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Electron transport in parallel quantum wires with random potentials
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We study an electron transport property in two parallel quantum wires with random potentials. Assuming the
same microscopic parameters for both wires, we focus on the relationship between interwire interaction and
electron backward scattering by random potentials at low energy regime. Our analytical and numerical calcu-
lations show that the Drude weight, a measure of the electron transport, is influenced by interwire interaction
and random potential independently, and little coupling between those two is observed, which is in contrast to
a deep relationship between up- and down-spin interactions and random potentials in a single wire. It leads to
that interwire interactions do not have a great influence on the Anderson localization in each wire.
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The problem of electronic transport has been one of the In this paper we focus our attention on, if any, the inter-
major issues in the history of condensed matter physicglay between interwire interaction and random potential. We
There are always two key factors: electron—electron interacwould like to see how the electronic transport in a dirty wire
tion and random potential. The importance of their roles oris modified by the neighboring wire that is also dirty. For this
the electronic transport is extremely high in low dimensionspurpose we calculated Drude weight of a wire in the pres-
because of large quantum fluctuations and strong localizasnce of neighboring wire and try to see how it varies by
tions. , , , changing both the interaction and random potential, expect-

In this paper we pick up a one-dimensional system Ofi\q it to provide us information on whether the interwire
parallel quantum wires. If no hopping between the wires iSheraction has any effect on the Anderson localization within
allowed, electrons on one wire recognize the presence of t e wire
neighboring wire only through interwire Coulomb interac- The rﬁodel we consider here describes spinless electrons

tion. . . . . ) : :
. . . , in two identical parallel one-dimensional wires with random
In one-dimensional system, interacting electrons form so- two identical parallel one-dimensional wires with rando

called Luttinger liquid and the important theoretical works potentials. It could be interpreted that we are treating parallel

have been done on its transport properties. Kane and Fishepires i_n a strong ma_gne}ic field_ that polarizes all the spins.
and Furusaki and Nagadsstudied Luttinger liquid placed in Interwire and intrawire interactions betvv_een electrons are
a single(and doublg barrier system and showed the various /S0 assumed. The Hamiltonian is then given by
interesting aspects of conductance.

Luttinger liquid with random potential was studied, for
example, in Refs. 3-5. Electrons interacting with each other H = -t (CIWCi+1,W+ h.c)+U>, ni N -+ VY, M w1
with repulsive force are shown all localized even by an in- iw i iw
finitesimally weak random potenti&There is in fact an in- £ R, 1)
terplay between the interaction and the random potential, but ™ W
the transport property would not reflect it because the system
is always an insulator. The interplay becomes significant in
considering the transport in finite size systems that could b@heret is the hopping integral/ is the interwire interaction,
metal® Reference 5 claims that repulsive interaction wouldy is the intrawire interactionR,, is random potential on the
suppress the effects of random potentials and hence enhansigei andw=+ presents the wire index. Hereafter we work in
the electronic current. units wherezi=1 and the lattice constaat=1.

If we set two equivalent wires in a parallel position, an-  |n the low energy regime, the kinetic-energy part becomes
other interesting phenomena is expected. When no electron
transferring between the wires is assumed, the electrons on
each wire are confined in the line, but the interwire interac- Ho= L2 prw(K)pr (=K, )
tions couple the electrons of both wires. Electronic current in rwk
one wire would drag the electrons in the other wire, which is
called Coulomb drag effect. For the parallel wires, some the-
oretical works have been done concerning the temperaturgherer==+ is an index for the right/left moving electrons,
and electron reservoir dependence of transresistance, trang==2t sin(kg) is the Fermi velocity,p, (k) is the electron
conductance and trans-susceptibility for clean wires as welilensity in the momentum space. The small momentum trans-
as wires with periodic potentiafs8 fer part of intra- and interwire interactions is given by
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Hi= L_lk‘%‘// (92(2/\/,W’ +§25W,—w’)P+,w(k)p—,w’(_ k) in - ex{_ (ZAf)—lJ dx 773\/()():| , (10)
+ (ZL)_l 2 (945\N,w’ +El‘sw,—w’)Pr,w(k)Pr,w’(_ k),
o - Pe, = ex;{— (28 f dXIfw(X)IZ} : (12)

whereg,=2V(1-co$2ks)) andg,=2V are the coupling con- The scattering terms with the random potentials are given by
stants of intrawire interactions, aigg=U andg,=U/2 are of

interwire interaction. The & backward scattering between HfrandZE J X 7,0 ps(X) + p_ ], (12)
the wires is given by : :

Hp=01 2 f SO C P G O PR ) Mo =S, f A&, 00T (o)

whereg,=U. The total Hamiltonian of clean wires is then x +

given byH.=Hq+H;s+Hp, Which is obviously equivalent to * &)Y (XN n(X)]- (13)

an isospin-1/2 single-channel system. It should be noted that introducing random potentials on each
Following the standard procedure of bosonization, wWeyjre makes the present model variant from its resemblance,

represent  fermionic  fields ¢ w(X) as ¥ w(X)  the isospin-1/2 single-channel model. This is because in the

=(2ma)™ "2 exdir{kex— ()} +i6,(x)] by introducing  former case the profiles of the potentials that the electrons

bosonic  fields ~ ¢,(x)=-imL 1S (e" ¥ l2/q)[p, (@)  feel on each wire are different even though their statistical

+p_w(0)] and their conjugates  II,(X)  characteristicséaverage depth and standard deviatiare the

=L" 12 e—qu—a\q\/z[p wW(@—p-w(@], where a=+0 and same. In the latter model, on the other hand, the electrons of

d ¢9W(x) 7ll,(x). In this boson representation and the trans-up and down spins feel exactly the same potentials. Our two-

formations  ¢e=(pst )2, 1=(II,+11.)/\2, the wire model with random potentials actually corresponds to

Hamiltonian becomes an isospin-1/2 single-channel model with random potentials
and a random magnetic field.
U Using the conventional replica trick, we integrate out the
He= 20 dx{ Koy HC+ * Kes ( Ixcpes) } random field and obtain the following replica actions:
+ f dx[ Kol + —(ax¢c_> ] S=§+S+S,, (14)
+ 29, 5 j dx cos(\r’8¢c_), (5) SO E Jdr dx—
(2ma)
where 111 -~ -
—\2 211/ X (K |:u_(&7-(f)lc+(x, T))z + UC+(&X¢::+(X,T))2:|
_ 02104 0% 0 oL e
Us =Up| |1+ 5 5 ) (6) 111 - ~
ToF TUF | (0o (6 D)+ U (0, 7) )
e | U
K :[270F+94i@1‘921§2}1/2 7 (15
© |l 2mvp+0s20s+ 0,20,
n -2
When the interactions are weak,. andK., are given by 5_1: -> [ drdr dx d)( gi ZCOS(\@[}ZL_(X, 7
R P ® y 2
o T OF mug 4mug)’ - ¢l (X, 7)) HrKeue) b, (16)

\% U
Ke ~1-—(1-co$2kg)) *
TUE 2mUE

9  s,=-> | drd” deAzzzcos(V"E[Zs‘C_(x, - dl(x,7)])
ij

We now introduce quen(;hed random poterjtlals, which are X o V2B, (x,7) = BL(x, 7)), (17)
assumed to be parametrized by two Gaussian random fields

nw andé,, wheren is real and¢ is complex. These two fields wherei and | are the replica indices. To derive the replica
represent, respectively, the forward and backward electroactions, we have shifted the boson field as

scattterings from the random potentials, and have the Gauss- 5

ian distributions, Per = Pes + Tor(X),
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X

~ K
Thot(X) = = ,i dz 7e(2),
N+
X
77re|(x) == /C— dz 7.(2),
V2

Mot(X) = 17:(X) + 1-(X),

Trel(X) = 74(X) = 7-(X). (18)
For this action, we derived the following renormalization
equations:
dKel) K
K;_I = = S (Ko + Ko Ap(l), (19)
c+
duc.(I) 1
“(c]” == 1KoK+ Ko Ayll), (20)
c+
dKe()  KZ 2a
# == MU_;: (Kc— + Kc+)Ab(|) + ?Kc‘az(l) ’
-
(21)
du._(I) 1
u;—l = - MU—KC_(KC_ + KC+)Ab(|)a (22)
-
dAg(l)
d—bl =(3 =K = Ken)Ap(), (23
dgy(l) —
ST =201 - Ko g, (24

whereu=a/3.
We hereafter focus on the Drude weigbt, of wire
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Although the full dependence of Drude weight on the mi-
croscopic parameters has to be calculated by numerically in-
tegrating the RG equations, we take a rough view on the
behavior of the parametey;,, neglecting thd dependence of
the K on the right-hand sidéhs) of Eq. (23). Integrating the
equation from =0 tol=In(L/a) we get

Ab - Abo( L/a) 1+2V[1-cos2kg) |/ mvE ' (27)

where we used Eq9) andAyy is the initial value. Note that
the interwire interactioty has no direct effect on the random
potential parametek,, which means that the major role of

on the electronic transport is to drag the neighboring wire
electrons.

This is quite different from the case of the spin-full single
wire model which is equivalent to the present model until the
random potentials are introduced as stated above. The inter-
action dependence of the random potential parameter for the
spin-full single wire is given by the following forrtsee Ref.

5):

A= AO(L/a)l—U/(wu,:)+2V[1—2 co$2k,:)]/7rv,:, (28)

whereU andV are the on-site and nearest-neighbor interac-
tions, respectively. The important difference between Egs.
(27) and (28) is the appearance df in the latter. In the
spin-full single wire U, the interaction between up and down
spins, would effectively increase the random potential pa-
rameterA, which can be understood by the following argu-
ment: The spin-1/2 electron system in one dimension has the
SDW-dominated ground state and the SDW fluctuation be-
comes larger with increasingd, whereas it suppresses CDW
fluctuations. Therefore the pinning effect due to impurities is
weaker for largetJ. Since the last term on the rhs of Eg1)

does not exist in the RG equations for the spin-full single
wire case, meaning the absence of the dragging effect, the
influence ofU on the Drude weighb appears solely through

A. ConsequentiyJ would suppres\ and thereforeD. In

w(=z), which describes the electronic transport within theother words the repulsive interactions between up and down

wire +(-) in the presence of the neighboring wiré+-. The

spins help the transport. The different roles of interactions on

Drude weightD, can be determined by the current—currentthe localization in our model and the spin-full single-wire

correlation function (Ji)z((JchiJC_)Z/Z), where J., is

model can also be seen in the localization len§th Fol-

symmetric/antisymmetric current densities. Since we aslowing Ref. 9, we can estimaig,. as follows:

sumed qualitative equivalence of both wires, we h@e

=D_=D and therefore
D = ((J2,) +(J)/2. (25)

With no interwire interaction and random potential, we get

from the quadratic form of the currenie,. in the action

D =K¢iUgy + K U, (26)

omitting the irrelevant numerical factors. The qualitative

(gl(g) a) 1-2V[1-cos2kg) )/ mvp

(spinless two-wire modg|

ioda~ (£0)/2) 14U/ (up)-2V [1-cos2ke (29)

(spinfull single wire model,

where a is the lattice constant an SZ is the localization
length of the noninteracting system.
In order to check the above result numerically, we per-

change ofD by the inclusion of the interaction and the ran- formed Monte Carlo calculations for the Hamiltonigl) us-

dom potential can be seen from the behavior&andu in
the RG equations.

ing the world-line algorithm. The random potential on each
site is assumed to be a random number uniformly generated

At first, g;, always makes . smaller as the renormaliza- between R andR. The simulation was performed in the zero
tion proceeds in E¢21), indicating that the presence of the winding number mode, based on the periodic boundary con-
interwire interaction gives the smaller Drude weight irre- dition. While it is necessary to calculate the current—current
spective to the sign of the interaction. This is the draggingcorrelation function to obtain Drude weight, its zero-

effect, which is stronger for larger interaction.

frequency part(J(w)J(-w)) is always zero because we
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worked in the zero winding number space. We therefore exwith random potentials. We in particular focused on the
trapolated(J(w)J(-w)) to @—0 limit and determined the Drude weight, a measure of the transport in one wire under
Drude weight'® The simulations are performed for wires of the influence of the other. Analytical and numerical calcula-
20 sites and eight particles each. We took the random potefions were done to see how the Drude weight varies as a
tial average over 100 samples to achieve satisfactory preciynction of the interwire interaction or of the random poten-

Siogigure 1 shows the Drude weight as a function of thetial. We found both the interaction and the potential reduce
interwire interactionU, at the temperaturé2/9)t. The in- the Drude weight: the former is due to the Coulomb drag and

trawire interactionV is fixed, V=(2/3)t. We see the mono- _the Iatter.to the Ic_)calization. An interesting point ‘? tha@ there
tonic reduction oD for either increasing) or increasingR. is no noticeable interplay 'between thgse tW.O' Th|s. IS In con-
Let us normalize the Drude weight with the value of thefrast to _the case of full-spin electrons in gsmgle wire, where
clean system, i.e.D(U,R)/D(U,R=0). Then we find the interactions between up-and down-spin electrons would
normalizedD has little dependence od (see the inset of Weaken the random potential effectively. Little effect of the
Fig. 1), which supports an idea thB(U,R) can be approxi- interwire interaction on the strength of the random potential
mately written as a product of two functions, oneldfand ~ means that the property of Anderson localization in each
the other ofR. If we write this asD(U,R) ~F;(U)F,(R), F;  wire has little dependence on the interwire interaction, al-
andF, are both decreasing functions. The point here is thathough it is greatly affected by the intrawire interaction and
U andR are not coupled in the Drude weight, which is ex- by the interwire hopping.
actly what we have on the RG calculations.

In conclusion we studied a transport property of spin- The authors would like to thank Professor T. Jo and Pro-
polarized electrons moving in parallel one-dimensional wiredessor T. Oguchi for helpful discussions.
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