

Tzx
++ Tzy

++ Tzz
++21Rh8

1x Rh8
2x Rh8

3x

Rh8
1y Rh8

2y Rh8
3y

Rh8
1z Rh8

2z Rh8
3z2

t

. sB2d

This procedure causes the matrix elements related to the lo-
cal coordinate 3(i.e., third row or third column of the right-
hand side) to vanish naturally. In this way, we are left with a

232 matrix denotedT̂hh8
++ . By arrangingT̂hh8

++ , etc., according
to the channel labels, we may construct a 4N34N Smatrix.
This is theS matrix S defined by Eq.(23).

When we impose the boundary condition at the boundary
mirrors on thex and y components of the electric field of
channelh, we have to return from the local coordinatesh123j
to the hxyzj system. For the components 1 and 2 of thej th
eigenvectorvh

s jd introduced in Eqs.(24) and (26), this is ac-
complished by

Ssvh
s jddx

svh
s jddy

D = sr h
+dtSsvh

s jdd1

svh
s jdd2

D , sB3d

where the 232 transformation matrixsr h
+dt is the 232 upper

left block of

sRh
+d−1 = sRh

+dt = 1sx,1d sx,2d sx,3d
sy,1d sy,2d sy,3d
sz,1d sz,2d sz,3d

2 , sB4d

whereRh
+ is defined by(B1) and sx,3d, for example, is the

direction cosine between thex and 3 axes. Thesx,yd com-
ponent ofvh

s jd is obtained compactly by

Sx

y
D = r h

+S1

2
D , sB5d

namely, the productr h
+vh

s jd gives thex and y components of
vh

s jd. This product notation is used in Eq.(34).

APPENDIX C: REDUCTION OF THE MATRIX
M 8 OF EQ. (42)

In Eq. (5), we note

Ghsv + ie8d = Îfsv + ie8d/cg2 − sk i + hd2

=Îsv/cd2 − sk i + hd2 + ie;Gh + ie sC1d

with an infinitesimalese.0d, and hence

eiGhsv+ie8dL = eiGhL−eL. sC2d

Thus,

tan Ghsv + ie8dL = − i
expsiGhL − eLd − exps− iGhL + eLd
expsiGhL − eLd + exps− iGhL + eLd

.

sC3d

In the limit L→`, we obtain

tan Ghsv + ie8dL → i , sL → `d. sC4d

Therefore, theh dependence, in thesh , jd matrix element

1 − tanGhsv + ie8dL tand s jd sC5d

of the matrixM 8 disappears, and we obtain Eq.(44).
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