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We develop a theory of light transmission through the aperture-type near-field optical probe by taking into
account the effects associated with light absorption inside its semiconducting core. Our model is based on the
exact description of the transverse-magnetic(TM) eigenmodes inside a conical waveguide with perfectly
conducting metallic walls. A dissipative matter of its core is described by a complex frequency-dependent
dielectric function. Analytical formulas are derived for the energy density distributions of the electric and
magnetic fields inside a probe. Particular attention is paid to the evaluation of the near-field transmission
coefficient of a metallized silicon probe in the spectral region from 400 nm to 830 nm. We study the depen-
dences of the optical transmittance on the light wavelength, the aperture diameter, the taper angle as well as on
the length of the probe. It is shown that the behavior of the electromagnetic fields and the transmission
coefficient for the Si probe differ dramatically from the case of a loss-free dielectric core. In this work we point
out that the use of a short Si probe instead of a glass one allows us to achieve a strong enhancement in the
transmission efficiency in the visible and near-infrared spectral regions.
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I. INTRODUCTION

The intensive development of scanning near-field optical
microscopy(SNOM) during the last two decades has already
led to enormous progress in studies of different nanoscale
phenomena.1–3 The SNOM technique makes it possible to
exceed the classical diffraction limit in optics and to achieve
a subwavelength spatial resolution reaching,l /20. An effi-
cient employment of the aperture-type scanning near-field
optical microscope in the “illumination mode” regime is pro-
vided by a subwavelength-sized source of radiation(see Ref.
2). Such a source must have a sufficient intensity to achieve
an appreciable high signal-to-noise ratio. This quasi-point
light source without any background is usually obtained by
the use of a metallized fiber probe, tapered to a subwave-
length transverse size at its exit, or microfabricated cantile-
ver probe, consisting of solid quartz tip. Although special
efforts4–7 were aimed at increase of the resolution capability
of such probes down to&30–40 nm, their usual spatial reso-
lution is presently about 70–100 nm. This comes as a result
of low optical transmission efficiency of the metallized fiber
or quartz probes tapered to a small transverse sized,l /20
(i.e., ,25 nm for a visible light). Therefore, the most serious
problem is a simultaneous increase of the transmission effi-
ciency and spatial resolution capability of such optical
probes(see Refs. 1 and 2).

As follows from numerical calculations,8 particularly
large values of the transmission efficiency can be achieved
when taper angles of near-field probes are large. This con-
clusion was supported by several experimental works4,7,12–14

and recent calculations.9–11 Note that a significant enhance-
ment in the near-field intensity on the probe exit can be
achieved by the use of asymmetric structures with a sharp
edge at the foot of the probe15 as well as double-tapered16,17

and triple-tapered16 structures. Such structures make it easier
to excite the plasmon modes in a metallic coating of the
probe. As follows from the available calculations,8 for an
entirely metal-coated probe its resulting optical transmittance

can be significantly increased due to the plasmon-supported
mechanism of light propagation. It is also worthwhile to re-
call here several papers devoted to the theoretical consider-
ation of some optical systems involving both a dielectric core
and a metallic cladding(see Refs. 18–22). In particular, the
authors of Refs. 18 and 22 discussed in details the surface
plasmon-polaritons on metal cylinder with dielectric core.
Such a cylindrical waveguide is a useful model for the de-
scription of optical transmission through a near-field probe
with a slightly conical shape.

Another possible way to enhance the optical transmittance
through a near-field probe with a subwavelength aperture is
the use of a core consisting of a semiconducting matter with
a high refractive indexn. It is clear that the increase in trans-
mittance with increasingn occurs due to the decrease of light
wavelengthlc inside the core matter. So, for a fixed fre-
quencyv and geometrical parameters of an optical wave-
guide its critical radiusacr~lc decreases(lc=l /n, where
l=2pc/v is the wavelength in vacuum). Consequently, at
high n the cutoff effect, which strongly reduces the light
intensity at the exit of an optical probe, affects its transmis-
sion efficiency much less than in the case of a glass.

As was pointed out in Refs. 23 and 24, the use of the
silicon probes appears very promising for applications of the
transmission SNOM technique in the near-infrared(IR) and
mid-IR spectral regions, where Si is transparent. This con-
clusion was supported by a comparative theoretical
analysis25 of the transmission efficiencies of glass and silicon
probes in the near-IR region. Numerical calculations were
made in Ref. 25 by using the two-dimensional model19,20 of
near-field probes with a small apex angle of 15° atl
=1.3 mm. Recently, the authors of Ref. 26 have employed a
pyramidal silicon probe that was entirely coated with a thin
metal film to increase the transmission efficiency in the
near-IR regionsl=830 nmd. According to, Ref. 26, the elec-
tromagnetic radiation propagating inside the silicon core in
the vicinity of the metallic tip is converted into a surface
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plasmon mode. An extremely high throughput(up to 2.3%)
was achieved in this experiment with the resolution capabil-
ity of about<85 nm.

In the near-IR region the light absorption of Si is small
and can be neglected if the probe length is not too large. But
in the visible region, the absorption rapidly increases with a
decrease of wavelength. Here the losses become important
and should be taken into account in order to get an adequate
physical pattern of light transmission through a silicon core
of a probe. As a result, we have an additional attenuation of
the incident optical field, associated with active losses in a
dissipative medium. Thus, the gain in the transmission effi-
ciency of a semiconducting core due to its high refractive
index may be counterbalanced by the growth of light absorp-
tion in the visible spectral region. To deal with these two
competing tendencies one needs a detailed theory.

As follows from our recent calculations27 the use of a
near-field probe with the Si core instead of a glass one allows
to achieve a strong enhancement in the transmission effi-
ciency not only in the IR but also in the visible spectral
range. The major aim of the present work is to elaborate a
detailed theoretical model of light transmission through an
optical probe by taking into account the effects associated
with light absorption inside a core matter and frequency dis-
persion of its dielectric function. Our consideration is based
on the exact analytical description of the conical waveguide
eigenmodes inside a probe with a dissipative matter in its
core and perfectly conducting metallic walls. A complete
theory should additionally include the optical characteristics
of a real metallic cladding. However, we concentrate here on
a study of a mechanism of light transmission at which the
energy is transported only by electromagnetic waves inside a
core. A discussion of mechanisms, associated with plasmon-
polariton modes in a metallic cladding, is outside the scope
of the present work. In the case of a loss-free dielectric core
(optical fiber or quartz), a similar analytical approach for the
description of light transmission through the conical wave-
guide, operated in the “illumination mode” regime, has been
used in our recent works.10,11 As in Refs. 10 and 11, our
attention here will be focused primarily on calculations of
the near-field transmission coefficient associated with the
field transformation from the waveguide entrance to the near-
field zone at the exit plane.

We consider the transverse magnetic(TM) field modes
(i.e., the electric-type waves) throughout this work. The most
interesting case corresponds to the TM01 mode with the
lowest-order indices. For such a mode there are only three
field components, which are not equal to zero. This makes it
possible to present a theoretical technique for the description
of the field transmission through an optical probe in the most
compact form and, hence, to concentrate the main attention
on a discussion of new effects associated with a dissipative
matter in its core. In addition to that for the TM modes there
are some specific features of the optical field in the near-field
zone at the exit of a probe. For example, at small distances
from the cone vertexsr !ld the energy density associated
with the electric field is much greater than that of the mag-
netic field. Since the electric fields dominate a light-matter
interaction this case is of particular important for a SNOM
technique. For the dominant transverse-electric field mode

sTE11d, the study of light transmission through a near-field
probe with a silicon core will be the subject of a separate
work.

Our calculations cover a wide range of light wavelengths
and geometrical parameters of the silicon probe including the
most interesting case of large taper angles and sufficiently
small aperture diameter reaching,l /20. It is natural that a
high spatial resolution capability of an optical probe can be
achieved only for a small exit aperture. However, a practical
limit to spatial resolution of the aperture-type metallized
probes is determined by the penetration depth of the electro-
magnetic field into the metallic cladding(see Ref. 2).

The paper is organized as follows. First, we describe our
theoretical approach and present basic formulas for the elec-
tromagnetic fields and energy density distributions inside a
cone, including some asymptotic expressions at small and
large distances from its vertex as compared to the wave-
length in a core medium(Secs. II and III). In Sec. IV we
consider the behavior of the near-field transmission coeffi-
cient as a function of the geometrical parameters of a probe
and the characteristic length of light absorption inside its
core. Section V contains the results and discussions of our
calculations for the TM01 eigenmode inside the metallized
cone with a silicon core. In Sect. VI we present the conclu-
sions.

II. FORMULATION OF THE PROBLEM. TRANSVERSE-
MAGNETIC WAVES

We consider here time-harmonic electromagnetic fields
inside a cone whose core consists of a dissipative medium
and whose walls are perfectly conducting(see Fig. 1). As
noted previously, here we are interested in the field, which is
transverse magnetic with respect to the radial coordinater.
To construct this field in spherical coordinatessr ,u ,wd we
must take the magnetic vector potentialA with only one
nonzero componentAr ;Usr ,u ,wd (i.e., Au=Aw=0d, and

FIG. 1. Schematic illustrating a metal-coated conical waveguide
with a silicon core. 2a is the aperture diameter, 2u0 is the cone
angle,z0 is the longitudinal coordinate at the waveguide exit,r in

andzin=r in cosu0 are the radial and longitudinal coordinates at the
waveguide entrance, respectively.
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choose the electric vector potential to be equal to zero.28

Herer is the distance from the cone vertex, andu andw are
the polar and azimuthal angles, respectively. According to
Ref. 28 the basic equation for theU-function has the form

]2U

] r2 +
1

r2F 1

sin u

]

] u
Ssin u

] U

] u
D +

1

sin2 u

]2U

] w2G + k2U = 0.

s1d

For a dissipative matter, the wave numberk in Eq. (1) is
complex:

k =
v

c
Î«m, Î«m = n + ik. s2d

Here v=2pc/l is the frequency,c is the velocity of light,
andl denotes its wavelength in vacuum, andn andk are the
refractive index and the attenuation coefficient, respectively.
Assuming the permeabilitym=1, the real and imaginary
parts of the frequency-dependent dielectric function«svd
=«8svd+ i«9svd can be written as

«8 = n2 − k2, «9 = 2nk. s3d

For the electric-type(transverse magnetic, TM) waves
considered in the present paper, the field components can be
expressed in terms of theU-function by means of the follow-
ing relations:28
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v2s«8 + i«9d

c2 U, Eu =
1
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r sin u
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c

1

r
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] u
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Note thatEr, Eu, Ew andHr, Hu, Hw mean the projections of
electricE and magneticH fields onto the corresponding axes
of spherical coordinatessr ,u ,wd. For the electric-type waves,
the boundary condition at an interface between a core and
perfectly conducting metallic coating of a waveguide can be
written as

uUsr,u,wduu=u0
= 0, s6d

whereu0 is the cone half-angle(see Fig. 1). This condition
yields Ersu0d=0, and Ewsu0d=0 for the tangential compo-
nents of the electric fieldE at u=u0.

The relevant(nonsingular atr →0) solution of Eq.(1) has
the form

Usr,u,wd = RsrdPn
mscosudeimw, s7d

Rsrd = CrjnFsn + ikd
vr

c
G , s8d

at which the radial dependenceRsrd of the vector potential
(7) is expressed through the spherical Bessel function of the
first kind jnszd with the indexn not equal to an integer. Here
C is a constant. Expression(8) describes the standing wave
with vanishing amplitude at the cone vertexsr =0d. The de-
pendence on the polar angleu is determined by the associ-
ated Legendre function(see Ref. 29) of the first kind
Pn

mscosud with powern and orderm (m is an integer).
At large distances from the cone vertexsr @1/ukud, the

asymptotic expression for the radial part of the vector poten-
tial (8) can be written as

R <
C

2isv/cdsn + ikdHexpF− k
vr

c
+ iSn

vr

c
−

pn

2
DG

− expFk
vr

c
− iSn

vr

c
−

pn

2
DGJ . s9d

This expression describes two waves traveling in the oppo-
site directions, with the amplitudes differing by the factor
exps−2kvr /cd. For the nondissipative mediumsk=0d the
asymptotic expression(9) at r @c/nv is reduced to an espe-
cially simple form:

Rsrd <
C

snv/cd
sinSn

vr

c
−

pn

2
D . s10d

The radial dependence of theR function in the vicinity of
the cone vertexsr ! sc/vd / un+ ikud is determined by the
power law

Rsrd <
CÎp

2n+1Gsn + 3/2dFvsn + ikd
c

Gn

rn+1. s11d

It is evident from Eq.(11) that the field amplitude rapidly
drops with a decrease of the radial coordinate and vanishes at
r =0.

With the help of Eq.(7), the boundary condition(6) can
be rewritten in terms of the associated Legendre function
(see Ref. 28)

Pn
mscosu0d = 0. s12d

Each choice of numbersm sm=0,1,2, . . .d and s ss
=1,2,3, . . .d in this equation determines a possible TMms

field mode[s denotes the number of the corresponding root
of Eq. (12) such thatnm1,nm2,nm3,¯]. The eigenvalues
nms of Eq. (12) depend upon the cone half-angleu0, such that
nms increases as theu0 value decreases. For the lowest-order
mode(s=1, m=0) numerical solutions of Eq.(12) are given
in Ref. 11 for several magnitudes of the cone half-angleu0
=p /24, p /12, p /6, p /4, p /3, andp /2.

In the present paper we shall consider only the lowest-
order electric-type wave, i.e., the TM01 mode withm=0 and
s=1. In this case]U /]w=0 and we have only three field
components,Er, Eu, andHw, which are not equal to zero[see
(4), (5), and(7). Substituting Eq.(7) into (4) and(5) we get
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Er =
nsn + 1d

r2 RsrdPnscosud, s13d

Eu =
1

r

] Rsrd
] r

] Pnscosud
] u

, s14d

Hw = i
vs«8 + i«9d

c

1

r
Rsrd

] Pnscosud
] u

, s15d

where Pnscosud is the Legendre function of the first kind
and ordern (see Ref. 29).

III. ENERGY DENSITY DISTRIBUTIONS INSIDE A
METALLIZED CONE WITH A LOSSY MATTER IN ITS

CORE

In dissipative media with frequency-dependent dielectric
function«=«8+ i«9 and permeabilitym=m8+ im9, the general
expressions(see Ref. 30) for the time-averaged densities of
the electromagnetic energywel=wr +wu, and wm=ww are
given by

wel =
1

16p

dsv«8d
dv

suEru2 + uEuu2d, s16d

wm =
1

16p

dsvm8d
dv

uHwu2, s17d

where «8=Reh«j and m8=Rehmj. The total time-averaged
energy density of the electromagnetic field iswtot=wel+wm.
To determine the near-field transmission coefficient of a trun-
cated conical waveguide(see below Sec. V) we also intro-
duce the following quantities:

Wbsrd = 2pr2E
0

u0

wbsr,udsin u du, s18d

which represent the integrals ofwr, wu, or ww taken over a
part of spherical surface lying inside the cones0øuøu0,0
øwø2pd at a given distancer from the cone vertex. Equa-
tion (18) can be rewritten as

Wbsrd = 2pr2s1 − cosu0dkwbsrdl, s19d

wherekwbl denotes the energy density of the corresponding
field componentsb=r ,u ,wd, averaged over the polar angle.

With the help of relations(7) and(8), (13)–(18), the inte-
gral energy densityWb can be evaluated explicitly. The re-
sulting expression for the integral energy densityWr is given
by

Wrsrd =
uCu2

8

dsv«8d
dv

fnsn + 1dg2In
s1dU jnFsn + ikd

vr

c
GU2

,

s20d

whereIn
s1d is the angular integral,

In
s1d =E

0

u0

fPnscosudg2sin u du. s21d

The expression for theWu component can be obtained if we
use the recurrence relation for the derivative of the spherical
Bessel function. Then, using Eqs.(8), (14), (16), and (18),
we get

Wusrd =
uCu2

8

dsv«8d
dv

In
s2dUsn + 1d jnFsn + ikd

vr

c
G

− Fsn + ikd
vr

c
G jn+1Fsn + ikd

vr

c
GU2

. s22d

The angular integralIn
s2d in (22) can be directly expressed in

terms of(21),

In
s2d =E

0

u0 F ] Pnscosud
] u

G2

sin u du = nsn + 1dIn
s1d. s23d

Similarly, by using Eqs.(8), (15), (17), and (18) we obtain
the expression for the azimuthal component of the integral
energy density,

Wwsrd =
uCu2u«8 + i«9u2

8
Svr

c
D2

In
s2dU jnFsn + ikd

vr

c
GU2

.

s24d

The total density of electromagnetic energy inside a cone,
integrated over 2pr2sin u du (0øuøu0, 0øwø2p), can
now be evaluated as

Wtotsrd = 2pr2E
0

u0

wtotsr,udsin u du = Wrsrd + Wusrd + Wwsrd.

s25d

At small distances from the cone vertex compared to the
light wavelengthlc=l /n in the core mediumsr !lcd, the
basic expressions(20), (22), and(24) for the integral energy
densities of various field components can be expanded in
power series ofukur. Then, the resulting expression for the
integral energy densityWtotsrd, summarized over all field
components(25) takes the form

Wtotsrd < jn

uCu2In
s2d

16

dsv«8d
dv

Sun + iku
vr

c
D2n

. s26d

Herejn is a constant,

jn =
psn + 1ds2n + 1d
22n+1G2sn + 3/2d

, s27d

whose magnitude is determined by the eigenvaluen
;n01su0d of the TM01 mode. Note that the main contribution
to Eq.(26) is determined by the energy density of the electric
field. This fact directly follows from the simple relation
kwml / kwell~ sukurd2 for the ratio of the energy density of the
magnetic field to that of the electric field atr !1/uku.
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Expressions for the integral energy densitiesWr, Wu, and
Ww at distances from the cone vertex much greater than the
wavelength in the core mediumsr @lcd, directly follow from
the corresponding general formulas(20)–(24) with a help of
the asymptotic expression for the spherical Bessel function
jnszd with a complex argument. Here we present the final
asymptotic expressions only for the integral energy densities
of electric,Wel=Wr +Wu, and magnetic,Wm;Ww, fields:

Wel <
uCu2

16

dsv«8d
dv

In
s2d 3 FcoshS2k

vr

c
D

+ cosS2n
vr

c
− pnDG , s28d

Wm <
uCu2

16
u«8 + i«9uIn

s2d 3 FcoshS2k
vr

c
D

− cosS2n
vr

c
− pnDG . s29d

The asymptotic expression for the integral density of the
total electromagnetic energyWtot=Wel+Wm inside the cone
with a dissipative medium in its core has the form

Wtot <
uCu2

16
In

s2dHFdsv«8d
dv

+ u«uGcoshS2k
vr

c
D

+ Fdsv«8d
dv

− u«uGcosS2n
vr

c
− pnDJ . s30d

As follows from (30), the integral energy densityWtotsrd
as a function of the radial coordinater exhibits an oscillatory
behavior at distances far from the cone vertexr @c/vun
+ iku. These oscillations are the result of the frequency-
dependent dielectric function; they are absent if the core is
made of a loss-free medium(«8=const and«9=0). Then, in
accordance with Refs. 10 and 11, the asymptotic expressions
(28)–(30) take a particularly simple form at large distances
from the cone vertexr @c/nv:

Wel <
uCu2«

8
In

s2d cos2Snvr

c
−

pn

2
D , s31d

Wm <
uCu2«

8
In

s2d sin2Snvr

c
−

pn

2
D , s32d

Wtot <
uCu2«

8
In

s2d. s33d

For a lossy matter the amplitudes of the electric[Wel
~dsv«8d /dv, Eq.(28) and magnetic[Wm~ u«u, Eq.(29) com-
ponents of the integral energy densities are unequal and can
significantly differ from each other. We illustrate this fact in
Fig. 2 by presenting the wavelength dependences of the real
part, «8, of the dielectric function of silicon and the corre-
sponding effective value of«ef f8 =dsv«8d /dv in spectral re-
gion from 400 nm to 830 nm. Therefore, the oscillations of
the electric and magnetic components of the integral energy
density do not compensate each other far from the cone ver-

tex, and this results in the appearance of nonvanishing oscil-
lations in the radial dependence of the total sum ofWtot
=Wel+Wm. According to Eqs.(28) and (29) the ratio of the
oscillating and monotonic components of the integral energy
densityWtot is determined by the factor

gsvd =
dsv«8d/dv − u«u
dsv«8d/dv + u«u

<
vd«8/dv

2«8 + vd«8/dv
. s34d

The second approximate equality in Eq.(34) is valid if the
losses, associated with light absorption, are not too large
such that«9!«8.

As follows from (34), the value ofg turns out to be small
sg!1d, when the dispersion of the dielectric function is suf-
ficiently small svd«8 /dv!«8d. Then, the amplitude of the
oscillating component of the integral energy densityWtotsrd
at large distances from the cone vertexsr @lcd is small, so
that this effect can be neglected[see Eqs.(31)–(33)]. This is
the case of a near-field probe with a glass or a quartz core. In
the opposite case of large dispersionvd«8 /dv@«, the value
of (34) becomes approximately equal tog<1. So, the am-
plitude of the oscillating component of the integral energy
densityWtotsrd becomes large. This is the case of a near-field
semiconducting probe with a substantial influence of light
absorption in the core matter.

The integral energy densityWtotsrd far from the cone ver-
tex r @lc, averaged over the oscillations in Eq.(30), takes
the form

W̄tot <
uCu2

16
In

s2dFdsv«8d
dv

+ u«uGcoshsr/rkd. s35d

Here rk is the attenuation length:

rk = c/2kv = l/4pk. s36d

For a loss-free matter the expression(35) is reduced to(33).
It is important to stress that in the presence of a dissipa-

tion there is a significant difference in magnitudes of the
energy fluxes associated with the forward and the backward
waves:

FIG. 2. The real part«8 of the dielectric function(dashed curve)
of Si obtained by interpolating experimental data Ref. 35 and the
effective value«ef f8 =dsv«8d /dv (full curve) versus the wavelength
in vacuuml.
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Sfsrd =
cW̄totsrd

n

expsr/rkd
expsr/rkd + exps− r/rkd

, s37d

Sbsrd = −
cW̄totsrd

n

exps− r/rkd
expsr/rkd + exps− r/rkd

. s38d

Their ratio uSb/Sfu is equal to exps−2r / rkd. Expressions(35),
(37), and (38) are valid provided that a distance from the
cone vertex significantly exceeds the radiation wavelength in
the corer @lc=c/nv.

IV. THE NEAR-FIELD TRANSMISSION COEFFICIENT OF
A CONICAL WAVEGUIDE

A. Basic expression

Let us now discuss the problem of light transmission
through a conical waveguide. It is well known that for propa-
gating time-harmonic waves, the transmission coefficient is
defined in terms of the energy flux(more precisely, it is a
ratio of the transmitted intensity to the incident intensity of
electromagnetic field, see, e.g., Ref. 28). In the case of an
optical probe tapered to a subwavelength-sized diameter, we
deal with nonpropagating waves. In this situation it is neces-
sary to distinguish a near-field transmission coefficient of a
waveguide and the transmission coefficient to the far-field
zone(see Ref. 2). The evaluation of the far-field transmission
coefficient includes a consideration of the field transforma-
tion from the waveguide exit to the far-field zone in free
space. A consideration of this stage of the field transforma-
tion is somewhat similar to the well-known problem31,32 of
diffraction by a small aperture(see Ref. 33 for the so-called
hypergeometric waveguide, and Ref. 34 for the conical ge-
ometry).

The near-field transmission coefficient,T, can be ex-
pressed in terms of the time-averaged energy densities asso-
ciated with the output and the input fields of the waveguide.
For spherical waves, it can be defined as the ratio,11

T =
Wtot

out

Wtot
in , s39d

of the time-averaged energy densityWtot
out;Wtotsz0d at the

exit planez=z0 of a truncated cone(see Fig. 1) integrated
over the aperture cross section:

Wtot
out = 2pE

0

a

wtotsr,z0drdr, a = z0 tan u0, s40d

to the corresponding integral energy densityWtot
in at the

waveguide entrance. The total energy densitywtot=wr +wu

+ww in Eq. (40) can be evaluated with the use of expressions
(16) and(17), in which the field componentsEr, Eu, andHw

should be taken at the exit planez=z0 of the waveguide.
In dissipative media, the basic expression for the near-

field transmission coefficient,T, of an optical probe should
be somewhat modified compared to the case of a loss-free
medium(see Refs. 10 and 11). It can be defined by the rela-
tion (39), in which the integral energy density at the exit

aperturesWtot
outd is given by Eq.(40), while the value ofWtot

in

has the form

Wtot
in = a2pr in

2E
0

u0

wtotsr in,udsin u du. s41d

Here r in is the input value of the radial coordinate, i.e. the
distance from the cone vertex to the waveguide entrance(see
Fig. 1). The integration performed in Eq.(41) includes the
part of the spherical surface(r =r in, 0øuøu0, 0øwø2p)
corresponding to the input value ofr =r in. The factora is
defined by the relation

asv,r ind = U sn/cdSfsr ind

W̄totsr ind
U =

1

1 + expf− 2r in/rksvdg
.

s42d

It shows a fraction of the energy density of the electromag-
netic field at the waveguide entrance, associated with the
forward wave alone. So, the contribution coming from the
backward wave turns out to be completely removed. It can
be seen from(42) that the magnitude ofa varies from 1/2 to
1 at all possible values of the parameterr in / rk. For a loss-
free medium it is equal to 1/2. However, for a lossy medium
we obtaina→1, provided that the distancer in from the cone
vertex becomes considerably greater than the attenuation
length rk.

B. Simple expressions for a small exit hole

When the aperture diameter 2a is significantly less than
the light wavelengthlc=l /n, one can use the simple expres-
sions(26) for the integral energy densityWtot at the exit of a
conical waveguide,rout=a/sin u0. For the integral energy
densityWtotsr ind at the waveguide entrance that corresponds
to large distances from the vertexsr in@lcd we use the
asymptotic expression(35) with r =r in. Then, using the defi-
nition of the near-field transmission coefficient of a wave-
guide [see Eqs.(39)–(41), we obtain the simple formula

T < xnbS2au1 + ik/nu
lcsin u0

D2n

e−rin/rk. s43d

Here

b =
2dsv«8d/dv

dsv«8d/dv + u«u
s44d

and

xn =
p2n+1sn + 1ds2n + 1d

22nG2Sn +
3

2
D s45d

are the dimensionless coefficients;lc=l /n is the light wave-
length in the core matter; andr in is the distance from the
cone vertexsr =0d to the waveguide entrance, which is prac-
tically equal to the length of the probel < r in at small aper-
ture radiusa. It is seen that theb coefficient(whose value is
of the order of unity) is determined by the frequency disper-
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sion of the dielectric function. Thexn coefficient strongly
depends on the value ofnsu0d such that its value decreases
with an increase of the taper angleu0.

Rigorously speaking, the transmission coefficientT
=Wtotsroutd /Wtot

in , determined by simple expression(43), is
slightly differed from(39). This is because the integration in
Eq. (26) for Wtotsroutd is performed over the part of the
spherical surface atr =rout [see Eq.(25)], while in Eqs.(39)
and (40) the integration is fulfilled over the exit planez=z0
(z0=rout cosu0, Fig. 1). However, as was shown in Ref. 10
this leads to a small difference in numerical coefficients but
does not change the dependences on the main physical pa-
rameters such as the aperture diameter, the refractive index,
and the attenuation length.

Note also that for the applications to near-field optical
microscopy the most interesting case corresponds to the situ-
ation in which the light transmission through a probe with a
semiconducting matter in its core occurs far from the peak in
its absorption band. Then the real part«8 of the dielectric
function of the core is much greater than its imaginary part
«9, and, hencek!n. In the opposite case, the light absorp-
tion inside a core of a probe is too large and the resulting
transmittance is very small. Nevertheless, assumingk!n it
is necessary to distinguish the two limiting cases that corre-
spond to different relationships between the attenuation
length rk and the length of the prober in.

When a dissipation of the electromagnetic energy inside a
core of a probe is very smallsr in! rkd, the light absorption
can be neglected. This situation is typical for the transmis-
sion of the optical radiation through a probe with a glass
core. Therefore, one can put exps−r in / rkd<1 in Eq. (43).
Moreover, for a loss-free medium the frequency dispersion
of the dielectric function is negligible, i.e.,dsv«8d /dv<«8.
Hence,b is practically equal to unity. Then, the near-field
transmission coefficient(43) takes the form

T < xnS 2a

lc sin u0
D2n

. s46d

This expression describes the major features of light trans-
mission through the subwavelength-sized exit hole in a loss-
free conical waveguide. It is seen from(46) that when we
consider the case of small aperture radiussa!lcd, the near-
field transmission coefficient is strongly dependent on the
ratio a/lc. To clarify its dependence on the taper angle it is
important to recall that eigenvaluesn01 of the lowest-order
TM01 mode exhibit rapid fall with an increase of theu0
value. For example,n01=8.681, 4.083, 2.548, 1.777, and 1 at
u0=p /12, p /6, p /4, p /3, andp /2, respectively(see Refs.
10 and 11). Therefore, the transmission coefficient strongly
grows as the taper angle increases.

In the opposite limiting case of large active losses inside a
semiconducting coresl @ rkd, the near-field transmission co-
efficient(43) is proportional to the exponentially small factor
exps−l / rkd. This reflects the strong influence of light absorp-
tion inside a core on the transmittance of an optical probe.
Another important point is the strong dependence of the
transmission coefficient on the refractive index of the core
matter. Atk /n!1, this dependence is practically the same as

in the case of a loss-free dielectric coresT~n2nd. As a result,
a considerable increase in the value ofn for a semiconduct-
ing core compared to a glass one can provide a substantial
enhancement in the resulting transmittance, even in the pres-
ence of an appreciable absorption of light inside a probe.

V. RESULTS AND DISCUSSIONS

A. Optical fields inside a conical waveguide with a silicon core

Let us discuss the main features of the optical fields inside
a conical waveguide with a silicon core(see Fig. 1). Accord-
ing to available experimental data,35 the refractive indexn
of Si increases monotonically from 3.67 to 5.57 in spectral
region from l=830 nms"v=1.5 eVd down to l
=400 nms"v=3.1 eVd. This is considerably larger than for
a glass or quartzsn<1.55d. At the same time, the attenuation
coefficientk grows from 0.005 to 0.387 in the same spectral
region, so that the ratio ofk /n is changed from 1.4310−3 to
6.9310−2. The wavelength dependence of the attenuation
length rk is shown in Fig. 3.

In Fig. 4 we illustrate the main features in the radial de-
pendences of the angular-averaged energy densities of the

FIG. 3. The attenuation lengthrk (36) for Si as a function of
light wavelength in vacuuml.

FIG. 4. The normalized energy densities of the electric(kwell,
full curve) and magnetic(kwml, dashed curve) fields inside a metal-
coated cone with a silicon core as functions of the distance from the
cone vertexr. The dotted curve is the radial dependence of the total
energy density,kwtotl=kwell+kwml. Calculations represent the re-
sults for the TM01 eigenmode atl=633 nm; the cone angle 2u0 is
equal top /2.
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electric kwell (full curve) and magnetickwml (dashed curve)
fields inside a silicon probe for the radiation wavelengthl
=633 nmslSi=163 nmd. Calculations have been performed
for the lowest-order TM01 eigenmode by using the general
formulas of Sec. III; the cone angle 2u0 was taken to be
equal top /2. It is evident that at large distances from the
cone vertexsr @lSid oscillations corresponding to the elec-
tric and magnetic fields turn out to be opposite in phase. At
small r !lSi, the drop of the magnetic field with a decrease
of the radial coordinate occurs much rapidly than that of the
electric field. Therefore, the energy density near the cone
vertex is mainly determined by the contribution of the elec-
tric field, kwell@ kwml.

The radial dependence of the total energy densitykwtotl
=kwell+kwml is shown in Fig. 4 by the dotted curve. One can
see that it exhibits a clearly pronounced maximum in the
range ofr ,lSi/2. This points to the strong concentration of
the electromagnetic energy inside the conical waveguide.
The subsequent rapid drop of the total energy density reflects
the evanescent nature of the electromagnetic field in the re-
gion of the subwavelength transverse sizes of the waveguide.

A quite different influence of light absorption on the field
behavior in the near-IR and the short-wavelength part of the
visible spectrum becomes evident from a comparison of our
results in Figs. 5 and 6. These figures represent the radial
dependences of the integral density of the total electromag-
netic energy(Wtot=Wr +Wu+Ww, dotted curves) inside a
cone with a silicon core, obtained for the two different values
of the radiation wavelength:l=830 nm andl=488 nm; the
cone angle 2u0 is equal top /2. The calculations have been
performed for the TM01 field-mode using Eqs.(20)–(25).
Since the attenuation coefficient of Si in the near-infrared
region sl=830 nmd is very small, the radial dependence of
the integral energy densityWtotsrd (Fig. 5) is similar to the
previously considered case of a glass core(see Fig. 4 in Ref.
11). The new feature is the presence of nonvanishing oscil-
lations ofWtotsrd in the asymptotic regionsr @lSid. In accor-
dance with the discussion in Sec. III, these oscillations result
from the frequency dispersion of the dielectric function of Si
(in contrast to the optical fiber, where«<const). At l

=830 nm the ratio(34) of the oscillating and monotonic
components of the integral energy densityWtot far from the
cone vertexsr @lSid is equal tog=0.093. Note however, that
the behavior averaged over these nonvanishing oscillations is
qualitatively similar to that of the glass fiber.

The other situation takes place for the short wavelength
part of the visible spectrum due to the significant increase of
the attenuation coefficientk of Si. For example, atl
=488 nm the value of the attenuation coefficientk becomes
17.6 times greater than that forl=830 nm. This leads to a
substantial common reduction of the integral energy density
Wtot (dotted curve in Fig. 6) as the distance from the cone
vertex decreases from large magnitudes ofr @lSi (r
=1000 nm in our example) down to r ,lSi<l /nSi
=112 nm atl=488 nm. This behavior is accounted for by
the dissipation of the electromagnetic energy inside the sili-

con core such thatW̄tot~coshsr / rkd at r @lSi [see Eq.(35)].
In addition to that in the short wavelength part of the visible
spectrum there is a great increase in amplitude of the oscil-
lating (nonvanishing atr @lSi) component ofWtotsrd as com-
pared to the near-IR range(see Figs. 5 and 6). The ratio(34)
of the oscillating and monotonic components of the integral
energy density becomes equal tog=0.41 atl=488 nm.

As in Fig. 5, there is an appreciable peak in the radial
dependence of the integral energy densityWtotsrd in the
range ofr ,lSi/2 (see Fig. 6). At small r &lSi/2 the drop of
the integral energy density is primarily determined by the
power law[see Eq.(11)]. This power drop of the total elec-
tromagnetic energy is typical for light transmission through a
subwavelength-sized exit hole in a conical waveguide(see
Refs. 10 and 11). This is the dominant effect at sufficiently
small r in both cases of the loss-free dielectric core and the
lossy semiconducting core of near-field probes.

It is important to note that all expressions for the optical
fields and numerical calculations presented above(see Figs.
4–6) have been obtained for a closed cone with a metal
coating. Since the real probe is a truncated cone, one needs
to estimate perturbations of the fields associated with the
truncation. In our recent works10,11 we outlined a technique
for the evaluation of this effect and made some numerical
estimates. They demonstrate that such perturbations are
small if the aperture diameter 2a!l /2. Similar estimates for
the silicon probe confirm this conclusion. Therefore, we can
apply the expressions, derived in Secs. II and III, for calcu-

FIG. 5. The distributions of the integral energy densities of the
electric (Wel, full curve) and magnetic(Wm, dashed curve) fields
inside a cone with a silicon core as functions of the radial coordi-
nate r. The dotted curve is the radial dependence of their sum,
Wtot=Wel+Wm. Calculations represent the results for the TM01

eigenmode atl=830 nm; the cone angle 2u0 is equal top /2.

FIG. 6. The same as Fig. 5, but forl=488 nm.
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lations of the optical transmittance through the
subwavelength-sized aperture of a near-field silicon probe.

B. Transmittance of a near-field probe with a silicon
core

We present here the results of our calculations of the near-
field transmission coefficient of the metallized silicon probe
as a function of the wavelength of the incident radiationl.
All calculations have been made for the TM01 mode by Eqs.
(39)–(41) and the general expressions(20), (22), and(24) for
the integral energy densityWtot inside a cone with a dissipa-
tive matter in its core. They cover all visible and near-IR
spectral regions and a set of the aperture diameters 2a (25,
50, 70, and 100 nm). The results obtained for the most inter-
esting case of large taper angles 2u0=p /3 and p /2 are
shown in Figs. 7 and 8, respectively. To demonstrate a de-
pendence of light absorption inside the Si core on the probe
length, we calculated the transmission coefficientT for vari-
ous values ofl =2, 4, and 8mm [figures a, b, and c, respec-
tively).

As expected, the values ofT are strongly dependent on
the aperture diameter and the taper angle in full agreement
with simple formula(26) derived in this work. The situation
here is qualitatively similar to that for an optical fiber probe.
In other words, the near-field transmission coefficient exhib-
its a strong drop as the aperture diameter decreases from
100 nm down to 25 nm(see curves 1, 2, 3, and 4 in Figs. 7
and 8). At the same time, an increase of the full taper angle
of a probe leads to an increase in the transmission efficiency.

However, the wavelength dependence of the near-field
transmission coefficient, obtained in the present work for the
Si probe differs dramatically from the case of a glass fiber
(or some other loss-free material in the core). As is evident
from Figs. 7 and 8, the transmittance of the Si probe strongly
varies over spectrum. If the length of the probe is not too
large l &8 mm, the transmission coefficient first increases
with the decrease of the wavelength in the IR region, reaches
its maximum at a definite wavelengthlmax in the visible or
near-IR range, and then strongly falls atl!lmax in the
short-wavelength part of the visible spectrum. The position
of the maximumlmax and the maximal value ofTmax de-
pends on the specific geometrical parameters of the probe.

The key point is that this maximum in the transmission
efficiency of a silicon probe lies in spectral regionl
,550–800 nm. It is important to stress that this occurs de-
spite the fact that the value of the attenuation coefficient of
Si considerably increases in the visible region compared to
the near-IR one. For example, atl=663 nm(the wavelength
of He/Ne laser), l=532 nm (second harmonic of YAG la-
ser), andl=488 nm(the wavelength of argon-ion laser), the
respective values of the attenuation coefficientk for Si be-
come equal to 1.90310−2, 5.06310−2, and 8.57310−2 in-
stead ofk=4.88310−3 at l=830 nm(the wavelength of la-
ser diode used in Ref. 26). The respective magnitudes of the
attenuation length(36) turn out to be equal tork=2.66mm,
0.84mm and 0.45mm at l=633 nm, 532 nm, and 488 nm,
instead of 13.53mm at l=830 nm.

It is seen from Figs. 7 and 8 that the wavelength depen-
dences of the transmission coefficient are qualitatively simi-

lar to each other for different values 2u0=60° and 2u0=90°
of the full taper angle. Therefore, we discuss below carefully
our results for 2u0=90° because the absolute values ofT in
this case are larger. Atl=830 nm the near-field transmission
coefficient is equal toT=2.9310−4, T=9.2310−3, T=4.7
310−2 and T=2.4310−1 for the aperture diameter 2a
=25 nm, 50 nm, 70 nm, and 100 nm, respectively. These re-
sults correspond to the length of the probe edgel =2 mm
[Fig. 8(a)]. On the whole, in the near-IR region the effect of
light absorption inside the Si probe is sufficiently weak. Nev-
ertheless, atl=830 nm an increase of the probe length from

FIG. 7. The near-field transmission coefficients,T=Wtot
out/Wtot

in ,
of the conical waveguide with a silicon core(full curves) and a
glass core(dotted curves) as a function of the wavelength in
vacuuml. Curves 1, 2, 3, and 4 are the present calculations for the
TM01 eigenmode at the aperture diameter 2a=100 nm, 70 nm,
50 nm, and 25 nm, respectively. The cone angle 2u0 is equal to 60°.
Figures(a), (b), and(c) correspond to various lengths of the probe
l =2, 4, and 8mm, respectively.
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2 up to 10mm leads to a decrease of theT values for about
1.8 times. This clearly indicate the necessity of incorporation
the imaginary part of the dielectric function of Si in calcula-
tions of the optical transmittance of a near-field probe even
in the near-IR region.

For the probe lengthl &4 mm, the near-field transmission
coefficient reaches its maximum atl,600−650 nm. For the
wavelengthl=633 nm, our calculations atl =2 mm yield:
T=9.2310−4, T=2.3310−2, T=1.2310−1 and T=5.1
310−1 for the aperture diameterd=25 nm, d=50 nm, d
=70 nm, andd=100 nm, respectively. It is important to note
that this is about two–three times larger than that atl=830,
depending on the specific value of the aperture diameter. At
l &4 mm, the rapid drop in the transmission coefficient oc-
curs in spectral regionl&500−550 nm[see Figs. 8(a) and
8(b)] so that the values ofT becomes small only in the short
wavelength part of the visible spectrum. However, atl

=8 mm [Fig. 8(c)] the rapid drop of T starts from l
,600 nm.

Further we illustrate the advantage in the use of a silicon
probe in comparison with conventional fiber ones for the
transmission SNOM technique. We compare the present es-
timates of the near-field transmission coefficient for Si with
those obtained previously for a glass with smalln (see the
dotted curves in Figs. 7 and 8). Although the taper angles of
fiber probes do not usually exceed 40°(see, e.g., Ref. 2 and
references therein), which additionally restricts their effi-
ciency, we use here the value 2u0=90° andnglass=1.55 to
make a comparison with our recent results.11

For the probe with the lengthl =2 mm, the aperture diam-
eter 2a=50 nm, and the taper angle 2u0=90° we get
TSi/Tglass=2.2, 14, 45, and 71 forl=488 nm, 532 nm,
633 nm, and 830 nm, respectively. For the same length and
the aperture diameter, but for the taper angle 2u0=60° we
haveTSi/Tglass=43, 240, 800, and 960. One can see that in
the latter case the enhancement in the optical transmittance
turns out to be considerably larger than for 2u0=90°. This
fact is in full agreement with the simple analytic formula
(43), according to whichT~n2nsu0d (where n=4.083 and
2.548 for the TM01 mode at 2u0=60° and 90°, respectively).
However, the case of 2u0=90° is more interesting due to
especially high absolute magnitudes ofT (see Fig. 8).

It is important to stress that an enhancement occurs not
only in the near-IR but also in the visible spectral region.
Moreover, as we have already discussed above the maximum
in the transmission coefficient of a near-field Si probe lies in
the rangel=600−650 nm forl &4 mm. According to our
theory, the enhancement occurs as a result of competition
between two factors: the rise ofn and the decrease of the
attenuation lengthrk [see Eq.(43)]. Our calculations demon-
strate that the former factor is more important in most parts
of the visible spectrum. However, a strong enhancement in
the transmittance of a near-field silicon probe in the visible
range is possible provided the probe length is sufficiently
short (no more than several micrometers). Then the effects
associated with the light absorption inside the Si core are not
too strong.

VI. CONCLUSIONS

(1) We have developed a theoretical model for the de-
scription of the electromagnetic waves inside an optical
probe with a dissipative matter in its core. The core is de-
scribed by a complex frequency-dependent dielectric func-
tion; the walls of the conical waveguide are perfectly con-
ducting. The model was applied for the evaluation of the
energy density distributions inside an optical probe with a
semiconductingsSid core. The formulas derived in this work
contain our previous analytical results for a near-field optical
probe with a loss-free dielectric core10,11 as a special case.

(2) According to our theory the fields behavior inside the
Si probe differs essentially from the case of the conventional
fiber probe. A new feature in the radial dependence of the
integral energy density is the field attenuation, associated
with light absorption. This leads to a significant difference in
the energy fluxes of the forward and backward waves inside

FIG. 8. The same as Fig. 7, but for the cone angle 2u0=90°.
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a probe. It was shown that the total energy density of elec-
tromagnetic field inside a cone with the Si core exhibits os-
cillations, which do not vanish even at large distances from
the cone vertex.

(3) The emphasis of this work has fallen on the evalua-
tion of the near-field transmission coefficient of the Si probe
in all visible and near-IR spectral regions. For a
subwavelength-sized exit hole, we have derived a simple ex-
pression(43) for the transmission coefficient of a conical
waveguide with a lossy dielectric core. It provides the ex-
plicit dependences ofT on the wavelengthl, the aperture
diameter 2a, the taper angleu0 as well as on the length of the
probel, the refractive indexn, and the attenuation lengthrk.
It was shown that for the Si probe the wavelength depen-
dence of the transmission coefficient differs dramatically
from the case of a loss-free dielectric core[for which T in-
creases monotonically assa/ld2n with a decrease ofl. On
the contrary, the transmission coefficient for Si exhibits a
nonmonotonic dependence on the wavelength. It grows with
a decrease ofl in the IR region, then reaches its maximum,
and rapidly drops in the short-wavelength part of the visible
spectrum. The key point is that this maximum lies atl
,550−800 nm for a short Si probe,l &5 mm (see Figs. 7
and 8).

(4) As follows from our calculations, at large taper angles
s2u0,60°−90°d high values of the transmission coefficient
can be achieved for passage of the optical radiation through

the Si core of a probe. We have made a comparison of the
results obtained in the present work with the respective
results10,11for the conventional fiber probe. It was shown that
the use of a short Si core instead of a glass one allows us to
achieve a strong enhancement in the transmission efficiency
of up to 102–103.

(5) Although all calculations have been made in this
work for the transverse-magnetic TM01 mode, our theoretical
model assumes an extension on the case of the dominant
transverse-electric TE11 mode. Since the eigenvaluesn11su0d
of this mode are somewhat lower than that for the TM01
mode, the resulting magnitudes of the transmission coeffi-
cient will be even higher than those obtained in this paper. In
this case the advantages in the use of the Si core instead of a
glass one will become some more evident.
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