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Derivation of the density of states of leaky photonic bands
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This paper presents the formula for the density of stéd3S) of photonic band$PB’s) in the leaky region
of the phase space of a slab-type photonic crystal. It is expressed by the eigenphase shifts of the scattering
matrix defined in terms of the complex transmission and reflection amplitudes of plane wave external incident
light. The derivation is given for the general case in which a number of diffracted plane wave lights are
produced by the incident lights. The DOS profile calculated as a function of frequency and wave vector enables
us to obtain the dispersion relation and lifetime of leaky PB’s. The usefulness of the derived formula is
demonstrated by applying it to the PB structure of dielectric spheres, arrayed periodically to form a photonic
crystal of finite thickness.
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I. INTRODUCTION (for example, the Friedel sum rule for the screening of an
impurity potential by electron clodyl The formula of the

Photonic crystal$PC’s) are usually practically applied by DOS of PB’s derived in this paper is expressed by the fre-
preparing a system of finite thickness. When a photonic banduency derivative of the sum of the eigenphase shifts. The
(PB) mode is leaky, i.e., when its momentum and frequencyderivation of the DOS formula is given for a general case in
lie within the light cone in phase spadle, w), its finite life-  which an arbitrary number of diffracted lights emerge simul-
time decisively influences the capability of that mode intaneously from a PC slab. Such a general treatment is impor-
technological applications. Due to the lack of translationaftant because the presence of diffraction characterizes the
symmetry in a PC of finite thickness, the treatment of thelight scattering from PC’s. Although the method proposed
lifetime caused by the leakage of PB modes through the P@Qere to derive the DOS of PB’s is applicable only to the
surfaces is not at all straightforward. This is in clear contrasteaky modes, its usefulness is obvious in the practical appli-
to an ideal PC of infinite size, where we can formulate acations of PC’s; any PB mode to be excited by an external
band-structure calculation as a standard eigenvalue problelight or to be used as a source of emitted light should be
of real eigenvalue§in calculating the lifetime of a leaky PB regarded as leaky in the sense that it is used through the
mode, we must take account of its coupling with the planecoupling to the exterior free space. Some examples are light
wave states of the exterior region of a P&which by defi-  transmission and reflection in slab P&sxtraction of laser
nition have a continuous spectrum of the density of statefght through PC surface’sand Smith-Purcell radiation from
(DOS). For electrons, the finite lifetime of an electronic statea charge traveling parallel to PC surfaée¥.The efficiency
resulting from its coupling with the other states of a continu-of these phenomena depends critically on the lifetime of the
ous spectrum has been given much attention in the physics ¢#aky PB’s involved. In other words, precise estimation of
metal, giving us some interesting topics, such as the Kondheir lifetime is a crucial task in the physical and technologi-
effect and heavy fermions in Kondo latticeélthough the  cal applications of PB’s.
basic mixing mechanisms of electrons and those of photons In Sec. I, we define th& matrix of a slab PC and derive
are conceptually very similar, one important point in the pho-the eigenvalue equation for the PB modes set up in it, taking
tonic problem in PC’s is the need to obtain the lifetime andinto account their leakage. The formula is obtained in Sec. I
dispersion relation of PB’s with a precision high enough tofor the increment of DOS due to the presence of a slab PC
be integrated into a device design. relative to that of free space by counting the number of so-

The purpose of the present paper is to present a method #tions of the eigenvalue equation. An application of the de-
calculating the DOS of leaky PB’s of slab PC’s, from which rived formula is given in Sec. IV for a number of slab PC’s
the dispersion and lifetime of PB's are both obtained pre-of arrayed spheres. We illustrate there how to calculate the
cisely. The method is based on the calculation of a scatteringispersion relation and lifetime of leaky PB’s from the DOS
matrix (S matrix) for a set of external lights incident simul- profile. A brief summary is given in Sec. V.
taneously on the slab PC. We diagonalize Senatrix to
obtain the eigenphase shifts, which determine the phase |I. SCATTERING MATRIX AND ITS EIGENVALUES
changes of the incident light passing through or reflecting
back from the system. Conceptually, the scattering phase
shift of an external probe relative to its free-space propaga- We consider a slab PC extending in they direction with
tion is a standard quantity used to examine a target black bathe origin of coordinates=0 taken at its center. The period-

A. Definition of scattering channels
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icity of the slab is assumed to be perfect in the lateral plane T lights
—0o<x,y<o, We use a symbolh to denote a two- /\
dimensional (2D) reciprocal lattice(RL) point in the xy - + k+ + +
plane. The vectoh specifies a diffracted wave, reflected or ° ‘kh5 kh4 h3 khl khz °
transmitted. Letw be the frequency ankl the wave vector of

an incident plane wave light. We make explicit the direction

of propagation of a light by assigning a superscript = to

various quantities, and + to the quantities associated with the

waves propagating to thezside of the slab from thezside. slab PC

For example, the incident light &f* (k™) stands for the light
that is incident on the slab towards the (+z) side; i.e., the

light coming to the slab PC from beloyabove. Let k; be
the component of the wave vector kf parallel to thexy

plane, i.e., K r = _ _
° o h5 kh4 kh kh kh2 o o
K= (Ko k). ) ~ /\% : ~
The translational invariance in the lateral plane shows that all k;' R lights

the normal modegactually they may be lifetime-broadened
of this system are specified by the lateral wave-vector com- 5 1 T andR lights, both N in number, produced by an

ponents. _ _ . S incidentk;, light.
From the dispersion relation of light in free space,

k* = (ky, £T) = (kyky, £Tp), (2) Suppose in an open chanrel we have an incident light
of wave vectork;,, which propagates towards the slab from
below. This wave, too, is diffracted to produde and R

o= Vw?c®- kf. (3) lights, each composed &f waves, as shown in Fig. 1. If the
incident light has the form

with

In the same way, the wave vectkj of diffracted light in the

region outside the PC is defined to be a;,e”‘;"r 9)
ki =(k;+h, £T), (4) ) - L
. with a specified complex vector amplitude,, it produces
with the T (R) lights of wave vectok; (k;), which are expressed
Ty =Th(w) = Vo?/c® - (k, + h)%. (5 by
Only in the case in which Tnran expliky - 1),
(1)>C|k||+h|, (6)

R expliky - 1). (10

h diffracted light comes out of the PC as plane wave light,
which is observable at an observation point far from the PC

; - >< ++/ . . .
If Eq. (6) does not hold, tha wave is evanescent with a pure The 3X 3 tensorT,,, of transmission describes the complex

imaginary I',. We call the channeh of real I, an open ainplitude gf theh wave in the process of the up-propagating
channel anch of imaginaryT,, as a closed channel. For a Kn light Erelng converted to the up-prop?gatkmwave. The
fixed w, eachh defines one diffraction channel. All the chan- tensorR,,, stands for the process oflg, wave being re-
nels other than those with small@t are closed. The number flected back as &, wave. The elementy of, e.g., the tensor
of open channels at a givan equals the number df’s that T;;
satisfy Eq.(6).

Let us suppose that we are in the frequency region where (T o )xys
there areN diffraction channels opetone is the channei
=0). The incident lightk* coming from below the slab then is equal to the complex amplitude of tkecomponent of the
gives rise ta\ transmitted light<T lights) on the zside and  k;, light, produced by a-polarizedk,, light that is incident

N reflected lightsR lights) on the -z side. Let on the PC with unit amplitude. For an incident amplitw]e
ki Kp, ... Kp (7) thex component of the reflected light with wave veckqris
v N given by
be the wave vectors of thE lights and 5
o _ Rir )y = R )xi(@ )i 11
khlvkhza e !khN (8) ( hh"®h )X i:X,y,Z( hh )X|( h )| ( )
be those of theR lights. Leth, stand for the channdi=0, We will now consider the situation of the simultaneous
which is open for anyw. incidence of theN plane waves. Let
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* k-lil_ ° o kh' FIG. 3. A box surrounding the slab PC to consider the flux
conservation between the incoming and outgoing lights.
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be the respective wave vectors of the incident lights from . _ )

below and above the PC. This situation is shown in Fig. 2Here,P, andP, are thez components of the Poynting vec-
This incidence condition still give® andR lights, each com-  tors of the + waves and - waves, respectively. This quantity
posed ofN plane waves. After the scattering by the PC of all€quals the energy inflow of the incident lights, which has the
these incident lights, the amplitude of th¢ wave that ap-  form

pears on the #side of the PC has the form

ap > +Thla, > (14

2
f_pr o 8C

> (T;h'a;' + R;;,a;,), (12) [P = P linfiow = 2 w% (Tpr

h/

where the summation ovér runs over open channels. in the simultaneous incidence.
In expressing the flux conservation

B. Flux conservation andS matrix

. . . [P; - P;]inﬂow = [P; - P;]outhOWr (15)
Here, we examine the conservation of the energy flow in

the scattering event described above. We enclose the slab R ich should hold for arbitrary incident amplitud@t,} and

In a Ia_lrge box as ShOWP n F'g'. 3. Thzecomponent of the {a,}, various sums involved in both sides obviously imply
Poynting vector of th&| wave, i.e., the outflow of energy ™ : . . . .
the convenience of matrix notation. The matrices are intro-

t ds the #direction th h th f f the box in th
owards the z direction through the surface ot the box in educed with their rows and columns labeled kY Bidices of

+z side, is L
h and x,y, and z. For example, a 89X 3N matrix T*" is
Th )20 formed by arraying X 3 blocksT ., etc. The freedoms of +
wlc) 2 channels for each are covered by adding two indices of +.

) o __As a result, we deal with the matrices of dimensioN 6
times the absolute square of the electric field; the quantity incgN. Then, the flux conservation Eql5), as combined

the parentheies.being the directional cosine of the outgoingity the arbitrariness of the incident amplitudes, turns out to
wave vectork, with the z axis. If we consider the flux con- pe

servation for the Poynting vector averaged over one unit cell
of the 2D lattice of a lateral plane, the interference terms A ema oA

\ LS [STr's =1’ (16)
between different’s disappear and the sum of the energy '
flows of all the open channels provides the total outflow in - _
the +z direction. Similarly, we can express the outflow in the Where the dagger stands for the hermitian conjugate. Here
-z direction below the PC. The sum of the two then gives 6N X 6N matricesS’ andI'’ are defined by
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with 3N X 3N matricesT** andR** and
N ' O
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the (h—) channel, we choose three orthonormal vecg($)
(i=1,2,3 to be the mirror images of;(i). Note that the
{123 system differs from one channel to another. In this
sense, we call thél23 system a local coordinate system.
We may then rewrite th& matrix using the 1 and 2 com-
ponents of each channel in placexafy,z components. The
actual procedure is given in Appendix B. This procedure

the ANX 3N matrix I' being a diagonal matrix formed by removes all the longitudinal components, and we are left
I'h6 1nr- The concrete forms for them are given in Appendixwith a 2x 2 matrix, which is denoted ﬁ; etc. By arrang-
A.

Finally, we define matrixs by

é: [fw]llz é’ [fw]—llz_ (19)
An explicit form of the(h+,h’-) block of Sis
(ST = TR Ty T 72 (20

The (h—,h’+), (h+,h’+), and (h—,h’-) blocks of theS
matrix are given by replacin®*~ of this equation byR™,
T**, andT ™, respectively, according to the definition 8f

[Eq. (17)].
The flux conservation expressed by Ef6) is now re-
written compactly as
s's=1. (21)

The matrixS is thus a & x 6N unitary matrix. Therefore, it

has @\ eigenvalues of the forr®?” (j=1,2, ..., with a
real phases ). The matrix element o8,

Sn’+><,h—yv

for example, is a complex scattering amplitude in the proces

of the incident light of unit amplitude ofth,-,y) [a

y-polarized light in th&h—) channe] exiting out of the PC as

an (h’, +,x) light. We call 5% an eigenphase shift. Fod

=1, i.e., when only a direct transmitted light and a specularly
reflected light ofh=0 are produced by an incident light, we

have six eigenphase shifts. We should have four eigenpha
shifts instead of six, because we are dealing with the scatte

ing of the incidenttransversewaves that give rise trans-
verseoutgoing waves after the scatteritigrhis implies that

ing T/, R, etc., according to the channel labels, we may
construct a Ml X 4N Smatrix. Let us denote the matrix thus

obtained asS
-'|1++ é+_
S=| . R ,
R™ T~

whereT** are block matrices formed by the array ok2
matrix T, ,. Hereafter, we calS the S matrix.

When S operates on a M-dimensional column vector
composed of the incident amplitudes of open chanfets
pressed in the local coordinaje€q. (12) shows that the
result is the transmitted and reflected amplitudes produced
by the simultaneous incidence in all the open channels. The
eigenvalues of are obtained by the equation

Swi) = N0,

(23

(24)
with
A = g2 o

or j=1,2,...,4. Explicitly, the eigenvectorv, a
N-dimensional column vector, has the form

W)= [ (D),00(2), ... (D), 00(2),0)(2),

(25)

vi-(2), ... o (1),00)_(2)]. (26)
"he form of the transposed vectordf has been given with
(1) and (2) specifying two transverse components of each

channel. Note tha® and hence\!) andv!') all depend ork;.

L9 . . i ici () () Wi
out of six eigenphase shifts, two are meaningless. In the geri-0" Simplicity, we use the symbols, A" and vi/" without

eral case ofN open channels, having\beigenphase shifts

adding the suffix to indicate thek| dependence.
The purpose of introducing ¥ for the eigenvalua!) in

from a G\ X 6N matrix S, 2N out of 6N eigenphase shifts are

meaningless; they appear due to the longitudinal componefitdS: (24) and(25) is to express the frequencies of normal-
of polarization. modes and hence their DOS by using the eigenphase shifts.

Such irrelevant eigenphase shifts had better be eliminatef® Proceed further, we assume the mirror symmetry with
from a practical point of view. For this purpose, the local respect to thexy plane. Most artificially fabricated PC'’s be-

coordinate systems defined in reference to each of the opdAnd to this category.

channels are convenient. For a wave of chanimel) or
(h-), we define the right-handed systefh23 using the
three orthonormal vectors

[en"(1),6,"(2),&,"(3)], (22)

(1) and €,(2) being perpendicular t&;, and e;(3) being

parallel to it. Thus, component 3 stands for the longitudinal
polarization ofk;, light and axis 2 is always taken to be in the

lateral plane, irrespective &f. For the{123 coordinates of

When thexy plane is a mirror plangfor the case of no
mirror symmetry, see the comment at the end of this segtion
we can classify the modes by their parities of this mirror
reflection. SinceS commutes with this mirror operation, we
have even- and odd-parity modes with the property of the
eigenvector given by

oph(D) =0 (1),vh(2) = vl (2), (1=1-N)

for even-parity modes,
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oD == ofL DD = -0l @, (1=1-N) z
for odd-parity modes. (27) mirror T -
Let us assign the index=1,2,...,N to the even-parity ,\L/L
modes ang=2N+1,2N+2, ..., to the odd-parity modes. N
From now on, we shall focus on the even-parity modes.
Equations(24) and (25) imply the following. We let the
wave
slab PC
o W)\ - > X
(J) KT _ Uh_( ) iKor — >
vl =1 €'“n 28 =
h (UEE(Z) (28) Z O
propagate to the PC from above in the chanfret) and
another wave
i D
(i) 1)) ~N
(i) oktr — vhs( ik
vieknt = en 29
" <vﬂl(2) (29 —L
mirror -

propagate from below in the channgél+) [see Eq.(26) for

it (1) (M
the defln'tlon 0th]+ an,d VhJ—]' Suppose they are sent to the FIG. 4. Two parallel mirrors placed a=+L to consider the
PC simultaneously with the waves of the other Ch"’mneISFabry-Perot normal modes. We compare the number of the normal

specified, similarly by thgth eigenvector, as shown in Fig. moges set up between the mirrors with and without the slab PC
2. Since their amplitudes are set so that as a whole, theyaced az=0.

constitute thgth eigenvector’) of S, the wave of any chan-
nel exits the PC after having acquired only a common phase hy 2N
change 2. Thus, for stationary wave propagation, the 1600, () ik #h)-p 0
I . = + .
electric field of a channét abovethe slab turns out to be E(r) h:Ehle:‘ie vi'e coslvl4 + )G, (33)

vigknt +e2i5<i>vf1jleik;-r :e'5(j)vﬁlei(k“h)"’cos(l“hz+ sy, with unknown coefficient<C;, which we determine so that
30 E(r) satisfies the boundary condition. The lateral compo-
(30 nents arex andy, and they are obtained by returning from

wherep=(x,y). The first term expresses the incident light of the local coordinates to the fixed coordinates, which are ob-

Eq. (28) and the second is the light produced by the pclained by using the inverse of the maf“'?f given by Eq.
Similarly, we find below the slab (B1). Retaining a X 2 block of matrix(R};) ™ for conversion

from (1,2 to (x,y), we denote it as;. The procedure of
Vmeik;-r + ezia(Dvﬁzeik;-r - eiz?(j)vﬂ)ei(k‘ﬁh)-pcoq_ Thz+6W). Appendix B then leads to

hy 2N
31 E,(r N ) 4 (i) -
(3D ( x( )) - 2 E eus(J)r;Vﬂ)e|(k”+h).pcos([*h|z| + 5(1))(;]'

The property of even-parity modeé,‘fr:vﬂl(zvﬂ)) was used By(r)/ ey =1
in Egs.(30) and(31). Combining them, we find that the field (39
of the channeh outside the slab has the form () s
the productr,v,” giving a column vector composed of tie
ei(s<i>VE]J)ei<k”+h)-pCOS(rh|z| +5Wy, (32) andy components of/fj). The right-hand side of this equa-

tion should vanish at the mirror surfaceszat+L. Since the
This expression, which has the form of a standing wave, i®lane wavese®*V» of different h's are linearly indepen-
valid both above and below the PC and suits our purpose dgient, it then follows that
determining the eigenvalues. 2N
> @i cogTyL + sD)C;
C. Boundary condition and frequencies of normal modes =1

. . . 2N
To obtain the eigenvalues, we put the PC slab symmetri- 2 e“s(”vﬁ)(l)cos(l“hL . 5(“)Cj

cally between two perfect mirrors, as shown in Fig. 4. We <
place the mirrors at=+L. To determine the normal modes = r; Jz'Nl =0 (35
of the whole space of l=<z< +L, which has the PC at the is0) () 0
center, we impose the boundary condition that the lateral 2 €7 v’ (2)cod Tyl + 7)€,
components of the electric field vanish at the mirrors. =
To find a solution subject to this boundary condition, wefor all h. As the determinant of the 22 matrix r;, is not
superpose Eq.32) overj andh, as zero, the column vector of this equation should vanish.
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Finally, the condition for any open chanrtelleads to

i=1 2
hy [&2 uR)cod Iy L +6D) & “u2(DcosTy L +6@) - | [ Ca
M [ &2 ul)cody L +60) € ud@cosTy L +6?) - || C2
2| &0 pdncosry, L+ 5®) &2 “u2(DcodTy, L+ 6?) Cs
h . ' =0. 36
?| € Muil@codTy L+ 6) &2 u2)cod Ty L+ 5?) (%0
C;
hN CZN
[
This equation reveals that the indgx»f the eigenvalue 0§ Ill. CHANGE OF DENSITY OF STATES

cannot, in general, be the index to specify the normal modes.
Rather, the combined effect of glldetermines the normal
modes. If it were not for the sum ovgrin Eg. (33), we
would have obtained the eigenvalue equation from (86)

as detM =0. (38)

coglyL +89) =0, (37 We can eliminate fromM the factors that are irrelevant in
for a singlej. This equation should be satisfied simulta- determining the eigenvalues. First, we divide each of the
neously for allh’s by the eigenvalue ofs. This is indeed ~Ccolumns by

Let us denote the matrix appearing in E6) of the
even-parity modes abl. The eigenvalues for the normal
modes are obtained from

impossible, for a solution fow of Eq. (37) of a particularh 60 o 39
depends on thdt and it cannot in general satisfy E@7) for e v (39
the other open channels. We further eliminate the factor cdg,L from thehth row and

We have so far concentrated on the even-parity solutiong,os 5 () from thejth column of the matriM , making use of
constructed by using the even-parity eigenphase slhifts

=1,2,...,N. For the odd-parity eigenphase shifts 2N codT,L+ 8W) = cosT,L cos 6 V[1 - tanT'L tan V]
+1,2N+2,...,MN, an analysis similar to the above leads to.
an odd-parity secular equation, which is given by E2f) in Eq. (36). These factors can be removed because they are
with the cosines all replaced by sines. independent either of the phase shit§", 5@, ... or the

When the mirror symmetry is absent in the slab, a super-Size L of the boundary' condition: the'eigenvaluelasmust
position of even and odd modes constitutes a solution. In thid€Pend on them both in view of the induced shifts of fre-
case, the phase space j6f1,2, ..., and that ofj=2N quency from the free-space values. By this procedure, we are
+1,2N+2,...,2N no longer decouple. Extension to this less left with
symmetric case is similarly carried out. Our remaining task detM =0— detM’ =0, (40)
is to count the number of solutions of E6) in a given
frequency range. where

v (1)(1~tanTy L tan §@) p{2(1)(1 - tanT, L tan 5 @)
v (21 -tanly L tan §Y) v{2(2)(1 - tanT', L tan 5?)
vﬁlz)(l)(l —tanly L tan 6W) vﬁzz)(l)(l —tanly L tan 5@)
M=l v -tanl, L tan6@) v2(2)(1-tanl, L tans?) .. |- (41)
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The poles of the factors (even _ 4
APkH(w) = _ANkH(wo; o)

tanTy L, tanTy L,... do
2N
of M’ or the sqlutio_ns of co¥',L=0 in the complex» plane, - illm IogH (1-itans®)
give even-parity eigenvalues of photons in the free space T i1

bounded by the mirrors. Therefore, we conclude that the ei- N A

genvalues perturbed by the presence of the PC are given by 1 dé_(”

the zeros of deM’, while the unperturbed eigenvalues in the T 7S dw (46)

absence of the PC are given by the poles ofMét Thus, .

the increment of the number of the normal modes due to thér even-parity PB’s. This is our final expression for the in-

presence of the slab PC in a frequency interval is given bgrement of DOS of even-parity PB’s. We have assigned the

the number of poles therein minus the number of zeros.  superscript “even” to emphasize that. The expression for the
From the theory of complex functiotsee Ref. 12, for odd-parity PB’s is similar except that the odd-parity eigen-

example, the increment of the number of modes of wavephase shiftss?) (j=2N+1,2N+2,...,4) are used:

vector k; in the frequency intervalw,, w], denoted as AN

L ()
ANkH(woiw)- is given by Apy (w)©99 = 1 > do . (47
/ : ” Ti=one1 Ao
oo 1 | detM'(w+ig)
ANy (wo; @) == _Imilog — 1 (wo+ie) |’ (42) Altogether, we find

where Inj---] stands for the imaginary part df--] and 138 ds

+ie (e=+0) shows that the logarithms are evaluated on the APKH(‘”) = Apk“(“’)(even + A/"ku("’)(omz_E do

Ti=
upper edge of the branch cut on the reahxis. The change =
of DOS at the frequency, denoted byAp, (), is obtained (48)
by differentiatingAN, (wo; ) with respect tow. i.e., thew-derivative of the sum of theM eigenphase shifts

It seems difficult to reduce dé&d’ further to obtain gives the total change of DOS. This expression of the total
Apy (w) because the dependences on the column ihd@xd  increment is shown to be valid in the absence of the mirror
row index j are both present in the matrix elements of Eq.symmetry in thexy plane of the PC.

(42). In the special limitL— <, however, we can proceed
further to arrive at the final analytical expression. In this
limit, we find (Appendix Q IV. APPLICATION TO PHOTONIC CRYSTALS
. . OF SPHERES ARRAYED IN A SQUARE LATTICE
anly(o+igl =i, (L—). (43 AND A SIMPLE CUBIC SO\TTICE
Thus, from Eq.(41), we find

- In this section, we apply the above formula to slab PC’s of

vgll)(l) Uﬁ)(l) vffl)(l) arrayed spheres. We examine 2D systems of dielectric
) @ 3 spheres arrayed periodically. Based on K46) and(47), we

vh, (@) vy, (2 vy () - calculate the DOS for monolayer and stacked layer model

detM’ =def v P(1) vP(1) - - PC's. We choosen, the refractive index of spheres, to be

(f) (22) 1.44, having in mind polytetrafluoroethylenéPTFE?*3

vp,(2) vy (2 e e spheres whose diameter is in the millimeter range, and let the
. . ratio of radiusa of spheres to lattice constaut be a/d

" =0.5, for the system of spheres just in contact in the square

N _ 0 lattice. These parameters correspond to the PC'’s, which were
XH (1-itans?). (44 actually prepared and used to examine their optical proper-
1= ties experimentally in the millimeter wavelength region of
The first factor of the right-hand side is unity and can belight.#
removed. This property of the eigenvectors comes from the Light scattering from a slab of arrayed dielectric spheres
unitarity of theS matrix and the reality of the eigenvectors, is treated precisely by the vector Korringa-Kohn-Rostoker
the latter being guaranteed by the time reversal symmetry dKKR) formalism>-17 and layer KKR formalisnf;*” which

the S matrix. Since give us high-quality numerical data for thleand R lights
N oN and hence th& matrix defined by Eq(23) for a prescribed
. in | = . (i) k, value. All the eigenphase shifts are then obtained by nu-
Im[logjl:[l (1-itand )} gl Im{log(1 =i tan 5] merically diagonalizing th& matrix. We emphasize that Eqgs.

(46) and(47) are general, not limited to systems of spheres,

B 2\ 0 if only the amplitudes ofT and R lights of all the open
‘_; e (45 channels are calculated. We assume the square lattice of
= spheres in the lateral plane and the simple cubic lattice when
we find the layers are stacked.
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FIG. 6. Number of open 2D reciprocal lattice points as functions

FIG. 5. Circles of radiuss and 2D reciprocal latticeéRL) in of w andk,, in the =X direction (k,=0). The numbem of the
thekky plane. The center of the circles shown by the open square igpen RL points is given in parenthesis in each region. Three thresh-
taken at(ky,ky)(d/2m)=(-0.3,0, corresponding to the incident o|d values forwd/2zc of channel opening are given for the case of
conditionk,d/27=(0.3,0 under study. The RL points of the square  d/27=0.3, corresponding to the three circles of Fig. 5.
lattice are shown by open and solid points. Three circles are given
to show the critical situations of channel opening, with the touchingopen channels, in thé,, ) plane for the incident light of
RL point of each case indicated by the filled lattice point. k,=(ky,0). The vertical dashed line corresponds to the case

(ky,ky)(d/27)=(0.3,0, presented in Fig. 5.

First we study the monolayer system. This system was In the frequency region € wd/27c<<0.70, there is no
examined both theoretically and experimentally by Ohtetka diffraction (N=1) for (k,k,)(d/27)=(0.3,0. We have one
al.,!* Kondo et al!® and Yanoet all® Theoretical analysis plane waveT light of a complex amplitud&y, and oneR
was also given for the DOS in the frequency region of nolight of a complex amplitud®,, representing directly trans-
diffraction. In what follows, we investigate the increment of mitted light and specularly reflected light. Ti®ematrix is
DOS for the lateral wave vectér,d/27=(0.3,0, whichwas 4X4, yielding four eigenphase shifts by diagonalization.
chosen arbitrarily. They arep-polarized ands-polarized eigenmodes, both clas-

Figure 5 depicts 2D RL points in thigk, plane, each sified further into even and odd parities of the mirror reflec-
specified by the poin¢27/d)(m,n) of the square lattice. A tion in thexy plane. Thep ands modes decouple because our
circle of radiusw is also shown with its center placed at choice ofk; to be directed along tha axis of the 2D Bril-
k,d/27=(-0.3,0. In the figure, circles of three different ra- louin zone guarantees the mirror symmetry in #zeplane
dii are drawn. From Eq(5), the channeh opens when the (thep mode is even and themode is odgl Analysis of Ref.
radius increases with to cross the poinh. The number of ~11[EQs.(A12) and(A15) thereof proved that the sum of the
the RL points inside the circle is equal to the number of operfour eigenphase shifts is equal to the sum of the phadgof

channels at. of p-polarized incident light and that afpolarized incident
For an incident light of frequency and wave vectok,,  light for the frequency range dfi=1. Namely, the phase of
we can imagine an Ewald sphere of radiusn the (kk,k,)  Too Of the p-polarized light is equal to the sum 6p+) and
space, whose center is placed at (p—) eigenphase shifts. The same holds true Tgg of
s-polarized light. Therefore, the DOS formula defined in Ref.
[- kH,—\J’(w/c)Z—kf . 11 is reproduced by the special caNe1l of the present

. - general theory.
The vector drawn from this center to the oridirO repre- In the frequency regiomd/2mc=0.70, we enter the new

sents the incident wave vectiof. A circle of Fig. 5 may also regime of N=2. We compare the calculated transmittance
be we/ngisazlocus of this Ewald sphere cut by the planer 12 of the direct light with the DOS formula. We restrict
k,=—\(w/c)*~kj, where the center is lying; in this picture, oyrselves to the response of teeolarized incident light,
the lattice points of Fig. 5 are the horizontal view of the 2D pecause the discussion of thencidence is similar.
reciprocal latticerods arrayed parallel ta. Let us first examine what the previous DOS formula,
As o increases in Fig. 5 withk,d/27 fixed at 0.3, yalid only for N=1, yields in the case df=2. Namely, we
the circle becomes larger, touching first the pointp|ot the phase offy, of s light as our DOS. Figure (&)
hd/27T:(—1,0) at wd/27c=0.70, when the diffracted ||ght shows the Ca|cu|ated'|'00|2 for the S_||gh'[' and F|g '(b)
of ki and R light of kj, start to appear in channéld/2m  shows the phase of thelight T, Note that we can treat
=(-1,0. The frequencywd/2mc=1.044 is for the second scalarTy, in obtaining the phase because the polarization of
contact, when two additional channelsd/27=(0,1) and  the directly transmitted light is the same as the incident light
(0,-1), open. The third(fourth) contact takes place at for k, along theA axis. There is perfect coincidence in the
wd/2mc=1.221 (1.30. Figure 6 showsN, the number of positions of the fine structures in Figgayand {b). Conse-
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FIG. 8. Typical example of an abrupt phase change of the com-
plex transmission amplitude. The phase obtained figgh| Tog is
plotted in the frequency region dfi=1. The light iss-polarized
with (ky,ky)(d/27)=(0.3,0, incident on the monolayer PC used in
Fig. 7. The change of the phase is just

and (47), quite different from Lorentzian shapes expected
from the general theory of lifetime broadening. To summa-
rize, the straightforward extension of the DOS formula of
N=1 to the new region oN=2 does not give correct infor-
mation. This incorrect procedure using the previous DOS
formula does not take proper account of diffracted waves.
Therefore, we apply the present formula defined by E6.
and(47) to this condition.

Figure {c) depicts the sum of the eigenphase shifts

4N

2 sW (49

=1

of Eg. (48), which we claim to be a correct formula for the
increment of DOS. We can easily classify by inspection the
whole set of eigenphase shifts into tpe and s-polarized
modes by the numerically calculated eigenvector$.ofVe

PC consisting of a square array of dielectric spheres, whose pararfetain in 1c) only the phase shifts ad-polarized modes to

eters are given in the text. Par{@) shows the transmittance of the
direct light (h=0), defined by|TyJ? Two arrows indicate the
threshold frequencies for the change of the nunibef open chan-
nels, one from the case =4 to N=6 at wd/27wc=1.22 and the
other fromN=6 toN=7 atwd/27c=1.30. See Fig. 5 for the values
of the threshold frequency. Pangl) shows the phase of the com-
plex amplitude derived frorTgo/|Tog/, Which would yield a correct
sum of the eigenphase shifts whdr 1. Panelc) shows the sum of
the eigenphase shifts derived from the formi8). Only the eigen-
phase shifts o&-polarized modes are retained. Pa(dl gives the
correct DOS of thes-polarized PB’s, which is defined by E@8).

quently, the DOS formula valid foN=1 still works in the
caseN=2 for simply determining the existence of PB’s.

obtain the DOS of-active PB’s, which is to be compared
with the s transmittancgT,g? given in (a). We display the
sum of the phase shifts by dividing it into + parities of the
mirror symmetry with respect to they plane. Pane{c) ob-
viously confirms that the sum of the eigenphase shifts cor-
rects the insufficient magnitudes of the jumps at the excited
PB modes shown in Fig.(3).

Figure 1d) shows itsw derivative, the DOS of the PB’s
of (ky,ky)(d/2m)=(0.3,0. The DOS profile consists of
Lorentzian peaks, as it should, whose full width at half-
maximum (FWHM) gives the inverse of the lifetime of the
PB’s. Any optical response of a PC is related more or less to
its DOS profile and generally has a resonant enhancement

However, we note that a correct DOS change due to th@ccompanying a PB excitation. For example, the FWHM of
presence of a PB mode should be one; i.e., the sum of thexcited PB modes primarily determines the emission spec-

phase shifts should change by wheneverw increases to

trum from an atom in a PC. Three DOS peaks around

cross a PB mod&. In Fig. 7(b), we see that the change of the wd/27c=1.3 of Fig. 7d) provide an estimate FWHM

phase shift at any fine structure is very short maf (For

=Awd/27c=0.01, leading to an estimate @=w/Aw

comparison, in Fig. 8, we plot the situation seen in the regior=100. The kinks seen at the frequencies of channel opening

of N=1 to show that the procedure indeed works therae

in Fig. 7(d) are interesting. The singular behavior of the

DOS of PB’s and the leakage-induced lifetime estimatedspectrum associated with the channel opening has been his-
from Fig. 7b) are hardly reliable. For example, peaks andtorically named the Wood anomadf/and was analyzed in

humps of the curves of Fig(@) produce singular line shapes
in the DOS profile when differentiated according to Hg%)

detail in quantum mechanics text bokVarious kinds of
singularities, appearing often as sharp kinks but sometimes
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DOS profile(s-polarized PB’$. Panel(a) shows the band structure
FIG. 9. Increment of DOS of a slab PC of stacked 2D layers a®f @ 2D PC(a monolayer array of sphepealong thel'-X axis in

a function of frequencyNs is the number of stacked layers. The the 2D Brillouin zone. The parameters for the PC are the same as
result is given for PB’'s ofs polarization with (k,,k,)(d/2) used above. The solid circles correspond to the even-parity modes

=(0.3,0. Panel(a) is a reproduction of Fig. (@) and shows the ©f s polarization, while the dotted circles represent the odd-parity
DOS of a monolayer PONg=1). The solid(dashedl curve shows Mmodes ofs polarization. A vertical line is drawn &,d/27=0.3,
the even-parityodd-parity PB’s. TheQ values of PB’s improve, or ~ corresponding to the case examined in Fig. 7. Péeneshows how

their lifetimes become longer and the density of the peaks increasef!e Width of a DOS peak depends on the band index and wave-
when N, increases. vector. The phase space enclosed by the rectang ism examined

in (b).

as dips or inflection points, are known to arise in the trans-
mission spectrum. See Ref. 22 for the variety of singularitiesabove to be about 100. In this way, we can quantitatively
in the case of a PC. In Fig(d), we have plotted thincre-  discuss the bonding and antibonding splitting of lifetime-
mentof DOS due to the presence of a slab PC and denoted liroadened degenerate levels through the correct DOS for-
simply as DOS. Actually, therefore, a negative DOS of Fig.mula and can calculate th®@ values of the split levels as
7(d) just above the channel opening stands faleareaseof ~ functions of Ng. These features are extensions of what was
DOS. We believe the negative increment of DOS to be dound previously in the frequency region of no diffractim.
genuine feature associated with Wood anomalies. The plot of the positions of the DOS peaks as functions of

Next, we turn to the systems composed of stacked layerk; gives the band structure of leaky PB’s. Figurga@llus-
of arrayed PTFE spheres. LBt be the number of stacked trates the band structure fé=(k,,0), i.e., along the'—X
layers. For this case, too, a theoretical analysis of DOS wadirection of the monolayer PC examined in Fig. 7. We show
given previously in the region dfi=1.° In the bilayer sys- only the band structure dcd-active PB’s, derived from the
tem (Ng=2), the monolayer photonic bands of each of thes-active eigenphase shifts. The emgfifled) circles corre-
two layers, which will be doubly degenerate if they are suf-spond to the modes with evén) [odd (-)] parity with re-
ficiently far apart, are coupled to produce bonding and antispect to thexy mirror symmetry. The general features of the
bonding PB state¥2* Therefore, ad\, increases, the band calculated band structure are understandable using the band
population increases in a given frequency range. Figure 8tructure of an empty lattice. The similarity to an empty lat-
shows DOS obtained from our formulfiggs.(46) and(47)] tice stems from the fact that we have used a small refractive
for severalNg in the same frequency range and array ofindexn=1.44 in the analysis. For a PC of larggrno prob-
spheres as above. Except in the regions of channel openinlgm arises except for a slower convergence in the calculation
we can clearly see the bonding and antibonding splittingpf the matrixS, which, too, is overcome by the KKR formu-
when Ng becomes twice as large. The resonant optical refation used here.
sponse of a PB becomes sharper and sharper in accordanceln the band structure of Fig. 18), there are some bands,
with the sharpening of DOS peaks Blg increases. We can with disconnected parts, which are too broad to produce a
see that the DOS peaks fg=4 have theiQ values several distinct peak there. Figure {9 illustrates this feature in the
times larger than those in the system =1, estimated frequency region enclosed by the square in Figal0rhe
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DOS profiles for even-parity+) modes with several values Culture, Science and Technology of Japan. This work is also
of k. are given in Fig. 1(), which shows that the lifetime of supported by a Grant-in-Aid from the same ministry.

a leaky PB depends both on the wave veg&toand the band

index231As k, becomes larger, the two peaks approach and

at k,d/27=0.13 they coalesce into a single broad peak,APPENDIX A: FORMS OF 3NX3N MATRICES T ** AND T’
shown by the thick solid line. A further increaseky how-
ever, resolves two modes agaie.g., the case okd/2m
=0.16. Neark,d/27=0.13, we cannot follow the two modes

The ANX 3N matricesT** andI" used in introducing the
6N X 6N matrices in Eqs(17) and(18) are given here. The
matrix T** is defined by

precisely.
oy Thn, Thony o T,
V. SUMMARY Tioh Thzh Th2h3 T;;hN
This paper pre,se_nts a formula for the DOS of leaky PB’s. T = T;;h Th3h2 ;;hs T;;hN . (AD
The DOS of PB’s in the leaky region of the phase space
(w,k)) is a key factor that determines the magnitude of the :
resonant enhancement of optical signals from PC’s, such as Toh Totn T o0 Toh
N1 N2 N''3 NN

the emission cross-section of photons from an imbedded
atom, for examplé®-*°In the DOS calculation, a complica- The 3x 3 blocksTy, , etc., are introduced in E¢L0). Other
tion arises from the need to take account of the presence efatricesT™", R*", etc. are similarly defined using tig,
energy-carrying diffraction channels. We have shown that thgpq R/, respectively. v
DOS of leaky PB’s of slab PC’s is obtained from the com- The 3\|><3N diagonal matrixI" used in Eq.(18) is de-
plex transmission and reflection amplitudes of all the I|ghtsf ned by
incident in the open channels and that it is expressed by the
eigenphase shifts obtained by diagonalizing $heatrix de- I'n, 0 0 .. O
fined using all the diffracted lights. r

Based on the derived formula, we analyzed the transmit- 0 hp 0 ... 0
tance of incident light for PC’s of arrayed spheres and dem- 'y o 0 l“h3 .0 |= thghnhm’ (A2)
onstrated that the extended definition of the scattering matrix . L .
given in this paper is very crucial in the frequency range
where the diffraction channels are open. To show the useful- 0 0 0 .. T
ness of the formula, we have calculated the dispersion rela-

tions and lifetime of PB’s from the DOS profile obtained for where the X3 diagonal matnx'[‘h is

a model PC of arrayed spheres of finite thickness. X y z
Recently, the local density of statésDOS) of electro- T 0 o
magnetic fields near the solid state surfaces is exarfined x[oh (A3)
and it is shown that the LDOS related to the surface states of r,=yl 0 I'h 0
a solid is accessible by scanning near-field spectroscopy im- z\ ; o T,

ages obtained experimentally. The LDOS at a poing in
essence the DOS times the squared eigenvectarohthe
electromagnetic normal modes. The genuine DOS of a sys-
tem is thus a quantity which remains after integrating out the ~ APPENDIX B: CHANGE BETWEEN THE LOCAL
eigenvectors in the LDOS. It is thus determined solely by COORDINATES AND FIXED COORDINATES
how the poles are distributed in the complex frequency space
of electromagnetic Green’s functions. The essence of th?je

present paper is that the DOS in the leaky region is obtaln_l_hflned with respect to the ﬁxid co%rdinart]e sys’:ﬁa«zlz} local
able from the far-field amplitudes of incident light waves, in '€ {Xy2 components are transformed to those of the loca

contrast to that of LDOS, which is related to the near-fieldco0rdinates123 of a light of wave vectorsj, by a 3x3
information; the DOS is accessible by conventional measurdfansformation matrix

Using the polar anglesg,, ¢y of the wave vectoi,,

ments of the light transmission and reflection. This statement RX R R+112
holds not only in slab PC’s concerned in this paper, but also . hx n >
in ordinary solid state systems. Rp=| R RY RS

Since the formula requires only the complex amplitudes R¥ RY R¥

of the reflected and transmitted waves, its applicability is

quite general and not limited to PC’s of spheres. COCOSpy  COHSing, =+ sindl,

= ¥+ siné, COSpy, 0 . (Bl
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1 1z
RY R (X> :r;<1>, (B5)

Rfl1x
Ton = RETan (R = | RY RY RY y/ 2
3X 3y 74 .
Rn R Rﬁ namely, the productt;vﬂ) gives thex andy components of
1x X 3x \ t () . . . .
LIV I Ry RO R vy,’. This product notation is used in E(B4).
x| Ty Tow T || RY RY RY | (B2)
b T Tt 17 27 3z APPENDIX C: REDUCTION OF THE MATRIX
TZX sz TZZ th Rﬁ/ th Mr OF EQ (42)

This procedure causes the matrix elements related to the lo-
. : . . ) In Eqg. (5), we note
cal coordinate 3i.e., third row or third column of the right- a0

hand S|d¢.to vanish piturally. In th|§ Wi)i' we are left W.Ith a Ty(w+ie’) = [+ ie)/cP = (k, + M)
2X 2 matrix denoted | ,. By arrangingT  ,, etc., according 5 5 _
to the channel labels, we may constructNvd4N S matrix. =\V(w/c)* = (kj+h)*+ie=I'y +ie (C1)

This is theS matrix S defined by Eq(23). . o
When we impose the boundary condition at the boundaryVith an infinitesimale(e>0), and hence
mirrors on thex andy components of the electric field of
channeh, we have to return from the local coordina{é@3 gln(wHel = glplel (C2)
to the {xyz system. For the components 1 and 2 of jtie
eigenvector\/ﬂ) introduced in Eqs(24) and(26), this is ac-  Thus,

complished by
. exdiFhL - EL) - eXF(_ IFhL + EL)

() ) tanT(w+ie)L=—i—— . .
<(U:‘.) X) = (r;)t<(vp) 1) , (B3) n(w+i€) explilyL — eL) + exp(— il L + el)
(Uh] )y Uh] )2 (C3)
where the Z 2 transformation matri)@r;)t is the 2X 2 upper
left block of In the limit L — oo, we obtain
x1) (%2 (x3 tanTh(w+ie)L —i, (L— o). (e2)
ROT=RN' =D 2 3], (B4 _ o
1) 22 (23 Therefore, theh dependence, in théh,j) matrix element
whereR; is defined by(B1) and (x, 3), for example, is the 1-tanl(w+i€)L tans (C5)
direction cosine between theand 3 axes. Théx,y) com-
ponent ofvﬂ) is obtained compactly by of the matrixM’ disappears, and we obtain Eg4).
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