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Temperature-dependent effective mass renormalization in a Coulomb Fermi liquid
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We calculate numerically the quasiparticle effective m@as9 renormalization as a function of temperature

and electron density in two- and three-dimensional electron systems with long-range Coulomb interaction. In
two dimensions, the leading temperature correction is linear and positive, with the slope being a universal
density independent number in the high-density limit. We predict an enhancement of the effective mass at low
temperatures and a nonmonotonic temperature dependence at higher tempé€Faliged.1) with the peak

shifting toward higher temperatures as density decreases. In three dimensions, we find that the effective mass
temperature dependence is nonlinear and nonuniversal, and depends on the electron density in a complicated
way. At very high densities, the leading correction is positive, while at lower densities, it changes sign and the
effective mass decreases monotonically from its zero-temperature value with increasing temperature.
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I. INTRODUCTION leading-order dynamically screened interaction one-loop

In the Fermi liquid theory, the interacting electron systemS€elf-energy evaluatiofthe so-called random-phase approxi-
is composed of weakly interacting quasiparticles at low enmation (RPA) self-energy approximatigrbecause this ap-
ergies with long quasiparticle lifetimes. The effective massProximation is really the only meaningful nontrivial calcula-
of a quasiparticle, which can be viewed as the bare mass oftion that can actually be carried out, aperhaps more
free electron being renormalized by electron-electron interimportantly) because this RPA self-energy is asymptotically
actions, is an important and fundamental Fermi liquid paramexact in the weakly interacting high-density regime. There
eter. For decades, theorists have been exploring the effectiveave been a few finite-temperature RPA self-energy calcula-
mass renormalization in two- and three-dimensional interacttions over the year® '3 mostly in the context of low-
ing electron system@DES and 3DES In spite of this great dimensional systems, but none for the temperature depen-
deal of theoretical activity, concentrating almost entirely ondence of the effective mass renormalization in interacting
the density dependence of the effective mass renormalizalectron systems. Very recently, Chubukov and MaSiov
tion, the temperature dependence of the effective mass hasnsidered the problem of temperature corrections to the 2D
not been studied until very recently. Besides the considerableermi liquid theory for the case of a short-ranged interaction.
difficulties involved in the finite temperature numerical andIn particular, they showed that the leading many-body tem-
analytical many-body calculations in 2DES and 3DES, theperature correction is linear in two dimensions, similar to the
reason that this issue has not been addressed before can aigsults which we reported recently for the long-range Cou-
be explained by the fact that the Fermi energy in 3D metal$omb interaction in 2DES®
is typically 10" K, and therefore, any finite-temperature ef- In the current paper, we present a calculation of the
fects are negligible. In the past decade, however, low-densitglensity- and temperature-dependent effective mass renormal-
2DES have been attracting attention, and several experization by the Coulomb interaction in 2DES and 3DES at
ments have been performed to measure the 2D effectivarbitrary densities and temperatuiés., not necessarily re-
masst? The temperature dependence of the quasiparticle eftricted to high densities and low temperatyrédle work
fective mass in 2DES is of considerable experimental interwithin the RPA, or equivalently in the ring-diagram approxi-
est, since the Fermi energy in realistic 2DES may be 1 K omation for the self-energy, which gives exact results in the
lower, which makes the issue of the temperature dependendegh-density limit(rs<1), but is known to be qualitatively
of 2D Fermi liquid parameters extremely important. In addi-reliable at relatively low densities as well. RPA is perhaps
tion, the temperature dependence of the Fermi liquid paranthe only manageable way to perform any nontrivial quanti-
eters, such as the effective mass, is obviously of considerabtative calculations in electronic many-body systems, and the
fundamental theoretical significance. finite-temperature RPA effective mass renormalization is

The T=0 quasiparticle effective mass renormalization incertainly a problem of intrinsic interest. In two dimensions,
an electron system, interacting through long-range Coulomlour numerical results predict a nonmonotonic effective mass
interaction, is one of the oldest many-body problems in thetemperature dependence. The leading temperature depen-
oretical condensed matter physics, and a number of theoretience is linear and positive, with the low-temperature slope
ical calculations of 3D and 2D electron effective mass havebeing independent of the electron density in the high-density
been carried odt® in the literature. In fact, Coulomb limit. The temperature at which the effective mass is maxi-
interaction-induced electron effective mass renormalizatioomum at a particular density moves toward higher tempera-
at T=0 is standard textbook materiah electronic many- tures as density decreases. In three dimensions, we find that
body theory. Essentially all of these calculations, both anathe effective mass temperature dependence is nonuniversal
lytical and numericaland both 2D and 3] are based on the and depends on the electron density in a complicated way. At
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very high densities, the leading correction is positive, whilemines the lifetime(effective masgof the quasiparticle. The

at lower densities it changes sign and decreases monotorguasiparticle energy can be obtained by solving the Dyson’s

cally from its zero temperature value. This is in contrast toequatiorf

the 2D results, where the effective mass always increases

(linearly) with temperature at low temperatures, and then de-

creases with temperature beyond a density-dependent char- e(k) =go(k) + ReX[k,e(k)]. 2

acteristic temperature. We find the 3D temperature correction

to the effective mass to be nonlinear, in contrast to our 2D

results. The quasiparticle effective mass can be written by definition
We express the quasiparticle effective masyn,T) as

=m (rs, T/Tg) in units of the bare band mass(which is, by

definition, a constaptand present our results as a function of

the usual dimensional interaction parametgtthe average

interelectron separation measured in the units of Bohr radius {m d

and the dimensionless temperatiivd, whereT=Er/kg is =~

the Fermi temperature. Note that<n™*2(n"13) in 2D (3D) k dk

systems, and=n(n?3) in 2D (3D) systems, whera is the keke,w=0

appropriate 20per unit areaor 3D (per unit volume elec- (3)

tron density. Note that the dimensionless interaction and tem-

perature parameterg and T/ Tg arenot independent param-

eters, since they both depend on the electron density. We al$gyte that in the above equation=0 is measured from the

note thatrs<<1 (high-density andrs>1 (low-density limits renormalized chemical potential, which is given by
are, respectively, the weak- and strong-interaction limits of

the electron systerfat T=0), andT/T<1 andT/Tz>1 are,

respectively, the low-temperaturéquantum and high- *_

tempperatur)e/(classica) Iimits.pWe coﬁqsider trr?e electrongsys— = pt Re (ks 0). @

tem to be a uniform jellium system with the noninteracting All the above equations are exact, while the RPA approxi-

kinetic energy dispersion being the usual parabolic dispermation for2(k,w) that we are going to use is the first- order

sion. We usei=kg=1 throughout. perturbation theory in the dynamically screened interaction.
The structure of our paper is as follows: In Sec. Il we There has been extensive discus3if'®on whether it is

provide the formalism that we will use in this paper. In Sec.more consistent to use exact H8) for calculating the ef-

[l we explain, in detail, the numerical method we are usingfective mass or to use the so-called on-shell approximation,

in the effective mass calculations. In Sec. IV we present alkeeping only the first-order interaction terms in the expres-

our numerical results for 2D and 3D effective mass, comparsion for the effective massince, is calculated only to first

ing them to analytical results in the high-density limit. In order in the dynamically screened interacjion

Sec. V we discuss a special approximation method, the

plasmon-pole approximation, and present our effective mass

1 —iReE(k,w)
Jw

-1

e(k) |k=kF} =
m Jd

1+Fa—pReE(k,w)

results using this method. In Sec. VI, we calculate the imagi- m 1
nary self-energy of quasiparticles and discuss the validity of m = m d ) ©)
the quasiparticle approximation at finite temperatures. We 1+ —3(k,&)
provide a conclusion and discussion of our results in Sec. k dk k=kg
VILI.
Il. FORMALISM where & =k?/(2m)-u. Note that all the quantities on the

right-hand side of Eq5) are in the leading order in effective
In this section we give the theoretical formalism, the basignteraction. There are compelling arguments in favor of the
equations, and the notations that will be used throughout thpitter choice: the on-shell approximation is believed to be
paper. more accurate as it effectively accounts for some higher-
order diagrams and satisfies the Ward identity. We have ex-
A. Effective mass tensively discussed this issue elsewhére.
Obviously, the two equations for calculating are iden-
al in the high-density limirs<1. However, in the region
of rs>1, they give very different results. In what follows, we
1 use Eq.(5) for all the numerical results shown in this paper
Grk,w) = w—eoK) + u-3K,0) 1 because we believe the on-shell approximation to be the su-
0 H ' perior one in our case. Both formulas give a similar tempera-
whereeq(k)=k?/2mis the spectrum of noninteracting fermi- ture dependence fan'(T). The main qualitative results of
ons,u is the chemical potential, al¥i(k , w) is the quasipar- the paper are insensitive to the choice of the on- or off-shell
ticle self-energy, the imaginargreal) part of which deter- formula for the effective mass.

In a system of interacting fermions, the retarded Green’%iC
function can be written as
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—_— d
@ SRk, w) = - dg fdv[meg”(k—q,ww)

(2m)d 27

—00

P O +OO+ - XDg(Q, - v)tani-< V2+Tw> +GO(k - q,v+ )

FIG. 1. Feynman diagram for RPA self-energy calculation. v
Solid lines denote the free electron Green'’s function and the dashed XIm Dg(q,v)cot E’ , (9
lines, the bare Coulomb potential.

where functions labeled with indexR" are retarded func-
tions, i.e., functions analytical in the upper half-planes of the
Within RPA, the finite temperature electron self-energycomplex frequency. The corresponding effective interaction

can be expressed in terms of the Feynman diagrams shovfin be written as
in Fig. 1, and can be written in the Matsubara formalisrh as

B. Self-energy in the RPA approximation

v(q)

1+v(lg(g,®)’ (10

Dg(0,w) =
Sk, v) =-T> G(k - q, v, — 0)D(q, ), (6)

®m

where the retarded polarizability can be obtained from Eq.

) ] (8) using the following identities:
where v,=m(2n+1)T is the fermion Matsubara frequency,

wn=2mmT is the boson Matsubara frequency wittandm
integers, andl the temperature. The functidR(q, w,,) de-
notes the coupling to a collective mogghonon, plasmon,

electron-hole excitation, ej.i.e., D is the bosonic propaga- . .
b bropag Note that we will almost always use retarded quantities

tor for the effective interaction. In our case, the function is . . . )
the dynamically screened Coulomb interaction given by thémless otherwise stated. Thus without causing any confusion,

sum of the ring or bubble diagrams: we can drop the superscripk!

HR(qvw):ﬂ'(qviwn—’w"'i??)v (ll)

where 7 is a real infinitesimal positive number.

C. Effective interaction
vo(Q)

1 +vo(@)m(q, @)’ "

DA, o) = The next step toward deriving the renormalization of mass

is to obtain expressions for the effective couplingg, w).

whereuq(q) is the bare Coulomb interaction andq, ;) is We use the long-range bare Coulomb interaction to get

the (bare polarization operator, which is defined as e
T
UE)ZD)(Q) = _q )
d o ©)
m(Qom =22 | 5550 P.r0) -GV (p+ Gt wn),
o 4re?
®) v == (12
whered is the dimension of the system an@)” denotes the  gnd the effective interaction
noninteracting system. We mention that E¢®. and (8) to-
gether form what is called the RPA for an electron gas, vo(Q) vo(Q)
where the bare Coulomb interaction is dynamically screened D(q,w) = old _ bdd , (13)
by the electron dielectric function, which is formed from the 1 +vo(a)Il(0, )  &(q,w)

infinite series of the polarization bubbles. The corresponding
electron self-energy, obtained in the leading-order expansiowhere &(q,w) =1+uvgll is the RPA dynamical dielectric
in the dynamically screened interacti@n is conventionally  function. In the RPA, the full polarizability is approximated
called the RPA self-energy approximation, although the “dy-by the bare polarizability as in E¢8), which is just the bare
namical Hartree-Fock” approximation or the “ring-diagram bubble diagram.
approximation” may be a more appropriate terminology. Analytical properties of the propagatbi, (wherell, de-
For calculations, it is more convenient to use the self-notes ther=0 form for the bare polarizability witfhl denot-
energy defined as a function of the real frequengyather ing the finiteT bare polarizability are nontrivial even at zero
than the Matsubara one. Using the standard procedure ¢émperature. The zero-temperature polarization for 2DES
analytic continuation, one obtains the following expressionand 3DES are well known and shown below. For the BD
for the analytically continued self-energy: =0 case, we have
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B l \/( ) 4uc? Amnair¥3=1, (19)
(g 0,m) =~ 7—7 t o om
- \/<w q )2 4,u_qJ " ker 8 = (97/4)Y/3. (20
2m 2m

The Fermi temperatur@FEEFEkﬁl(Zm), which goes as

. _ , Texrg?in both 2D and 3D.
where u is the chemical potential, the frequenaycan be

any complex number, and the branch cut of the square roots

are taken so that the imaginary part is positive. For (3D IIl. NUMERICAL METHODS IN m" CALCULATIONS
=0) case we have IN RPA
‘ In this section we explain in detail our numerical ap-
3D _ KM proach for the effective mass calculation within RPA. In car-
o™ (a0, = 27%9°? {l q3[4’uSq (oq+ o] rying out the integrations of self-energy in E§) in order to
obtain the effective mass, we use three different techniques,
<8q tqu,t w) m? . . _
xIn + namely frequency sum, frequency integration, and plasmon
g~ Qu,tw 2kﬂq3 pole approximation(PPA). The first two techniques are
X[4peq = (84— ®)?] equivalent, and we explain them in detail in this section.
PPA is a further approximation of RPA, which has been
X|n<8g+ Qu, ~ w)} (15) extensively used in the literatu?é2®We discuss the PPA
gq— U, -/’ in Sec. V. Since there is no existing literature on the finite-

temperature effective mass or self-energy calculation to
check our numerical results, it is crucial for us to use these
different techniques to ensure the correctness of our numeri-
number cal calculations. We mention here that our frequency sum

Finite-temperature polarizability can be easily Obtainedresults and frequency integration results agree well with each

) s other. The frequency integration result is numerically rela-
from those at zero temperature using the following iderfity: tively more no?sy an{d the%efore in this paper we wiI>I/ only

show the frequency sum results. We also check our numeri-
, cal results against the already known resultsTat0 and
T1(q, @, 2 T) :j du’ Ho(q'ww‘f ) _ (16) against analytical calculations in tAg Tg,rs— 0 limit.
M
4T coshz( )
0 2T

where g,= q2/2m p is the chemical potential ange
—k2/2m mos, 212, and the frequencw can be any complex

A. Frequency integration technique

Equation(9) gives the general formula for the RPA self-
energy at real frequencies. It can also be written in a more
succinct way as

We find Eq. (16) to be the most convenient numerical
method for obtaining the finit&-polarizability.

D. Dimensionless parameters

d
E(k,w)=—J d_quO(Q)nF(fq—k)
Our 2D and 3D electron system can be characterized by (2)
two parameters, namely, densitp) and temperaturgT). d%g [ de 200(q)im £7X(q,e)
This immediately leads to two dimensionless parametgrs - 2m)° f =
and T/Tg characterizing the system, witly being the effec-
tive zero-temperature interaction strength ad: being the ><[n,:(§q_k) +ng(e)], (21)
effective temperaturénote that they araot independent
The definition ofr is the following: In 2DESy is defined  \where ne(x)=1/[expx/T)+1] is the Fermi function and
such that ng(X)=1/[exp(x/T)- 1] is the Bose function. This method of
calculating the self-energy involves integration over real fre-
mrlagn=1, (17)  duencies, a_nd therefore we call it the frequency integration
method. It is also known as the spectral or the Lehmann
representation of the self-energy. The derivation of 4)
(18) from Eq.(9) is given in the Appendix.
The self-energy of Eq.21) is composed of two parts: the
exchange part and the correlation part. Ttieequency-
wheren is the 2D electron densitke is the Fermi momen- independentexchange part is also known as the Hartree-
tum, andag=(mé&)! is the Bohr radius. In 3DES is de-  Fock self-energy, and its contribution to the effective mass at
fined such that T=0 is singular in both 2D and 3D. Not surprisingly, this

2T e+ w+in— &y

KefsBlg = V2,
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singularity is canceled out by contributions from the correla-
tion part of the self-energy. Effective mass is derived from
the self-energy through Ed5), and we therefore need to C
obtain the real part of Eq21) by puttingin to be 0 and
regarding the frequency integration as a principal value inte-
gration. It is easy to derive from E@R1) that the imaginary
part of the self-energy can be written as

|
X
|

d’g i
Im 3(k,0) = - @vo(q)lm e (0,84« — )

><[nB(gq—k —w)+ nF(fq—k)]- (22

The Im2 is not needed in the effective mass calculation
sincem’ is a Fermi surface property. But it is important to
have some idea of the magnitude of Enin order to ensure
that quasi-particles are well defined at finite

Numerically carrying out the integration in EqR1) is
nontrivial: for each momentung and frequencyw, a 3D
integration is required to obtal(q, ), and what makes the
problem even more difficult is that the 187%(q, w) term in g d
the integrand is highly nonmonotonic. A careful examination > (k w):_f ﬂv (@ne(&ye )_J d_qv )
of the dynamical dielectric function tells us that &0, ’ (2m)d O VRS (2w °
Im £7X(q, w) contains delta functions at plasmon excitation [ 1 }

X

FIG. 2. Contour of integration for the derivation of self-energy
formula for the frequency sum method. The thick lines on real axis
denotes the branch cut fer'(q, w). The crosses mark the poles due
to the integrand; the ones on the imaginary axis are dug(o),
and the isolated pole is due to the denominator.

frequencies, and at finite temperatures these delta functions

— -1
broaden into sharp peaks. Integration over these sharps peaks &(9, &gk~ @)

requires special care. For each the position(i.e., fre- diq
quency of the sharp peaks can be determined by solving X[Ng(&g-k = @) + Ne(€g-10)] ‘J WTE vo(Q)
Rds(g,w)]=0, and their weight can be determined from ) en
R &(q,0)] using the Kramers-Kronig relations. [ 1 1] 1 23
i i i i B e
One advantage of the frequency integration method is that e(Qim,) o= (&g — ©)

in EQ. (21) we can directly pufTf=0 to obtain the zero tem-
perature result, in contrast to the frequency sum methodyhere the frequency sum is over even Matsubara frequencies
which we will describe in detail below. iw,=i2n7T, with n integers. The above expression contains
three parts, namely the exchange part, the residue part, and
the line part from top to bottom in E@23). The proof of the
B. Frequency sum technique equivalence between EQR3) and Eq.(21) is provided be-
low.

Due to the great numerical difficulty in carrying out the  Since the exchange part exists in both E28) and Eq.
frequency integration method introduced abagbecause it (21), we only need to consider the correlation part of the
involves integration over highly nonmonotonic or singular self-energy
functionsg, it is advisable to seek alternatives. At zero tem- g 1
perature, previous works in calculating self-energy and re- Sk, ) = - dq JQZUO(q)Im e (a,v)
lated quantities often transform the real frequency integration ’ @m?) 27 vto+in- &gk
into integrations over imaginary frequencies using the ana-
lytic properties of the dielectric function. The purpose of this X [Ne(&g-1) +1g(v)]. (24)
contour distortion is to avoid singularities along the real axisWe choose the contour as shown in Fig. 2. It is easy to see
At finite temperature, a similar approach can be adopted. Athat the integration over real axis can be transformed into
finite temperature, what is different from the zero- integration over contou€, so that we have
temperature case is that we transform the integration into an g . _q
imaginary frequency summatioor Matsubara frequency SO0k, @) = - _qSGCEUO(Q)[S .(q,v) ]
summation. Hu and Das Sarmashowed in detail, how to @m¥ 2m v+ o+in= &y
perform such a transformation from the real-frequency inte-
gration to an imaginary frequency summation. Following the X [N (€q1) + Ne(»)]. (25)
technique of contour distortion introduced in Ref. 11 we canThis is because(q,w—in) =¢"(q,w+i7), and, therefore, the
write the RPA self-energy as a sum of the Matsubara freintegration of the real part of the integrand right above the
quency along the imaginary axis: real axis in the positive direction and right below the real
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axis in the negative direction cancel each other, and the cor 4r
responding integration of the imaginary part on these two
lines are equal to each other. The -1 aftet(q, w) is in- ash
serted to make the integration on the arc part of contbur
vanishes as the radius of the contour approaches infinity &
Now we are left to evaluate the residues within contéur “g 3
the positions of which are denoted by crosses in Fig. 2. Note

that the analytic property of the dielectric functien'(q, w) 25F
is very important in this approach. The transformation re-
quires thate™Y(q, w) is analytic in the upper and the lower
half of the complex plane, which is true for electron gas
systems. The single residue &t —w—in, right below the
real axis produced by the denominator of the integrand, pro-  1.5f
duces the residue part of the self-energy. This part can b

easily derived as 1 ‘ . . . . ‘ . . .
1 4 5,6 7 8 9 10
d s
S A R,
(2m) S(Q1§q—k ) FIG. 3. The calculated@ ~ O effective mass as a function fin
X[”B(fq—k —w)+ nF(gq_k)]_ (26) a 2DES. Inset: the result in low region.
The residues ab,=2n=T on the imaginary axigthe third It is obvious that the frequency-independent exchange

term in Eq.(23)], which are produced by the Bose function part of the self-energy is real. By noticing thatq, -w,)
ng(v), lead to the line part of the self-energy. This part can be-¢*(q, w,), we can see that the line part of the self-energy is

written as real as well. Thus, the only contribution to the imaginary part
g of the self-energy comes from the residue part, which gives
Eline:_f d’q ™ (q){;— } the same result as E@22) in the frequency integration
@m0 e(a.iwy) method.
1

X ———— 27 .
i = (§g- ~ ) @7 IV. RPA RESULTS FOR m’(rs, T/Tg)

= Eq.(2 Eq(2 h cor—yres,. s line ~ In this section we present our numerical results for effec-
rom £q.(26) and Eq.(27) we havex =3+ 3, and we tive mass in 2D and 3D electron systems within RPA. We

thus obtain Eq(23). : ;
The frequency sum method proves to be a far more effiflrSt present in Sec. IV A results for the zero temperature
ffective mass to compare with earlier works. Our finite-

cient numerical technique for calculating the self-energy tharf .
the frequency integration method due to the absence of th mperafure results for 2DES are presented in Sec. IV B and

strong nonmonotonicity and singularity in the real frequencyt ose for 3DES in Sec. .IV C. In Sec. Il D we pr?se”t re'sult's
dependence of the integrand. One thing to notice is that Jpr a model bare potential, where the Coulomb interaction is

high temperatures, higher Matsubara frequency terms can it off by a finite _'e'?gth S0 that_ the b_are interaction is short
neglected becauge X(q,iw,)-1]— 0 when w,— %, while ranged. We do this in order to investigate the model depen-

at low temperatures a large number of Matsubara terms ha\%ence of our results.

to be kept in the sum in order to ensure accuracy. At zero
temperature, the frequency sum turns into an integration over A. Zero-temperature effective mass

imaginary frequencies, and we have .
ginary freq We first present our extremely low-temperature results

ddq ddq v6(Q) (T/Te=10% in Figs. 3 and 4, to be compared with the
2(k,w):—f ——4vo(Q) + 3 existing T=0 results$$® We calculate m'(rg) in the rg
R (2m) R (2m)"e(Q, gk — @) =0-10range, showing that the effective mass renormaliza-
dg [dv[ 1 tion could be as large as 4.5 for dilute~ 10) 2DES and 3
—f (2m)° J ;{m - ] for (r¢~10) 3DES. We emphasize that the results presented

in Figs. 3 and 4 are entirely based on fhe>0 limit of our

o = &gk finite temperature theory. They aredunantitativeagreement
2+ (0- Eg)?’ (28 \ith the existingT=0 2D RPA effective mass calculatichs

(which are restricted to the,<5 regimg and are consistent

where the integration regio®®, denotes the region where with the existingT=0 3D effective mass calculations at low
|k —g| <k, and R, denotes the integration region wheke r3 This serves as a stringent check on our numerical ap-
—q| is in betweenk and kg. This explicit formula for self- proaches.
energy is exactly what previous worksee, e.g. Ref.)aused It is clear from Figs. 3 and 4 that both our 2D and 3D
to calculate the zero-temperature RPA self-energy. results show the nonmonotonic dependencer@fs) onrgin
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m/m

0.5

1.02 0.4

/\
1 0.3
0.2

0'98 L L L L L L 1 |0-1
0 005 0.1 015 02 025 03 035 04
2 3 4 5 6 r7 8 9 10

s 7T,

FIG. 4. The calculated@ ~ 0 effective mass as a function fin FIG. 6. The calculated 2D effective mass as a functioit /off-
a 3DES. Inset: the result in low region. for low rg values:rg=1.0—0.1 from top to bottom.

the high-density regimé.e., in therg<1 regime. This non-  tial increase ofri (T) is almost linear i/ Tz asT—0, and
monotonic lowkg behavior form'(rg) at T=0 has been re- the sloped(m'/m)/d(T/T) is almost independent af; for
ported in the earlier literature® We emphasize that the nu- Very smallrs(<1) (which is shown in Fig. § but increases
merical results given in Figs. 3 and 4 are obtained by puttingvith rs for largerrg values. It is important to notice that this
T/Te=10"* in our finite-temperature formalism. nonmonotonic temperature dependence nef(T) with a
maximum aroundT/Tg=<1 persists all the way to;— 0,
which suggests that it is not an artifact of our approximation
B. Finite-temperature effective mass in 2DES scheme, since RPA becoresactasr,— 0. In Sec. VIl we
In Figs. 5 and 6 we show our calculated 2B(T) as a will disc_uss the importar_me of these features and their agree-
function of T/ T for different values of the 2D interaction ment V‘,"th recent analytical works. .
parameter(=0.1-10. In the low-temperature region, the In Figs. 7 and 8 we show the dependence of the effective

effective mass first rises to some maximum. and then deM@ss renormalization as a function of the interaction param-
' rrs for a few values of fixed temperatugether than fixed

creases as temperature increases. This nonmonotonic '[renq‘i,lt;r bering thaler-2 sinceT. o dr o ii2)
systematic, and the value @¥ Tz where the effective mass _. 'F remembering thatg=rg= SINCE gocn andrseen =).
Figure 7 shows the effective mass for highand larger

reaches the maximum increases with increasing he ini- . , .
g values, while Fig. 8 concentrates on the Idwegion. The
calculatedm’(ry) for fixed T values are quite striking: For

low fixed values ofT, m'/m initially increases withr, even
faster than the correspondifigrO result, eventually decreas-
2_
T/EF
g 18 — 0.04
N — 0.08
S — 0.16
1.6 — 0.20
— 0.24
— 0.28
14 — 0.32
1.2 -
4 S
L 2
15 —3 ]
=
1 ! 1 1 1 1 J
0 0.2 0.4 0.6 0.8 1 0.8
/T
F
. i 0 5 10 15 20
FIG. 5. The calculated 2D effective mass as a functioi /3fc rs

for differentrg: rg=10— 1 from top to bottom. Inset,g=5-1 from
top to bottom. Note thaTFocr;Z, making the absolute temperature FIG. 7. The calculated 2D effective mass as a functiong@ft
scale lower for higherg values. fixed value of temperatures.is in the unit of Tg atrg=1.
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3.5r

m/m
w

1 ! : ' C \ | | i
1 2 3 4 5 6 7 8 9 10 0 0.1 0.2 03 0.4

s ’ ' T/TF

fixelzjlsz.ali.e E?feﬁlzlii;fg; Z i?]ﬁ;?niitmoe;‘srs Ztsra_f;m_l(ftrl]?snsf)tt FIG. 9. The calculated 3D effective mass as a functiofi /0f
P ' R s~ P for differentrg rg=10— 1 from top to bottom.

is similar to Fig. 7, but concentrates on the low-temperature region.

C. Finite-temperature effective mass in 3DES
ing with rg at large enough valugsvhere the corresponding
T/ T values become large enoygfhis nonmonotonic be- In Figs. 9 and 10 we show our calculated 81)(T) as a
havior of m'(ry) as a function ofr for fixed temperatures function of T/Tg for differentrg values. In Fig. 9 varies
showing a temperature-dependent maximuvith the value  from 1 to 10, while in Fig. 10y is from 0.1 to 1. The 3D
of rg at which them' peak occurs decreasing with increasingtemperature dependence of the effective mass shows very
T as in Fig. 7 is complementary to the nonmonotonicity of different characteristics from that of 2D. Figure 9 shows that
m'(T) in Fig. 5 as a function of / T¢ (at fixedr,), and arises for r¢>1, the effective mass decreases monotonically with
from the relationship between the dimensionless variable¥icreasingT at low temperatures. However fof< <1, as
T/Te (%r;®) andrg (ocT;“Z) due to their dependence on the shown in Fig. 10, the effective mass increases with increas-
carrier densityi.e., Trn andrgcn™?), At largergand high  ing T in the temperature region we are considering. We
temperature, Fig. 7 shows that the effective mass increaséerefore conclude that in 3DES the sign of the slope
from below unity with increasings. This is the region where d(m /m)/d(T/Tg)|r=o is nonuniversal, which differs from
the exchange part of the self-energy dominates, and it can Bbat of 2DES, where the above-mentioned slope is always
easily shown that the exchange self-energy produces this pgositive for allrs. Another interesting feature is that the sign
culiar effect on therg dependence ofn’(ry) at fixed highT ~ of  d(m'/m)/d(T/Tg)lr-¢ matches the sign  of
values. Since the quasiparticles may not even be well definedd(m’/m)/d(rg)|r=o very well. In particularm’(T) decreases
at such hight/ T values, we do not further discuss the phys-with increasingT (at low T) in the “larger”’r4 regime, where
ics related to this region.

One immediate consequence of our results shown in Figs 1,
5and 7 is tham (T/Tg,rgd =m'(T,n) in 2DES could show a
strong enhancement at lofmut finite) temperatures and low
electron densitieglargerg). Comparing with the actual sys- .
tem parameters for 2D electrons in Si inversion layers anc o.99}
GaAs heterostructurgand taking into account the quasi-2D g
form factor effect&® neglected in our strictly 2D calculatipn  * o
we find that, consistent with recent experimental findihgs, ]
our theoretical calculations predi@ccording to Figs. 5 and  o.gsf
7 as modified by subband form factpra’/mto be enhanced
by a factor of 2—4 for the experimental densities and tem- i \\
peratures used in recent measureméimse to the approxi-
mate(i.e., RPA nature of our theory, we do not further pur-  og7}
sue the comparison with experimental data in this pape!
since the main goal of this paper is to discuss the temperatur s : :
dependence afi (rs, T/T¢) which has not yet been reported 01 02 pr. 03 0
in the literature. A direct experimental observation of an in-
creasingm’(T) at low temperatures in 2DES will be a strik-  FIG. 10. The calculated 3D effective mass as a function/di:
ing confirmation of our theory. for low rg values:rg=1.0—0.1.

0.1

oubh

2S00 o
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the correspondingr=0 m'(ry shows an increasing mass 1 _ _

with increasing ¢. Similarly, m'(T) increasegat low T) with -2 'mm =Cldw-w)-dw+wl], (30
increasing T in the rg regime, where the corresponding o

m'(rs; T=0) shows decreasing’ with increasingr.. where the polew, and the spectral weight, of the PPA

propagator in EQq.30) are determined by using the the
Kramers-Kronig relatior(i.e., causality
D. Model short-range bare interaction

1 o
So far, in all of our calculations we have been using the Rem =1 +;J ;dw Im k) (31
realistic long-ranged Coulomb interaction for the bare poten- ' 0 e

tial as in Eq(lZ) A question natura”y arises: how is the and thef-sum ru|e(i_e_, current ConservatiOn
temperature dependence that we find in our calculations re- . L

lated to the long-range nature of the interaction between __7m 2

electrons? Therefore, we also calculate the effective mass in fo o do lms(k, w) pr(k). (32)
2DES and 3DES using a simp{parametrizegfinite-range

interaction model Putting Eq.(30) in Egs.(31) and(32) we have
oy 27 Cy = mop(kV1 - Res (K, 0), (33
v(@) = ——,
g+a
— _ wp(K)
Ame? v1-Ree (k0
3D( ) —
v (Q) ) 2 (29) . .
qQ-+a where wp(k) in Egs.(32—(34) is the long-wavelength plas-
wherea is the cutoff wave vector that eliminates the long MON frequency, which is defined as
wavelength Coulomb divergence. . w3(K)
Our numerical calculation shows that akkz — 0, we re- limRgekw)]=1-—7—. (35
cover them'(T) behavior of the bare Coulomb interaction o7 @
results in both 2D and 3D. As/kg increases, the mass It is well known that in 2DES
renormalization in both 2D and 3D is suppressed, but all the Dne
qualitative features of the temperature dependence persist. In w,%(k) _£m K, (36)
2DES, asa/kr increases, the temperature where the effective
mass reaches the maximum decreases, and the effective Masy in 3DES
enhancementfrom the T=0 value to the maximujnde-
creases, but the linedr-dependence at low and the non- 2010 = 4mnée? 37
monotonic trend remain unchanged. In 3DES,a#kr in- wp(k) = m (37)
creases, theg region whered(m'/m)/d(rg)|r-o<<O shrinks, . .
but the consistency between the sign okr"/m)/d(rg)|7-o We mention that in Eq. (30) does not correspond to the
and the sign ofl(m /m)/d(T/T¢)|r- remains. real plasmon dispersion in the electron liquid, but simulates

From these results we conclude that the qualitative feal'¢ Whole excitation spectra of the system behaving as an

tures of the temperature dependence are model independe‘ﬂc[‘:‘.cwe plasmon at IOVY momentum and as the single-
and not peculiar to the bare interaction being Coulombic. part_lcle electron-hole excitation at Iarge momentum, as con-
This conclusion is further reinforced by the recent report of tralnled by;hepl;rj\lmers-Kr_clmliglj r_ela}'_[lon agjcéilig_eurr (;l.“e'
linearly T-dependent electronic specific heat in a short-rang etf%“ son the are avaiiabie In lterature, including
interaction modet* It may be worthwhile, however, to note Its finite-temperature generalizatiéh.The PPA, which is
that RPA is specific to the long-range Coulomb interaction ifknown to give results glqse to thg full RPA calculation of
giving an exact result in the high-density— 0 limit, and self-energy, allows a trivial carrying out of the frequency

there is nothing special about RPA in the case of short-rang%um in the retarded self-energy function leading to

interaction. d’q
ReE(k,w):—f (2—77)2vo(Q)np(§q-k)
V. PLASMON-POLE APPROXIMATION . f d’q @C {nB(Jg) +Ne(£gi)
2V0\) g T—
We now apply a simple-to-use dynamical approximation (2) wg = (€gk ~ @)
* 18 R
to calculatem'(T). The PPA has often been uééa to Ng(~ wg) + Ne(€q )
obtain the electron self-energy in the literature. It is a simple oot (Eor-w) | (38)
technique for carrying out the frequency sum or integration @qT eg-k T @

in the RPA self-energy calculation by using a spectral polevhere C, and wy only depend ore(k,0) at finite tempera-
(i.e., a delta function ansatz for the dynamical dielectric tures, and are determined by E@33) and (34). Obviously
functione(k, w). In other words, it is an approximation to the the PPA provides a great simplification of the problem, since
RPA. The PPA ansatz assumes that the most numerically demanding part of the calculafitre
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FIG. 11. The calculated 2D PPA effective mass as a function of
T/Tg at a fixed value of.
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r =9
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FIG. 12. The calculated 3D PPA effective mass as a function of

T/Tg at a fixed value of .

frequency sum or integrations trivially done. It should be
noted, however, that although the PPA is known to produce
reliable approximation to R, it, by definition, fails com-
pletely for Im%.

We present our PPA results for the 2D effective mass as
function of T/ Tg at fixedrg values in Fig. 11. One immediate
observation by comparing Figs. 5 and 11 is that even thoug
PPA provides a very good approximation for the self-energ
(indeed, our numerical results for PPA self-energy and RP
self-energy match very wellit fails to provide accurate re-
sults for the effective mass. The zero-temperature effectiv
mass generated by PPA is almost half of that from RPA, an

uasiparticle decayi.e., finite ImX) here arises entirely
rom having a finite temperature. The results show that the

magnitude of the imaginary self-energy increases with in-
glreasingrs and T/Tg. It is obvious from Eq.(39) that the
Imaginary self-energy vanishes on the Fermi surfacd at
=0 as it must, since the quasiparticles are perfectly well de-

ined atT=0 for k=kg. As T increases, the magnitude of

Amaginary self-energy remains small compared to the Fermi
energy up to a certain temperature, and the quasiparticles on

he Fermi surface remain well defined up to that temperature.
he important question is whether the finite-temperature

quasiparticles are sufficiently well defined for the interesting
behavior ofm’(T) that we discussed in Sec. IV to be experi-

mentally observable. If the quasiparticles are ill defined,,

the temperatures whera" maximizes shift to higheT val-
ues in the PPA compared with RPA. But the qualitative be

havior of m'(rg, T/Tg) is similar in the PPA and RPA for the : . .
2DES as is clear by comparing Figs. 11 and 6. Im X (kg) >Eg in the temperature regime of interpshen

From our results of 3D PPA effective mass calculationOt*’ViOUSIy _aII the intgresting temperatgrg dependgnce of
presented in Fig. 12, we can see that they are different frorfl! (T) predicted by us is only of academic interest since the

RPA results even qualitatively. In fact, our RPA results for
m'(r¢, T/Tg) are similar in both 2D and 3D.

VI. QUASIPARTICLE DECAY

The quasiparticle decay rater the inverse lifetimgis

givent®13 py the imaginary part of the self-energy. As we i~ 5l
have discussed in Sec. Ill B, the imaginary part of the qua->
siparticle self-energy can be calculated from E2f). It is g 15t
also obvious that only the second term in E&3) contrib- E,
utes to the imaginary self-energy: the first term is obviously g 1t
real, and the last term is also real becaudq,-w,)

=€'(q,w,). Thus, we have 05

d%
Im 2 (k, w) :—f @vo(q)lmm
1 q—

X[Ng(ég—k = @) +Ne(éq)]. (39

3.51
3+

\Izu‘2.5-
=

S{HHEETETET

FIG. 13. The calculated magnitude of the 2D RPA imaginary

Figures 13 and 14 show the calculated imaginary selfself-energy of quasiparticles on Fermi surface as a function af
energy on the Fermi surface in 2D and 3D, respectively. Thelifferent values ofl/ Tr.
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Sl — RPA) are the most divergent diagrams in the—0 limit.
ol | — Such a zero temperaturg expansion of RPA gives the fol-
i lowing formula form’(rg) in both 2D and 3D:
w7l — *
I ||— MED | g rarbeinrg+0Wd,  (40)
EL 6r | — m rs—0
‘\t<< St _ wherea and b are constants of order unity. What we find
ol numerically is that the leading temperature correction to this
E— effective mass formula is linear i/ Tr in 2D and nonlinear
g 3 in T/Tg in 3D. In this paper, we have calculated(rg, T/ Tg)
- ol numerically for the one-loop dynamically screened Hatree-
Fock RPA self-energy theory for arbitrary and T/ Tg find-
1// ing nontrivial temperature dependence of the effective mass
// at all densities.
o > 3 4 5,6 7 8 9 10 Our most important result is the unexpected discovery of

s a strong temperature-dependent quasiparticle effective mass
m'(T) at low temperatures in 2DES. Since the temperature
FIG. 14. The calculated 3D RPA imaginary self-energy of qua-scale for the temperature dependencencfT) is the Fermi
siparticles on Fermi surface as a functiorrgét different values of  temperature, which tends to be high104 K) in the 3D
T/Te. electron liquids(i.e., metaly, our temperature-dependent ef-
fective mass results for 3D systems are mostly of theoretical
large broadening will make it impossible to define quasiparinterest since any actual dependence of'(T) in the
ticles, let alone their effective mass. By examining the result§’/T10"4 regime will be miniscule. Our numerical results for
of Figs. 13 and 14 compared with those presented in Sec. I\the calculatedm’(T) in 2D systems are consistent with a
it is clear that there is a well-defined regime @, T/Tg) linear leading-order temperature correction for the 2D qua-
values wheran’(T/Tg) shows nontrivial temperature depen- siparticle effective mass: Results in Figs. 5 and 6 can be well
dence with the conditiorEr>|Im Z(kg)| well-satisfied so fitted to the formulam’(T)=~ 1+A25(rg)+B?P(ro)(T/Tg) +- -
that quasiparticles are well defined. Although this is not unfor small T/ T where the slop&?°(ry) seems to be a con-
expected since|Im 2(T)|~T? for T/Te<1, whereas stant independent ofs (i.e., density at least in the high-
m'(T)/m=1+O(T) in 2D, it is nevertheless important to see density(rg<1) limit; for rs>1 the slopeB?°(r,) has a weak
that Im> remains small in magnitude in thes, T/Tg) re-  density dependence increasing somewhat with increasing
gime of interest. Earlier theoretical work on the quasiparticle(but our approximation scheme, RPA, becomes less quanti-
damping of 2D interacting electron systems can be found iffatively reliable at large s, therefore, it is possible that the

Refs. 8—10 and 13. sloped(m"/m)/d(T/Tg) is indeed independent af, in the
T—0 limit). In addition to this interestingand unexpected
VII. DISCUSSION AND CONCLUSION linear leading-order temperature correction to the quasiparti-

cle effective mass, we also firBf°(>0) to be positive for

In this work, we have obtained detailed results for thea|| r  indicating that in 2DES, the leading-order temperature
te*mperature dependence of the quasiparticle effective masgprrection to the effective mass is positive. Thos(T) in-
m (rs, T/Tg), at arbitrary values of temperature and densitycreases with increasin at first, before eventually decreas-
in 2D and 3D electron systems interacting via the long-rangeng asT/ T increases substantially, leading to a maximum in
Coulomb interaction. Our central approximation is the RPAmM(T) at some intermediate temperatufe (rg) ~ 0.5T,
(i.e., the dynamically screened Hatree-Fock self-energy apyhich is only weakly density dependefexcept, of course,
proximation), which is the leading-order one-loop self- throughT; itself). All three of these 2D findingfi.e., linear
energy calculation in a dynamically screened effective i”teHeading-orderT/TF dependence ofn’, increasingm’ with
action expansion. RPA is exact in the high-density—~0)  T/T. at low temperatures, and the nonmonotonic behavior
limit at T=0, and is therefore a controlled nontrivial approxi- with a maximum inm* (T/Tg) occurring atT" ~0.5T¢] are
mation, which is empirically known to work well far,>1  syrprising and unexpected. We are aware of no intuitive
(e.g., metals withrs~3-6 and 2D semiconductors with  physical arguments that can explain these features easily,
~1-10. We also calculate the finite-temperature imaginaryand, moreover, we do not think such a simple explanation
self-energy(i.e., the quasiparticle decay rate or broadehing exists, otherwise they will not be claimed as surprising find-
to ensure that the broadening remains small in(tgel/Te)  ings. They are intriguing facts unveiled by calculations. In
parameter regime of our interest, whene(T) shows inter-  principle, these predictions can be experimentally tested
esting temperature dependence. since our calculations presented in Sec. VI show that the

As mentioned earlier in the paper, it is well known that atquasiparticles remain reasonably well defingce., the
T=0, m'(ry can be exactly calculate@h both 2D and 3D broadening, In, remains smallall the way toT" and per-
in the asymptotias— 0 limit by systematically expanding haps even abov& . This is reasonable since the many-body
the RPA self-energy since ring diagrartiacluded in the correction tom" is linear in T/Tg, whereas the broadening
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Im 3~ (T/Tg)?, ensuring that folf/ T <1, the quasiparticle TA
effective mass is a well-defined quantity. In contrast to the
linear (with positive slopg leading-orderT dependence we
find for all rg in our calculated 2Dm’(T), our 3D results
show nonuniversain’ (r, T/Tg) behavior. In 3D,m (T/T)
increases with increasing/Tg at low temperatures only for
very high densitiegsmall r—for larger rg values, m'(T)
decreases monotonically with increasing temperatfine

sharp contrast to the striking nonmonotonicity im(T) in %
2D] and this decrease is more consistent with a nonlinear
leading-order temperature dependeigcher than a linear

one as in 2D. Our best guess for our numerical results 0 7
shown in Figs. 9 and 10 is the following equatian’/m
~1+A3P(r )+ C3P(T/T)" IN(T/T) +- -+, wherel is a number FIG. 15. The schematic validity of RPA. The shaded area de-

of the order ongnote that numerically fixing the numbkrs notes the region where RPA is considered to be valid. |Are-
difficult and needs much more workC3®>0 forrg<r,and  notes a certain density value above which RPA is validrad
C3P <0 for rs>r;, with r; being approximately the; value, (e.g., the vertical lineA may correspond to the;=1 condition so
where AP changes from being negative to positive. It is that for higher density, i.e., to the right of lie RPA is valid even
clear that the trends of temperature dependence of effectiv& T=0). Line B denotes the line ofg«<n. In the region above line
mass in 2D and 3D are very different, from which we canB: RPA is again valid. Therefore, for any fixed value of density
safely claim that these features are dimensionality deper©" equivalently fixedry), RPA is a better approximation with in-
dent. Again, we do not think there exists simple and intuitivecreasingT, whereas for a fixed value of temperature, low density

explanations for the characteristic difference between 2D anéa'“efs(or largers) counterintuitively make RPA valid again since
3D results. PA is valid forT>T.

We comment that our numerical results for(T) are con- 15), RPA works extremely well as;— 0 (the high-density
sistent with the very recent analytical wétk® on the tem- limit) and asTr— 0 (the high-temperature or equivalently,
perature corrections to the effective mass renormalization ithe low-density limif or, asT — . As a result, the regime of
2D and 3D Fermi liquid. The analytical work is necessarily validity of RPA is greatly enhanced at finite temperature, and
restricted to the,— 0 andT/T-— 0 limit, where the infinite  in fact even at very largeg (i.e., very low density RPA
series of ring diagrams to the electron self-enggpicted  works better asT is raised(because th&/Tg>1 limit is
in Fig. 1) provides arexactleading-order asymptotic answer more easily achieved at low densitie©n the other hand,
to the problem with the following result: we want to emphasize that in the extreme higiT¢ limit,
we do not seek comparison between our numerical result, as

m (rs, T/Tg) _ 1+A(rS)+B(rs)<l> +C(rs)<l>zln<l> shown in Fig. 7, and the experimental results, because at
m Te Te Te such high temperature, the physics in a real system becomes
b (41) much more complicated, and the quasiparticles may not even
k be well defined.
with B(rg =B?P, a constant, in 2D, anB(ry) =0 in 3D. Our Finally, we comment on the anomalo(sften referred to

numerical results are consistent with this exact result, but ouds “nonanalyticy*4 nature of the temperature corrections to
numerical results apply also in the nonasymptotic regionthe quasiparticle effective mass in 2D syste¢hat not in
whereT/Tg andr, are not necessarily small. In this nonas- 3D) as manifested in théinear leading-order temperature
ymptotic regime(wherer is not small, and actually, may  correction we find in interacting 2D electron systems. This
be large in 2D semiconductor systenRPA is by no means particular feature is apparently generic in 2D and not due
an exact theory, but we have recently argehat RPA  merely to our using the long-range bare Coulomb interaction,
remains qualitatively well valid, even fog>1. We also em- because in Ref. 14 the same lindacorrection is found in
phasize a point in this context that seems not to have beegglculations using a zero-range bare interaction, although the
widely appreciated in the literature. The point is that RPAsign of the slope is negative in the zero-range interaction
becomes a progressively better approximationT4Sg in-  case. This kind ofleading-ordey linear temperature correc-
creases at a fixer, (for any r), because the system is be- tion is quite common in 2D electron systems due to the pe-
coming more classical in th&/T> 1 regime. In the classi- culiar form of the 2D polarizability with &=0 cusp at Re.

cal limit, leaving out three-body and higher-order terms, theThis leading-order lineaf- correction is interesting because
only effect of interaction is to dynamically screen the long-the naive expectation in a Fermi syst¢based on the usual
range Coulomb interaction, which is exactly incorporated inSommerfeld expansion of the Fermi functipns that the
RPA. Thus, RPA should work better since it correctly incor-leading-order correction in a “normal” situation should al-
porates the self-consistent screening of Coulomb interactioways beO(T/Tg)? for all electronic properties. In 2D elec-
(i.e., the dynamical Hartree effectvhich should be the most tron systems it seems that the generic situation is “anoma-
important effect in the classical limit in a Coulomb plasma.lous,” i.e., the leading-order temperature correction is
In plasma physics, all one needs is to screen the Coulom®(T/Tg) rather than the “normal” quadratic Fermi behavior
interaction. Thus, in thérg, T/Tg) parameter spac@ee Fig. expected on the basis of the analytic Sommerfeld expansion
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of Fermi functions. In 2D interacting electron systems, theresince it is much easier to observe a linear temperature cor-
fore, all leading-order thermal corrections to electronic prop+ection than a quadratic one at low temperatures.

erties are much strongéby a factor of T/T, which is a

!arge number a3 —0) than the.q.uadrat_lc Fermi gas b_ehav- ACKNOWLEDGMENTS

ior. This anomalous nonanalyticity, which may have impor-

tant consequences for fermionic quantum critical phenom- This work is supported by the US-ONR, the NSF, and the
ena, obviously has important experimental implicationsLPS.

APPENDIX

Here, we provide a proof for equivalence between §) and Eq.(21).

(2m) >+GR(k—q,v+ w)lm DR(q,v)cot%<2—]fl_)}

dd dv 1) 1 v
= f(z q)dj vo(q){ 7o (v+ o= & )€ Hq, v)tanl-< 2+T )+ V+w+i77_§q_klm e‘l(q,v)cot)'<2—_r)}.

(A1)

d
S(k,w)=— d’q de{lm Grk —q,v+ w)Dg(q, v)tanl-< ;Tw

Using Kramers-Kronig relations for (g, ») in the above equation, we have

dq [ d dv' Im €%q,v") 4
R E I R e

+;m ~1( )cotl-(v>
vro+in= i € v 2T

d dv_Im eXaq,v) } éqk ) f@ 1 i r(v)
2 )de(q){ { +f mrrarin-torl O\ 2T )] Zavrarigogam € (@O o
d% sg_k> d’ J dv vg(@)Im €k, ) { k(@«)_ f<—ﬂ

(2 )dUO(q) Jan ot )" (277)" 27 vt wtin-for | tanf o ) et o7

dv 209(@)Im €(q,v)
=const f o) - j oy g, | S2ddm < (o

2m v+ w+in— &

X [Ne(&g-) + ne(w)]. (A2)
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