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We calculate numerically the quasiparticle effective masssm*d renormalization as a function of temperature
and electron density in two- and three-dimensional electron systems with long-range Coulomb interaction. In
two dimensions, the leading temperature correction is linear and positive, with the slope being a universal
density independent number in the high-density limit. We predict an enhancement of the effective mass at low
temperatures and a nonmonotonic temperature dependence at higher temperaturessT/TF,0.1d with the peak
shifting toward higher temperatures as density decreases. In three dimensions, we find that the effective mass
temperature dependence is nonlinear and nonuniversal, and depends on the electron density in a complicated
way. At very high densities, the leading correction is positive, while at lower densities, it changes sign and the
effective mass decreases monotonically from its zero-temperature value with increasing temperature.
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I. INTRODUCTION

In the Fermi liquid theory, the interacting electron system
is composed of weakly interacting quasiparticles at low en-
ergies with long quasiparticle lifetimes. The effective mass
of a quasiparticle, which can be viewed as the bare mass of a
free electron being renormalized by electron-electron inter-
actions, is an important and fundamental Fermi liquid param-
eter. For decades, theorists have been exploring the effective
mass renormalization in two- and three-dimensional interact-
ing electron systems(2DES and 3DES). In spite of this great
deal of theoretical activity, concentrating almost entirely on
the density dependence of the effective mass renormaliza-
tion, the temperature dependence of the effective mass has
not been studied until very recently. Besides the considerable
difficulties involved in the finite temperature numerical and
analytical many-body calculations in 2DES and 3DES, the
reason that this issue has not been addressed before can also
be explained by the fact that the Fermi energy in 3D metals
is typically 104 K, and therefore, any finite-temperature ef-
fects are negligible. In the past decade, however, low-density
2DES have been attracting attention, and several experi-
ments have been performed to measure the 2D effective
mass.1,2 The temperature dependence of the quasiparticle ef-
fective mass in 2DES is of considerable experimental inter-
est, since the Fermi energy in realistic 2DES may be 1 K or
lower, which makes the issue of the temperature dependence
of 2D Fermi liquid parameters extremely important. In addi-
tion, the temperature dependence of the Fermi liquid param-
eters, such as the effective mass, is obviously of considerable
fundamental theoretical significance.

The T=0 quasiparticle effective mass renormalization in
an electron system, interacting through long-range Coulomb
interaction, is one of the oldest many-body problems in the-
oretical condensed matter physics, and a number of theoret-
ical calculations of 3D and 2D electron effective mass have
been carried out3–9 in the literature. In fact, Coulomb
interaction-induced electron effective mass renormalization
at T=0 is standard textbook material7 in electronic many-
body theory. Essentially all of these calculations, both ana-
lytical and numerical(and both 2D and 3D), are based on the

leading-order dynamically screened interaction one-loop
self-energy evaluation[the so-called random-phase approxi-
mation sRPAd self-energy approximation] because this ap-
proximation is really the only meaningful nontrivial calcula-
tion that can actually be carried out, and(perhaps more
importantly) because this RPA self-energy is asymptotically
exact in the weakly interacting high-density regime. There
have been a few finite-temperature RPA self-energy calcula-
tions over the years,10–13 mostly in the context of low-
dimensional systems, but none for the temperature depen-
dence of the effective mass renormalization in interacting
electron systems. Very recently, Chubukov and Maslov14

considered the problem of temperature corrections to the 2D
Fermi liquid theory for the case of a short-ranged interaction.
In particular, they showed that the leading many-body tem-
perature correction is linear in two dimensions, similar to the
results which we reported recently for the long-range Cou-
lomb interaction in 2DES.15

In the current paper, we present a calculation of the
density- and temperature-dependent effective mass renormal-
ization by the Coulomb interaction in 2DES and 3DES at
arbitrary densities and temperatures(i.e., not necessarily re-
stricted to high densities and low temperatures). We work
within the RPA, or equivalently in the ring-diagram approxi-
mation for the self-energy, which gives exact results in the
high-density limit srs!1d, but is known to be qualitatively
reliable at relatively low densities as well. RPA is perhaps
the only manageable way to perform any nontrivial quanti-
tative calculations in electronic many-body systems, and the
finite-temperature RPA effective mass renormalization is
certainly a problem of intrinsic interest. In two dimensions,
our numerical results predict a nonmonotonic effective mass
temperature dependence. The leading temperature depen-
dence is linear and positive, with the low-temperature slope
being independent of the electron density in the high-density
limit. The temperature at which the effective mass is maxi-
mum at a particular density moves toward higher tempera-
tures as density decreases. In three dimensions, we find that
the effective mass temperature dependence is nonuniversal
and depends on the electron density in a complicated way. At
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very high densities, the leading correction is positive, while
at lower densities it changes sign and decreases monotoni-
cally from its zero temperature value. This is in contrast to
the 2D results, where the effective mass always increases
(linearly) with temperature at low temperatures, and then de-
creases with temperature beyond a density-dependent char-
acteristic temperature. We find the 3D temperature correction
to the effective mass to be nonlinear, in contrast to our 2D
results.

We express the quasiparticle effective massm*sn,Td
;m*srs,T/TFd in units of the bare band massm (which is, by
definition, a constant) and present our results as a function of
the usual dimensional interaction parameterrs (the average
interelectron separation measured in the units of Bohr radius)
and the dimensionless temperatureT/TF, whereTF=EF /kB is
the Fermi temperature. Note thatrs~n−1/2sn−1/3d in 2D (3D)
systems, andTF~nsn2/3d in 2D (3D) systems, wheren is the
appropriate 2D(per unit area) or 3D (per unit volume) elec-
tron density. Note that the dimensionless interaction and tem-
perature parametersrs andT/TF arenot independent param-
eters, since they both depend on the electron density. We also
note thatrs!1 (high-density) andrs@1 (low-density) limits
are, respectively, the weak- and strong-interaction limits of
the electron system(at T=0), andT/TF!1 andT/TF@1 are,
respectively, the low-temperature(quantum) and high-
temperature(classical) limits. We consider the electron sys-
tem to be a uniform jellium system with the noninteracting
kinetic energy dispersion being the usual parabolic disper-
sion. We use"=kB=1 throughout.

The structure of our paper is as follows: In Sec. II we
provide the formalism that we will use in this paper. In Sec.
III we explain, in detail, the numerical method we are using
in the effective mass calculations. In Sec. IV we present all
our numerical results for 2D and 3D effective mass, compar-
ing them to analytical results in the high-density limit. In
Sec. V we discuss a special approximation method, the
plasmon-pole approximation, and present our effective mass
results using this method. In Sec. VI, we calculate the imagi-
nary self-energy of quasiparticles and discuss the validity of
the quasiparticle approximation at finite temperatures. We
provide a conclusion and discussion of our results in Sec.
VII.

II. FORMALISM

In this section we give the theoretical formalism, the basic
equations, and the notations that will be used throughout the
paper.

A. Effective mass

In a system of interacting fermions, the retarded Green’s
function can be written as

GRsk,vd =
1

v − «0skd + m − Ssk,vd
, s1d

where«0skd=k2/2m is the spectrum of noninteracting fermi-
ons,m is the chemical potential, andSsk ,vd is the quasipar-
ticle self-energy, the imaginary(real) part of which deter-

mines the lifetime(effective mass) of the quasiparticle. The
quasiparticle energy can be obtained by solving the Dyson’s
equation7

«skd = «0skd + ReSfk,«skdg. s2d

The quasiparticle effective mass can be written by definition
as

m*

m
= Fm

k

d

dk
«skduuk=kF

G−1

=* 1 −
]

] v
Re Ssk,vd

1 +
m

k

]

] p
Re Ssk,vd*

k=kF,v=0

.

s3d

Note that in the above equation,v=0 is measured from the
renormalized chemical potentialm* , which is given by

m* = m + ReSskF,0d. s4d

All the above equations are exact, while the RPA approxi-
mation forSsk ,vd that we are going to use is the first- order
perturbation theory in the dynamically screened interaction.
There has been extensive discussion3,5,7,16 on whether it is
more consistent to use exact Eq.(3) for calculating the ef-
fective mass or to use the so-called on-shell approximation,
keeping only the first-order interaction terms in the expres-
sion for the effective mass(sinceS is calculated only to first
order in the dynamically screened interaction):

m*

m
=

1

1 +Um

k

d

dk
Ssk,jkdU

k=kF

, s5d

where jk =k2/ s2md−m. Note that all the quantities on the
right-hand side of Eq.(5) are in the leading order in effective
interaction. There are compelling arguments in favor of the
latter choice: the on-shell approximation is believed to be
more accurate as it effectively accounts for some higher-
order diagrams and satisfies the Ward identity. We have ex-
tensively discussed this issue elsewhere.16

Obviously, the two equations for calculatingm* are iden-
tical in the high-density limitrs!1. However, in the region
of rs.1, they give very different results. In what follows, we
use Eq.(5) for all the numerical results shown in this paper
because we believe the on-shell approximation to be the su-
perior one in our case. Both formulas give a similar tempera-
ture dependence form*sTd. The main qualitative results of
the paper are insensitive to the choice of the on- or off-shell
formula for the effective mass.
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B. Self-energy in the RPA approximation

Within RPA, the finite temperature electron self-energy
can be expressed in terms of the Feynman diagrams shown
in Fig. 1, and can be written in the Matsubara formalism as7

Ssk,nnd = − To
vm

Gsk − q,nn − vmdDsq,vmd, s6d

where nn=ps2n+1dT is the fermion Matsubara frequency,
vm=2pmT is the boson Matsubara frequency withn andm
integers, andT the temperature. The functionDsq ,vmd de-
notes the coupling to a collective mode(phonon, plasmon,
electron-hole excitation, etc.), i.e.,D is the bosonic propaga-
tor for the effective interaction. In our case, the function is
the dynamically screened Coulomb interaction given by the
sum of the ring or bubble diagrams:

Dsq,vmd =
v0sqd

1 + v0sqdpsq,vmd
, s7d

wherev0sqd is the bare Coulomb interaction andpsq ,vmd is
the (bare) polarization operator, which is defined as

psq,vmd = 2o
nn

E ddp

s2pddGs0dsp,nnd ·Gs0dsp + q,nn + vmd,

s8d

whered is the dimension of the system and “s0d” denotes the
noninteracting system. We mention that Eqs.(7) and (8) to-
gether form what is called the RPA for an electron gas,
where the bare Coulomb interaction is dynamically screened
by the electron dielectric function, which is formed from the
infinite series of the polarization bubbles. The corresponding
electron self-energy, obtained in the leading-order expansion
in the dynamically screened interactionD, is conventionally
called the RPA self-energy approximation, although the “dy-
namical Hartree-Fock” approximation or the “ring-diagram
approximation” may be a more appropriate terminology.

For calculations, it is more convenient to use the self-
energy defined as a function of the real frequencyv, rather
than the Matsubara one. Using the standard procedure of
analytic continuation, one obtains the following expression
for the analytically continued self-energy:

SRsk,vd = −E ddq

s2pddE
−`

+`

dn

2p
FIm GR

s0dsk − q,n + vd

3DRsq,− ndtanhSn + v

2T
D + GR

s0dsk − q,n + vd

3Im DRsq,ndcothS n

2T
DG , s9d

where functions labeled with index “R” are retarded func-
tions, i.e., functions analytical in the upper half-planes of the
complex frequency. The corresponding effective interaction
can be written as

DRsq,vd =
vsqd

1 + vsqdPRsq,vd
, s10d

where the retarded polarizability can be obtained from Eq.
(8) using the following identities:

PRsq,vd = psq,ivn → v + ihd, s11d

whereh is a real infinitesimal positive number.
Note that we will almost always use retarded quantities

unless otherwise stated. Thus without causing any confusion,
we can drop the superscript “R.”

C. Effective interaction

The next step toward deriving the renormalization of mass
is to obtain expressions for the effective couplingDsq ,vd.
We use the long-range bare Coulomb interaction to get

v0
s2Ddsqd =

2pe2

q
,

v0
s3Ddsqd =

4pe2

q2 , s12d

and the effective interaction

Dsq,vd =
v0sqd

1 + v0sqdPsq,vd
=

v0sqd
«sq,vd

, s13d

where «sq ,vd;1+v0P is the RPA dynamical dielectric
function. In the RPA, the full polarizability is approximated
by the bare polarizability as in Eq.(8), which is just the bare
bubble diagram.

Analytical properties of the propagatorP0 (whereP0 de-
notes theT=0 form for the bare polarizability withP denot-
ing the finiteT bare polarizability) are nontrivial even at zero
temperature. The zero-temperature polarization for 2DES
and 3DES are well known and shown below. For the 2DT
=0 case, we have

FIG. 1. Feynman diagram for RPA self-energy calculation.
Solid lines denote the free electron Green’s function and the dashed
lines, the bare Coulomb potential.
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P0
2Dsq,v,md = −

m

p
+

m2

pq2FÎSv +
q2

2m
D2

−
4mq2

2m

−ÎSv −
q2

2m
D2

−
4mq2

2m
G , s14d

wherem is the chemical potential, the frequencyv can be
any complex number, and the branch cut of the square roots
are taken so that the imaginary part is positive. For 3D(T
=0) case we have

P0
3Dsq,v,md =

kmm

2p2q2H1 +
m2

2kmq3f4m«q − s«q + vd2g

3lnS«q + qvm + v

«q − qvm + v
D +

m2

2kmq3

3f4m«q − s«q − vd2g

3lnS«q + qvm − v

«q − qvm − v
DJ , s15d

where «q=q2/2m, m is the chemical potential andm
=km

2 /2m=mvm
2 /2, and the frequencyv can be any complex

number.
Finite-temperature polarizability can be easily obtained

from those at zero temperature using the following identity:17

Psq,v,m;Td =E
0

`

dm8
P0sq,v,m8d

4T cosh2Sm8 − m

2T
D . s16d

We find Eq. (16) to be the most convenient numerical
method for obtaining the finite-T polarizability.

D. Dimensionless parameters

Our 2D and 3D electron system can be characterized by
two parameters, namely, densitysnd and temperaturesTd.
This immediately leads to two dimensionless parametersrs
andT/TF characterizing the system, withrs being the effec-
tive zero-temperature interaction strength andT/TF being the
effective temperature(note that they arenot independent).
The definition ofrs is the following: In 2DES,rs is defined
such that

prs
2aB

2n = 1, s17d

kFrsaB = Î2, s18d

wheren is the 2D electron density,kF is the Fermi momen-
tum, andaB=sme2d−1 is the Bohr radius. In 3DES,rs is de-
fined such that

4pnaB
3rs

3/3 = 1, s19d

kFrsaB = s9p/4d1/3. s20d

The Fermi temperatureTF;EF;kF
2 / s2md, which goes as

TF~ rs
−2 in both 2D and 3D.

III. NUMERICAL METHODS IN m* CALCULATIONS
IN RPA

In this section we explain in detail our numerical ap-
proach for the effective mass calculation within RPA. In car-
rying out the integrations of self-energy in Eq.(9) in order to
obtain the effective mass, we use three different techniques,
namely frequency sum, frequency integration, and plasmon-
pole approximation(PPA). The first two techniques are
equivalent, and we explain them in detail in this section.
PPA is a further approximation of RPA, which has been
extensively used in the literature.6,12,18 We discuss the PPA
in Sec. V. Since there is no existing literature on the finite-
temperature effective mass or self-energy calculation to
check our numerical results, it is crucial for us to use these
different techniques to ensure the correctness of our numeri-
cal calculations. We mention here that our frequency sum
results and frequency integration results agree well with each
other. The frequency integration result is numerically rela-
tively more noisy and, therefore, in this paper we will only
show the frequency sum results. We also check our numeri-
cal results against the already known results atT=0 and
against analytical calculations in theT/TF ,rs→0 limit.

A. Frequency integration technique

Equation(9) gives the general formula for the RPA self-
energy at real frequencies. It can also be written in a more
succinct way as

Ssk,vd = −E ddq

s2pddv0sqdnFsjq−kd

−E ddq

s2pdd E d«

2p

2v0sqdIm «−1sq,«d
« + v + ih − jq−k

3fnFsjq−kd + nBs«dg, s21d

where nFsxd=1/fexpsx/Td+1g is the Fermi function and
nBsxd=1/fexpsx/Td−1g is the Bose function. This method of
calculating the self-energy involves integration over real fre-
quencies, and therefore we call it the frequency integration
method. It is also known as the spectral or the Lehmann
representation of the self-energy. The derivation of Eq.(21)
from Eq. (9) is given in the Appendix.

The self-energy of Eq.(21) is composed of two parts: the
exchange part and the correlation part. The(frequency-
independent) exchange part is also known as the Hartree-
Fock self-energy, and its contribution to the effective mass at
T=0 is singular in both 2D and 3D. Not surprisingly, this
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singularity is canceled out by contributions from the correla-
tion part of the self-energy. Effective mass is derived from
the self-energy through Eq.(5), and we therefore need to
obtain the real part of Eq.(21) by putting ih to be 0 and
regarding the frequency integration as a principal value inte-
gration. It is easy to derive from Eq.(21) that the imaginary
part of the self-energy can be written as

Im Ssk,vd = −E ddq

s2pddv0sqdIm «−1sq,jq−k − vd

3fnBsjq−k − vd + nFsjq−kdg. s22d

The Im S is not needed in the effective mass calculation
sincem* is a Fermi surface property. But it is important to
have some idea of the magnitude of ImS in order to ensure
that quasi-particles are well defined at finiteT.

Numerically carrying out the integration in Eq.(21) is
nontrivial: for each momentumq and frequencyv, a 3D
integration is required to obtainSsq ,vd, and what makes the
problem even more difficult is that the Im«−1sq ,vd term in
the integrand is highly nonmonotonic. A careful examination
of the dynamical dielectric function tells us that atT=0,
Im «−1sq ,vd contains delta functions at plasmon excitation
frequencies, and at finite temperatures these delta functions
broaden into sharp peaks. Integration over these sharps peaks
requires special care. For eachq, the position (i.e., fre-
quency) of the sharp peaks can be determined by solving
Ref«sq ,vdg=0, and their weight can be determined from
Ref«sq ,0dg using the Kramers-Krönig relations.

One advantage of the frequency integration method is that
in Eq. (21) we can directly putT=0 to obtain the zero tem-
perature result, in contrast to the frequency sum method,
which we will describe in detail below.

B. Frequency sum technique

Due to the great numerical difficulty in carrying out the
frequency integration method introduced above(because it
involves integration over highly nonmonotonic or singular
functions), it is advisable to seek alternatives. At zero tem-
perature, previous works in calculating self-energy and re-
lated quantities often transform the real frequency integration
into integrations over imaginary frequencies using the ana-
lytic properties of the dielectric function. The purpose of this
contour distortion is to avoid singularities along the real axis.
At finite temperature, a similar approach can be adopted. At
finite temperature, what is different from the zero-
temperature case is that we transform the integration into an
imaginary frequency summation(or Matsubara frequency
summation). Hu and Das Sarma11 showed in detail, how to
perform such a transformation from the real-frequency inte-
gration to an imaginary frequency summation. Following the
technique of contour distortion introduced in Ref. 11 we can
write the RPA self-energy as a sum of the Matsubara fre-
quency along the imaginary axis:

Ssk,vd = −E ddq

s2pddv0sqdnFsjq−kd −E ddq

s2pddv0sqd

3F 1

«sq,jq−k − vd
− 1G

3fnBsjq−k − vd + nFsjq−kdg −E ddq

s2pddTo
vn

v0sqd

3F 1

«sq,ivnd
− 1G 3

1

ivn − sjq−k − vd
, s23d

where the frequency sum is over even Matsubara frequencies
ivn= i2npT, with n integers. The above expression contains
three parts, namely the exchange part, the residue part, and
the line part from top to bottom in Eq.(23). The proof of the
equivalence between Eq.(23) and Eq.(21) is provided be-
low.

Since the exchange part exists in both Eq.(23) and Eq.
(21), we only need to consider the correlation part of the
self-energy

Scorsk,vd = −E ddq

s2pdd E dn

2p

2v0sqdIm «−1sq,nd
n + v + ih − jq−k

3fnFsjq−kd + nBsndg. s24d

We choose the contour as shown in Fig. 2. It is easy to see
that the integration over real axis can be transformed into
integration over contourC, so that we have

Scorsk,vd = −E ddq

s2pddrC
dn

2pi

v0sqdf«−1sq,nd − 1g
n + v + ih − jq−k

3 fnFsjq−kd + nBsndg. s25d

This is because«sq ,v− ihd=«*sq ,v+ ihd, and, therefore, the
integration of the real part of the integrand right above the
real axis in the positive direction and right below the real

FIG. 2. Contour of integration for the derivation of self-energy
formula for the frequency sum method. The thick lines on real axis
denotes the branch cut fore−1sq ,vd. The crosses mark the poles due
to the integrand; the ones on the imaginary axis are due tonBsvd,
and the isolated pole is due to the denominator.
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axis in the negative direction cancel each other, and the cor-
responding integration of the imaginary part on these two
lines are equal to each other. The −1 after«−1sq ,vd is in-
serted to make the integration on the arc part of contourC
vanishes as the radius of the contour approaches infinity.
Now we are left to evaluate the residues within contourC,
the positions of which are denoted by crosses in Fig. 2. Note
that the analytic property of the dielectric function«−1sq ,vd
is very important in this approach. The transformation re-
quires that«−1sq ,vd is analytic in the upper and the lower
half of the complex plane, which is true for electron gas
systems. The single residue atjq−k −v− ih, right below the
real axis produced by the denominator of the integrand, pro-
duces the residue part of the self-energy. This part can be
easily derived as

Sres= −E ddq

s2pddv0sqdF 1

«sq,jq−k − vd
− 1G

3fnBsjq−k − vd + nFsjq−kdg. s26d

The residues atvn=2npT on the imaginary axis[the third
term in Eq.(23)], which are produced by the Bose function
nBsnd, lead to the line part of the self-energy. This part can be
written as

Sline = −E ddq

s2pddTo
vn

v0sqdF 1

«sq,ivnd
− 1G

3
1

ivn − sjq−k − vd
. s27d

From Eq.(26) and Eq.(27) we haveScor=Sres+Sline, and we
thus obtain Eq.(23).

The frequency sum method proves to be a far more effi-
cient numerical technique for calculating the self-energy than
the frequency integration method due to the absence of the
strong nonmonotonicity and singularity in the real frequency
dependence of the integrand. One thing to notice is that at
high temperatures, higher Matsubara frequency terms can be
neglected becausef«−1sq , ivnd−1g→0 whenvn→`, while
at low temperatures a large number of Matsubara terms have
to be kept in the sum in order to ensure accuracy. At zero
temperature, the frequency sum turns into an integration over
imaginary frequencies, and we have

Ssk,vd = −E
R1

ddq

s2pddv0sqd +E
R2

ddq

s2pdd

v0sqd
«sq,jq−k − vd

−E ddq

s2pdd E dn

2p
F 1

«sq,ind
− 1G

3
v − jq−k

n2 + sv − jq−kd2 , s28d

where the integration regionR1 denotes the region where
uk −qu,k, and R2 denotes the integration region whereuk
−qu is in betweenk and kF. This explicit formula for self-
energy is exactly what previous works(see, e.g. Ref. 5) used
to calculate the zero-temperature RPA self-energy.

It is obvious that the frequency-independent exchange
part of the self-energy is real. By noticing that«sq ,−vnd
=«*sq ,vnd, we can see that the line part of the self-energy is
real as well. Thus, the only contribution to the imaginary part
of the self-energy comes from the residue part, which gives
the same result as Eq.(22) in the frequency integration
method.

IV. RPA RESULTS FOR m*
„rs,T /TF…

In this section we present our numerical results for effec-
tive mass in 2D and 3D electron systems within RPA. We
first present in Sec. IV A results for the zero temperature
effective mass to compare with earlier works. Our finite-
temperature results for 2DES are presented in Sec. IV B and
those for 3DES in Sec. IV C. In Sec. II D we present results
for a model bare potential, where the Coulomb interaction is
cut off by a finite length so that the bare interaction is short
ranged. We do this in order to investigate the model depen-
dence of our results.

A. Zero-temperature effective mass

We first present our extremely low-temperature results
sT/TF<10−4d in Figs. 3 and 4, to be compared with the
existing T=0 results.3–9 We calculate m*srsd in the rs

=0–10range, showing that the effective mass renormaliza-
tion could be as large as 4.5 for dilutesrs,10d 2DES and 3
for srs,10d 3DES. We emphasize that the results presented
in Figs. 3 and 4 are entirely based on theT→0 limit of our
finite temperature theory. They are inquantitativeagreement
with the existingT=0 2D RPA effective mass calculations5

(which are restricted to thers,5 regime) and are consistent
with the existingT=0 3D effective mass calculations at low
rs.

3 This serves as a stringent check on our numerical ap-
proaches.

It is clear from Figs. 3 and 4 that both our 2D and 3D
results show the nonmonotonic dependence ofm*srsd on rs in

FIG. 3. The calculatedT,0 effective mass as a function ofrs in
a 2DES. Inset: the result in lowrs region.
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the high-density regime(i.e., in thers!1 regime). This non-
monotonic low-rs behavior form*srsd at T=0 has been re-
ported in the earlier literature.3,5 We emphasize that the nu-
merical results given in Figs. 3 and 4 are obtained by putting
T/TF<10−4 in our finite-temperature formalism.

B. Finite-temperature effective mass in 2DES

In Figs. 5 and 6 we show our calculated 2Dm*sTd as a
function of T/TF for different values of the 2D interaction
parameterrss=0.1–10d. In the low-temperature region, the
effective mass first rises to some maximum, and then de-
creases as temperature increases. This nonmonotonic trend is
systematic, and the value ofT/TF where the effective mass
reaches the maximum increases with increasingrs. The ini-

tial increase ofm*sTd is almost linear inT/TF asT→0, and
the slopedsm* /md /dsT/TFd is almost independent ofrs for
very smallrss,1d (which is shown in Fig. 6), but increases
with rs for largerrs values. It is important to notice that this
nonmonotonic temperature dependence ofm*sTd with a
maximum aroundT/TF&1 persists all the way tors→0,
which suggests that it is not an artifact of our approximation
scheme, since RPA becomeexactas rs→0. In Sec. VII we
will discuss the importance of these features and their agree-
ment with recent analytical works.

In Figs. 7 and 8 we show the dependence of the effective
mass renormalization as a function of the interaction param-
eterrs for a few values of fixed temperature(rather than fixed
T/TF, remembering thatTF~ rs

−2 sinceTF~n and rs~n−1/2).
Figure 7 shows the effective mass for highT and largers
values, while Fig. 8 concentrates on the lowT region. The
calculatedm*srsd for fixed T values are quite striking: For
low fixed values ofT, m* /m initially increases withrs even
faster than the correspondingT=0 result, eventually decreas-

FIG. 4. The calculatedT,0 effective mass as a function ofrs in
a 3DES. Inset: the result in lowrs region.

FIG. 5. The calculated 2D effective mass as a function ofT/TF

for different rs: rs=10→1 from top to bottom. Inset:rs=5−1 from
top to bottom. Note thatTF~ rs

−2, making the absolute temperature
scale lower for higherrs values.

FIG. 6. The calculated 2D effective mass as a function ofT/TF

for low rs values:rs=1.0→0.1 from top to bottom.

FIG. 7. The calculated 2D effective mass as a function ofrs at
fixed value of temperatures.T is in the unit ofTF at rs=1.
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ing with rs at large enough values(where the corresponding
T/TF values become large enough). This nonmonotonic be-
havior of m*srsd as a function ofrs for fixed temperatures
showing a temperature-dependent maximum(with the value
of rs at which them* peak occurs decreasing with increasing
T as in Fig. 7) is complementary to the nonmonotonicity of
m*sTd in Fig. 5 as a function ofT/TF (at fixedrs), and arises
from the relationship between the dimensionless variables
T/TF (~rs

−2) and rs (~TF
−1/2) due to their dependence on the

carrier density(i.e.,TF~n andrs~n−1/2). At largers and high
temperature, Fig. 7 shows that the effective mass increases
from below unity with increasingrs. This is the region where
the exchange part of the self-energy dominates, and it can be
easily shown that the exchange self-energy produces this pe-
culiar effect on thers dependence ofm*srsd at fixed high-T
values. Since the quasiparticles may not even be well defined
at such highT/TF values, we do not further discuss the phys-
ics related to this region.

One immediate consequence of our results shown in Figs.
5 and 7 is thatm*sT/TF ,rsd;m*sT,nd in 2DES could show a
strong enhancement at low(but finite) temperatures and low
electron densities(large rs). Comparing with the actual sys-
tem parameters for 2D electrons in Si inversion layers and
GaAs heterostructures(and taking into account the quasi-2D
form factor effects19 neglected in our strictly 2D calculation)
we find that, consistent with recent experimental findings,1

our theoretical calculations predict(according to Figs. 5 and
7 as modified by subband form factors) m* /m to be enhanced
by a factor of 2–4 for the experimental densities and tem-
peratures used in recent measurements.1 Due to the approxi-
mate(i.e., RPA) nature of our theory, we do not further pur-
sue the comparison with experimental data in this paper
since the main goal of this paper is to discuss the temperature
dependence ofm*srs,T/TFd which has not yet been reported
in the literature. A direct experimental observation of an in-
creasingm*sTd at low temperatures in 2DES will be a strik-
ing confirmation of our theory.

C. Finite-temperature effective mass in 3DES

In Figs. 9 and 10 we show our calculated 3Dm*sTd as a
function of T/TF for different rs values. In Fig. 9rs varies
from 1 to 10, while in Fig. 10,rs is from 0.1 to 1. The 3D
temperature dependence of the effective mass shows very
different characteristics from that of 2D. Figure 9 shows that
for rs.1, the effective mass decreases monotonically with
increasingT at low temperatures. However forrs, ,1, as
shown in Fig. 10, the effective mass increases with increas-
ing T in the temperature region we are considering. We
therefore conclude that in 3DES the sign of the slope
dsm* /md /dsT/TFduT=0 is nonuniversal, which differs from
that of 2DES, where the above-mentioned slope is always
positive for allrs. Another interesting feature is that the sign
of dsm* /md /dsT/TFduT=0 matches the sign of
−dsm* /md /dsrsduT=0 very well. In particular,m*sTd decreases
with increasingT (at low T) in the “larger” rs regime, where

FIG. 8. The calculated 2D effective mass as a function ofrs at
fixed value of temperatures.T is in the unit ofTF at rs=1. This plot
is similar to Fig. 7, but concentrates on the low-temperature region.

FIG. 9. The calculated 3D effective mass as a function ofT/TF

for different rs: rs=10→1 from top to bottom.

FIG. 10. The calculated 3D effective mass as a function ofT/TF

for low rs values:rs=1.0→0.1.
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the correspondingT=0 m*srsd shows an increasing mass
with increasingrs. Similarly, m*sTd increases(at low T) with
increasing T in the rs regime, where the corresponding
m*srs;T=0d shows decreasingm* with increasingrs.

D. Model short-range bare interaction

So far, in all of our calculations we have been using the
realistic long-ranged Coulomb interaction for the bare poten-
tial as in Eq.(12). A question naturally arises: how is the
temperature dependence that we find in our calculations re-
lated to the long-range nature of the interaction between
electrons? Therefore, we also calculate the effective mass in
2DES and 3DES using a simple(parametrized) finite-range
interaction model

v2Dsqd =
2pe2

q + a
,

v3Dsqd =
4pe2

q2 + a2 s29d

wherea is the cutoff wave vector that eliminates the long
wavelength Coulomb divergence.

Our numerical calculation shows that asa/kF→0, we re-
cover them*sTd behavior of the bare Coulomb interaction
results in both 2D and 3D. Asa/kF increases, the mass
renormalization in both 2D and 3D is suppressed, but all the
qualitative features of the temperature dependence persist. In
2DES, asa/kF increases, the temperature where the effective
mass reaches the maximum decreases, and the effective mass
enhancement(from the T=0 value to the maximum) de-
creases, but the linear-T dependence at lowT and the non-
monotonic trend remain unchanged. In 3DES, asa/kF in-
creases, thers region wheredsm* /md /dsrsduT=0,0 shrinks,
but the consistency between the sign of −dsm* /md /dsrsduT=0

and the sign ofdsm* /md /dsT/TFduT=0 remains.
From these results we conclude that the qualitative fea-

tures of the temperature dependence are model independent
and not peculiar to the bare interaction being Coulombic.
This conclusion is further reinforced by the recent report of a
linearly T-dependent electronic specific heat in a short-range
interaction model.14 It may be worthwhile, however, to note
that RPA is specific to the long-range Coulomb interaction in
giving an exact result in the high-densityrs→0 limit, and
there is nothing special about RPA in the case of short-range
interaction.

V. PLASMON-POLE APPROXIMATION

We now apply a simple-to-use dynamical approximation
to calculatem*sTd. The PPA has often been used6,12,18 to
obtain the electron self-energy in the literature. It is a simple
technique for carrying out the frequency sum or integration
in the RPA self-energy calculation by using a spectral pole
(i.e., a delta function) ansatz for the dynamical dielectric
function«sk ,vd. In other words, it is an approximation to the
RPA. The PPA ansatz assumes that

− 2 Im
1

«sk,vd
= Ckfdsv − v̄kd − dsv + v̄kdg, s30d

where the polev̄k and the spectral weightCk of the PPA
propagator in Eq.(30) are determined by using the the
Kramers-Krönig relation(i.e., causality)

Re
1

«sk,0d
= 1 +

2

p
E

0

` 1

v
dv Im

1

«sk,vd
s31d

and thef-sum rule(i.e., current conservation)

E
0

`

v dv Im
1

«sk,vd
= −

p

2
vP

2skd. s32d

Putting Eq.(30) in Eqs.(31) and (32) we have

Ck = pvPskdÎ1 − Re«−1sk,0d, s33d

v̄k =
vPskd

Î1 − Re«−1sk,0d
, s34d

wherevPskd in Eqs. (32)–(34) is the long-wavelength plas-
mon frequency, which is defined as

lim
v→`

Ref«sk,vdg = 1 −
vP

2skd
v2 . s35d

It is well known that in 2DES

vP
2skd =

2pne2

m
k, s36d

and in 3DES

vP
2skd =

4pne2

m
. s37d

We mention thatv̄k in Eq. (30) does not correspond to the
real plasmon dispersion in the electron liquid, but simulates
the whole excitation spectra of the system behaving as an
effective plasmon at low momentum and as the single-
particle electron-hole excitation at large momentum, as con-
strained by the Kramers-Krönig relation and thef-sum rule.
Details on the PPA are available in literature,6,12,18including
its finite-temperature generalization.12 The PPA, which is
known to give results close to the full RPA calculation of
self-energy, allows a trivial carrying out of the frequency
sum in the retarded self-energy function leading to

Re Ssk,vd = −E d2q

s2pd2v0sqdnFsjq−kd

+E d2q

s2pd2v0sqdCqFnBsv̄qd + nFsjq−kd
v̄q − sjq−k − vd

+
nBs− v̄qd + nFsjq−kd

v̄q + sjq−k − vd
G , s38d

whereCq and v̄k only depend on«sk,0d at finite tempera-
tures, and are determined by Eqs.(33) and (34). Obviously
the PPA provides a great simplification of the problem, since
the most numerically demanding part of the calculation(the
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frequency sum or integration) is trivially done. It should be
noted, however, that although the PPA is known to produce a
reliable approximation to ReS, it, by definition, fails com-
pletely for Im S.

We present our PPA results for the 2D effective mass as a
function ofT/TF at fixedrs values in Fig. 11. One immediate
observation by comparing Figs. 5 and 11 is that even though
PPA provides a very good approximation for the self-energy
(indeed, our numerical results for PPA self-energy and RPA
self-energy match very well), it fails to provide accurate re-
sults for the effective mass. The zero-temperature effective
mass generated by PPA is almost half of that from RPA, and
the temperatures wherem* maximizes shift to higherT val-
ues in the PPA compared with RPA. But the qualitative be-
havior ofm*srs,T/TFd is similar in the PPA and RPA for the
2DES as is clear by comparing Figs. 11 and 6.

From our results of 3D PPA effective mass calculation
presented in Fig. 12, we can see that they are different from
RPA results even qualitatively. In fact, our RPA results for
m*srs,T/TFd are similar in both 2D and 3D.

VI. QUASIPARTICLE DECAY

The quasiparticle decay rate(or the inverse lifetime) is
given10,13 by the imaginary part of the self-energy. As we
have discussed in Sec. III B, the imaginary part of the qua-
siparticle self-energy can be calculated from Eq.(23). It is
also obvious that only the second term in Eq.(23) contrib-
utes to the imaginary self-energy: the first term is obviously
real, and the last term is also real becauseesq ,−vnd
=e*sq ,vnd. Thus, we have

Im Ssk,vd = −E ddq

s2pddv0sqdIm
1

esq,jq−kd

3fnBsjq−k − vd + nFsjq−kdg. s39d

Figures 13 and 14 show the calculated imaginary self-
energy on the Fermi surface in 2D and 3D, respectively. The

quasiparticle decay(i.e., finite ImS) here arises entirely
from having a finite temperature. The results show that the
magnitude of the imaginary self-energy increases with in-
creasingrs and T/TF. It is obvious from Eq.(39) that the
imaginary self-energy vanishes on the Fermi surface atT
=0 as it must, since the quasiparticles are perfectly well de-
fined at T=0 for k=kF. As T increases, the magnitude of
imaginary self-energy remains small compared to the Fermi
energy up to a certain temperature, and the quasiparticles on
the Fermi surface remain well defined up to that temperature.
The important question is whether the finite-temperature
quasiparticles are sufficiently well defined for the interesting
behavior ofm*sTd that we discussed in Sec. IV to be experi-
mentally observable. If the quasiparticles are ill defined,(i.e.,
Im SskFd.EF in the temperature regime of interest) then
obviously all the interesting temperature dependence of
m*sTd predicted by us is only of academic interest since the

FIG. 11. The calculated 2D PPA effective mass as a function of
T/TF at a fixed value ofrs.

FIG. 12. The calculated 3D PPA effective mass as a function of
T/TF at a fixed value ofrs.

FIG. 13. The calculated magnitude of the 2D RPA imaginary
self-energy of quasiparticles on Fermi surface as a function ofrs at
different values ofT/TF.
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large broadening will make it impossible to define quasipar-
ticles, let alone their effective mass. By examining the results
of Figs. 13 and 14 compared with those presented in Sec. IV,
it is clear that there is a well-defined regime ofsrs,T/TFd
values wherem*sT/TFd shows nontrivial temperature depen-
dence with the conditionEF@ uIm SskFdu well-satisfied so
that quasiparticles are well defined. Although this is not un-
expected since uIm SsTdu,T2 for T/TF!1, whereas
m*sTd /m<1+OsTd in 2D, it is nevertheless important to see
that Im S remains small in magnitude in thesrs,T/TFd re-
gime of interest. Earlier theoretical work on the quasiparticle
damping of 2D interacting electron systems can be found in
Refs. 8–10 and 13.

VII. DISCUSSION AND CONCLUSION

In this work, we have obtained detailed results for the
temperature dependence of the quasiparticle effective mass,
m*srs,T/TFd, at arbitrary values of temperature and density
in 2D and 3D electron systems interacting via the long-range
Coulomb interaction. Our central approximation is the RPA
(i.e., the dynamically screened Hatree-Fock self-energy ap-
proximation), which is the leading-order one-loop self-
energy calculation in a dynamically screened effective inter-
action expansion. RPA is exact in the high-densitysrs→0d
limit at T=0, and is therefore a controlled nontrivial approxi-
mation, which is empirically known to work well forrs.1
(e.g., metals withrs,3–6 and 2D semiconductors withrs
,1–10). We also calculate the finite-temperature imaginary
self-energy(i.e., the quasiparticle decay rate or broadening)
to ensure that the broadening remains small in thesrs,T/TFd
parameter regime of our interest, wherem*sTd shows inter-
esting temperature dependence.

As mentioned earlier in the paper, it is well known that at
T=0, m*srsd can be exactly calculated(in both 2D and 3D)
in the asymptoticrs→0 limit by systematically expanding
the RPA self-energy since ring diagrams(included in the

RPA) are the most divergent diagrams in thers→0 limit.
Such a zero temperaturers expansion of RPA gives the fol-
lowing formula form*srsd in both 2D and 3D:

Um*srsd
m

U
rs→0

= 1 +arssb + ln rsd + Osrs
2d, s40d

where a and b are constants of order unity. What we find
numerically is that the leading temperature correction to this
effective mass formula is linear inT/TF in 2D and nonlinear
in T/TF in 3D. In this paper, we have calculatedm*srs,T/TFd
numerically for the one-loop dynamically screened Hatree-
Fock RPA self-energy theory for arbitraryrs andT/TF find-
ing nontrivial temperature dependence of the effective mass
at all densities.

Our most important result is the unexpected discovery of
a strong temperature-dependent quasiparticle effective mass
m*sTd at low temperatures in 2DES. Since the temperature
scale for the temperature dependence ofm*sTd is the Fermi
temperature, which tends to be highs,104 Kd in the 3D
electron liquids(i.e., metals), our temperature-dependent ef-
fective mass results for 3D systems are mostly of theoretical
interest since any actualT dependence ofm*sTd in the
T/TF10−4 regime will be miniscule. Our numerical results for
the calculatedm*sTd in 2D systems are consistent with a
linear leading-order temperature correction for the 2D qua-
siparticle effective mass: Results in Figs. 5 and 6 can be well
fitted to the formulam*sTd<1+A2Dsrsd+B2DsrsdsT/TFd+¯
for small T/TF where the slopeB2Dsrsd seems to be a con-
stant independent ofrs (i.e., density) at least in the high-
densitysrs!1d limit; for rs.1 the slopeB2Dsrsd has a weak
density dependence increasing somewhat with increasingrs
(but our approximation scheme, RPA, becomes less quanti-
tatively reliable at largers, therefore, it is possible that the
slope dsm* /md /dsT/TFd is indeed independent ofrs in the
T→0 limit). In addition to this interesting(and unexpected)
linear leading-order temperature correction to the quasiparti-
cle effective mass, we also findB2Ds.0d to be positive for
all rs, indicating that in 2DES, the leading-order temperature
correction to the effective mass is positive. Thus,m*sTd in-
creases with increasingT at first, before eventually decreas-
ing asT/TF increases substantially, leading to a maximum in
m*sTd at some intermediate temperatureT*srsd,0.5TF,
which is only weakly density dependent(except, of course,
throughTF itself). All three of these 2D findings[i.e., linear
leading-orderT/TF dependence ofm* , increasingm* with
T/TF at low temperatures, and the nonmonotonic behavior
with a maximum inm* sT/TFd occurring atT* ,0.5TF] are
surprising and unexpected. We are aware of no intuitive
physical arguments that can explain these features easily,
and, moreover, we do not think such a simple explanation
exists, otherwise they will not be claimed as surprising find-
ings. They are intriguing facts unveiled by calculations. In
principle, these predictions can be experimentally tested
since our calculations presented in Sec. VI show that the
quasiparticles remain reasonably well defined(i.e., the
broadening, ImS, remains small) all the way toT* and per-
haps even aboveT* . This is reasonable since the many-body
correction tom* is linear in T/TF, whereas the broadening

FIG. 14. The calculated 3D RPA imaginary self-energy of qua-
siparticles on Fermi surface as a function ofrs at different values of
T/TF.
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Im S,sT/TFd2, ensuring that forT/TF,1, the quasiparticle
effective mass is a well-defined quantity. In contrast to the
linear (with positive slope) leading-orderT dependence we
find for all rs in our calculated 2Dm*sTd, our 3D results
show nonuniversalm*srs,T/TFd behavior. In 3D,m*sT/TFd
increases with increasingT/TF at low temperatures only for
very high densities(small rs)—for larger rs values,m*sTd
decreases monotonically with increasing temperature[in
sharp contrast to the striking nonmonotonicity inm*sTd in
2D] and this decrease is more consistent with a nonlinear
leading-order temperature dependence(rather than a linear
one as in 2D). Our best guess for our numerical results
shown in Figs. 9 and 10 is the following equation:m* /m
<1+A3Dsrsd+C3DsT/TFdl lnsTF /Td+¯, wherel is a number
of the order one(note that numerically fixing the numberl is
difficult and needs much more work), C3D.0 for rs, rs

* and
C3D,0 for rs. rs

* , with rs
* being approximately thers value,

where A3D changes from being negative to positive. It is
clear that the trends of temperature dependence of effective
mass in 2D and 3D are very different, from which we can
safely claim that these features are dimensionality depen-
dent. Again, we do not think there exists simple and intuitive
explanations for the characteristic difference between 2D and
3D results.

We comment that our numerical results form*sTd are con-
sistent with the very recent analytical work15,20 on the tem-
perature corrections to the effective mass renormalization in
2D and 3D Fermi liquid. The analytical work is necessarily
restricted to thers→0 andT/TF→0 limit, where the infinite
series of ring diagrams to the electron self-energy(depicted
in Fig. 1) provides anexactleading-order asymptotic answer
to the problem with the following result:

m*srs,T/TFd
m

= 1 +Asrsd + BsrsdS T

TF
D + CsrsdS T

TF
D2

lnS T

TF
D

+ ¯ , s41d

with Bsrsd;B2D, a constant, in 2D, andBsrsd;0 in 3D. Our
numerical results are consistent with this exact result, but our
numerical results apply also in the nonasymptotic region,
whereT/TF and rs are not necessarily small. In this nonas-
ymptotic regime(wherers is not small, and actuallyrs may
be large in 2D semiconductor systems) RPA is by no means
an exact theory, but we have recently argued16 that RPA
remains qualitatively well valid, even forrs@1. We also em-
phasize a point in this context that seems not to have been
widely appreciated in the literature. The point is that RPA
becomes a progressively better approximation asT/TF in-
creases at a fixedrs (for any rs), because the system is be-
coming more classical in theT/TF@1 regime. In the classi-
cal limit, leaving out three-body and higher-order terms, the
only effect of interaction is to dynamically screen the long-
range Coulomb interaction, which is exactly incorporated in
RPA. Thus, RPA should work better since it correctly incor-
porates the self-consistent screening of Coulomb interaction
(i.e., the dynamical Hartree effect), which should be the most
important effect in the classical limit in a Coulomb plasma.
In plasma physics, all one needs is to screen the Coulomb
interaction. Thus, in thesrs,T/TFd parameter space(see Fig.

15), RPA works extremely well asrs→0 (the high-density
limit ) and asTF→0 (the high-temperature or equivalently,
the low-density limit) or, asT→`. As a result, the regime of
validity of RPA is greatly enhanced at finite temperature, and
in fact even at very largers (i.e., very low density) RPA
works better asT is raised(because theT/TF@1 limit is
more easily achieved at low densities). On the other hand,
we want to emphasize that in the extreme highT/TF limit,
we do not seek comparison between our numerical result, as
shown in Fig. 7, and the experimental results, because at
such high temperature, the physics in a real system becomes
much more complicated, and the quasiparticles may not even
be well defined.

Finally, we comment on the anomalous(often referred to
as “nonanalytic”)14 nature of the temperature corrections to
the quasiparticle effective mass in 2D systems(but not in
3D) as manifested in thelinear leading-order temperature
correction we find in interacting 2D electron systems. This
particular feature is apparently generic in 2D and not due
merely to our using the long-range bare Coulomb interaction,
because in Ref. 14 the same linear-T correction is found in
calculations using a zero-range bare interaction, although the
sign of the slope is negative in the zero-range interaction
case. This kind of(leading-order) linear temperature correc-
tion is quite common in 2D electron systems due to the pe-
culiar form of the 2D polarizability with aT=0 cusp at 2kF.
This leading-order linear-T correction is interesting because
the naive expectation in a Fermi system(based on the usual
Sommerfeld expansion of the Fermi functions) is that the
leading-order correction in a “normal” situation should al-
ways beOsT/TFd2 for all electronic properties. In 2D elec-
tron systems it seems that the generic situation is “anoma-
lous,” i.e., the leading-order temperature correction is
OsT/TFd rather than the “normal” quadratic Fermi behavior
expected on the basis of the analytic Sommerfeld expansion

FIG. 15. The schematic validity of RPA. The shaded area de-
notes the region where RPA is considered to be valid. LineA de-
notes a certain density value above which RPA is valid atT=0
(e.g., the vertical lineA may correspond to thers=1 condition so
that for higher density, i.e., to the right of lineA, RPA is valid even
at T=0). Line B denotes the line ofTF~n. In the region above line
B, RPA is again valid. Therefore, for any fixed value of densityn
(or equivalently fixedrs), RPA is a better approximation with in-
creasingT, whereas for a fixed value of temperature, low density
values(or largers) counterintuitively make RPA valid again since
RPA is valid forT.TF.
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of Fermi functions. In 2D interacting electron systems, there-
fore, all leading-order thermal corrections to electronic prop-
erties are much stronger(by a factor ofTF /T, which is a
large number asT→0) than the quadratic Fermi gas behav-
ior. This anomalous nonanalyticity, which may have impor-
tant consequences for fermionic quantum critical phenom-
ena, obviously has important experimental implications,

since it is much easier to observe a linear temperature cor-
rection than a quadratic one at low temperatures.
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APPENDIX

Here, we provide a proof for equivalence between Eq.(23) and Eq.(21).

Ssk,vd = −E ddq

s2pdd E dn

2p
HIm GRsk − q,n + vdDRsq,ndtanhSn + v

2T
D + GRsk − q,n + vdIm DRsq,ndcothS n

2T
DJ

=−E ddq

s2pdd E dn

2p
v0sqdH− pdsn + v − jq−kde−1sq,ndtanhSn + v

2T
D +

1

n + v + ih − jq−k
Im e−1sq,ndcothS n

2T
DJ .

sA1d

Using Kramers-Krönig relations fore−1sq,nd in the above equation, we have

Ssk,vd = −E ddq

s2pdd E dn

2p
v0sqdH− pdsn + v − jq−kd 3 F1 +E dn8

p

Im e−1sq,n8d
n8 − n − ih

GtanhSn8 + v

2T
D

+
1

n + v + ih − jq−k
Im e−1sq,ndcothS n

2T
DJ

=−E ddq

s2pddv0sqdH−
1

2
F1 +E dn

p

Im e−1sq,nd
n + v + ih − jq−k

GtanhS jq−k

2T
D +E dn

2p

1

n + v + ih − jq−k
Im e−1sq,ndcothS n

2T
DJ

=E ddq

s2pddv0sqd
1

2
tanhS jq−k

2T
D +E ddq

s2pdd E dn

2p

v0sqdIm e−1sq,nd
n + v + ih − jq−k

3 FtanhS jq−k

2T
D − cothS n

2T
DG

=const −E ddq

s2pddv0sqdnFsjq−kd −E ddq

s2pdd E dn

2p

2v0sqdIm e−1sq,nd
n + v + ih − jq−k

3 fnFsjq−kd + nBsndg. sA2d
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