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We study an electron transport property in two parallel quantum wires with random potentials. Assuming the
same microscopic parameters for both wires, we focus on the relationship between interwire interaction and
electron backward scattering by random potentials at low energy regime. Our analytical and numerical calcu-
lations show that the Drude weight, a measure of the electron transport, is influenced by interwire interaction
and random potential independently, and little coupling between those two is observed, which is in contrast to
a deep relationship between up- and down-spin interactions and random potentials in a single wire. It leads to
that interwire interactions do not have a great influence on the Anderson localization in each wire.
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The problem of electronic transport has been one of the
major issues in the history of condensed matter physics.
There are always two key factors: electron–electron interac-
tion and random potential. The importance of their roles on
the electronic transport is extremely high in low dimensions
because of large quantum fluctuations and strong localiza-
tions.

In this paper we pick up a one-dimensional system of
parallel quantum wires. If no hopping between the wires is
allowed, electrons on one wire recognize the presence of the
neighboring wire only through interwire Coulomb interac-
tion.

In one-dimensional system, interacting electrons form so-
called Luttinger liquid and the important theoretical works
have been done on its transport properties. Kane and Fisher1

and Furusaki and Nagaosa2 studied Luttinger liquid placed in
a single(and double) barrier system and showed the various
interesting aspects of conductance.

Luttinger liquid with random potential was studied, for
example, in Refs. 3–5. Electrons interacting with each other
with repulsive force are shown all localized even by an in-
finitesimally weak random potential.3 There is in fact an in-
terplay between the interaction and the random potential, but
the transport property would not reflect it because the system
is always an insulator. The interplay becomes significant in
considering the transport in finite size systems that could be
metal.5 Reference 5 claims that repulsive interaction would
suppress the effects of random potentials and hence enhance
the electronic current.

If we set two equivalent wires in a parallel position, an-
other interesting phenomena is expected. When no electron
transferring between the wires is assumed, the electrons on
each wire are confined in the line, but the interwire interac-
tions couple the electrons of both wires. Electronic current in
one wire would drag the electrons in the other wire, which is
called Coulomb drag effect. For the parallel wires, some the-
oretical works have been done concerning the temperature
and electron reservoir dependence of transresistance, trans-
conductance and trans-susceptibility for clean wires as well
as wires with periodic potentials.6–8

In this paper we focus our attention on, if any, the inter-
play between interwire interaction and random potential. We
would like to see how the electronic transport in a dirty wire
is modified by the neighboring wire that is also dirty. For this
purpose we calculated Drude weight of a wire in the pres-
ence of neighboring wire and try to see how it varies by
changing both the interaction and random potential, expect-
ing it to provide us information on whether the interwire
interaction has any effect on the Anderson localization within
the wire.

The model we consider here describes spinless electrons
in two identical parallel one-dimensional wires with random
potentials. It could be interpreted that we are treating parallel
wires in a strong magnetic field that polarizes all the spins.
Interwire and intrawire interactions between electrons are
also assumed. The Hamiltonian is then given by

H = − to
i,w

sci,w
† ci+1,w + h.c.d + Uo

i

ni,+ni,− + Vo
i,w

ni,wni+1,w

+ o
i,w

Rwsidni,w, s1d

wheret is the hopping integral,U is the interwire interaction,
V is the intrawire interaction,Rw is random potential on the
site i andw=± presents the wire index. Hereafter we work in
units where"=1 and the lattice constanta=1.

In the low energy regime, the kinetic-energy part becomes

H0 = pvFL−1 o
r,w,k

rr,wskdrr,ws− kd, s2d

where r =± is an index for the right/left moving electrons,
vF=2t sinskFd is the Fermi velocity,rr,wskd is the electron
density in the momentum space. The small momentum trans-
fer part of intra- and interwire interactions is given by
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H f = L−1 o
k,w,w8

sg2dw,w8 + ḡ2dw,−w8dr+,wskdr−,w8s− kd

+ s2Ld−1 o
r,k,w,w8

sg4dw,w8 + ḡ4dw,−w8drr,wskdrr,w8s− kd,

s3d

whereg2=2Vs1−coss2kFdd andg4=2V are the coupling con-
stants of intrawire interactions, andḡ2=U andḡ4=U /2 are of
interwire interaction. The 2kF backward scattering between
the wires is given by

Hb = ḡ1 o
w
E dxc+,w

† sxdc−,−w
† sxdc+,−wsxdc−,wsxd, s4d

where ḡ1=U. The total Hamiltonian of clean wires is then
given byHc=H0+H f +Hb, which is obviously equivalent to
an isospin-1/2 single-channel system.

Following the standard procedure of bosonization, we
represent fermionic fields cr,wsxd as cr,wsxd
=s2pad−1/2 expfir hkFx−fwsxdj+ iuwsxdg by introducing
bosonic fields fwsxd=−ipL−1oqse−iqx−auqu/2/qdfr+,wsqd
+r−,wsqdg and their conjugates Pwsxd
=L−1 oq e−iqx−auqu/2fr+,wsqd−r−,wsqdg, where a= +0 and
]xuwsxd=pPwsxd. In this boson representation and the trans-
formations fc±=sf+±f−d /Î2,Pc±=sP+±P−d /Î2, the
Hamiltonian becomes

Hc =
uc+

2p
E dxFKc+p 2Pc+

2 +
1

Kc+
s]xfc+d2G

+
uc−

2p
E dxFKc−p 2Pc−

2 +
1

Kc−
s]xfc−d2G

+
2ḡ1

s2pad2 E dx cossÎ8fc−d, s5d

where

uc± = vFFS1 +
g4 ± ḡ4

2p vF
D2

− Sg2 ± ḡ2

2p vF
D2G1/2

, s6d

Kc± = F2p vF + g4 ± ḡ4 − g2 7 ḡ2

2p vF + g4 ± ḡ4 + g2 ± ḡ2
G1/2

. s7d

When the interactions are weak,uc± andKc± are given by

uc± , vFS1 +
V

p vF
±

U

4p vF
D , s8d

Kc± , 1 −
V

p vF
s1 − coss2kFdd 7

U

2p vF
. s9d

We now introduce quenched random potentials, which are
assumed to be parametrized by two Gaussian random fields
hw andjw, whereh is real andj is complex. These two fields
represent, respectively, the forward and backward electron
scattterings from the random potentials, and have the Gauss-
ian distributions,

Phw
= expF− s2D fd−1E dx hw

2sxdG , s10d

Pjw
= expF− s2Dbd−1E dxujwsxdu2G . s11d

The scattering terms with the random potentials are given by

Hfrand= o
w
E dx hwsxdfr+,wsxd + r−,wsxdg, s12d

Hbrand= o
w
E dxfjwsxdc+,w

† sxdc−,wsxd

+ jw
* sxdc−,w

† sxdc+,wsxdg. s13d

It should be noted that introducing random potentials on each
wire makes the present model variant from its resemblance,
the isospin-1/2 single-channel model. This is because in the
former case the profiles of the potentials that the electrons
feel on each wire are different even though their statistical
characteristics(average depth and standard deviation) are the
same. In the latter model, on the other hand, the electrons of
up and down spins feel exactly the same potentials. Our two-
wire model with random potentials actually corresponds to
an isospin-1/2 single-channel model with random potentials
and a random magnetic field.

Using the conventional replica trick, we integrate out the
random field and obtain the following replica actions:

S̄= S0̄ + S1̄ + S2̄, s14d

S0̄ = o
i

n E dt dx
1

2p

3 S 1

Kc+
F 1

uc+
s]tf̃c+

i sx,tdd2 + uc+s]xf̃c+
i sx,tdd2G

+
1

Kc−
F 1

uc−
s]tf̃c−

i sx,tdd2 + uc−s]xf̃c−
i sx,tdd2GD ,

s15d

S1̄ = − o
i,j

n E dt dt8 dx dx8
ḡ1

2

16p4a2cossÎ8ff̃c−
i sx,td

− f̃ c−
j sx8,t8dgde−4DfsKc−/uc−d2ux−x8u, s16d

S2̄ = − o
i,j

n E dt dt8 dx
Db

p 2a2cossÎ2ff̃c−
i sx,td − f̃ c−

j sx,t8dgd

3 cossÎ2ff̃c+
i sx,td − f̃c+

j sx,t8dgd, s17d

where i and j are the replica indices. To derive the replica
actions, we have shifted the boson field as

f̃c+ = fc+ + h̃totsxd,
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h̃totsxd = −
Kc+

Î2mc+
Ex

dz htotszd,

h̃relsxd = −
Kc−

Î2mc−
Ex

dz hrelszd,

htotsxd = h+sxd + h−sxd,

hrelsxd = h+sxd − h−sxd. s18d

For this action, we derived the following renormalization
equations:

dKc+sld
dl

= − m
Kc+

2

uc+
2 sKc− + Kc+dDbsld, s19d

duc+sld
dl

= − m
1

uc+
Kc+sKc− + Kc+dDbsld, s20d

dKc−sld
dl

= − m
Kc−

2

uc−
2 FsKc− + Kc+dDbsld +

2a

p 2Kc−ḡ1
2sldG ,

s21d

duc−sld
dl

= − m
1

uc−
Kc−sKc− + Kc+dDbsld, s22d

dDbsld
dl

= s3 − Kc− − Kc+dDbsld, s23d

dḡ1sld
dl

= 2s1 − Kc−dḡ1sld, s24d

wherem=a/3p.
We hereafter focus on the Drude weightDw of wire

ws=± d, which describes the electronic transport within the
wire +s−d in the presence of the neighboring wire −s+d. The
Drude weightD± can be determined by the current–current
correlation function kJ±

2l=ksJc+±Jc−d2/2l, where Jc± is
symmetric/antisymmetric current densities. Since we as-
sumed qualitative equivalence of both wires, we haveD+
=D−;D and therefore

D = skJc+
2 l + kJc−

2 ld/2. s25d

With no interwire interaction and random potential, we get
from the quadratic form of the current]tfc± in the action

D = Kc+uc+ + Kc−uc−, s26d

omitting the irrelevant numerical factors. The qualitative
change ofD by the inclusion of the interaction and the ran-
dom potential can be seen from the behaviors ofK andu in
the RG equations.

At first, g1' always makesKc smaller as the renormaliza-
tion proceeds in Eq.(21), indicating that the presence of the
interwire interaction gives the smaller Drude weight irre-
spective to the sign of the interaction. This is the dragging
effect, which is stronger for larger interaction.

Although the full dependence of Drude weight on the mi-
croscopic parameters has to be calculated by numerically in-
tegrating the RG equations, we take a rough view on the
behavior of the parameterDb neglecting thel dependence of
theK on the right-hand side(rhs) of Eq. (23). Integrating the
equation froml =0 to l =lnsL /ad we get

Db = Db0sL/ad1+2V f1−coss2kFdg/p vF, s27d

where we used Eq.(9) andDb0 is the initial value. Note that
the interwire interactionU has no direct effect on the random
potential parameterDb, which means that the major role ofU
on the electronic transport is to drag the neighboring wire
electrons.

This is quite different from the case of the spin-full single
wire model which is equivalent to the present model until the
random potentials are introduced as stated above. The inter-
action dependence of the random potential parameter for the
spin-full single wire is given by the following form(see Ref.
5):

D = D0sL/ad1−U/sp vFd+2V f1−2 coss2kFdg/p vF, s28d

whereU andV are the on-site and nearest-neighbor interac-
tions, respectively. The important difference between Eqs.
(27) and (28) is the appearance ofU in the latter. In the
spin-full single wire,U, the interaction between up and down
spins, would effectively increase the random potential pa-
rameterD, which can be understood by the following argu-
ment: The spin-1/2 electron system in one dimension has the
SDW-dominated ground state and the SDW fluctuation be-
comes larger with increasingU, whereas it suppresses CDW
fluctuations. Therefore the pinning effect due to impurities is
weaker for largerU. Since the last term on the rhs of Eq.(21)
does not exist in the RG equations for the spin-full single
wire case, meaning the absence of the dragging effect, the
influence ofU on the Drude weightD appears solely through
D. ConsequentlyU would suppressD and thereforeD. In
other words the repulsive interactions between up and down
spins help the transport. The different roles of interactions on
the localization in our model and the spin-full single-wire
model can also be seen in the localization lengthjloc. Fol-
lowing Ref. 9, we can estimatejloc as follows:

jloc/a ,5
sjloc

s0d/ad1−2V f1−coss2kFdg/p yF

sspinless two-wire modeld,

sjloc
s0d/ad1+U/spyFd−2V f1−coss2kFdg/pyF

sspinfull single wire modeld,

s29d

where a is the lattice constant andjloc
s0d is the localization

length of the noninteracting system.
In order to check the above result numerically, we per-

formed Monte Carlo calculations for the Hamiltonian(1) us-
ing the world-line algorithm. The random potential on each
site is assumed to be a random number uniformly generated
between −R andR. The simulation was performed in the zero
winding number mode, based on the periodic boundary con-
dition. While it is necessary to calculate the current–current
correlation function to obtain Drude weight, its zero-
frequency partkJsvdJs−vdl is always zero because we
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worked in the zero winding number space. We therefore ex-
trapolatedkJsvdJs−vdl to v→0 limit and determined the
Drude weight.10 The simulations are performed for wires of
20 sites and eight particles each. We took the random poten-
tial average over 100 samples to achieve satisfactory preci-
sion.

Figure 1 shows the Drude weight as a function of the
interwire interactionU, at the temperatures2/9dt. The in-
trawire interactionV is fixed, V=s2/3dt. We see the mono-
tonic reduction ofD for either increasingU or increasingR.
Let us normalize the Drude weight with the value of the
clean system, i.e.,DsU ,Rd /DsU ,R=0d. Then we find the
normalizedD has little dependence onU (see the inset of
Fig. 1), which supports an idea thatDsU ,Rd can be approxi-
mately written as a product of two functions, one ofU and
the other ofR. If we write this asDsU ,Rd,F1sUdF2sRd, F1
andF2 are both decreasing functions. The point here is that
U andR are not coupled in the Drude weight, which is ex-
actly what we have on the RG calculations.

In conclusion we studied a transport property of spin-
polarized electrons moving in parallel one-dimensional wires

with random potentials. We in particular focused on the
Drude weight, a measure of the transport in one wire under
the influence of the other. Analytical and numerical calcula-
tions were done to see how the Drude weight varies as a
function of the interwire interaction or of the random poten-
tial. We found both the interaction and the potential reduce
the Drude weight: the former is due to the Coulomb drag and
the latter to the localization. An interesting point is that there
is no noticeable interplay between these two. This is in con-
trast to the case of full-spin electrons in a single wire, where
interactions between up-and down-spin electrons would
weaken the random potential effectively. Little effect of the
interwire interaction on the strength of the random potential
means that the property of Anderson localization in each
wire has little dependence on the interwire interaction, al-
though it is greatly affected by the intrawire interaction and
by the interwire hopping.9
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FIG. 1. Drude weightD as a function of in-
terwire interactionU for the spinless double wire
system. The random potential varies between −R
and R and t and V are fixed to be 1.5 and 1,
respectively.
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